x86/intel_rdt: Fix incorrect returned value when creating rdgroup sub-directory in...
[cris-mirror.git] / kernel / audit_tree.c
blobfd353120e0d946f3d3bb3ac98f3903aebbf42c76
1 // SPDX-License-Identifier: GPL-2.0
2 #include "audit.h"
3 #include <linux/fsnotify_backend.h>
4 #include <linux/namei.h>
5 #include <linux/mount.h>
6 #include <linux/kthread.h>
7 #include <linux/refcount.h>
8 #include <linux/slab.h>
10 struct audit_tree;
11 struct audit_chunk;
13 struct audit_tree {
14 refcount_t count;
15 int goner;
16 struct audit_chunk *root;
17 struct list_head chunks;
18 struct list_head rules;
19 struct list_head list;
20 struct list_head same_root;
21 struct rcu_head head;
22 char pathname[];
25 struct audit_chunk {
26 struct list_head hash;
27 struct fsnotify_mark mark;
28 struct list_head trees; /* with root here */
29 int dead;
30 int count;
31 atomic_long_t refs;
32 struct rcu_head head;
33 struct node {
34 struct list_head list;
35 struct audit_tree *owner;
36 unsigned index; /* index; upper bit indicates 'will prune' */
37 } owners[];
40 static LIST_HEAD(tree_list);
41 static LIST_HEAD(prune_list);
42 static struct task_struct *prune_thread;
45 * One struct chunk is attached to each inode of interest.
46 * We replace struct chunk on tagging/untagging.
47 * Rules have pointer to struct audit_tree.
48 * Rules have struct list_head rlist forming a list of rules over
49 * the same tree.
50 * References to struct chunk are collected at audit_inode{,_child}()
51 * time and used in AUDIT_TREE rule matching.
52 * These references are dropped at the same time we are calling
53 * audit_free_names(), etc.
55 * Cyclic lists galore:
56 * tree.chunks anchors chunk.owners[].list hash_lock
57 * tree.rules anchors rule.rlist audit_filter_mutex
58 * chunk.trees anchors tree.same_root hash_lock
59 * chunk.hash is a hash with middle bits of watch.inode as
60 * a hash function. RCU, hash_lock
62 * tree is refcounted; one reference for "some rules on rules_list refer to
63 * it", one for each chunk with pointer to it.
65 * chunk is refcounted by embedded fsnotify_mark + .refs (non-zero refcount
66 * of watch contributes 1 to .refs).
68 * node.index allows to get from node.list to containing chunk.
69 * MSB of that sucker is stolen to mark taggings that we might have to
70 * revert - several operations have very unpleasant cleanup logics and
71 * that makes a difference. Some.
74 static struct fsnotify_group *audit_tree_group;
76 static struct audit_tree *alloc_tree(const char *s)
78 struct audit_tree *tree;
80 tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
81 if (tree) {
82 refcount_set(&tree->count, 1);
83 tree->goner = 0;
84 INIT_LIST_HEAD(&tree->chunks);
85 INIT_LIST_HEAD(&tree->rules);
86 INIT_LIST_HEAD(&tree->list);
87 INIT_LIST_HEAD(&tree->same_root);
88 tree->root = NULL;
89 strcpy(tree->pathname, s);
91 return tree;
94 static inline void get_tree(struct audit_tree *tree)
96 refcount_inc(&tree->count);
99 static inline void put_tree(struct audit_tree *tree)
101 if (refcount_dec_and_test(&tree->count))
102 kfree_rcu(tree, head);
105 /* to avoid bringing the entire thing in audit.h */
106 const char *audit_tree_path(struct audit_tree *tree)
108 return tree->pathname;
111 static void free_chunk(struct audit_chunk *chunk)
113 int i;
115 for (i = 0; i < chunk->count; i++) {
116 if (chunk->owners[i].owner)
117 put_tree(chunk->owners[i].owner);
119 kfree(chunk);
122 void audit_put_chunk(struct audit_chunk *chunk)
