x86/topology: Update the 'cpu cores' field in /proc/cpuinfo correctly across CPU...
[cris-mirror.git] / arch / x86 / events / intel / bts.c
blob24ffa1e88cf948ecbe9839f6d956c69a12ecd4f0
1 /*
2 * BTS PMU driver for perf
3 * Copyright (c) 2013-2014, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
15 #undef DEBUG
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 #include <linux/bitops.h>
20 #include <linux/types.h>
21 #include <linux/slab.h>
22 #include <linux/debugfs.h>
23 #include <linux/device.h>
24 #include <linux/coredump.h>
26 #include <asm-generic/sizes.h>
27 #include <asm/perf_event.h>
29 #include "../perf_event.h"
31 struct bts_ctx {
32 struct perf_output_handle handle;
33 struct debug_store ds_back;
34 int state;
37 /* BTS context states: */
38 enum {
39 /* no ongoing AUX transactions */
40 BTS_STATE_STOPPED = 0,
41 /* AUX transaction is on, BTS tracing is disabled */
42 BTS_STATE_INACTIVE,
43 /* AUX transaction is on, BTS tracing is running */
44 BTS_STATE_ACTIVE,
47 static DEFINE_PER_CPU(struct bts_ctx, bts_ctx);
49 #define BTS_RECORD_SIZE 24
50 #define BTS_SAFETY_MARGIN 4080
52 struct bts_phys {
53 struct page *page;
54 unsigned long size;
55 unsigned long offset;
56 unsigned long displacement;
59 struct bts_buffer {
60 size_t real_size; /* multiple of BTS_RECORD_SIZE */
61 unsigned int nr_pages;
62 unsigned int nr_bufs;
63 unsigned int cur_buf;
64 bool snapshot;
65 local_t data_size;
66 local_t head;
67 unsigned long end;
68 void **data_pages;
69 struct bts_phys buf[0];
72 static struct pmu bts_pmu;
74 static size_t buf_size(struct page *page)
76 return 1 << (PAGE_SHIFT + page_private(page));
79 static void *
80 bts_buffer_setup_aux(int cpu, void **pages, int nr_pages, bool overwrite)
82 struct bts_buffer *buf;
83 struct page *page;
84 int node = (cpu == -1) ? cpu : cpu_to_node(cpu);
85 unsigned long offset;
86 size_t size = nr_pages << PAGE_SHIFT;
87 int pg, nbuf, pad;
89 /* count all the high order buffers */
90 for (pg = 0, nbuf = 0; pg < nr_pages;) {
91 page = virt_to_page(pages[pg]);
92 if (WARN_ON_ONCE(!PagePrivate(page) && nr_pages > 1))
93 return NULL;
94 pg += 1 << page_private(page);
95 nbuf++;
99 * to avoid interrupts in overwrite mode, only allow one physical
101 if (overwrite && nbuf > 1)
102 return NULL;
104 buf = kzalloc_node(offsetof(struct bts_buffer, buf[nbuf]), GFP_KERNEL, node);
105 if (!buf)
106 return NULL;
108 buf->nr_pages = nr_pages;
109 buf->nr_bufs = nbuf;
110 buf->snapshot = overwrite;
111 buf->data_pages = pages;
112 buf->real_size = size - size % BTS_RECORD_SIZE;
114 for (pg = 0, nbuf = 0, offset = 0, pad = 0; nbuf < buf->nr_bufs; nbuf++) {
115 unsigned int __nr_pages;
117 page = virt_to_page(pages[pg]);
118 __nr_pages = PagePrivate(page) ? 1 << page_private(page) : 1;
119 buf->buf[nbuf].page = page;
120 buf->buf[nbuf].offset = offset;
121 buf->buf[nbuf].displacement = (pad ? BTS_RECORD_SIZE - pad : 0);
122 buf->buf[nbuf].size = buf_size(page) - buf->buf[nbuf].displacement;
123 pad = buf->buf[nbuf].size % BTS_RECORD_SIZE;
124 buf->buf[nbuf].size -= pad;
126 pg += __nr_pages;
127 offset += __nr_pages << PAGE_SHIFT;
130 return buf;
133 static void bts_buffer_free_aux(void *data)
135 kfree(data);
138 static unsigned long bts_buffer_offset(struct bts_buffer *buf, unsigned int idx)
140 return buf->buf[idx].offset + buf->buf[idx].displacement;
143 static void
144 bts_config_buffer(struct bts_buffer *buf)
146 int cpu = raw_smp_processor_id();
147 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
148 struct bts_phys *phys = &buf->buf[buf->cur_buf];
149 unsigned long index, thresh = 0, end = phys->size;
150 struct page *page = phys->page;
152 index = local_read(&buf->head);
154 if (!buf->snapshot) {
155 if (buf->end < phys->offset + buf_size(page))
156 end = buf->end - phys->offset - phys->displacement;
