Linux 2.6.19-rc6
[cris-mirror.git] / kernel / auditsc.c
blob42f2f11797111de0af926f82fead3a5e86ce2ee5
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
48 #include <asm/types.h>
49 #include <linux/fs.h>
50 #include <linux/namei.h>
51 #include <linux/mm.h>
52 #include <linux/module.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/selinux.h>
66 #include <linux/binfmts.h>
67 #include <linux/syscalls.h>
69 #include "audit.h"
71 extern struct list_head audit_filter_list[];
73 /* No syscall auditing will take place unless audit_enabled != 0. */
74 extern int audit_enabled;
76 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
77 * for saving names from getname(). */
78 #define AUDIT_NAMES 20
80 /* AUDIT_NAMES_RESERVED is the number of slots we reserve in the
81 * audit_context from being used for nameless inodes from
82 * path_lookup. */
83 #define AUDIT_NAMES_RESERVED 7
85 /* Indicates that audit should log the full pathname. */
86 #define AUDIT_NAME_FULL -1
88 /* number of audit rules */
89 int audit_n_rules;
91 /* When fs/namei.c:getname() is called, we store the pointer in name and
92 * we don't let putname() free it (instead we free all of the saved
93 * pointers at syscall exit time).
95 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
96 struct audit_names {
97 const char *name;
98 int name_len; /* number of name's characters to log */
99 unsigned name_put; /* call __putname() for this name */
100 unsigned long ino;
101 dev_t dev;
102 umode_t mode;
103 uid_t uid;
104 gid_t gid;
105 dev_t rdev;
106 u32 osid;
109 struct audit_aux_data {
110 struct audit_aux_data *next;
111 int type;
114 #define AUDIT_AUX_IPCPERM 0
116 struct audit_aux_data_mq_open {
117 struct audit_aux_data d;
118 int oflag;
119 mode_t mode;
120 struct mq_attr attr;
123 struct audit_aux_data_mq_sendrecv {
124 struct audit_aux_data d;
125 mqd_t mqdes;
126 size_t msg_len;
127 unsigned int msg_prio;
128 struct timespec abs_timeout;
131 struct audit_aux_data_mq_notify {
132 struct audit_aux_data d;
133 mqd_t mqdes;
134 struct sigevent notification;
137 struct audit_aux_data_mq_getsetattr {
138 struct audit_aux_data d;
139 mqd_t mqdes;
140 struct mq_attr mqstat;
143 struct audit_aux_data_ipcctl {
144 struct audit_aux_data d;
145 struct ipc_perm p;
146 unsigned long qbytes;
147 uid_t uid;
148 gid_t gid;
149 mode_t mode;
150 u32 osid;
153 struct audit_aux_data_execve {
154 struct audit_aux_data d;
155 int argc;
156 int envc;
157 char mem[0];
160 struct audit_aux_data_socketcall {
161 struct audit_aux_data d;
162 int nargs;
163 unsigned long args[0];
166 struct audit_aux_data_sockaddr {
167 struct audit_aux_data d;
168 int len;
169 char a[0];
172 struct audit_aux_data_path {
173 struct audit_aux_data d;
174 struct dentry *dentry;
175 struct vfsmount *mnt;
178 /* The per-task audit context. */
179 struct audit_context {
180 int dummy; /* must be the first element */
181 int in_syscall; /* 1 if task is in a syscall */
182 enum audit_state state;
183 unsigned int serial; /* serial number for record */
184 struct timespec ctime; /* time of syscall entry */
185 uid_t loginuid; /* login uid (identity) */
186 int major; /* syscall number */
187 unsigned long argv[4]; /* syscall arguments */
188 int return_valid; /* return code is valid */
189 long return_code;/* syscall return code */
190 int auditable; /* 1 if record should be written */
191 int name_count;
192 struct audit_names names[AUDIT_NAMES];
193 char * filterkey; /* key for rule that triggered record */
194 struct dentry * pwd;
195 struct vfsmount * pwdmnt;
196 struct audit_context *previous; /* For nested syscalls */
197 struct audit_aux_data *aux;
199 /* Save things to print about task_struct */
200 pid_t pid, ppid;
201 uid_t uid, euid, suid, fsuid;
202 gid_t gid, egid, sgid, fsgid;
203 unsigned long personality;
204 int arch;
206 #if AUDIT_DEBUG
207 int put_count;
208 int ino_count;
209 #endif
212 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
213 static inline int open_arg(int flags, int mask)
215 int n = ACC_MODE(flags);
216 if (flags & (O_TRUNC | O_CREAT))
217 n |= AUDIT_PERM_WRITE;
218 return n & mask;
221 static int audit_match_perm(struct audit_context *ctx, int mask)
223 unsigned n = ctx->major;
224 switch (audit_classify_syscall(ctx->arch, n)) {
225 case 0: /* native */
226 if ((mask & AUDIT_PERM_WRITE) &&
227 audit_match_class(AUDIT_CLASS_WRITE, n))
228 return 1;
229 if ((mask & AUDIT_PERM_READ) &&
230 audit_match_class(AUDIT_CLASS_READ, n))
231 return 1;
232 if ((mask & AUDIT_PERM_ATTR) &&
233 audit_match_class(AUDIT_CLASS_CHATTR, n))
234 return 1;
235 return 0;
236 case 1: /* 32bit on biarch */
237 if ((mask & AUDIT_PERM_WRITE) &&
238 audit_match_class(AUDIT_CLASS_WRITE_32, n))
239 return 1;
240 if ((mask & AUDIT_PERM_READ) &&
241 audit_match_class(AUDIT_CLASS_READ_32, n))
242 return 1;
243 if ((mask & AUDIT_PERM_ATTR) &&
244 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
245 return 1;
246 return 0;
247 case 2: /* open */
248 return mask & ACC_MODE(ctx->argv[1]);
249 case 3: /* openat */
250 return mask & ACC_MODE(ctx->argv[2]);
251 case 4: /* socketcall */
252 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
253 case 5: /* execve */
254 return mask & AUDIT_PERM_EXEC;
255 default:
256 return 0;
260 /* Determine if any context name data matches a rule's watch data */
261 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
262 * otherwise. */
263 static int audit_filter_rules(struct task_struct *tsk,
264 struct audit_krule *rule,
265 struct audit_context *ctx,
266 struct audit_names *name,
267 enum audit_state *state)
269 int i, j, need_sid = 1;
270 u32 sid;
272 for (i = 0; i < rule->field_count; i++) {
273 struct audit_field *f = &rule->fields[i];
274 int result = 0;
276 switch (f->type) {
277 case AUDIT_PID:
278 result = audit_comparator(tsk->pid, f->op, f->val);
279 break;
280 case AUDIT_PPID:
281 if (ctx) {
282 if (!ctx->ppid)
283 ctx->ppid = sys_getppid();
284 result = audit_comparator(ctx->ppid, f->op, f->val);
286 break;
287 case AUDIT_UID:
288 result = audit_comparator(tsk->uid, f->op, f->val);
289 break;
290 case AUDIT_EUID:
291 result = audit_comparator(tsk->euid, f->op, f->val);
292 break;
293 case AUDIT_SUID:
294 result = audit_comparator(tsk->suid, f->op, f->val);
295 break;
296 case AUDIT_FSUID:
297 result = audit_comparator(tsk->fsuid, f->op, f->val);
298 break;
299 case AUDIT_GID:
300 result = audit_comparator(tsk->gid, f->op, f->val);
301 break;
302 case AUDIT_EGID:
303 result = audit_comparator(tsk->egid, f->op, f->val);
304 break;
305 case AUDIT_SGID:
306 result = audit_comparator(tsk->sgid, f->op, f->val);
307 break;
308 case AUDIT_FSGID:
309 result = audit_comparator(tsk->fsgid, f->op, f->val);
310 break;
311 case AUDIT_PERS:
312 result = audit_comparator(tsk->personality, f->op, f->val);
313 break;
314 case AUDIT_ARCH:
315 if (ctx)
316 result = audit_comparator(ctx->arch, f->op, f->val);
317 break;
319 case AUDIT_EXIT:
320 if (ctx && ctx->return_valid)
321 result = audit_comparator(ctx->return_code, f->op, f->val);
322 break;
323 case AUDIT_SUCCESS:
324 if (ctx && ctx->return_valid) {
325 if (f->val)
326 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
327 else
328 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
330 break;
331 case AUDIT_DEVMAJOR:
332 if (name)
333 result = audit_comparator(MAJOR(name->dev),
334 f->op, f->val);
335 else if (ctx) {
336 for (j = 0; j < ctx->name_count; j++) {
337 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
338 ++result;
339 break;
343 break;
344 case AUDIT_DEVMINOR:
345 if (name)
346 result = audit_comparator(MINOR(name->dev),
347 f->op, f->val);
348 else if (ctx) {
349 for (j = 0; j < ctx->name_count; j++) {
350 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
351 ++result;
352 break;
356 break;
357 case AUDIT_INODE:
358 if (name)
359 result = (name->ino == f->val);
360 else if (ctx) {
361 for (j = 0; j < ctx->name_count; j++) {
362 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
363 ++result;
364 break;
368 break;
369 case AUDIT_WATCH:
370 if (name && rule->watch->ino != (unsigned long)-1)
371 result = (name->dev == rule->watch->dev &&
372 name->ino == rule->watch->ino);
373 break;
374 case AUDIT_LOGINUID:
375 result = 0;
376 if (ctx)
377 result = audit_comparator(ctx->loginuid, f->op, f->val);
378 break;
379 case AUDIT_SUBJ_USER:
380 case AUDIT_SUBJ_ROLE:
381 case AUDIT_SUBJ_TYPE:
382 case AUDIT_SUBJ_SEN:
383 case AUDIT_SUBJ_CLR:
384 /* NOTE: this may return negative values indicating
385 a temporary error. We simply treat this as a
386 match for now to avoid losing information that
387 may be wanted. An error message will also be
388 logged upon error */
389 if (f->se_rule) {
390 if (need_sid) {
391 selinux_get_task_sid(tsk, &sid);
392 need_sid = 0;
394 result = selinux_audit_rule_match(sid, f->type,
395 f->op,
396 f->se_rule,
397 ctx);
399 break;
400 case AUDIT_OBJ_USER:
401 case AUDIT_OBJ_ROLE:
402 case AUDIT_OBJ_TYPE:
403 case AUDIT_OBJ_LEV_LOW:
404 case AUDIT_OBJ_LEV_HIGH:
405 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
406 also applies here */
407 if (f->se_rule) {
408 /* Find files that match */
409 if (name) {
410 result = selinux_audit_rule_match(
411 name->osid, f->type, f->op,
412 f->se_rule, ctx);
413 } else if (ctx) {
414 for (j = 0; j < ctx->name_count; j++) {
415 if (selinux_audit_rule_match(
416 ctx->names[j].osid,
417 f->type, f->op,
418 f->se_rule, ctx)) {
419 ++result;
420 break;
424 /* Find ipc objects that match */
425 if (ctx) {
426 struct audit_aux_data *aux;
427 for (aux = ctx->aux; aux;
428 aux = aux->next) {
429 if (aux->type == AUDIT_IPC) {
430 struct audit_aux_data_ipcctl *axi = (void *)aux;
431 if (selinux_audit_rule_match(axi->osid, f->type, f->op, f->se_rule, ctx)) {
432 ++result;
433 break;
439 break;
440 case AUDIT_ARG0:
441 case AUDIT_ARG1:
442 case AUDIT_ARG2:
443 case AUDIT_ARG3:
444 if (ctx)
445 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
446 break;
447 case AUDIT_FILTERKEY:
448 /* ignore this field for filtering */
449 result = 1;
450 break;
451 case AUDIT_PERM:
452 result = audit_match_perm(ctx, f->val);
453 break;
456 if (!result)
457 return 0;
459 if (rule->filterkey)
460 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
461 switch (rule->action) {
462 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
463 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
465 return 1;
468 /* At process creation time, we can determine if system-call auditing is
469 * completely disabled for this task. Since we only have the task
470 * structure at this point, we can only check uid and gid.
472 static enum audit_state audit_filter_task(struct task_struct *tsk)
474 struct audit_entry *e;
475 enum audit_state state;
477 rcu_read_lock();
478 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
479 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
480 rcu_read_unlock();
481 return state;
484 rcu_read_unlock();
485 return AUDIT_BUILD_CONTEXT;
488 /* At syscall entry and exit time, this filter is called if the
489 * audit_state is not low enough that auditing cannot take place, but is
490 * also not high enough that we already know we have to write an audit
491 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
493 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
494 struct audit_context *ctx,
495 struct list_head *list)
497 struct audit_entry *e;
498 enum audit_state state;
500 if (audit_pid && tsk->tgid == audit_pid)
501 return AUDIT_DISABLED;
503 rcu_read_lock();
504 if (!list_empty(list)) {
505 int word = AUDIT_WORD(ctx->major);
506 int bit = AUDIT_BIT(ctx->major);
508 list_for_each_entry_rcu(e, list, list) {
509 if ((e->rule.mask[word] & bit) == bit &&
510 audit_filter_rules(tsk, &e->rule, ctx, NULL,
511 &state)) {
512 rcu_read_unlock();
513 return state;
517 rcu_read_unlock();
518 return AUDIT_BUILD_CONTEXT;
521 /* At syscall exit time, this filter is called if any audit_names[] have been
522 * collected during syscall processing. We only check rules in sublists at hash
523 * buckets applicable to the inode numbers in audit_names[].