124 if (atomic_long_dec_and_test(&chunk->refs))
125 free_chunk(chunk);
128 static void __put_chunk(struct rcu_head *rcu)
130 struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
131 audit_put_chunk(chunk);
134 static void audit_tree_destroy_watch(struct fsnotify_mark *entry)
136 struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
137 call_rcu(&chunk->head, __put_chunk);
140 static struct audit_chunk *alloc_chunk(int count)
142 struct audit_chunk *chunk;
143 size_t size;
144 int i;
146 size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
147 chunk = kzalloc(size, GFP_KERNEL);
148 if (!chunk)
149 return NULL;
151 INIT_LIST_HEAD(&chunk->hash);
152 INIT_LIST_HEAD(&chunk->trees);
153 chunk->count = count;
154 atomic_long_set(&chunk->refs, 1);
155 for (i = 0; i < count; i++) {
156 INIT_LIST_HEAD(&chunk->owners[i].list);
157 chunk->owners[i].index = i;
159 fsnotify_init_mark(&chunk->mark, audit_tree_group);
160 chunk->mark.mask = FS_IN_IGNORED;
161 return chunk;
164 enum {HASH_SIZE = 128};
165 static struct list_head chunk_hash_heads[HASH_SIZE];
166 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
168 /* Function to return search key in our hash from inode. */
169 static unsigned long inode_to_key(const struct inode *inode)
171 return (unsigned long)inode;
175 * Function to return search key in our hash from chunk. Key 0 is special and
176 * should never be present in the hash.
178 static unsigned long chunk_to_key(struct audit_chunk *chunk)
181 * We have a reference to the mark so it should be attached to a
182 * connector.
184 if (WARN_ON_ONCE(!chunk->mark.connector))
185 return 0;
186 return (unsigned long)chunk->mark.connector->inode;
189 static inline struct list_head *chunk_hash(unsigned long key)
191 unsigned long n = key / L1_CACHE_BYTES;
192 return chunk_hash_heads + n % HASH_SIZE;
195 /* hash_lock & entry->lock is held by caller */
196 static void insert_hash(struct audit_chunk *chunk)
198 unsigned long key = chunk_to_key(chunk);
199 struct list_head *list;
201 if (!(chunk->mark.flags & FSNOTIFY_MARK_FLAG_ATTACHED))
202 return;
203 list = chunk_hash(key);
204 list_add_rcu(&chunk->hash, list);
207 /* called under rcu_read_lock */
208 struct audit_chunk *audit_tree_lookup(const struct inode *inode)
210 unsigned long key = inode_to_key(inode);
211 struct list_head *list = chunk_hash(key);
212 struct audit_chunk *p;
214 list_for_each_entry_rcu(p, list, hash) {
215 if (chunk_to_key(p) == key) {
216 atomic_long_inc(&p->refs);
217 return p;
220 return NULL;
223 bool audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
225 int n;
226 for (n = 0; n < chunk->count; n++)
227 if (chunk->owners[n].owner == tree)
228 return true;
229 return false;
232 /* tagging and untagging inodes with trees */
234 static struct audit_chunk *find_chunk(struct node *p)
236 int index = p->index & ~(1U<<31);
237 p -= index;
238 return container_of(p, struct audit_chunk, owners[0]);
241 static void untag_chunk(struct node *p)
243 struct audit_chunk *chunk = find_chunk(p);
244 struct fsnotify_mark *entry = &chunk->mark;
245 struct audit_chunk *new = NULL;
246 struct audit_tree *owner;
247 int size = chunk->count - 1;
248 int i, j;
250 fsnotify_get_mark(entry);
252 spin_unlock(&hash_lock);
254 if (size)
255 new = alloc_chunk(size);
257 mutex_lock(&entry->group->mark_mutex);
258 spin_lock(&entry->lock);
260 * mark_mutex protects mark from getting detached and thus also from
261 * mark->connector->inode getting NULL.
