Linux 2.6.19-rc6
[cris-mirror.git] / mm / page-writeback.c
blob8d9b19f239c3ec03038e88cdd0a44e8a71c0d3e9
1 /*
2 * mm/page-writeback.c
4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains functions related to writing back dirty pages at the
7 * address_space level.
9 * 10Apr2002 akpm@zip.com.au
10 * Initial version
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/spinlock.h>
16 #include <linux/fs.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/slab.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/init.h>
23 #include <linux/backing-dev.h>
24 #include <linux/blkdev.h>
25 #include <linux/mpage.h>
26 #include <linux/rmap.h>
27 #include <linux/percpu.h>
28 #include <linux/notifier.h>
29 #include <linux/smp.h>
30 #include <linux/sysctl.h>
31 #include <linux/cpu.h>
32 #include <linux/syscalls.h>
33 #include <linux/buffer_head.h>
34 #include <linux/pagevec.h>
37 * The maximum number of pages to writeout in a single bdflush/kupdate
38 * operation. We do this so we don't hold I_LOCK against an inode for
39 * enormous amounts of time, which would block a userspace task which has
40 * been forced to throttle against that inode. Also, the code reevaluates
41 * the dirty each time it has written this many pages.
43 #define MAX_WRITEBACK_PAGES 1024
46 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
47 * will look to see if it needs to force writeback or throttling.
49 static long ratelimit_pages = 32;
51 static int dirty_exceeded __cacheline_aligned_in_smp; /* Dirty mem may be over limit */
54 * When balance_dirty_pages decides that the caller needs to perform some
55 * non-background writeback, this is how many pages it will attempt to write.
56 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
57 * large amounts of I/O are submitted.
59 static inline long sync_writeback_pages(void)
61 return ratelimit_pages + ratelimit_pages / 2;
64 /* The following parameters are exported via /proc/sys/vm */
67 * Start background writeback (via pdflush) at this percentage
69 int dirty_background_ratio = 10;
72 * The generator of dirty data starts writeback at this percentage
74 int vm_dirty_ratio = 40;
77 * The interval between `kupdate'-style writebacks, in jiffies
79 int dirty_writeback_interval = 5 * HZ;
82 * The longest number of jiffies for which data is allowed to remain dirty
84 int dirty_expire_interval = 30 * HZ;
87 * Flag that makes the machine dump writes/reads and block dirtyings.
89 int block_dump;
92 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
93 * a full sync is triggered after this time elapses without any disk activity.
95 int laptop_mode;
97 EXPORT_SYMBOL(laptop_mode);
99 /* End of sysctl-exported parameters */
102 static void background_writeout(unsigned long _min_pages);
105 * Work out the current dirty-memory clamping and background writeout
106 * thresholds.
108 * The main aim here is to lower them aggressively if there is a lot of mapped
109 * memory around. To avoid stressing page reclaim with lots of unreclaimable
110 * pages. It is better to clamp down on writers than to start swapping, and
111 * performing lots of scanning.
113 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
115 * We don't permit the clamping level to fall below 5% - that is getting rather
116 * excessive.
118 * We make sure that the background writeout level is below the adjusted
119 * clamping level.
121 static void
122 get_dirty_limits(long *pbackground, long *pdirty,
123 struct address_space *mapping)
125 int background_ratio; /* Percentages */
126 int dirty_ratio;
127 int unmapped_ratio;
128 long background;
129 long dirty;
130 unsigned long available_memory = vm_total_pages;
131 struct task_struct *tsk;
133 #ifdef CONFIG_HIGHMEM
135 * If this mapping can only allocate from low memory,
136 * we exclude high memory from our count.