524 * Regarding audit_state, same rules apply as for audit_filter_syscall().
526 enum audit_state audit_filter_inodes(struct task_struct *tsk,
527 struct audit_context *ctx)
529 int i;
530 struct audit_entry *e;
531 enum audit_state state;
533 if (audit_pid && tsk->tgid == audit_pid)
534 return AUDIT_DISABLED;
536 rcu_read_lock();
537 for (i = 0; i < ctx->name_count; i++) {
538 int word = AUDIT_WORD(ctx->major);
539 int bit = AUDIT_BIT(ctx->major);
540 struct audit_names *n = &ctx->names[i];
541 int h = audit_hash_ino((u32)n->ino);
542 struct list_head *list = &audit_inode_hash[h];
544 if (list_empty(list))
545 continue;
547 list_for_each_entry_rcu(e, list, list) {
548 if ((e->rule.mask[word] & bit) == bit &&
549 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
550 rcu_read_unlock();
551 return state;
555 rcu_read_unlock();
556 return AUDIT_BUILD_CONTEXT;
559 void audit_set_auditable(struct audit_context *ctx)
561 ctx->auditable = 1;
564 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
565 int return_valid,
566 int return_code)
568 struct audit_context *context = tsk->audit_context;
570 if (likely(!context))
571 return NULL;
572 context->return_valid = return_valid;
573 context->return_code = return_code;
575 if (context->in_syscall && !context->dummy && !context->auditable) {
576 enum audit_state state;
578 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
579 if (state == AUDIT_RECORD_CONTEXT) {
580 context->auditable = 1;
581 goto get_context;
584 state = audit_filter_inodes(tsk, context);
585 if (state == AUDIT_RECORD_CONTEXT)
586 context->auditable = 1;
590 get_context:
592 tsk->audit_context = NULL;
593 return context;
596 static inline void audit_free_names(struct audit_context *context)
598 int i;
600 #if AUDIT_DEBUG == 2
601 if (context->auditable
602 ||context->put_count + context->ino_count != context->name_count) {
603 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
604 " name_count=%d put_count=%d"
605 " ino_count=%d [NOT freeing]\n",
606 __FILE__, __LINE__,
607 context->serial, context->major, context->in_syscall,
608 context->name_count, context->put_count,
609 context->ino_count);
610 for (i = 0; i < context->name_count; i++) {
611 printk(KERN_ERR "names[%d] = %p = %s\n", i,
612 context->names[i].name,
613 context->names[i].name ?: "(null)");
615 dump_stack();
616 return;
618 #endif
619 #if AUDIT_DEBUG
620 context->put_count = 0;
621 context->ino_count = 0;
622 #endif
624 for (i = 0; i < context->name_count; i++) {
625 if (context->names[i].name && context->names[i].name_put)
626 __putname(context->names[i].name);
628 context->name_count = 0;
629 if (context->pwd)
630 dput(context->pwd);
631 if (context->pwdmnt)
632 mntput(context->pwdmnt);
633 context->pwd = NULL;
634 context->pwdmnt = NULL;
637 static inline void audit_free_aux(struct audit_context *context)
639 struct audit_aux_data *aux;
641 while ((aux = context->aux)) {
642 if (aux->type == AUDIT_AVC_PATH) {
643 struct audit_aux_data_path *axi = (void *)aux;
644 dput(axi->dentry);
645 mntput(axi->mnt);
648 context->aux = aux->next;
649 kfree(aux);
653 static inline void audit_zero_context(struct audit_context *context,
654 enum audit_state state)
656 uid_t loginuid = context->loginuid;
658 memset(context, 0, sizeof(*context));
659 context->state = state;
660 context->loginuid = loginuid;
663 static inline struct audit_context *audit_alloc_context(enum audit_state state)
665 struct audit_context *context;
667 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
668 return NULL;
669 audit_zero_context(context, state);
670 return context;
674 * audit_alloc - allocate an audit context block for a task
675 * @tsk: task
677 * Filter on the task information and allocate a per-task audit context
678 * if necessary. Doing so turns on system call auditing for the
679 * specified task. This is called from copy_process, so no lock is
680 * needed.
682 int audit_alloc(struct task_struct *tsk)
684 struct audit_context *context;
685 enum audit_state state;
687 if (likely(!audit_enabled))
688 return 0; /* Return if not auditing. */
690 state = audit_filter_task(tsk);
691 if (likely(state == AUDIT_DISABLED))
692 return 0;
694 if (!(context = audit_alloc_context(state))) {
695 audit_log_lost("out of memory in audit_alloc");
696 return -ENOMEM;
699 /* Preserve login uid */
700 context->loginuid = -1;
701 if (current->audit_context)
702 context->loginuid = current->audit_context->loginuid;
704 tsk->audit_context = context;
705 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
706 return 0;
709 static inline void audit_free_context(struct audit_context *context)
711 struct audit_context *previous;
712 int count = 0;
714 do {
715 previous = context->previous;
716 if (previous || (count && count < 10)) {
717 ++count;
718 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
719 " freeing multiple contexts (%d)\n",
720 context->serial, context->major,
721 context->name_count, count);
723 audit_free_names(context);
724 audit_free_aux(context);
725 kfree(context->filterkey);
726 kfree(context);
727 context = previous;
728 } while (context);
729 if (count >= 10)
730 printk(KERN_ERR "audit: freed %d contexts\n", count);
733 static void audit_log_task_context(struct audit_buffer *ab)
735 char *ctx = NULL;
736 ssize_t len = 0;
738 len = security_getprocattr(current, "current", NULL, 0);
739 if (len < 0) {
740 if (len != -EINVAL)
741 goto error_path;
742 return;
745 ctx = kmalloc(len, GFP_KERNEL);
746 if (!ctx)
747 goto error_path;
749 len = security_getprocattr(current, "current", ctx, len);
750 if (len < 0 )
751 goto error_path;
753 audit_log_format(ab, " subj=%s", ctx);
754 return;
756 error_path:
757 kfree(ctx);
758 audit_panic("error in audit_log_task_context");
759 return;
762 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
764 char name[sizeof(tsk->comm)];
765 struct mm_struct *mm = tsk->mm;
766 struct vm_area_struct *vma;
768 /* tsk == current */
770 get_task_comm(name, tsk);
771 audit_log_format(ab, " comm=");
772 audit_log_untrustedstring(ab, name);