263 if (chunk->dead || !(entry->flags & FSNOTIFY_MARK_FLAG_ATTACHED)) {
264 spin_unlock(&entry->lock);
265 mutex_unlock(&entry->group->mark_mutex);
266 if (new)
267 fsnotify_put_mark(&new->mark);
268 goto out;
271 owner = p->owner;
273 if (!size) {
274 chunk->dead = 1;
275 spin_lock(&hash_lock);
276 list_del_init(&chunk->trees);
277 if (owner->root == chunk)
278 owner->root = NULL;
279 list_del_init(&p->list);
280 list_del_rcu(&chunk->hash);
281 spin_unlock(&hash_lock);
282 spin_unlock(&entry->lock);
283 mutex_unlock(&entry->group->mark_mutex);
284 fsnotify_destroy_mark(entry, audit_tree_group);
285 goto out;
288 if (!new)
289 goto Fallback;
291 if (fsnotify_add_mark_locked(&new->mark, entry->connector->inode,
292 NULL, 1)) {
293 fsnotify_put_mark(&new->mark);
294 goto Fallback;
297 chunk->dead = 1;
298 spin_lock(&hash_lock);
299 list_replace_init(&chunk->trees, &new->trees);
300 if (owner->root == chunk) {
301 list_del_init(&owner->same_root);
302 owner->root = NULL;
305 for (i = j = 0; j <= size; i++, j++) {
306 struct audit_tree *s;
307 if (&chunk->owners[j] == p) {
308 list_del_init(&p->list);
309 i--;
310 continue;
312 s = chunk->owners[j].owner;
313 new->owners[i].owner = s;
314 new->owners[i].index = chunk->owners[j].index - j + i;
315 if (!s) /* result of earlier fallback */
316 continue;
317 get_tree(s);
318 list_replace_init(&chunk->owners[j].list, &new->owners[i].list);
321 list_replace_rcu(&chunk->hash, &new->hash);
322 list_for_each_entry(owner, &new->trees, same_root)
323 owner->root = new;
324 spin_unlock(&hash_lock);
325 spin_unlock(&entry->lock);
326 mutex_unlock(&entry->group->mark_mutex);
327 fsnotify_destroy_mark(entry, audit_tree_group);
328 fsnotify_put_mark(&new->mark); /* drop initial reference */
329 goto out;
331 Fallback:
332 // do the best we can
333 spin_lock(&hash_lock);
334 if (owner->root == chunk) {
335 list_del_init(&owner->same_root);
336 owner->root = NULL;
338 list_del_init(&p->list);
339 p->owner = NULL;
340 put_tree(owner);
341 spin_unlock(&hash_lock);
342 spin_unlock(&entry->lock);
343 mutex_unlock(&entry->group->mark_mutex);
344 out:
345 fsnotify_put_mark(entry);
346 spin_lock(&hash_lock);
349 static int create_chunk(struct inode *inode, struct audit_tree *tree)
351 struct fsnotify_mark *entry;
352 struct audit_chunk *chunk = alloc_chunk(1);
353 if (!chunk)
354 return -ENOMEM;
356 entry = &chunk->mark;
357 if (fsnotify_add_mark(entry, inode, NULL, 0)) {
358 fsnotify_put_mark(entry);
359 return -ENOSPC;
362 spin_lock(&entry->lock);
363 spin_lock(&hash_lock);
364 if (tree->goner) {
365 spin_unlock(&hash_lock);
366 chunk->dead = 1;
367 spin_unlock(&entry->lock);
368 fsnotify_destroy_mark(entry, audit_tree_group);
369 fsnotify_put_mark(entry);
370 return 0;
372 chunk->owners[0].index = (1U << 31);
373 chunk->owners[0].owner = tree;
374 get_tree(tree);
375 list_add(&chunk->owners[0].list, &tree->chunks);
376 if (!tree->root) {
377 tree->root = chunk;
378 list_add(&tree->same_root, &chunk->trees);
380 insert_hash(chunk);
381 spin_unlock(&hash_lock);
382 spin_unlock(&entry->lock);
383 fsnotify_put_mark(entry); /* drop initial reference */
384 return 0;
387 /* the first tagged inode becomes root of tree */