158 index -= phys->offset + phys->displacement;
160 if (end - index > BTS_SAFETY_MARGIN)
161 thresh = end - BTS_SAFETY_MARGIN;
162 else if (end - index > BTS_RECORD_SIZE)
163 thresh = end - BTS_RECORD_SIZE;
164 else
165 thresh = end;
168 ds->bts_buffer_base = (u64)(long)page_address(page) + phys->displacement;
169 ds->bts_index = ds->bts_buffer_base + index;
170 ds->bts_absolute_maximum = ds->bts_buffer_base + end;
171 ds->bts_interrupt_threshold = !buf->snapshot
172 ? ds->bts_buffer_base + thresh
173 : ds->bts_absolute_maximum + BTS_RECORD_SIZE;
176 static void bts_buffer_pad_out(struct bts_phys *phys, unsigned long head)
178 unsigned long index = head - phys->offset;
180 memset(page_address(phys->page) + index, 0, phys->size - index);
183 static void bts_update(struct bts_ctx *bts)
185 int cpu = raw_smp_processor_id();
186 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
187 struct bts_buffer *buf = perf_get_aux(&bts->handle);
188 unsigned long index = ds->bts_index - ds->bts_buffer_base, old, head;
190 if (!buf)
191 return;
193 head = index + bts_buffer_offset(buf, buf->cur_buf);
194 old = local_xchg(&buf->head, head);
196 if (!buf->snapshot) {
197 if (old == head)
198 return;
200 if (ds->bts_index >= ds->bts_absolute_maximum)
201 perf_aux_output_flag(&bts->handle,
202 PERF_AUX_FLAG_TRUNCATED);
205 * old and head are always in the same physical buffer, so we
206 * can subtract them to get the data size.
208 local_add(head - old, &buf->data_size);
209 } else {
210 local_set(&buf->data_size, head);
214 static int
215 bts_buffer_reset(struct bts_buffer *buf, struct perf_output_handle *handle);
218 * Ordering PMU callbacks wrt themselves and the PMI is done by means
219 * of bts::state, which:
220 * - is set when bts::handle::event is valid, that is, between
221 * perf_aux_output_begin() and perf_aux_output_end();
222 * - is zero otherwise;
223 * - is ordered against bts::handle::event with a compiler barrier.
226 static void __bts_event_start(struct perf_event *event)
228 struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
229 struct bts_buffer *buf = perf_get_aux(&bts->handle);
230 u64 config = 0;
232 if (!buf->snapshot)
233 config |= ARCH_PERFMON_EVENTSEL_INT;
234 if (!event->attr.exclude_kernel)
235 config |= ARCH_PERFMON_EVENTSEL_OS;
236 if (!event->attr.exclude_user)
237 config |= ARCH_PERFMON_EVENTSEL_USR;
239 bts_config_buffer(buf);
242 * local barrier to make sure that ds configuration made it
243 * before we enable BTS and bts::state goes ACTIVE
245 wmb();
247 /* INACTIVE/STOPPED -> ACTIVE */
248 WRITE_ONCE(bts->state, BTS_STATE_ACTIVE);
250 intel_pmu_enable_bts(config);
254 static void bts_event_start(struct perf_event *event, int flags)
256 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
257 struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
258 struct bts_buffer *buf;
260 buf = perf_aux_output_begin(&bts->handle, event);
261 if (!buf)
262 goto fail_stop;
264 if (bts_buffer_reset(buf, &bts->handle))
265 goto fail_end_stop;
267 bts->ds_back.bts_buffer_base = cpuc->ds->bts_buffer_base;
268 bts->ds_back.bts_absolute_maximum = cpuc->ds->bts_absolute_maximum;
269 bts->ds_back.bts_interrupt_threshold = cpuc->ds->bts_interrupt_threshold;
271 perf_event_itrace_started(event);
272 event->hw.state = 0;
274 __bts_event_start(event);
276 return;
278 fail_end_stop:
279 perf_aux_output_end(&bts->handle, 0);
281 fail_stop:
282 event->hw.state = PERF_HES_STOPPED;
285 static void __bts_event_stop(struct perf_event *event, int state)
287 struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
289 /* ACTIVE -> INACTIVE(PMI)/STOPPED(->stop()) */
290 WRITE_ONCE(bts->state, state);
293 * No extra synchronization is mandated by the documentation to have
294 * BTS data stores globally visible.