774 if (mm) {
775 down_read(&mm->mmap_sem);
776 vma = mm->mmap;
777 while (vma) {
778 if ((vma->vm_flags & VM_EXECUTABLE) &&
779 vma->vm_file) {
780 audit_log_d_path(ab, "exe=",
781 vma->vm_file->f_dentry,
782 vma->vm_file->f_vfsmnt);
783 break;
785 vma = vma->vm_next;
787 up_read(&mm->mmap_sem);
789 audit_log_task_context(ab);
792 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
794 int i, call_panic = 0;
795 struct audit_buffer *ab;
796 struct audit_aux_data *aux;
797 const char *tty;
799 /* tsk == current */
800 context->pid = tsk->pid;
801 if (!context->ppid)
802 context->ppid = sys_getppid();
803 context->uid = tsk->uid;
804 context->gid = tsk->gid;
805 context->euid = tsk->euid;
806 context->suid = tsk->suid;
807 context->fsuid = tsk->fsuid;
808 context->egid = tsk->egid;
809 context->sgid = tsk->sgid;
810 context->fsgid = tsk->fsgid;
811 context->personality = tsk->personality;
813 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
814 if (!ab)
815 return; /* audit_panic has been called */
816 audit_log_format(ab, "arch=%x syscall=%d",
817 context->arch, context->major);
818 if (context->personality != PER_LINUX)
819 audit_log_format(ab, " per=%lx", context->personality);
820 if (context->return_valid)
821 audit_log_format(ab, " success=%s exit=%ld",
822 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
823 context->return_code);
825 mutex_lock(&tty_mutex);
826 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
827 tty = tsk->signal->tty->name;
828 else
829 tty = "(none)";
830 audit_log_format(ab,
831 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
832 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
833 " euid=%u suid=%u fsuid=%u"
834 " egid=%u sgid=%u fsgid=%u tty=%s",
835 context->argv[0],
836 context->argv[1],
837 context->argv[2],
838 context->argv[3],
839 context->name_count,
840 context->ppid,
841 context->pid,
842 context->loginuid,
843 context->uid,
844 context->gid,
845 context->euid, context->suid, context->fsuid,
846 context->egid, context->sgid, context->fsgid, tty);
848 mutex_unlock(&tty_mutex);
850 audit_log_task_info(ab, tsk);
851 if (context->filterkey) {
852 audit_log_format(ab, " key=");
853 audit_log_untrustedstring(ab, context->filterkey);
854 } else
855 audit_log_format(ab, " key=(null)");
856 audit_log_end(ab);
858 for (aux = context->aux; aux; aux = aux->next) {
860 ab = audit_log_start(context, GFP_KERNEL, aux->type);
861 if (!ab)
862 continue; /* audit_panic has been called */
864 switch (aux->type) {
865 case AUDIT_MQ_OPEN: {
866 struct audit_aux_data_mq_open *axi = (void *)aux;
867 audit_log_format(ab,
868 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
869 "mq_msgsize=%ld mq_curmsgs=%ld",
870 axi->oflag, axi->mode, axi->attr.mq_flags,
871 axi->attr.mq_maxmsg, axi->attr.mq_msgsize,
872 axi->attr.mq_curmsgs);
873 break; }
875 case AUDIT_MQ_SENDRECV: {
876 struct audit_aux_data_mq_sendrecv *axi = (void *)aux;
877 audit_log_format(ab,
878 "mqdes=%d msg_len=%zd msg_prio=%u "
879 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
880 axi->mqdes, axi->msg_len, axi->msg_prio,
881 axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec);
882 break; }
884 case AUDIT_MQ_NOTIFY: {
885 struct audit_aux_data_mq_notify *axi = (void *)aux;
886 audit_log_format(ab,
887 "mqdes=%d sigev_signo=%d",
888 axi->mqdes,
889 axi->notification.sigev_signo);
890 break; }
892 case AUDIT_MQ_GETSETATTR: {
893 struct audit_aux_data_mq_getsetattr *axi = (void *)aux;
894 audit_log_format(ab,
895 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
896 "mq_curmsgs=%ld ",
897 axi->mqdes,
898 axi->mqstat.mq_flags, axi->mqstat.mq_maxmsg,
899 axi->mqstat.mq_msgsize, axi->mqstat.mq_curmsgs);
900 break; }
902 case AUDIT_IPC: {
903 struct audit_aux_data_ipcctl *axi = (void *)aux;
904 audit_log_format(ab,
905 "ouid=%u ogid=%u mode=%x",
906 axi->uid, axi->gid, axi->mode);
907 if (axi->osid != 0) {
908 char *ctx = NULL;
909 u32 len;
910 if (selinux_sid_to_string(
911 axi->osid, &ctx, &len)) {
912 audit_log_format(ab, " osid=%u",
913 axi->osid);
914 call_panic = 1;
915 } else
916 audit_log_format(ab, " obj=%s", ctx);
917 kfree(ctx);
919 break; }
921 case AUDIT_IPC_SET_PERM: {
922 struct audit_aux_data_ipcctl *axi = (void *)aux;
923 audit_log_format(ab,
924 "qbytes=%lx ouid=%u ogid=%u mode=%x",
925 axi->qbytes, axi->uid, axi->gid, axi->mode);
926 break; }
928 case AUDIT_EXECVE: {
929 struct audit_aux_data_execve *axi = (void *)aux;
930 int i;
931 const char *p;
932 for (i = 0, p = axi->mem; i < axi->argc; i++) {
933 audit_log_format(ab, "a%d=", i);
934 p = audit_log_untrustedstring(ab, p);
935 audit_log_format(ab, "\n");
937 break; }
939 case AUDIT_SOCKETCALL: {
940 int i;
941 struct audit_aux_data_socketcall *axs = (void *)aux;
942 audit_log_format(ab, "nargs=%d", axs->nargs);
943 for (i=0; i<axs->nargs; i++)
944 audit_log_format(ab, " a%d=%lx", i, axs->args[i]);
945 break; }
947 case AUDIT_SOCKADDR: {
948 struct audit_aux_data_sockaddr *axs = (void *)aux;
950 audit_log_format(ab, "saddr=");
951 audit_log_hex(ab, axs->a, axs->len);
952 break; }
954 case AUDIT_AVC_PATH: {
955 struct audit_aux_data_path *axi = (void *)aux;
956 audit_log_d_path(ab, "path=", axi->dentry, axi->mnt);
957 break; }
960 audit_log_end(ab);
963 if (context->pwd && context->pwdmnt) {
964 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
965 if (ab) {
966 audit_log_d_path(ab, "cwd=", context->pwd, context->pwdmnt);
967 audit_log_end(ab);
970 for (i = 0; i < context->name_count; i++) {
971 struct audit_names *n = &context->names[i];
973 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
974 if (!ab)
975 continue; /* audit_panic has been called */
977 audit_log_format(ab, "item=%d", i);
979 if (n->name) {
980 switch(n->name_len) {
981 case AUDIT_NAME_FULL:
982 /* log the full path */
983 audit_log_format(ab, " name=");
984 audit_log_untrustedstring(ab, n->name);
985 break;
986 case 0:
987 /* name was specified as a relative path and the
988 * directory component is the cwd */