388 static int tag_chunk(struct inode *inode, struct audit_tree *tree)
390 struct fsnotify_mark *old_entry, *chunk_entry;
391 struct audit_tree *owner;
392 struct audit_chunk *chunk, *old;
393 struct node *p;
394 int n;
396 old_entry = fsnotify_find_mark(&inode->i_fsnotify_marks,
397 audit_tree_group);
398 if (!old_entry)
399 return create_chunk(inode, tree);
401 old = container_of(old_entry, struct audit_chunk, mark);
403 /* are we already there? */
404 spin_lock(&hash_lock);
405 for (n = 0; n < old->count; n++) {
406 if (old->owners[n].owner == tree) {
407 spin_unlock(&hash_lock);
408 fsnotify_put_mark(old_entry);
409 return 0;
412 spin_unlock(&hash_lock);
414 chunk = alloc_chunk(old->count + 1);
415 if (!chunk) {
416 fsnotify_put_mark(old_entry);
417 return -ENOMEM;
420 chunk_entry = &chunk->mark;
422 mutex_lock(&old_entry->group->mark_mutex);
423 spin_lock(&old_entry->lock);
425 * mark_mutex protects mark from getting detached and thus also from
426 * mark->connector->inode getting NULL.
428 if (!(old_entry->flags & FSNOTIFY_MARK_FLAG_ATTACHED)) {
429 /* old_entry is being shot, lets just lie */
430 spin_unlock(&old_entry->lock);
431 mutex_unlock(&old_entry->group->mark_mutex);
432 fsnotify_put_mark(old_entry);
433 fsnotify_put_mark(&chunk->mark);
434 return -ENOENT;
437 if (fsnotify_add_mark_locked(chunk_entry,
438 old_entry->connector->inode, NULL, 1)) {
439 spin_unlock(&old_entry->lock);
440 mutex_unlock(&old_entry->group->mark_mutex);
441 fsnotify_put_mark(chunk_entry);
442 fsnotify_put_mark(old_entry);
443 return -ENOSPC;
446 /* even though we hold old_entry->lock, this is safe since chunk_entry->lock could NEVER have been grabbed before */
447 spin_lock(&chunk_entry->lock);
448 spin_lock(&hash_lock);
450 /* we now hold old_entry->lock, chunk_entry->lock, and hash_lock */
451 if (tree->goner) {
452 spin_unlock(&hash_lock);
453 chunk->dead = 1;
454 spin_unlock(&chunk_entry->lock);
455 spin_unlock(&old_entry->lock);
456 mutex_unlock(&old_entry->group->mark_mutex);
458 fsnotify_destroy_mark(chunk_entry, audit_tree_group);
460 fsnotify_put_mark(chunk_entry);
461 fsnotify_put_mark(old_entry);
462 return 0;
464 list_replace_init(&old->trees, &chunk->trees);
465 for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
466 struct audit_tree *s = old->owners[n].owner;
467 p->owner = s;
468 p->index = old->owners[n].index;
469 if (!s) /* result of fallback in untag */
470 continue;
471 get_tree(s);
472 list_replace_init(&old->owners[n].list, &p->list);
474 p->index = (chunk->count - 1) | (1U<<31);
475 p->owner = tree;
476 get_tree(tree);
477 list_add(&p->list, &tree->chunks);
478 list_replace_rcu(&old->hash, &chunk->hash);
479 list_for_each_entry(owner, &chunk->trees, same_root)
480 owner->root = chunk;
481 old->dead = 1;
482 if (!tree->root) {
483 tree->root = chunk;
484 list_add(&tree->same_root, &chunk->trees);
486 spin_unlock(&hash_lock);
487 spin_unlock(&chunk_entry->lock);
488 spin_unlock(&old_entry->lock);
489 mutex_unlock(&old_entry->group->mark_mutex);
490 fsnotify_destroy_mark(old_entry, audit_tree_group);
491 fsnotify_put_mark(chunk_entry); /* drop initial reference */
492 fsnotify_put_mark(old_entry); /* pair to fsnotify_find mark_entry */