138 if (mapping && !(mapping_gfp_mask(mapping) & __GFP_HIGHMEM))
139 available_memory -= totalhigh_pages;
140 #endif
143 unmapped_ratio = 100 - ((global_page_state(NR_FILE_MAPPED) +
144 global_page_state(NR_ANON_PAGES)) * 100) /
145 vm_total_pages;
147 dirty_ratio = vm_dirty_ratio;
148 if (dirty_ratio > unmapped_ratio / 2)
149 dirty_ratio = unmapped_ratio / 2;
151 if (dirty_ratio < 5)
152 dirty_ratio = 5;
154 background_ratio = dirty_background_ratio;
155 if (background_ratio >= dirty_ratio)
156 background_ratio = dirty_ratio / 2;
158 background = (background_ratio * available_memory) / 100;
159 dirty = (dirty_ratio * available_memory) / 100;
160 tsk = current;
161 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
162 background += background / 4;
163 dirty += dirty / 4;
165 *pbackground = background;
166 *pdirty = dirty;
170 * balance_dirty_pages() must be called by processes which are generating dirty
171 * data. It looks at the number of dirty pages in the machine and will force
172 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
173 * If we're over `background_thresh' then pdflush is woken to perform some
174 * writeout.
176 static void balance_dirty_pages(struct address_space *mapping)
178 long nr_reclaimable;
179 long background_thresh;
180 long dirty_thresh;
181 unsigned long pages_written = 0;
182 unsigned long write_chunk = sync_writeback_pages();
184 struct backing_dev_info *bdi = mapping->backing_dev_info;
186 for (;;) {
187 struct writeback_control wbc = {
188 .bdi = bdi,
189 .sync_mode = WB_SYNC_NONE,
190 .older_than_this = NULL,
191 .nr_to_write = write_chunk,
192 .range_cyclic = 1,
195 get_dirty_limits(&background_thresh, &dirty_thresh, mapping);
196 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
197 global_page_state(NR_UNSTABLE_NFS);
198 if (nr_reclaimable + global_page_state(NR_WRITEBACK) <=
199 dirty_thresh)
200 break;
202 if (!dirty_exceeded)
203 dirty_exceeded = 1;
205 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
206 * Unstable writes are a feature of certain networked
207 * filesystems (i.e. NFS) in which data may have been
208 * written to the server's write cache, but has not yet
209 * been flushed to permanent storage.
211 if (nr_reclaimable) {
212 writeback_inodes(&wbc);
213 get_dirty_limits(&background_thresh,
214 &dirty_thresh, mapping);
215 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
216 global_page_state(NR_UNSTABLE_NFS);
217 if (nr_reclaimable +
218 global_page_state(NR_WRITEBACK)
219 <= dirty_thresh)
220 break;
221 pages_written += write_chunk - wbc.nr_to_write;
222 if (pages_written >= write_chunk)
223 break; /* We've done our duty */
225 congestion_wait(WRITE, HZ/10);
228 if (nr_reclaimable + global_page_state(NR_WRITEBACK)
229 <= dirty_thresh && dirty_exceeded)
230 dirty_exceeded = 0;
232 if (writeback_in_progress(bdi))
233 return; /* pdflush is already working this queue */
236 * In laptop mode, we wait until hitting the higher threshold before
237 * starting background writeout, and then write out all the way down
238 * to the lower threshold. So slow writers cause minimal disk activity.
240 * In normal mode, we start background writeout at the lower
241 * background_thresh, to keep the amount of dirty memory low.
243 if ((laptop_mode && pages_written) ||
244 (!laptop_mode && (nr_reclaimable > background_thresh)))
245 pdflush_operation(background_writeout, 0);
248 void set_page_dirty_balance(struct page *page)
250 if (set_page_dirty(page)) {
251 struct address_space *mapping = page_mapping(page);
253 if (mapping)
254 balance_dirty_pages_ratelimited(mapping);
259 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
260 * @mapping: address_space which was dirtied
261 * @nr_pages_dirtied: number of pages which the caller has just dirtied
263 * Processes which are dirtying memory should call in here once for each page
264 * which was newly dirtied. The function will periodically check the system's
265 * dirty state and will initiate writeback if needed.
267 * On really big machines, get_writeback_state is expensive, so try to avoid
268 * calling it too often (ratelimiting). But once we're over the dirty memory
269 * limit we decrease the ratelimiting by a lot, to prevent individual processes
270 * from overshooting the limit by (ratelimit_pages) each.