989 audit_log_d_path(ab, " name=", context->pwd,
990 context->pwdmnt);
991 break;
992 default:
993 /* log the name's directory component */
994 audit_log_format(ab, " name=");
995 audit_log_n_untrustedstring(ab, n->name_len,
996 n->name);
998 } else
999 audit_log_format(ab, " name=(null)");
1001 if (n->ino != (unsigned long)-1) {
1002 audit_log_format(ab, " inode=%lu"
1003 " dev=%02x:%02x mode=%#o"
1004 " ouid=%u ogid=%u rdev=%02x:%02x",
1005 n->ino,
1006 MAJOR(n->dev),
1007 MINOR(n->dev),
1008 n->mode,
1009 n->uid,
1010 n->gid,
1011 MAJOR(n->rdev),
1012 MINOR(n->rdev));
1014 if (n->osid != 0) {
1015 char *ctx = NULL;
1016 u32 len;
1017 if (selinux_sid_to_string(
1018 n->osid, &ctx, &len)) {
1019 audit_log_format(ab, " osid=%u", n->osid);
1020 call_panic = 2;
1021 } else
1022 audit_log_format(ab, " obj=%s", ctx);
1023 kfree(ctx);
1026 audit_log_end(ab);
1028 if (call_panic)
1029 audit_panic("error converting sid to string");
1033 * audit_free - free a per-task audit context
1034 * @tsk: task whose audit context block to free
1036 * Called from copy_process and do_exit
1038 void audit_free(struct task_struct *tsk)
1040 struct audit_context *context;
1042 context = audit_get_context(tsk, 0, 0);
1043 if (likely(!context))
1044 return;
1046 /* Check for system calls that do not go through the exit
1047 * function (e.g., exit_group), then free context block.
1048 * We use GFP_ATOMIC here because we might be doing this
1049 * in the context of the idle thread */
1050 /* that can happen only if we are called from do_exit() */
1051 if (context->in_syscall && context->auditable)
1052 audit_log_exit(context, tsk);
1054 audit_free_context(context);
1058 * audit_syscall_entry - fill in an audit record at syscall entry
1059 * @tsk: task being audited
1060 * @arch: architecture type
1061 * @major: major syscall type (function)
1062 * @a1: additional syscall register 1
1063 * @a2: additional syscall register 2
1064 * @a3: additional syscall register 3
1065 * @a4: additional syscall register 4
1067 * Fill in audit context at syscall entry. This only happens if the
1068 * audit context was created when the task was created and the state or
1069 * filters demand the audit context be built. If the state from the
1070 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1071 * then the record will be written at syscall exit time (otherwise, it
1072 * will only be written if another part of the kernel requests that it
1073 * be written).
1075 void audit_syscall_entry(int arch, int major,
1076 unsigned long a1, unsigned long a2,
1077 unsigned long a3, unsigned long a4)
1079 struct task_struct *tsk = current;
1080 struct audit_context *context = tsk->audit_context;
1081 enum audit_state state;
1083 BUG_ON(!context);
1086 * This happens only on certain architectures that make system
1087 * calls in kernel_thread via the entry.S interface, instead of
1088 * with direct calls. (If you are porting to a new
1089 * architecture, hitting this condition can indicate that you
1090 * got the _exit/_leave calls backward in entry.S.)
1092 * i386 no
1093 * x86_64 no
1094 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1096 * This also happens with vm86 emulation in a non-nested manner
1097 * (entries without exits), so this case must be caught.
1099 if (context->in_syscall) {
1100 struct audit_context *newctx;
1102 #if AUDIT_DEBUG
1103 printk(KERN_ERR
1104 "audit(:%d) pid=%d in syscall=%d;"
1105 " entering syscall=%d\n",
1106 context->serial, tsk->pid, context->major, major);
1107 #endif
1108 newctx = audit_alloc_context(context->state);
1109 if (newctx) {
1110 newctx->previous = context;
1111 context = newctx;
1112 tsk->audit_context = newctx;
1113 } else {
1114 /* If we can't alloc a new context, the best we
1115 * can do is to leak memory (any pending putname
1116 * will be lost). The only other alternative is
1117 * to abandon auditing. */
1118 audit_zero_context(context, context->state);
1121 BUG_ON(context->in_syscall || context->name_count);
1123 if (!audit_enabled)
1124 return;
1126 context->arch = arch;
1127 context->major = major;
1128 context->argv[0] = a1;
1129 context->argv[1] = a2;
1130 context->argv[2] = a3;
1131 context->argv[3] = a4;
1133 state = context->state;
1134 context->dummy = !audit_n_rules;
1135 if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))
1136 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1137 if (likely(state == AUDIT_DISABLED))
1138 return;
1140 context->serial = 0;
1141 context->ctime = CURRENT_TIME;
1142 context->in_syscall = 1;
1143 context->auditable = !!(state == AUDIT_RECORD_CONTEXT);
1144 context->ppid = 0;
1148 * audit_syscall_exit - deallocate audit context after a system call
1149 * @tsk: task being audited
1150 * @valid: success/failure flag
1151 * @return_code: syscall return value
1153 * Tear down after system call. If the audit context has been marked as
1154 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1155 * filtering, or because some other part of the kernel write an audit
1156 * message), then write out the syscall information. In call cases,
1157 * free the names stored from getname().
1159 void audit_syscall_exit(int valid, long return_code)
1161 struct task_struct *tsk = current;
1162 struct audit_context *context;
1164 context = audit_get_context(tsk, valid, return_code);
1166 if (likely(!context))
1167 return;
1169 if (context->in_syscall && context->auditable)
1170 audit_log_exit(context, tsk);
1172 context->in_syscall = 0;
1173 context->auditable = 0;
1175 if (context->previous) {
1176 struct audit_context *new_context = context->previous;
1177 context->previous = NULL;
1178 audit_free_context(context);
1179 tsk->audit_context = new_context;
1180 } else {
1181 audit_free_names(context);
1182 audit_free_aux(context);
1183 kfree(context->filterkey);
1184 context->filterkey = NULL;
1185 tsk->audit_context = context;
1190 * audit_getname - add a name to the list
1191 * @name: name to add
1193 * Add a name to the list of audit names for this context.
1194 * Called from fs/namei.c:getname().
