2 * linux/kernel/workqueue.c
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
7 * Started by Ingo Molnar, Copyright (C) 2002
9 * Derived from the taskqueue/keventd code by:
11 * David Woodhouse <dwmw2@infradead.org>
12 * Andrew Morton <andrewm@uow.edu.au>
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
16 * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>.
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
34 * The per-CPU workqueue (if single thread, we always use the first
37 * The sequence counters are for flush_scheduled_work(). It wants to wait
38 * until all currently-scheduled works are completed, but it doesn't
39 * want to be livelocked by new, incoming ones. So it waits until
40 * remove_sequence is >= the insert_sequence which pertained when
41 * flush_scheduled_work() was called.
43 struct cpu_workqueue_struct
{
47 long remove_sequence
; /* Least-recently added (next to run) */
48 long insert_sequence
; /* Next to add */
50 struct list_head worklist
;
51 wait_queue_head_t more_work
;
52 wait_queue_head_t work_done
;
54 struct workqueue_struct
*wq
;
55 struct task_struct
*thread
;
57 int run_depth
; /* Detect run_workqueue() recursion depth */
58 } ____cacheline_aligned
;
61 * The externally visible workqueue abstraction is an array of
64 struct workqueue_struct
{
65 struct cpu_workqueue_struct
*cpu_wq
;
67 struct list_head list
; /* Empty if single thread */
70 /* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
71 threads to each one as cpus come/go. */
72 static DEFINE_MUTEX(workqueue_mutex
);
73 static LIST_HEAD(workqueues
);
75 static int singlethread_cpu
;
77 /* If it's single threaded, it isn't in the list of workqueues. */
78 static inline int is_single_threaded(struct workqueue_struct
*wq
)
80 return list_empty(&wq
->list
);
83 /* Preempt must be disabled. */
84 static void __queue_work(struct cpu_workqueue_struct
*cwq
,
85 struct work_struct
*work
)
89 spin_lock_irqsave(&cwq
->lock
, flags
);
91 list_add_tail(&work
->entry
, &cwq
->worklist
);
92 cwq
->insert_sequence
++;
93 wake_up(&cwq
->more_work
);
94 spin_unlock_irqrestore(&cwq
->lock
, flags
);
98 * queue_work - queue work on a workqueue
99 * @wq: workqueue to use
100 * @work: work to queue
102 * Returns 0 if @work was already on a queue, non-zero otherwise.
104 * We queue the work to the CPU it was submitted, but there is no
105 * guarantee that it will be processed by that CPU.
107 int fastcall
queue_work(struct workqueue_struct
*wq
, struct work_struct
*work
)
109 int ret
= 0, cpu
= get_cpu();
111 if (!test_and_set_bit(0, &work
->pending
)) {
112 if (unlikely(is_single_threaded(wq
)))
113 cpu
= singlethread_cpu
;
114 BUG_ON(!list_empty(&work
->entry
));
115 __queue_work(per_cpu_ptr(wq
->cpu_wq
, cpu
), work
);
121 EXPORT_SYMBOL_GPL(queue_work
);
123 static void delayed_work_timer_fn(unsigned long __data
)
125 struct work_struct
*work
= (struct work_struct
*)__data
;
126 struct workqueue_struct
*wq
= work
->wq_data
;
127 int cpu
= smp_processor_id();
129 if (unlikely(is_single_threaded(wq
)))
130 cpu
= singlethread_cpu
;
132 __queue_work(per_cpu_ptr(wq
->cpu_wq
, cpu
), work
);
136 * queue_delayed_work - queue work on a workqueue after delay
137 * @wq: workqueue to use
138 * @work: work to queue
139 * @delay: number of jiffies to wait before queueing
141 * Returns 0 if @work was already on a queue, non-zero otherwise.