272 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
273 unsigned long nr_pages_dirtied)
275 static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
276 unsigned long ratelimit;
277 unsigned long *p;
279 ratelimit = ratelimit_pages;
280 if (dirty_exceeded)
281 ratelimit = 8;
284 * Check the rate limiting. Also, we do not want to throttle real-time
285 * tasks in balance_dirty_pages(). Period.
287 preempt_disable();
288 p = &__get_cpu_var(ratelimits);
289 *p += nr_pages_dirtied;
290 if (unlikely(*p >= ratelimit)) {
291 *p = 0;
292 preempt_enable();
293 balance_dirty_pages(mapping);
294 return;
296 preempt_enable();
298 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
300 void throttle_vm_writeout(void)
302 long background_thresh;
303 long dirty_thresh;
305 for ( ; ; ) {
306 get_dirty_limits(&background_thresh, &dirty_thresh, NULL);
309 * Boost the allowable dirty threshold a bit for page
310 * allocators so they don't get DoS'ed by heavy writers
312 dirty_thresh += dirty_thresh / 10; /* wheeee... */
314 if (global_page_state(NR_UNSTABLE_NFS) +
315 global_page_state(NR_WRITEBACK) <= dirty_thresh)
316 break;
317 congestion_wait(WRITE, HZ/10);
323 * writeback at least _min_pages, and keep writing until the amount of dirty
324 * memory is less than the background threshold, or until we're all clean.
326 static void background_writeout(unsigned long _min_pages)
328 long min_pages = _min_pages;
329 struct writeback_control wbc = {
330 .bdi = NULL,
331 .sync_mode = WB_SYNC_NONE,
332 .older_than_this = NULL,
333 .nr_to_write = 0,
334 .nonblocking = 1,
335 .range_cyclic = 1,
338 for ( ; ; ) {
339 long background_thresh;
340 long dirty_thresh;
342 get_dirty_limits(&background_thresh, &dirty_thresh, NULL);
343 if (global_page_state(NR_FILE_DIRTY) +
344 global_page_state(NR_UNSTABLE_NFS) < background_thresh
345 && min_pages <= 0)
346 break;
347 wbc.encountered_congestion = 0;
348 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
349 wbc.pages_skipped = 0;
350 writeback_inodes(&wbc);
351 min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
352 if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
353 /* Wrote less than expected */
354 congestion_wait(WRITE, HZ/10);
355 if (!wbc.encountered_congestion)
356 break;
362 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
363 * the whole world. Returns 0 if a pdflush thread was dispatched. Returns
364 * -1 if all pdflush threads were busy.
366 int wakeup_pdflush(long nr_pages)
368 if (nr_pages == 0)
369 nr_pages = global_page_state(NR_FILE_DIRTY) +
370 global_page_state(NR_UNSTABLE_NFS);
371 return pdflush_operation(background_writeout, nr_pages);
374 static void wb_timer_fn(unsigned long unused);
375 static void laptop_timer_fn(unsigned long unused);
377 static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
378 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
381 * Periodic writeback of "old" data.
383 * Define "old": the first time one of an inode's pages is dirtied, we mark the
384 * dirtying-time in the inode's address_space. So this periodic writeback code
385 * just walks the superblock inode list, writing back any inodes which are
386 * older than a specific point in time.
388 * Try to run once per dirty_writeback_interval. But if a writeback event
389 * takes longer than a dirty_writeback_interval interval, then leave a
390 * one-second gap.
392 * older_than_this takes precedence over nr_to_write. So we'll only write back
393 * all dirty pages if they are all attached to "old" mappings.