1196 void __audit_getname(const char *name)
1198 struct audit_context *context = current->audit_context;
1200 if (IS_ERR(name) || !name)
1201 return;
1203 if (!context->in_syscall) {
1204 #if AUDIT_DEBUG == 2
1205 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1206 __FILE__, __LINE__, context->serial, name);
1207 dump_stack();
1208 #endif
1209 return;
1211 BUG_ON(context->name_count >= AUDIT_NAMES);
1212 context->names[context->name_count].name = name;
1213 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1214 context->names[context->name_count].name_put = 1;
1215 context->names[context->name_count].ino = (unsigned long)-1;
1216 ++context->name_count;
1217 if (!context->pwd) {
1218 read_lock(&current->fs->lock);
1219 context->pwd = dget(current->fs->pwd);
1220 context->pwdmnt = mntget(current->fs->pwdmnt);
1221 read_unlock(&current->fs->lock);
1226 /* audit_putname - intercept a putname request
1227 * @name: name to intercept and delay for putname
1229 * If we have stored the name from getname in the audit context,
1230 * then we delay the putname until syscall exit.
1231 * Called from include/linux/fs.h:putname().
1233 void audit_putname(const char *name)
1235 struct audit_context *context = current->audit_context;
1237 BUG_ON(!context);
1238 if (!context->in_syscall) {
1239 #if AUDIT_DEBUG == 2
1240 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1241 __FILE__, __LINE__, context->serial, name);
1242 if (context->name_count) {
1243 int i;
1244 for (i = 0; i < context->name_count; i++)
1245 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1246 context->names[i].name,
1247 context->names[i].name ?: "(null)");
1249 #endif
1250 __putname(name);
1252 #if AUDIT_DEBUG
1253 else {
1254 ++context->put_count;
1255 if (context->put_count > context->name_count) {
1256 printk(KERN_ERR "%s:%d(:%d): major=%d"
1257 " in_syscall=%d putname(%p) name_count=%d"
1258 " put_count=%d\n",
1259 __FILE__, __LINE__,
1260 context->serial, context->major,
1261 context->in_syscall, name, context->name_count,
1262 context->put_count);
1263 dump_stack();
1266 #endif
1269 /* Copy inode data into an audit_names. */
1270 static void audit_copy_inode(struct audit_names *name, const struct inode *inode)
1272 name->ino = inode->i_ino;
1273 name->dev = inode->i_sb->s_dev;
1274 name->mode = inode->i_mode;
1275 name->uid = inode->i_uid;
1276 name->gid = inode->i_gid;
1277 name->rdev = inode->i_rdev;
1278 selinux_get_inode_sid(inode, &name->osid);
1282 * audit_inode - store the inode and device from a lookup
1283 * @name: name being audited
1284 * @inode: inode being audited
1286 * Called from fs/namei.c:path_lookup().
1288 void __audit_inode(const char *name, const struct inode *inode)
1290 int idx;
1291 struct audit_context *context = current->audit_context;
1293 if (!context->in_syscall)
1294 return;
1295 if (context->name_count
1296 && context->names[context->name_count-1].name
1297 && context->names[context->name_count-1].name == name)
1298 idx = context->name_count - 1;
1299 else if (context->name_count > 1
1300 && context->names[context->name_count-2].name
1301 && context->names[context->name_count-2].name == name)
1302 idx = context->name_count - 2;
1303 else {
1304 /* FIXME: how much do we care about inodes that have no
1305 * associated name? */
1306 if (context->name_count >= AUDIT_NAMES - AUDIT_NAMES_RESERVED)
1307 return;
1308 idx = context->name_count++;
1309 context->names[idx].name = NULL;
1310 #if AUDIT_DEBUG
1311 ++context->ino_count;
1312 #endif
1314 audit_copy_inode(&context->names[idx], inode);
1318 * audit_inode_child - collect inode info for created/removed objects
1319 * @dname: inode's dentry name
1320 * @inode: inode being audited
1321 * @parent: inode of dentry parent
1323 * For syscalls that create or remove filesystem objects, audit_inode
1324 * can only collect information for the filesystem object's parent.
1325 * This call updates the audit context with the child's information.
1326 * Syscalls that create a new filesystem object must be hooked after
1327 * the object is created. Syscalls that remove a filesystem object
1328 * must be hooked prior, in order to capture the target inode during
1329 * unsuccessful attempts.
1331 void __audit_inode_child(const char *dname, const struct inode *inode,
1332 const struct inode *parent)
1334 int idx;
1335 struct audit_context *context = current->audit_context;
1336 const char *found_name = NULL;
1337 int dirlen = 0;
1339 if (!context->in_syscall)
1340 return;
1342 /* determine matching parent */
1343 if (!dname)
1344 goto update_context;
1345 for (idx = 0; idx < context->name_count; idx++)
1346 if (context->names[idx].ino == parent->i_ino) {
1347 const char *name = context->names[idx].name;
1349 if (!name)
1350 continue;
1352 if (audit_compare_dname_path(dname, name, &dirlen) == 0) {
1353 context->names[idx].name_len = dirlen;
1354 found_name = name;
1355 break;
1359 update_context:
1360 idx = context->name_count;
1361 if (context->name_count == AUDIT_NAMES) {
1362 printk(KERN_DEBUG "name_count maxed and losing %s\n",
1363 found_name ?: "(null)");
1364 return;
1366 context->name_count++;
1367 #if AUDIT_DEBUG
1368 context->ino_count++;
1369 #endif
1370 /* Re-use the name belonging to the slot for a matching parent directory.
1371 * All names for this context are relinquished in audit_free_names() */
1372 context->names[idx].name = found_name;
1373 context->names[idx].name_len = AUDIT_NAME_FULL;
1374 context->names[idx].name_put = 0; /* don't call __putname() */
1376 if (!inode)
1377 context->names[idx].ino = (unsigned long)-1;
1378 else
1379 audit_copy_inode(&context->names[idx], inode);
1381 /* A parent was not found in audit_names, so copy the inode data for the
1382 * provided parent. */
1383 if (!found_name) {
1384 idx = context->name_count;
1385 if (context->name_count == AUDIT_NAMES) {
1386 printk(KERN_DEBUG
1387 "name_count maxed and losing parent inode data: dev=%02x:%02x, inode=%lu",
1388 MAJOR(parent->i_sb->s_dev),
1389 MINOR(parent->i_sb->s_dev),
1390 parent->i_ino);
1391 return;
1393 context->name_count++;
1394 #if AUDIT_DEBUG
1395 context->ino_count++;
1396 #endif
1397 audit_copy_inode(&context->names[idx], parent);
1402 * audit_inode_update - update inode info for last collected name
1403 * @inode: inode being audited
1405 * When open() is called on an existing object with the O_CREAT flag, the inode
1406 * data audit initially collects is incorrect. This additional hook ensures
1407 * audit has the inode data for the actual object to be opened.