296 intel_pmu_disable_bts();
299 static void bts_event_stop(struct perf_event *event, int flags)
301 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
302 struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
303 struct bts_buffer *buf = NULL;
304 int state = READ_ONCE(bts->state);
306 if (state == BTS_STATE_ACTIVE)
307 __bts_event_stop(event, BTS_STATE_STOPPED);
309 if (state != BTS_STATE_STOPPED)
310 buf = perf_get_aux(&bts->handle);
312 event->hw.state |= PERF_HES_STOPPED;
314 if (flags & PERF_EF_UPDATE) {
315 bts_update(bts);
317 if (buf) {
318 if (buf->snapshot)
319 bts->handle.head =
320 local_xchg(&buf->data_size,
321 buf->nr_pages << PAGE_SHIFT);
322 perf_aux_output_end(&bts->handle,
323 local_xchg(&buf->data_size, 0));
326 cpuc->ds->bts_index = bts->ds_back.bts_buffer_base;
327 cpuc->ds->bts_buffer_base = bts->ds_back.bts_buffer_base;
328 cpuc->ds->bts_absolute_maximum = bts->ds_back.bts_absolute_maximum;
329 cpuc->ds->bts_interrupt_threshold = bts->ds_back.bts_interrupt_threshold;
333 void intel_bts_enable_local(void)
335 struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
336 int state = READ_ONCE(bts->state);
339 * Here we transition from INACTIVE to ACTIVE;
340 * if we instead are STOPPED from the interrupt handler,
341 * stay that way. Can't be ACTIVE here though.
343 if (WARN_ON_ONCE(state == BTS_STATE_ACTIVE))
344 return;
346 if (state == BTS_STATE_STOPPED)
347 return;
349 if (bts->handle.event)
350 __bts_event_start(bts->handle.event);
353 void intel_bts_disable_local(void)
355 struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
358 * Here we transition from ACTIVE to INACTIVE;
359 * do nothing for STOPPED or INACTIVE.
361 if (READ_ONCE(bts->state) != BTS_STATE_ACTIVE)
362 return;
364 if (bts->handle.event)
365 __bts_event_stop(bts->handle.event, BTS_STATE_INACTIVE);
368 static int
369 bts_buffer_reset(struct bts_buffer *buf, struct perf_output_handle *handle)
371 unsigned long head, space, next_space, pad, gap, skip, wakeup;
372 unsigned int next_buf;
373 struct bts_phys *phys, *next_phys;
374 int ret;
376 if (buf->snapshot)
377 return 0;
379 head = handle->head & ((buf->nr_pages << PAGE_SHIFT) - 1);
381 phys = &buf->buf[buf->cur_buf];
382 space = phys->offset + phys->displacement + phys->size - head;
383 pad = space;
384 if (space > handle->size) {
385 space = handle->size;
386 space -= space % BTS_RECORD_SIZE;
388 if (space <= BTS_SAFETY_MARGIN) {
389 /* See if next phys buffer has more space */
390 next_buf = buf->cur_buf + 1;
391 if (next_buf >= buf->nr_bufs)
392 next_buf = 0;
393 next_phys = &buf->buf[next_buf];
394 gap = buf_size(phys->page) - phys->displacement - phys->size +
395 next_phys->displacement;
396 skip = pad + gap;
397 if (handle->size >= skip) {
398 next_space = next_phys->size;
399 if (next_space + skip > handle->size) {
400 next_space = handle->size - skip;
401 next_space -= next_space % BTS_RECORD_SIZE;
403 if (next_space > space || !space) {
404 if (pad)
405 bts_buffer_pad_out(phys, head);
406 ret = perf_aux_output_skip(handle, skip);
407 if (ret)
408 return ret;
409 /* Advance to next phys buffer */
410 phys = next_phys;
411 space = next_space;
412 head = phys->offset + phys->displacement;
414 * After this, cur_buf and head won't match ds
415 * anymore, so we must not be racing with
416 * bts_update().
418 buf->cur_buf = next_buf;
419 local_set(&buf->head, head);
424 /* Don't go far beyond wakeup watermark */
425 wakeup = BTS_SAFETY_MARGIN + BTS_RECORD_SIZE + handle->wakeup -
426 handle->head;
427 if (space > wakeup) {
428 space = wakeup;
429 space -= space % BTS_RECORD_SIZE;
432 buf->end = head + space;
435 * If we have no space, the lost notification would have been sent when
436 * we hit absolute_maximum - see bts_update()
438 if (!space)
439 return -ENOSPC;
441 return 0;
444 int intel_bts_interrupt(void)
446 struct debug_store *ds = this_cpu_ptr(&cpu_hw_events)->ds;
447 struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
448 struct perf_event *event = bts->handle.event;
449 struct bts_buffer *buf;
450 s64 old_head;
451 int err = -ENOSPC, handled = 0;
454 * The only surefire way of knowing if this NMI is ours is by checking
455 * the write ptr against the PMI threshold.