395 static void wb_kupdate(unsigned long arg)
397 unsigned long oldest_jif;
398 unsigned long start_jif;
399 unsigned long next_jif;
400 long nr_to_write;
401 struct writeback_control wbc = {
402 .bdi = NULL,
403 .sync_mode = WB_SYNC_NONE,
404 .older_than_this = &oldest_jif,
405 .nr_to_write = 0,
406 .nonblocking = 1,
407 .for_kupdate = 1,
408 .range_cyclic = 1,
411 sync_supers();
413 oldest_jif = jiffies - dirty_expire_interval;
414 start_jif = jiffies;
415 next_jif = start_jif + dirty_writeback_interval;
416 nr_to_write = global_page_state(NR_FILE_DIRTY) +
417 global_page_state(NR_UNSTABLE_NFS) +
418 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
419 while (nr_to_write > 0) {
420 wbc.encountered_congestion = 0;
421 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
422 writeback_inodes(&wbc);
423 if (wbc.nr_to_write > 0) {
424 if (wbc.encountered_congestion)
425 congestion_wait(WRITE, HZ/10);
426 else
427 break; /* All the old data is written */
429 nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
431 if (time_before(next_jif, jiffies + HZ))
432 next_jif = jiffies + HZ;
433 if (dirty_writeback_interval)
434 mod_timer(&wb_timer, next_jif);
438 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
440 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
441 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
443 proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
444 if (dirty_writeback_interval) {
445 mod_timer(&wb_timer,
446 jiffies + dirty_writeback_interval);
447 } else {
448 del_timer(&wb_timer);
450 return 0;
453 static void wb_timer_fn(unsigned long unused)
455 if (pdflush_operation(wb_kupdate, 0) < 0)
456 mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
459 static void laptop_flush(unsigned long unused)
461 sys_sync();
464 static void laptop_timer_fn(unsigned long unused)
466 pdflush_operation(laptop_flush, 0);
470 * We've spun up the disk and we're in laptop mode: schedule writeback
471 * of all dirty data a few seconds from now. If the flush is already scheduled
472 * then push it back - the user is still using the disk.
474 void laptop_io_completion(void)
476 mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
480 * We're in laptop mode and we've just synced. The sync's writes will have
481 * caused another writeback to be scheduled by laptop_io_completion.
482 * Nothing needs to be written back anymore, so we unschedule the writeback.
484 void laptop_sync_completion(void)
486 del_timer(&laptop_mode_wb_timer);
490 * If ratelimit_pages is too high then we can get into dirty-data overload
491 * if a large number of processes all perform writes at the same time.
492 * If it is too low then SMP machines will call the (expensive)
493 * get_writeback_state too often.
495 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
496 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
497 * thresholds before writeback cuts in.
499 * But the limit should not be set too high. Because it also controls the
500 * amount of memory which the balance_dirty_pages() caller has to write back.
501 * If this is too large then the caller will block on the IO queue all the
502 * time. So limit it to four megabytes - the balance_dirty_pages() caller
503 * will write six megabyte chunks, max.
506 void writeback_set_ratelimit(void)
508 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
509 if (ratelimit_pages < 16)
510 ratelimit_pages = 16;
511 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
512 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
515 static int __cpuinit
516 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
518 writeback_set_ratelimit();
519 return 0;
522 static struct notifier_block __cpuinitdata ratelimit_nb = {
523 .notifier_call = ratelimit_handler,
524 .next = NULL,
528 * If the machine has a large highmem:lowmem ratio then scale back the default
529 * dirty memory thresholds: allowing too much dirty highmem pins an excessive
530 * number of buffer_heads.
532 void __init page_writeback_init(void)
534 long buffer_pages = nr_free_buffer_pages();
535 long correction;
537 correction = (100 * 4 * buffer_pages) / vm_total_pages;
539 if (correction < 100) {
540 dirty_background_ratio *= correction;
541 dirty_background_ratio /= 100;
542 vm_dirty_ratio *= correction;
543 vm_dirty_ratio /= 100;
545 if (dirty_background_ratio <= 0)
546 dirty_background_ratio = 1;
547 if (vm_dirty_ratio <= 0)
548 vm_dirty_ratio = 1;
550 mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
551 writeback_set_ratelimit();
552 register_cpu_notifier(&ratelimit_nb);
556 * generic_writepages - walk the list of dirty pages of the given
557 * address space and writepage() all of them.
559 * @mapping: address space structure to write
560 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
562 * This is a library function, which implements the writepages()
563 * address_space_operation.