1409 void __audit_inode_update(const struct inode *inode)
1411 struct audit_context *context = current->audit_context;
1412 int idx;
1414 if (!context->in_syscall || !inode)
1415 return;
1417 if (context->name_count == 0) {
1418 context->name_count++;
1419 #if AUDIT_DEBUG
1420 context->ino_count++;
1421 #endif
1423 idx = context->name_count - 1;
1425 audit_copy_inode(&context->names[idx], inode);
1429 * auditsc_get_stamp - get local copies of audit_context values
1430 * @ctx: audit_context for the task
1431 * @t: timespec to store time recorded in the audit_context
1432 * @serial: serial value that is recorded in the audit_context
1434 * Also sets the context as auditable.
1436 void auditsc_get_stamp(struct audit_context *ctx,
1437 struct timespec *t, unsigned int *serial)
1439 if (!ctx->serial)
1440 ctx->serial = audit_serial();
1441 t->tv_sec = ctx->ctime.tv_sec;
1442 t->tv_nsec = ctx->ctime.tv_nsec;
1443 *serial = ctx->serial;
1444 ctx->auditable = 1;
1448 * audit_set_loginuid - set a task's audit_context loginuid
1449 * @task: task whose audit context is being modified
1450 * @loginuid: loginuid value
1452 * Returns 0.
1454 * Called (set) from fs/proc/base.c::proc_loginuid_write().
1456 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1458 struct audit_context *context = task->audit_context;
1460 if (context) {
1461 /* Only log if audit is enabled */
1462 if (context->in_syscall) {
1463 struct audit_buffer *ab;
1465 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1466 if (ab) {
1467 audit_log_format(ab, "login pid=%d uid=%u "
1468 "old auid=%u new auid=%u",
1469 task->pid, task->uid,
1470 context->loginuid, loginuid);
1471 audit_log_end(ab);
1474 context->loginuid = loginuid;
1476 return 0;
1480 * audit_get_loginuid - get the loginuid for an audit_context
1481 * @ctx: the audit_context
1483 * Returns the context's loginuid or -1 if @ctx is NULL.
1485 uid_t audit_get_loginuid(struct audit_context *ctx)
1487 return ctx ? ctx->loginuid : -1;
1491 * __audit_mq_open - record audit data for a POSIX MQ open
1492 * @oflag: open flag
1493 * @mode: mode bits
1494 * @u_attr: queue attributes
1496 * Returns 0 for success or NULL context or < 0 on error.
1498 int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr)
1500 struct audit_aux_data_mq_open *ax;
1501 struct audit_context *context = current->audit_context;
1503 if (!audit_enabled)
1504 return 0;
1506 if (likely(!context))
1507 return 0;
1509 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1510 if (!ax)
1511 return -ENOMEM;
1513 if (u_attr != NULL) {
1514 if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) {
1515 kfree(ax);
1516 return -EFAULT;
1518 } else
1519 memset(&ax->attr, 0, sizeof(ax->attr));
1521 ax->oflag = oflag;
1522 ax->mode = mode;
1524 ax->d.type = AUDIT_MQ_OPEN;
1525 ax->d.next = context->aux;
1526 context->aux = (void *)ax;
1527 return 0;
1531 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
1532 * @mqdes: MQ descriptor
1533 * @msg_len: Message length
1534 * @msg_prio: Message priority
1535 * @u_abs_timeout: Message timeout in absolute time
1537 * Returns 0 for success or NULL context or < 0 on error.
1539 int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
1540 const struct timespec __user *u_abs_timeout)
1542 struct audit_aux_data_mq_sendrecv *ax;
1543 struct audit_context *context = current->audit_context;
1545 if (!audit_enabled)
1546 return 0;
1548 if (likely(!context))
1549 return 0;
1551 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1552 if (!ax)
1553 return -ENOMEM;
1555 if (u_abs_timeout != NULL) {
1556 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
1557 kfree(ax);
1558 return -EFAULT;
1560 } else
1561 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
1563 ax->mqdes = mqdes;
1564 ax->msg_len = msg_len;
1565 ax->msg_prio = msg_prio;
1567 ax->d.type = AUDIT_MQ_SENDRECV;
1568 ax->d.next = context->aux;
1569 context->aux = (void *)ax;
1570 return 0;
1574 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
1575 * @mqdes: MQ descriptor
1576 * @msg_len: Message length
1577 * @u_msg_prio: Message priority
1578 * @u_abs_timeout: Message timeout in absolute time
1580 * Returns 0 for success or NULL context or < 0 on error.
1582 int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len,
1583 unsigned int __user *u_msg_prio,
1584 const struct timespec __user *u_abs_timeout)
1586 struct audit_aux_data_mq_sendrecv *ax;
1587 struct audit_context *context = current->audit_context;
1589 if (!audit_enabled)
1590 return 0;
1592 if (likely(!context))
1593 return 0;
1595 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1596 if (!ax)
1597 return -ENOMEM;
1599 if (u_msg_prio != NULL) {
1600 if (get_user(ax->msg_prio, u_msg_prio)) {
1601 kfree(ax);
1602 return -EFAULT;
1604 } else
1605 ax->msg_prio = 0;
1607 if (u_abs_timeout != NULL) {
1608 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
1609 kfree(ax);
1610 return -EFAULT;
1612 } else
1613 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
1615 ax->mqdes = mqdes;
1616 ax->msg_len = msg_len;
1618 ax->d.type = AUDIT_MQ_SENDRECV;
1619 ax->d.next = context->aux;
1620 context->aux = (void *)ax;
1621 return 0;
1625 * __audit_mq_notify - record audit data for a POSIX MQ notify
1626 * @mqdes: MQ descriptor
1627 * @u_notification: Notification event
1629 * Returns 0 for success or NULL context or < 0 on error.
1632 int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification)
1634 struct audit_aux_data_mq_notify *ax;
1635 struct audit_context *context = current->audit_context;
1637 if (!audit_enabled)
1638 return 0;
1640 if (likely(!context))
1641 return 0;
1643 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1644 if (!ax)
1645 return -ENOMEM;
1647 if (u_notification != NULL) {
1648 if (copy_from_user(&ax->notification, u_notification, sizeof(ax->notification))) {
1649 kfree(ax);
1650 return -EFAULT;
1652 } else
1653 memset(&ax->notification, 0, sizeof(ax->notification));
1655 ax->mqdes = mqdes;
1657 ax->d.type = AUDIT_MQ_NOTIFY;
1658 ax->d.next = context->aux;
1659 context->aux = (void *)ax;
1660 return 0;
1664 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
1665 * @mqdes: MQ descriptor
1666 * @mqstat: MQ flags
1668 * Returns 0 for success or NULL context or < 0 on error.