143 int fastcall
queue_delayed_work(struct workqueue_struct
*wq
,
144 struct work_struct
*work
, unsigned long delay
)
147 struct timer_list
*timer
= &work
->timer
;
149 if (!test_and_set_bit(0, &work
->pending
)) {
150 BUG_ON(timer_pending(timer
));
151 BUG_ON(!list_empty(&work
->entry
));
153 /* This stores wq for the moment, for the timer_fn */
155 timer
->expires
= jiffies
+ delay
;
156 timer
->data
= (unsigned long)work
;
157 timer
->function
= delayed_work_timer_fn
;
163 EXPORT_SYMBOL_GPL(queue_delayed_work
);
166 * queue_delayed_work_on - queue work on specific CPU after delay
167 * @cpu: CPU number to execute work on
168 * @wq: workqueue to use
169 * @work: work to queue
170 * @delay: number of jiffies to wait before queueing
172 * Returns 0 if @work was already on a queue, non-zero otherwise.
174 int queue_delayed_work_on(int cpu
, struct workqueue_struct
*wq
,
175 struct work_struct
*work
, unsigned long delay
)
178 struct timer_list
*timer
= &work
->timer
;
180 if (!test_and_set_bit(0, &work
->pending
)) {
181 BUG_ON(timer_pending(timer
));
182 BUG_ON(!list_empty(&work
->entry
));
184 /* This stores wq for the moment, for the timer_fn */
186 timer
->expires
= jiffies
+ delay
;
187 timer
->data
= (unsigned long)work
;
188 timer
->function
= delayed_work_timer_fn
;
189 add_timer_on(timer
, cpu
);
194 EXPORT_SYMBOL_GPL(queue_delayed_work_on
);
196 static void run_workqueue(struct cpu_workqueue_struct
*cwq
)
201 * Keep taking off work from the queue until
204 spin_lock_irqsave(&cwq
->lock
, flags
);
206 if (cwq
->run_depth
> 3) {
207 /* morton gets to eat his hat */
208 printk("%s: recursion depth exceeded: %d\n",
209 __FUNCTION__
, cwq
->run_depth
);
212 while (!list_empty(&cwq
->worklist
)) {
213 struct work_struct
*work
= list_entry(cwq
->worklist
.next
,
214 struct work_struct
, entry
);
215 void (*f
) (void *) = work
->func
;
216 void *data
= work
->data
;
218 list_del_init(cwq
->worklist
.next
);
219 spin_unlock_irqrestore(&cwq
->lock
, flags
);
221 BUG_ON(work
->wq_data
!= cwq
);
222 clear_bit(0, &work
->pending
);
225 spin_lock_irqsave(&cwq
->lock
, flags
);
226 cwq
->remove_sequence
++;
227 wake_up(&cwq
->work_done
);
230 spin_unlock_irqrestore(&cwq
->lock
, flags
);
233 static int worker_thread(void *__cwq
)
235 struct cpu_workqueue_struct
*cwq
= __cwq
;
236 DECLARE_WAITQUEUE(wait
, current
);
237 struct k_sigaction sa
;
240 current
->flags
|= PF_NOFREEZE
;
242 set_user_nice(current
, -5);
244 /* Block and flush all signals */
245 sigfillset(&blocked
);
246 sigprocmask(SIG_BLOCK
, &blocked
, NULL
);
247 flush_signals(current
);
250 * We inherited MPOL_INTERLEAVE from the booting kernel.
251 * Set MPOL_DEFAULT to insure node local allocations.
253 numa_default_policy();
255 /* SIG_IGN makes children autoreap: see do_notify_parent(). */
256 sa
.sa
.sa_handler
= SIG_IGN
;
258 siginitset(&sa
.sa
.sa_mask
, sigmask(SIGCHLD
));
259 do_sigaction(SIGCHLD
, &sa
, (struct k_sigaction
*)0);
261 set_current_state(TASK_INTERRUPTIBLE
);
262 while (!kthread_should_stop()) {
263 add_wait_queue(&cwq
->more_work
, &wait
);
264 if (list_empty(&cwq
->worklist
))
267 __set_current_state(TASK_RUNNING
);
268 remove_wait_queue(&cwq
->more_work
, &wait
);
270 if (!list_empty(&cwq
->worklist
))
272 set_current_state(TASK_INTERRUPTIBLE
);
274 __set_current_state(TASK_RUNNING
);
278 static void flush_cpu_workqueue(struct cpu_workqueue_struct
*cwq
)
280 if (cwq
->thread
== current
) {
282 * Probably keventd trying to flush its own queue. So simply run
283 * it by hand rather than deadlocking.