565 * If a page is already under I/O, generic_writepages() skips it, even
566 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
567 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
568 * and msync() need to guarantee that all the data which was dirty at the time
569 * the call was made get new I/O started against them. If wbc->sync_mode is
570 * WB_SYNC_ALL then we were called for data integrity and we must wait for
571 * existing IO to complete.
573 * Derived from mpage_writepages() - if you fix this you should check that
574 * also!
576 int generic_writepages(struct address_space *mapping,
577 struct writeback_control *wbc)
579 struct backing_dev_info *bdi = mapping->backing_dev_info;
580 int ret = 0;
581 int done = 0;
582 int (*writepage)(struct page *page, struct writeback_control *wbc);
583 struct pagevec pvec;
584 int nr_pages;
585 pgoff_t index;
586 pgoff_t end; /* Inclusive */
587 int scanned = 0;
588 int range_whole = 0;
590 if (wbc->nonblocking && bdi_write_congested(bdi)) {
591 wbc->encountered_congestion = 1;
592 return 0;
595 writepage = mapping->a_ops->writepage;
597 /* deal with chardevs and other special file */
598 if (!writepage)
599 return 0;
601 pagevec_init(&pvec, 0);
602 if (wbc->range_cyclic) {
603 index = mapping->writeback_index; /* Start from prev offset */
604 end = -1;
605 } else {
606 index = wbc->range_start >> PAGE_CACHE_SHIFT;
607 end = wbc->range_end >> PAGE_CACHE_SHIFT;
608 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
609 range_whole = 1;
610 scanned = 1;
612 retry:
613 while (!done && (index <= end) &&
614 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
615 PAGECACHE_TAG_DIRTY,
616 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
617 unsigned i;
619 scanned = 1;
620 for (i = 0; i < nr_pages; i++) {
621 struct page *page = pvec.pages[i];
624 * At this point we hold neither mapping->tree_lock nor
625 * lock on the page itself: the page may be truncated or
626 * invalidated (changing page->mapping to NULL), or even
627 * swizzled back from swapper_space to tmpfs file
628 * mapping
630 lock_page(page);
632 if (unlikely(page->mapping != mapping)) {
633 unlock_page(page);
634 continue;
637 if (!wbc->range_cyclic && page->index > end) {
638 done = 1;
639 unlock_page(page);
640 continue;
643 if (wbc->sync_mode != WB_SYNC_NONE)
644 wait_on_page_writeback(page);
646 if (PageWriteback(page) ||
647 !clear_page_dirty_for_io(page)) {
648 unlock_page(page);
649 continue;
652 ret = (*writepage)(page, wbc);
653 if (ret) {
654 if (ret == -ENOSPC)
655 set_bit(AS_ENOSPC, &mapping->flags);
656 else
657 set_bit(AS_EIO, &mapping->flags);
660 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE))
661 unlock_page(page);
662 if (ret || (--(wbc->nr_to_write) <= 0))
663 done = 1;
664 if (wbc->nonblocking && bdi_write_congested(bdi)) {
665 wbc->encountered_congestion = 1;
666 done = 1;
669 pagevec_release(&pvec);
670 cond_resched();
672 if (!scanned && !done) {
674 * We hit the last page and there is more work to be done: wrap
675 * back to the start of the file
677 scanned = 1;
678 index = 0;
679 goto retry;
681 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
682 mapping->writeback_index = index;
683 return ret;
686 EXPORT_SYMBOL(generic_writepages);
688 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
690 int ret;
692 if (wbc->nr_to_write <= 0)
693 return 0;
694 wbc->for_writepages = 1;
695 if (mapping->a_ops->writepages)
696 ret = mapping->a_ops->writepages(mapping, wbc);
697 else
698 ret = generic_writepages(mapping, wbc);
699 wbc->for_writepages = 0;
700 return ret;
704 * write_one_page - write out a single page and optionally wait on I/O
706 * @page: the page to write
707 * @wait: if true, wait on writeout
709 * The page must be locked by the caller and will be unlocked upon return.