493 return 0;
496 static void audit_tree_log_remove_rule(struct audit_krule *rule)
498 struct audit_buffer *ab;
500 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
501 if (unlikely(!ab))
502 return;
503 audit_log_format(ab, "op=remove_rule");
504 audit_log_format(ab, " dir=");
505 audit_log_untrustedstring(ab, rule->tree->pathname);
506 audit_log_key(ab, rule->filterkey);
507 audit_log_format(ab, " list=%d res=1", rule->listnr);
508 audit_log_end(ab);
511 static void kill_rules(struct audit_tree *tree)
513 struct audit_krule *rule, *next;
514 struct audit_entry *entry;
516 list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
517 entry = container_of(rule, struct audit_entry, rule);
519 list_del_init(&rule->rlist);
520 if (rule->tree) {
521 /* not a half-baked one */
522 audit_tree_log_remove_rule(rule);
523 if (entry->rule.exe)
524 audit_remove_mark(entry->rule.exe);
525 rule->tree = NULL;
526 list_del_rcu(&entry->list);
527 list_del(&entry->rule.list);
528 call_rcu(&entry->rcu, audit_free_rule_rcu);
534 * finish killing struct audit_tree
536 static void prune_one(struct audit_tree *victim)
538 spin_lock(&hash_lock);
539 while (!list_empty(&victim->chunks)) {
540 struct node *p;
542 p = list_entry(victim->chunks.next, struct node, list);
544 untag_chunk(p);
546 spin_unlock(&hash_lock);
547 put_tree(victim);
550 /* trim the uncommitted chunks from tree */
552 static void trim_marked(struct audit_tree *tree)
554 struct list_head *p, *q;
555 spin_lock(&hash_lock);
556 if (tree->goner) {
557 spin_unlock(&hash_lock);
558 return;
560 /* reorder */
561 for (p = tree->chunks.next; p != &tree->chunks; p = q) {
562 struct node *node = list_entry(p, struct node, list);
563 q = p->next;
564 if (node->index & (1U<<31)) {
565 list_del_init(p);
566 list_add(p, &tree->chunks);
570 while (!list_empty(&tree->chunks)) {
571 struct node *node;
573 node = list_entry(tree->chunks.next, struct node, list);
575 /* have we run out of marked? */
576 if (!(node->index & (1U<<31)))
577 break;
579 untag_chunk(node);
581 if (!tree->root && !tree->goner) {
582 tree->goner = 1;
583 spin_unlock(&hash_lock);
584 mutex_lock(&audit_filter_mutex);
585 kill_rules(tree);
586 list_del_init(&tree->list);
587 mutex_unlock(&audit_filter_mutex);
588 prune_one(tree);
589 } else {
590 spin_unlock(&hash_lock);
594 static void audit_schedule_prune(void);
596 /* called with audit_filter_mutex */
597 int audit_remove_tree_rule(struct audit_krule *rule)
599 struct audit_tree *tree;
600 tree = rule->tree;
601 if (tree) {
602 spin_lock(&hash_lock);
603 list_del_init(&rule->rlist);
604 if (list_empty(&tree->rules) && !tree->goner) {
605 tree->root = NULL;
606 list_del_init(&tree->same_root);
607 tree->goner = 1;
608 list_move(&tree->list, &prune_list);
609 rule->tree = NULL;
610 spin_unlock(&hash_lock);
611 audit_schedule_prune();
612 return 1;
614 rule->tree = NULL;
615 spin_unlock(&hash_lock);
616 return 1;
618 return 0;
621 static int compare_root(struct vfsmount *mnt, void *arg)
623 return inode_to_key(d_backing_inode(mnt->mnt_root)) ==
624 (unsigned long)arg;
627 void audit_trim_trees(void)
629 struct list_head cursor;
631 mutex_lock(&audit_filter_mutex);
632 list_add(&cursor, &tree_list);