288 long sequence_needed
;
290 spin_lock_irq(&cwq
->lock
);
291 sequence_needed
= cwq
->insert_sequence
;
293 while (sequence_needed
- cwq
->remove_sequence
> 0) {
294 prepare_to_wait(&cwq
->work_done
, &wait
,
295 TASK_UNINTERRUPTIBLE
);
296 spin_unlock_irq(&cwq
->lock
);
298 spin_lock_irq(&cwq
->lock
);
300 finish_wait(&cwq
->work_done
, &wait
);
301 spin_unlock_irq(&cwq
->lock
);
306 * flush_workqueue - ensure that any scheduled work has run to completion.
307 * @wq: workqueue to flush
309 * Forces execution of the workqueue and blocks until its completion.
310 * This is typically used in driver shutdown handlers.
312 * This function will sample each workqueue's current insert_sequence number and
313 * will sleep until the head sequence is greater than or equal to that. This
314 * means that we sleep until all works which were queued on entry have been
315 * handled, but we are not livelocked by new incoming ones.
317 * This function used to run the workqueues itself. Now we just wait for the
318 * helper threads to do it.
320 void fastcall
flush_workqueue(struct workqueue_struct
*wq
)
324 if (is_single_threaded(wq
)) {
325 /* Always use first cpu's area. */
326 flush_cpu_workqueue(per_cpu_ptr(wq
->cpu_wq
, singlethread_cpu
));
330 mutex_lock(&workqueue_mutex
);
331 for_each_online_cpu(cpu
)
332 flush_cpu_workqueue(per_cpu_ptr(wq
->cpu_wq
, cpu
));
333 mutex_unlock(&workqueue_mutex
);
336 EXPORT_SYMBOL_GPL(flush_workqueue
);
338 static struct task_struct
*create_workqueue_thread(struct workqueue_struct
*wq
,
341 struct cpu_workqueue_struct
*cwq
= per_cpu_ptr(wq
->cpu_wq
, cpu
);
342 struct task_struct
*p
;
344 spin_lock_init(&cwq
->lock
);
347 cwq
->insert_sequence
= 0;
348 cwq
->remove_sequence
= 0;
349 INIT_LIST_HEAD(&cwq
->worklist
);
350 init_waitqueue_head(&cwq
->more_work
);
351 init_waitqueue_head(&cwq
->work_done
);
353 if (is_single_threaded(wq
))
354 p
= kthread_create(worker_thread
, cwq
, "%s", wq
->name
);
356 p
= kthread_create(worker_thread
, cwq
, "%s/%d", wq
->name
, cpu
);
363 struct workqueue_struct
*__create_workqueue(const char *name
,
366 int cpu
, destroy
= 0;
367 struct workqueue_struct
*wq
;
368 struct task_struct
*p
;
370 wq
= kzalloc(sizeof(*wq
), GFP_KERNEL
);
374 wq
->cpu_wq
= alloc_percpu(struct cpu_workqueue_struct
);
381 mutex_lock(&workqueue_mutex
);
383 INIT_LIST_HEAD(&wq
->list
);
384 p
= create_workqueue_thread(wq
, singlethread_cpu
);
390 list_add(&wq
->list
, &workqueues
);
391 for_each_online_cpu(cpu
) {
392 p
= create_workqueue_thread(wq
, cpu
);
394 kthread_bind(p
, cpu
);
400 mutex_unlock(&workqueue_mutex
);
403 * Was there any error during startup? If yes then clean up:
406 destroy_workqueue(wq
);
411 EXPORT_SYMBOL_GPL(__create_workqueue
);
413 static void cleanup_workqueue_thread(struct workqueue_struct
*wq
, int cpu
)
415 struct cpu_workqueue_struct
*cwq
;
417 struct task_struct
*p
;
419 cwq
= per_cpu_ptr(wq
->cpu_wq
, cpu
);
420 spin_lock_irqsave(&cwq
->lock
, flags
);
423 spin_unlock_irqrestore(&cwq
->lock
, flags
);
429 * destroy_workqueue - safely terminate a workqueue
430 * @wq: target workqueue
432 * Safely destroy a workqueue. All work currently pending will be done first.