711 * write_one_page() returns a negative error code if I/O failed.
713 int write_one_page(struct page *page, int wait)
715 struct address_space *mapping = page->mapping;
716 int ret = 0;
717 struct writeback_control wbc = {
718 .sync_mode = WB_SYNC_ALL,
719 .nr_to_write = 1,
722 BUG_ON(!PageLocked(page));
724 if (wait)
725 wait_on_page_writeback(page);
727 if (clear_page_dirty_for_io(page)) {
728 page_cache_get(page);
729 ret = mapping->a_ops->writepage(page, &wbc);
730 if (ret == 0 && wait) {
731 wait_on_page_writeback(page);
732 if (PageError(page))
733 ret = -EIO;
735 page_cache_release(page);
736 } else {
737 unlock_page(page);
739 return ret;
741 EXPORT_SYMBOL(write_one_page);
744 * For address_spaces which do not use buffers. Just tag the page as dirty in
745 * its radix tree.
747 * This is also used when a single buffer is being dirtied: we want to set the
748 * page dirty in that case, but not all the buffers. This is a "bottom-up"
749 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
751 * Most callers have locked the page, which pins the address_space in memory.
752 * But zap_pte_range() does not lock the page, however in that case the
753 * mapping is pinned by the vma's ->vm_file reference.
755 * We take care to handle the case where the page was truncated from the
756 * mapping by re-checking page_mapping() insode tree_lock.
758 int __set_page_dirty_nobuffers(struct page *page)
760 if (!TestSetPageDirty(page)) {
761 struct address_space *mapping = page_mapping(page);
762 struct address_space *mapping2;
764 if (mapping) {
765 write_lock_irq(&mapping->tree_lock);
766 mapping2 = page_mapping(page);
767 if (mapping2) { /* Race with truncate? */
768 BUG_ON(mapping2 != mapping);
769 if (mapping_cap_account_dirty(mapping))
770 __inc_zone_page_state(page,
771 NR_FILE_DIRTY);
772 radix_tree_tag_set(&mapping->page_tree,
773 page_index(page), PAGECACHE_TAG_DIRTY);
775 write_unlock_irq(&mapping->tree_lock);
776 if (mapping->host) {
777 /* !PageAnon && !swapper_space */
778 __mark_inode_dirty(mapping->host,
779 I_DIRTY_PAGES);
782 return 1;
784 return 0;
786 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
789 * When a writepage implementation decides that it doesn't want to write this
790 * page for some reason, it should redirty the locked page via
791 * redirty_page_for_writepage() and it should then unlock the page and return 0
793 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
795 wbc->pages_skipped++;
796 return __set_page_dirty_nobuffers(page);
798 EXPORT_SYMBOL(redirty_page_for_writepage);
801 * If the mapping doesn't provide a set_page_dirty a_op, then
802 * just fall through and assume that it wants buffer_heads.
804 int fastcall set_page_dirty(struct page *page)
806 struct address_space *mapping = page_mapping(page);
808 if (likely(mapping)) {
809 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
810 #ifdef CONFIG_BLOCK
811 if (!spd)
812 spd = __set_page_dirty_buffers;
813 #endif
814 return (*spd)(page);
816 if (!PageDirty(page)) {
817 if (!TestSetPageDirty(page))
818 return 1;
820 return 0;
822 EXPORT_SYMBOL(set_page_dirty);
825 * set_page_dirty() is racy if the caller has no reference against
826 * page->mapping->host, and if the page is unlocked. This is because another
827 * CPU could truncate the page off the mapping and then free the mapping.
829 * Usually, the page _is_ locked, or the caller is a user-space process which
830 * holds a reference on the inode by having an open file.
832 * In other cases, the page should be locked before running set_page_dirty().
834 int set_page_dirty_lock(struct page *page)
836 int ret;
838 lock_page_nosync(page);
839 ret = set_page_dirty(page);
840 unlock_page(page);
841 return ret;
843 EXPORT_SYMBOL(set_page_dirty_lock);
846 * Clear a page's dirty flag, while caring for dirty memory accounting.