633 while (cursor.next != &tree_list) {
634 struct audit_tree *tree;
635 struct path path;
636 struct vfsmount *root_mnt;
637 struct node *node;
638 int err;
640 tree = container_of(cursor.next, struct audit_tree, list);
641 get_tree(tree);
642 list_del(&cursor);
643 list_add(&cursor, &tree->list);
644 mutex_unlock(&audit_filter_mutex);
646 err = kern_path(tree->pathname, 0, &path);
647 if (err)
648 goto skip_it;
650 root_mnt = collect_mounts(&path);
651 path_put(&path);
652 if (IS_ERR(root_mnt))
653 goto skip_it;
655 spin_lock(&hash_lock);
656 list_for_each_entry(node, &tree->chunks, list) {
657 struct audit_chunk *chunk = find_chunk(node);
658 /* this could be NULL if the watch is dying else where... */
659 node->index |= 1U<<31;
660 if (iterate_mounts(compare_root,
661 (void *)chunk_to_key(chunk),
662 root_mnt))
663 node->index &= ~(1U<<31);
665 spin_unlock(&hash_lock);
666 trim_marked(tree);
667 drop_collected_mounts(root_mnt);
668 skip_it:
669 put_tree(tree);
670 mutex_lock(&audit_filter_mutex);
672 list_del(&cursor);
673 mutex_unlock(&audit_filter_mutex);
676 int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
679 if (pathname[0] != '/' ||
680 rule->listnr != AUDIT_FILTER_EXIT ||
681 op != Audit_equal ||
682 rule->inode_f || rule->watch || rule->tree)
683 return -EINVAL;
684 rule->tree = alloc_tree(pathname);
685 if (!rule->tree)
686 return -ENOMEM;
687 return 0;
690 void audit_put_tree(struct audit_tree *tree)
692 put_tree(tree);
695 static int tag_mount(struct vfsmount *mnt, void *arg)
697 return tag_chunk(d_backing_inode(mnt->mnt_root), arg);
701 * That gets run when evict_chunk() ends up needing to kill audit_tree.
702 * Runs from a separate thread.
704 static int prune_tree_thread(void *unused)
706 for (;;) {
707 if (list_empty(&prune_list)) {
708 set_current_state(TASK_INTERRUPTIBLE);
709 schedule();
712 mutex_lock(&audit_cmd_mutex);
713 mutex_lock(&audit_filter_mutex);
715 while (!list_empty(&prune_list)) {
716 struct audit_tree *victim;
718 victim = list_entry(prune_list.next,
719 struct audit_tree, list);
720 list_del_init(&victim->list);
722 mutex_unlock(&audit_filter_mutex);
724 prune_one(victim);
726 mutex_lock(&audit_filter_mutex);
729 mutex_unlock(&audit_filter_mutex);
730 mutex_unlock(&audit_cmd_mutex);
732 return 0;
735 static int audit_launch_prune(void)
737 if (prune_thread)
738 return 0;
739 prune_thread = kthread_run(prune_tree_thread, NULL,
740 "audit_prune_tree");
741 if (IS_ERR(prune_thread)) {
742 pr_err("cannot start thread audit_prune_tree");
743 prune_thread = NULL;
744 return -ENOMEM;
746 return 0;
749 /* called with audit_filter_mutex */
750 int audit_add_tree_rule(struct audit_krule *rule)
752 struct audit_tree *seed = rule->tree, *tree;
753 struct path path;
754 struct vfsmount *mnt;
755 int err;
757 rule->tree = NULL;
758 list_for_each_entry(tree, &tree_list, list) {
759 if (!strcmp(seed->pathname, tree->pathname)) {
760 put_tree(seed);
761 rule->tree = tree;
762 list_add(&rule->rlist, &tree->rules);
763 return 0;
766 tree = seed;
767 list_add(&tree->list, &tree_list);
768 list_add(&rule->rlist, &tree->rules);
769 /* do not set rule->tree yet */
770 mutex_unlock(&audit_filter_mutex);