434 void destroy_workqueue(struct workqueue_struct
*wq
)
440 /* We don't need the distraction of CPUs appearing and vanishing. */
441 mutex_lock(&workqueue_mutex
);
442 if (is_single_threaded(wq
))
443 cleanup_workqueue_thread(wq
, singlethread_cpu
);
445 for_each_online_cpu(cpu
)
446 cleanup_workqueue_thread(wq
, cpu
);
449 mutex_unlock(&workqueue_mutex
);
450 free_percpu(wq
->cpu_wq
);
453 EXPORT_SYMBOL_GPL(destroy_workqueue
);
455 static struct workqueue_struct
*keventd_wq
;
458 * schedule_work - put work task in global workqueue
459 * @work: job to be done
461 * This puts a job in the kernel-global workqueue.
463 int fastcall
schedule_work(struct work_struct
*work
)
465 return queue_work(keventd_wq
, work
);
467 EXPORT_SYMBOL(schedule_work
);
470 * schedule_delayed_work - put work task in global workqueue after delay
471 * @work: job to be done
472 * @delay: number of jiffies to wait
474 * After waiting for a given time this puts a job in the kernel-global
477 int fastcall
schedule_delayed_work(struct work_struct
*work
, unsigned long delay
)
479 return queue_delayed_work(keventd_wq
, work
, delay
);
481 EXPORT_SYMBOL(schedule_delayed_work
);
484 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
486 * @work: job to be done
487 * @delay: number of jiffies to wait
489 * After waiting for a given time this puts a job in the kernel-global
490 * workqueue on the specified CPU.
492 int schedule_delayed_work_on(int cpu
,
493 struct work_struct
*work
, unsigned long delay
)
495 return queue_delayed_work_on(cpu
, keventd_wq
, work
, delay
);
497 EXPORT_SYMBOL(schedule_delayed_work_on
);
500 * schedule_on_each_cpu - call a function on each online CPU from keventd
501 * @func: the function to call
502 * @info: a pointer to pass to func()
504 * Returns zero on success.
505 * Returns -ve errno on failure.
507 * Appears to be racy against CPU hotplug.
509 * schedule_on_each_cpu() is very slow.
511 int schedule_on_each_cpu(void (*func
)(void *info
), void *info
)
514 struct work_struct
*works
;
516 works
= alloc_percpu(struct work_struct
);
520 mutex_lock(&workqueue_mutex
);
521 for_each_online_cpu(cpu
) {
522 INIT_WORK(per_cpu_ptr(works
, cpu
), func
, info
);
523 __queue_work(per_cpu_ptr(keventd_wq
->cpu_wq
, cpu
),
524 per_cpu_ptr(works
, cpu
));
526 mutex_unlock(&workqueue_mutex
);
527 flush_workqueue(keventd_wq
);
532 void flush_scheduled_work(void)
534 flush_workqueue(keventd_wq
);
536 EXPORT_SYMBOL(flush_scheduled_work
);
539 * cancel_rearming_delayed_workqueue - reliably kill off a delayed
540 * work whose handler rearms the delayed work.
541 * @wq: the controlling workqueue structure
542 * @work: the delayed work struct
544 void cancel_rearming_delayed_workqueue(struct workqueue_struct
*wq
,
545 struct work_struct
*work
)
547 while (!cancel_delayed_work(work
))
550 EXPORT_SYMBOL(cancel_rearming_delayed_workqueue
);
553 * cancel_rearming_delayed_work - reliably kill off a delayed keventd
554 * work whose handler rearms the delayed work.
555 * @work: the delayed work struct
557 void cancel_rearming_delayed_work(struct work_struct
*work
)
559 cancel_rearming_delayed_workqueue(keventd_wq
, work
);
561 EXPORT_SYMBOL(cancel_rearming_delayed_work
);
564 * execute_in_process_context - reliably execute the routine with user context
565 * @fn: the function to execute
566 * @data: data to pass to the function
567 * @ew: guaranteed storage for the execute work structure (must
568 * be available when the work executes)
570 * Executes the function immediately if process context is available,
571 * otherwise schedules the function for delayed execution.