847 * Returns true if the page was previously dirty.
849 int test_clear_page_dirty(struct page *page)
851 struct address_space *mapping = page_mapping(page);
852 unsigned long flags;
854 if (mapping) {
855 write_lock_irqsave(&mapping->tree_lock, flags);
856 if (TestClearPageDirty(page)) {
857 radix_tree_tag_clear(&mapping->page_tree,
858 page_index(page),
859 PAGECACHE_TAG_DIRTY);
860 write_unlock_irqrestore(&mapping->tree_lock, flags);
862 * We can continue to use `mapping' here because the
863 * page is locked, which pins the address_space
865 if (mapping_cap_account_dirty(mapping)) {
866 page_mkclean(page);
867 dec_zone_page_state(page, NR_FILE_DIRTY);
869 return 1;
871 write_unlock_irqrestore(&mapping->tree_lock, flags);
872 return 0;
874 return TestClearPageDirty(page);
876 EXPORT_SYMBOL(test_clear_page_dirty);
879 * Clear a page's dirty flag, while caring for dirty memory accounting.
880 * Returns true if the page was previously dirty.
882 * This is for preparing to put the page under writeout. We leave the page
883 * tagged as dirty in the radix tree so that a concurrent write-for-sync
884 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
885 * implementation will run either set_page_writeback() or set_page_dirty(),
886 * at which stage we bring the page's dirty flag and radix-tree dirty tag
887 * back into sync.
889 * This incoherency between the page's dirty flag and radix-tree tag is
890 * unfortunate, but it only exists while the page is locked.
892 int clear_page_dirty_for_io(struct page *page)
894 struct address_space *mapping = page_mapping(page);
896 if (mapping) {
897 if (TestClearPageDirty(page)) {
898 if (mapping_cap_account_dirty(mapping)) {
899 page_mkclean(page);
900 dec_zone_page_state(page, NR_FILE_DIRTY);
902 return 1;
904 return 0;
906 return TestClearPageDirty(page);
908 EXPORT_SYMBOL(clear_page_dirty_for_io);
910 int test_clear_page_writeback(struct page *page)
912 struct address_space *mapping = page_mapping(page);
913 int ret;
915 if (mapping) {
916 unsigned long flags;
918 write_lock_irqsave(&mapping->tree_lock, flags);
919 ret = TestClearPageWriteback(page);
920 if (ret)
921 radix_tree_tag_clear(&mapping->page_tree,
922 page_index(page),
923 PAGECACHE_TAG_WRITEBACK);
924 write_unlock_irqrestore(&mapping->tree_lock, flags);
925 } else {
926 ret = TestClearPageWriteback(page);
928 return ret;
931 int test_set_page_writeback(struct page *page)
933 struct address_space *mapping = page_mapping(page);
934 int ret;
936 if (mapping) {
937 unsigned long flags;
939 write_lock_irqsave(&mapping->tree_lock, flags);
940 ret = TestSetPageWriteback(page);
941 if (!ret)
942 radix_tree_tag_set(&mapping->page_tree,
943 page_index(page),
944 PAGECACHE_TAG_WRITEBACK);
945 if (!PageDirty(page))
946 radix_tree_tag_clear(&mapping->page_tree,
947 page_index(page),
948 PAGECACHE_TAG_DIRTY);
949 write_unlock_irqrestore(&mapping->tree_lock, flags);
950 } else {
951 ret = TestSetPageWriteback(page);
953 return ret;
956 EXPORT_SYMBOL(test_set_page_writeback);
959 * Return true if any of the pages in the mapping are marged with the
960 * passed tag.
962 int mapping_tagged(struct address_space *mapping, int tag)
964 unsigned long flags;
965 int ret;
967 read_lock_irqsave(&mapping->tree_lock, flags);
968 ret = radix_tree_tagged(&mapping->page_tree, tag);
969 read_unlock_irqrestore(&mapping->tree_lock, flags);
970 return ret;
972 EXPORT_SYMBOL(mapping_tagged);