1670 int __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
1672 struct audit_aux_data_mq_getsetattr *ax;
1673 struct audit_context *context = current->audit_context;
1675 if (!audit_enabled)
1676 return 0;
1678 if (likely(!context))
1679 return 0;
1681 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1682 if (!ax)
1683 return -ENOMEM;
1685 ax->mqdes = mqdes;
1686 ax->mqstat = *mqstat;
1688 ax->d.type = AUDIT_MQ_GETSETATTR;
1689 ax->d.next = context->aux;
1690 context->aux = (void *)ax;
1691 return 0;
1695 * audit_ipc_obj - record audit data for ipc object
1696 * @ipcp: ipc permissions
1698 * Returns 0 for success or NULL context or < 0 on error.
1700 int __audit_ipc_obj(struct kern_ipc_perm *ipcp)
1702 struct audit_aux_data_ipcctl *ax;
1703 struct audit_context *context = current->audit_context;
1705 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1706 if (!ax)
1707 return -ENOMEM;
1709 ax->uid = ipcp->uid;
1710 ax->gid = ipcp->gid;
1711 ax->mode = ipcp->mode;
1712 selinux_get_ipc_sid(ipcp, &ax->osid);
1714 ax->d.type = AUDIT_IPC;
1715 ax->d.next = context->aux;
1716 context->aux = (void *)ax;
1717 return 0;
1721 * audit_ipc_set_perm - record audit data for new ipc permissions
1722 * @qbytes: msgq bytes
1723 * @uid: msgq user id
1724 * @gid: msgq group id
1725 * @mode: msgq mode (permissions)
1727 * Returns 0 for success or NULL context or < 0 on error.
1729 int __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
1731 struct audit_aux_data_ipcctl *ax;
1732 struct audit_context *context = current->audit_context;
1734 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1735 if (!ax)
1736 return -ENOMEM;
1738 ax->qbytes = qbytes;
1739 ax->uid = uid;
1740 ax->gid = gid;
1741 ax->mode = mode;
1743 ax->d.type = AUDIT_IPC_SET_PERM;
1744 ax->d.next = context->aux;
1745 context->aux = (void *)ax;
1746 return 0;
1749 int audit_bprm(struct linux_binprm *bprm)
1751 struct audit_aux_data_execve *ax;
1752 struct audit_context *context = current->audit_context;
1753 unsigned long p, next;
1754 void *to;
1756 if (likely(!audit_enabled || !context || context->dummy))
1757 return 0;
1759 ax = kmalloc(sizeof(*ax) + PAGE_SIZE * MAX_ARG_PAGES - bprm->p,
1760 GFP_KERNEL);
1761 if (!ax)
1762 return -ENOMEM;
1764 ax->argc = bprm->argc;
1765 ax->envc = bprm->envc;
1766 for (p = bprm->p, to = ax->mem; p < MAX_ARG_PAGES*PAGE_SIZE; p = next) {
1767 struct page *page = bprm->page[p / PAGE_SIZE];
1768 void *kaddr = kmap(page);
1769 next = (p + PAGE_SIZE) & ~(PAGE_SIZE - 1);
1770 memcpy(to, kaddr + (p & (PAGE_SIZE - 1)), next - p);
1771 to += next - p;
1772 kunmap(page);
1775 ax->d.type = AUDIT_EXECVE;
1776 ax->d.next = context->aux;
1777 context->aux = (void *)ax;
1778 return 0;
1783 * audit_socketcall - record audit data for sys_socketcall
1784 * @nargs: number of args
1785 * @args: args array
1787 * Returns 0 for success or NULL context or < 0 on error.
1789 int audit_socketcall(int nargs, unsigned long *args)
1791 struct audit_aux_data_socketcall *ax;
1792 struct audit_context *context = current->audit_context;
1794 if (likely(!context || context->dummy))
1795 return 0;
1797 ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL);
1798 if (!ax)
1799 return -ENOMEM;
1801 ax->nargs = nargs;
1802 memcpy(ax->args, args, nargs * sizeof(unsigned long));
1804 ax->d.type = AUDIT_SOCKETCALL;
1805 ax->d.next = context->aux;
1806 context->aux = (void *)ax;
1807 return 0;
1811 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
1812 * @len: data length in user space
1813 * @a: data address in kernel space
1815 * Returns 0 for success or NULL context or < 0 on error.
1817 int audit_sockaddr(int len, void *a)
1819 struct audit_aux_data_sockaddr *ax;
1820 struct audit_context *context = current->audit_context;
1822 if (likely(!context || context->dummy))
1823 return 0;
1825 ax = kmalloc(sizeof(*ax) + len, GFP_KERNEL);
1826 if (!ax)
1827 return -ENOMEM;
1829 ax->len = len;
1830 memcpy(ax->a, a, len);
1832 ax->d.type = AUDIT_SOCKADDR;
1833 ax->d.next = context->aux;
1834 context->aux = (void *)ax;
1835 return 0;
1839 * audit_avc_path - record the granting or denial of permissions
1840 * @dentry: dentry to record
1841 * @mnt: mnt to record
1843 * Returns 0 for success or NULL context or < 0 on error.
1845 * Called from security/selinux/avc.c::avc_audit()
1847 int audit_avc_path(struct dentry *dentry, struct vfsmount *mnt)
1849 struct audit_aux_data_path *ax;
1850 struct audit_context *context = current->audit_context;
1852 if (likely(!context))
1853 return 0;
1855 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1856 if (!ax)
1857 return -ENOMEM;
1859 ax->dentry = dget(dentry);
1860 ax->mnt = mntget(mnt);
1862 ax->d.type = AUDIT_AVC_PATH;
1863 ax->d.next = context->aux;
1864 context->aux = (void *)ax;
1865 return 0;
1869 * audit_signal_info - record signal info for shutting down audit subsystem
1870 * @sig: signal value
1871 * @t: task being signaled
1873 * If the audit subsystem is being terminated, record the task (pid)
1874 * and uid that is doing that.
1876 void __audit_signal_info(int sig, struct task_struct *t)
1878 extern pid_t audit_sig_pid;
1879 extern uid_t audit_sig_uid;
1880 extern u32 audit_sig_sid;
1882 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1) {
1883 struct task_struct *tsk = current;
1884 struct audit_context *ctx = tsk->audit_context;
1885 audit_sig_pid = tsk->pid;
1886 if (ctx)
1887 audit_sig_uid = ctx->loginuid;
1888 else
1889 audit_sig_uid = tsk->uid;
1890 selinux_get_task_sid(tsk, &audit_sig_sid);