772 if (unlikely(!prune_thread)) {
773 err = audit_launch_prune();
774 if (err)
775 goto Err;
778 err = kern_path(tree->pathname, 0, &path);
779 if (err)
780 goto Err;
781 mnt = collect_mounts(&path);
782 path_put(&path);
783 if (IS_ERR(mnt)) {
784 err = PTR_ERR(mnt);
785 goto Err;
788 get_tree(tree);
789 err = iterate_mounts(tag_mount, tree, mnt);
790 drop_collected_mounts(mnt);
792 if (!err) {
793 struct node *node;
794 spin_lock(&hash_lock);
795 list_for_each_entry(node, &tree->chunks, list)
796 node->index &= ~(1U<<31);
797 spin_unlock(&hash_lock);
798 } else {
799 trim_marked(tree);
800 goto Err;
803 mutex_lock(&audit_filter_mutex);
804 if (list_empty(&rule->rlist)) {
805 put_tree(tree);
806 return -ENOENT;
808 rule->tree = tree;
809 put_tree(tree);
811 return 0;
812 Err:
813 mutex_lock(&audit_filter_mutex);
814 list_del_init(&tree->list);
815 list_del_init(&tree->rules);
816 put_tree(tree);
817 return err;
820 int audit_tag_tree(char *old, char *new)
822 struct list_head cursor, barrier;
823 int failed = 0;
824 struct path path1, path2;
825 struct vfsmount *tagged;
826 int err;
828 err = kern_path(new, 0, &path2);
829 if (err)
830 return err;
831 tagged = collect_mounts(&path2);
832 path_put(&path2);
833 if (IS_ERR(tagged))
834 return PTR_ERR(tagged);
836 err = kern_path(old, 0, &path1);
837 if (err) {
838 drop_collected_mounts(tagged);
839 return err;
842 mutex_lock(&audit_filter_mutex);
843 list_add(&barrier, &tree_list);
844 list_add(&cursor, &barrier);
846 while (cursor.next != &tree_list) {
847 struct audit_tree *tree;
848 int good_one = 0;
850 tree = container_of(cursor.next, struct audit_tree, list);
851 get_tree(tree);
852 list_del(&cursor);
853 list_add(&cursor, &tree->list);
854 mutex_unlock(&audit_filter_mutex);
856 err = kern_path(tree->pathname, 0, &path2);
857 if (!err) {
858 good_one = path_is_under(&path1, &path2);
859 path_put(&path2);
862 if (!good_one) {
863 put_tree(tree);
864 mutex_lock(&audit_filter_mutex);
865 continue;
868 failed = iterate_mounts(tag_mount, tree, tagged);
869 if (failed) {
870 put_tree(tree);
871 mutex_lock(&audit_filter_mutex);
872 break;
875 mutex_lock(&audit_filter_mutex);
876 spin_lock(&hash_lock);
877 if (!tree->goner) {
878 list_del(&tree->list);
879 list_add(&tree->list, &tree_list);
881 spin_unlock(&hash_lock);
882 put_tree(tree);
885 while (barrier.prev != &tree_list) {
886 struct audit_tree *tree;
888 tree = container_of(barrier.prev, struct audit_tree, list);
889 get_tree(tree);
890 list_del(&tree->list);
891 list_add(&tree->list, &barrier);
892 mutex_unlock(&audit_filter_mutex);
894 if (!failed) {
895 struct node *node;
896 spin_lock(&hash_lock);
897 list_for_each_entry(node, &tree->chunks, list)
898 node->index &= ~(1U<<31);
899 spin_unlock(&hash_lock);
900 } else {
901 trim_marked(tree);
904 put_tree(tree);
905 mutex_lock(&audit_filter_mutex);
907 list_del(&barrier);
908 list_del(&cursor);
909 mutex_unlock(&audit_filter_mutex);
910 path_put(&path1);
911 drop_collected_mounts(tagged);
912 return failed;
916 static void audit_schedule_prune(void)
918 wake_up_process(prune_thread);
922 * ... and that one is done if evict_chunk() decides to delay until the end
923 * of syscall. Runs synchronously.