573 * Returns: 0 - function was executed
574 * 1 - function was scheduled for execution
576 int execute_in_process_context(void (*fn
)(void *data
), void *data
,
577 struct execute_work
*ew
)
579 if (!in_interrupt()) {
584 INIT_WORK(&ew
->work
, fn
, data
);
585 schedule_work(&ew
->work
);
589 EXPORT_SYMBOL_GPL(execute_in_process_context
);
593 return keventd_wq
!= NULL
;
596 int current_is_keventd(void)
598 struct cpu_workqueue_struct
*cwq
;
599 int cpu
= smp_processor_id(); /* preempt-safe: keventd is per-cpu */
604 cwq
= per_cpu_ptr(keventd_wq
->cpu_wq
, cpu
);
605 if (current
== cwq
->thread
)
612 #ifdef CONFIG_HOTPLUG_CPU
613 /* Take the work from this (downed) CPU. */
614 static void take_over_work(struct workqueue_struct
*wq
, unsigned int cpu
)
616 struct cpu_workqueue_struct
*cwq
= per_cpu_ptr(wq
->cpu_wq
, cpu
);
617 struct list_head list
;
618 struct work_struct
*work
;
620 spin_lock_irq(&cwq
->lock
);
621 list_replace_init(&cwq
->worklist
, &list
);
623 while (!list_empty(&list
)) {
624 printk("Taking work for %s\n", wq
->name
);
625 work
= list_entry(list
.next
,struct work_struct
,entry
);
626 list_del(&work
->entry
);
627 __queue_work(per_cpu_ptr(wq
->cpu_wq
, smp_processor_id()), work
);
629 spin_unlock_irq(&cwq
->lock
);
632 /* We're holding the cpucontrol mutex here */
633 static int __devinit
workqueue_cpu_callback(struct notifier_block
*nfb
,
634 unsigned long action
,
637 unsigned int hotcpu
= (unsigned long)hcpu
;
638 struct workqueue_struct
*wq
;
642 mutex_lock(&workqueue_mutex
);
643 /* Create a new workqueue thread for it. */
644 list_for_each_entry(wq
, &workqueues
, list
) {
645 if (!create_workqueue_thread(wq
, hotcpu
)) {
646 printk("workqueue for %i failed\n", hotcpu
);
653 /* Kick off worker threads. */
654 list_for_each_entry(wq
, &workqueues
, list
) {
655 struct cpu_workqueue_struct
*cwq
;
657 cwq
= per_cpu_ptr(wq
->cpu_wq
, hotcpu
);
658 kthread_bind(cwq
->thread
, hotcpu
);
659 wake_up_process(cwq
->thread
);
661 mutex_unlock(&workqueue_mutex
);
664 case CPU_UP_CANCELED
:
665 list_for_each_entry(wq
, &workqueues
, list
) {
666 if (!per_cpu_ptr(wq
->cpu_wq
, hotcpu
)->thread
)
668 /* Unbind so it can run. */
669 kthread_bind(per_cpu_ptr(wq
->cpu_wq
, hotcpu
)->thread
,
670 any_online_cpu(cpu_online_map
));
671 cleanup_workqueue_thread(wq
, hotcpu
);
673 mutex_unlock(&workqueue_mutex
);
676 case CPU_DOWN_PREPARE
:
677 mutex_lock(&workqueue_mutex
);
680 case CPU_DOWN_FAILED
:
681 mutex_unlock(&workqueue_mutex
);
685 list_for_each_entry(wq
, &workqueues
, list
)
686 cleanup_workqueue_thread(wq
, hotcpu
);
687 list_for_each_entry(wq
, &workqueues
, list
)
688 take_over_work(wq
, hotcpu
);
689 mutex_unlock(&workqueue_mutex
);
697 void init_workqueues(void)
699 singlethread_cpu
= first_cpu(cpu_possible_map
);
700 hotcpu_notifier(workqueue_cpu_callback
, 0);
701 keventd_wq
= create_workqueue("events");