457 if (ds && (ds->bts_index >= ds->bts_interrupt_threshold))
458 handled = 1;
461 * this is wrapped in intel_bts_enable_local/intel_bts_disable_local,
462 * so we can only be INACTIVE or STOPPED
464 if (READ_ONCE(bts->state) == BTS_STATE_STOPPED)
465 return handled;
467 buf = perf_get_aux(&bts->handle);
468 if (!buf)
469 return handled;
472 * Skip snapshot counters: they don't use the interrupt, but
473 * there's no other way of telling, because the pointer will
474 * keep moving
476 if (buf->snapshot)
477 return 0;
479 old_head = local_read(&buf->head);
480 bts_update(bts);
482 /* no new data */
483 if (old_head == local_read(&buf->head))
484 return handled;
486 perf_aux_output_end(&bts->handle, local_xchg(&buf->data_size, 0));
488 buf = perf_aux_output_begin(&bts->handle, event);
489 if (buf)
490 err = bts_buffer_reset(buf, &bts->handle);
492 if (err) {
493 WRITE_ONCE(bts->state, BTS_STATE_STOPPED);
495 if (buf) {
497 * BTS_STATE_STOPPED should be visible before
498 * cleared handle::event
500 barrier();
501 perf_aux_output_end(&bts->handle, 0);
505 return 1;
508 static void bts_event_del(struct perf_event *event, int mode)
510 bts_event_stop(event, PERF_EF_UPDATE);
513 static int bts_event_add(struct perf_event *event, int mode)
515 struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
516 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
517 struct hw_perf_event *hwc = &event->hw;
519 event->hw.state = PERF_HES_STOPPED;
521 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
522 return -EBUSY;
524 if (bts->handle.event)
525 return -EBUSY;
527 if (mode & PERF_EF_START) {
528 bts_event_start(event, 0);
529 if (hwc->state & PERF_HES_STOPPED)
530 return -EINVAL;
533 return 0;
536 static void bts_event_destroy(struct perf_event *event)
538 x86_release_hardware();
539 x86_del_exclusive(x86_lbr_exclusive_bts);
542 static int bts_event_init(struct perf_event *event)
544 int ret;
546 if (event->attr.type != bts_pmu.type)
547 return -ENOENT;
550 * BTS leaks kernel addresses even when CPL0 tracing is
551 * disabled, so disallow intel_bts driver for unprivileged
552 * users on paranoid systems since it provides trace data
553 * to the user in a zero-copy fashion.
555 * Note that the default paranoia setting permits unprivileged
556 * users to profile the kernel.
558 if (event->attr.exclude_kernel && perf_paranoid_kernel() &&
559 !capable(CAP_SYS_ADMIN))
560 return -EACCES;
562 if (x86_add_exclusive(x86_lbr_exclusive_bts))
563 return -EBUSY;
565 ret = x86_reserve_hardware();
566 if (ret) {
567 x86_del_exclusive(x86_lbr_exclusive_bts);
568 return ret;
571 event->destroy = bts_event_destroy;
573 return 0;
576 static void bts_event_read(struct perf_event *event)
580 static __init int bts_init(void)
582 if (!boot_cpu_has(X86_FEATURE_DTES64) || !x86_pmu.bts)
583 return -ENODEV;
585 if (boot_cpu_has(X86_FEATURE_PTI)) {
587 * BTS hardware writes through a virtual memory map we must
588 * either use the kernel physical map, or the user mapping of
589 * the AUX buffer.
591 * However, since this driver supports per-CPU and per-task inherit
592 * we cannot use the user mapping since it will not be availble
593 * if we're not running the owning process.
595 * With PTI we can't use the kernal map either, because its not
596 * there when we run userspace.
598 * For now, disable this driver when using PTI.
600 return -ENODEV;
603 bts_pmu.capabilities = PERF_PMU_CAP_AUX_NO_SG | PERF_PMU_CAP_ITRACE |
604 PERF_PMU_CAP_EXCLUSIVE;
605 bts_pmu.task_ctx_nr = perf_sw_context;
606 bts_pmu.event_init = bts_event_init;
607 bts_pmu.add = bts_event_add;
608 bts_pmu.del = bts_event_del;
609 bts_pmu.start = bts_event_start;
610 bts_pmu.stop = bts_event_stop;
611 bts_pmu.read = bts_event_read;
612 bts_pmu.setup_aux = bts_buffer_setup_aux;
613 bts_pmu.free_aux = bts_buffer_free_aux;
615 return perf_pmu_register(&bts_pmu, "intel_bts", -1);
617 arch_initcall(bts_init);