925 void audit_kill_trees(struct list_head *list)
927 mutex_lock(&audit_cmd_mutex);
928 mutex_lock(&audit_filter_mutex);
930 while (!list_empty(list)) {
931 struct audit_tree *victim;
933 victim = list_entry(list->next, struct audit_tree, list);
934 kill_rules(victim);
935 list_del_init(&victim->list);
937 mutex_unlock(&audit_filter_mutex);
939 prune_one(victim);
941 mutex_lock(&audit_filter_mutex);
944 mutex_unlock(&audit_filter_mutex);
945 mutex_unlock(&audit_cmd_mutex);
949 * Here comes the stuff asynchronous to auditctl operations
952 static void evict_chunk(struct audit_chunk *chunk)
954 struct audit_tree *owner;
955 struct list_head *postponed = audit_killed_trees();
956 int need_prune = 0;
957 int n;
959 if (chunk->dead)
960 return;
962 chunk->dead = 1;
963 mutex_lock(&audit_filter_mutex);
964 spin_lock(&hash_lock);
965 while (!list_empty(&chunk->trees)) {
966 owner = list_entry(chunk->trees.next,
967 struct audit_tree, same_root);
968 owner->goner = 1;
969 owner->root = NULL;
970 list_del_init(&owner->same_root);
971 spin_unlock(&hash_lock);
972 if (!postponed) {
973 kill_rules(owner);
974 list_move(&owner->list, &prune_list);
975 need_prune = 1;
976 } else {
977 list_move(&owner->list, postponed);
979 spin_lock(&hash_lock);
981 list_del_rcu(&chunk->hash);
982 for (n = 0; n < chunk->count; n++)
983 list_del_init(&chunk->owners[n].list);
984 spin_unlock(&hash_lock);
985 mutex_unlock(&audit_filter_mutex);
986 if (need_prune)
987 audit_schedule_prune();
990 static int audit_tree_handle_event(struct fsnotify_group *group,
991 struct inode *to_tell,
992 struct fsnotify_mark *inode_mark,
993 struct fsnotify_mark *vfsmount_mark,
994 u32 mask, const void *data, int data_type,
995 const unsigned char *file_name, u32 cookie,
996 struct fsnotify_iter_info *iter_info)
998 return 0;
1001 static void audit_tree_freeing_mark(struct fsnotify_mark *entry, struct fsnotify_group *group)
1003 struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
1005 evict_chunk(chunk);
1008 * We are guaranteed to have at least one reference to the mark from
1009 * either the inode or the caller of fsnotify_destroy_mark().
1011 BUG_ON(refcount_read(&entry->refcnt) < 1);
1014 static const struct fsnotify_ops audit_tree_ops = {
1015 .handle_event = audit_tree_handle_event,
1016 .freeing_mark = audit_tree_freeing_mark,
1017 .free_mark = audit_tree_destroy_watch,
1020 static int __init audit_tree_init(void)
1022 int i;
1024 audit_tree_group = fsnotify_alloc_group(&audit_tree_ops);
1025 if (IS_ERR(audit_tree_group))
1026 audit_panic("cannot initialize fsnotify group for rectree watches");
1028 for (i = 0; i < HASH_SIZE; i++)
1029 INIT_LIST_HEAD(&chunk_hash_heads[i]);
1031 return 0;
1033 __initcall(audit_tree_init);