x86/topology: Update the 'cpu cores' field in /proc/cpuinfo correctly across CPU...
[cris-mirror.git] / arch / x86 / kernel / traps.c
blob3d9b2308e7fad0be6f90cbf834d2e00d1f4fc417
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
9 /*
10 * Handle hardware traps and faults.
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/timer.h>
34 #include <linux/init.h>
35 #include <linux/bug.h>
36 #include <linux/nmi.h>
37 #include <linux/mm.h>
38 #include <linux/smp.h>
39 #include <linux/io.h>
41 #if defined(CONFIG_EDAC)
42 #include <linux/edac.h>
43 #endif
45 #include <asm/stacktrace.h>
46 #include <asm/processor.h>
47 #include <asm/debugreg.h>
48 #include <linux/atomic.h>
49 #include <asm/text-patching.h>
50 #include <asm/ftrace.h>
51 #include <asm/traps.h>
52 #include <asm/desc.h>
53 #include <asm/fpu/internal.h>
54 #include <asm/cpu_entry_area.h>
55 #include <asm/mce.h>
56 #include <asm/fixmap.h>
57 #include <asm/mach_traps.h>
58 #include <asm/alternative.h>
59 #include <asm/fpu/xstate.h>
60 #include <asm/trace/mpx.h>
61 #include <asm/mpx.h>
62 #include <asm/vm86.h>
63 #include <asm/umip.h>
65 #ifdef CONFIG_X86_64
66 #include <asm/x86_init.h>
67 #include <asm/pgalloc.h>
68 #include <asm/proto.h>
69 #else
70 #include <asm/processor-flags.h>
71 #include <asm/setup.h>
72 #include <asm/proto.h>
73 #endif
75 DECLARE_BITMAP(system_vectors, NR_VECTORS);
77 static inline void cond_local_irq_enable(struct pt_regs *regs)
79 if (regs->flags & X86_EFLAGS_IF)
80 local_irq_enable();
83 static inline void cond_local_irq_disable(struct pt_regs *regs)
85 if (regs->flags & X86_EFLAGS_IF)
86 local_irq_disable();
90 * In IST context, we explicitly disable preemption. This serves two
91 * purposes: it makes it much less likely that we would accidentally
92 * schedule in IST context and it will force a warning if we somehow
93 * manage to schedule by accident.
95 void ist_enter(struct pt_regs *regs)
97 if (user_mode(regs)) {
98 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
99 } else {
101 * We might have interrupted pretty much anything. In
102 * fact, if we're a machine check, we can even interrupt
103 * NMI processing. We don't want in_nmi() to return true,
104 * but we need to notify RCU.
106 rcu_nmi_enter();
109 preempt_disable();
111 /* This code is a bit fragile. Test it. */
112 RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
115 void ist_exit(struct pt_regs *regs)
117 preempt_enable_no_resched();
119 if (!user_mode(regs))
120 rcu_nmi_exit();
124 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
125 * @regs: regs passed to the IST exception handler
127 * IST exception handlers normally cannot schedule. As a special
128 * exception, if the exception interrupted userspace code (i.e.
129 * user_mode(regs) would return true) and the exception was not
130 * a double fault, it can be safe to schedule. ist_begin_non_atomic()
131 * begins a non-atomic section within an ist_enter()/ist_exit() region.
132 * Callers are responsible for enabling interrupts themselves inside
133 * the non-atomic section, and callers must call ist_end_non_atomic()
134 * before ist_exit().
136 void ist_begin_non_atomic(struct pt_regs *regs)
138 BUG_ON(!user_mode(regs));
141 * Sanity check: we need to be on the normal thread stack. This
142 * will catch asm bugs and any attempt to use ist_preempt_enable
143 * from double_fault.
145 BUG_ON(!on_thread_stack());
147 preempt_enable_no_resched();
151 * ist_end_non_atomic() - begin a non-atomic section in an IST exception
153 * Ends a non-atomic section started with ist_begin_non_atomic().
155 void ist_end_non_atomic(void)
157 preempt_disable();
160 int is_valid_bugaddr(unsigned long addr)
162 unsigned short ud;
164 if (addr < TASK_SIZE_MAX)
165 return 0;
167 if (probe_kernel_address((unsigned short *)addr, ud))
168 return 0;
170 return ud == INSN_UD0 || ud == INSN_UD2;
173 int fixup_bug(struct pt_regs *regs, int trapnr)
175 if (trapnr != X86_TRAP_UD)
176 return 0;
178 switch (report_bug(regs->ip, regs)) {
179 case BUG_TRAP_TYPE_NONE:
180 case BUG_TRAP_TYPE_BUG:
181 break;
183 case BUG_TRAP_TYPE_WARN:
184 regs->ip += LEN_UD2;
185 return 1;
188 return 0;
191 static nokprobe_inline int
192 do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str,
193 struct pt_regs *regs, long error_code)
195 if (v8086_mode(regs)) {
197 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
198 * On nmi (interrupt 2), do_trap should not be called.
200 if (trapnr < X86_TRAP_UD) {
201 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
202 error_code, trapnr))
203 return 0;
205 return -1;
208 if (!user_mode(regs)) {
209 if (fixup_exception(regs, trapnr))
210 return 0;
212 tsk->thread.error_code = error_code;
213 tsk->thread.trap_nr = trapnr;
214 die(str, regs, error_code);
217 return -1;
220 static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr,
221 siginfo_t *info)
223 unsigned long siaddr;
224 int sicode;
226 switch (trapnr) {
227 default:
228 return SEND_SIG_PRIV;
230 case X86_TRAP_DE:
231 sicode = FPE_INTDIV;
232 siaddr = uprobe_get_trap_addr(regs);
233 break;
234 case X86_TRAP_UD:
235 sicode = ILL_ILLOPN;
236 siaddr = uprobe_get_trap_addr(regs);
237 break;
238 case X86_TRAP_AC:
239 sicode = BUS_ADRALN;
240 siaddr = 0;
241 break;
244 info->si_signo = signr;
245 info->si_errno = 0;
246 info->si_code = sicode;
247 info->si_addr = (void __user *)siaddr;
248 return info;
251 static void
252 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
253 long error_code, siginfo_t *info)
255 struct task_struct *tsk = current;
258 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
259 return;
261 * We want error_code and trap_nr set for userspace faults and
262 * kernelspace faults which result in die(), but not
263 * kernelspace faults which are fixed up. die() gives the
264 * process no chance to handle the signal and notice the
265 * kernel fault information, so that won't result in polluting
266 * the information about previously queued, but not yet
267 * delivered, faults. See also do_general_protection below.
269 tsk->thread.error_code = error_code;
270 tsk->thread.trap_nr = trapnr;
272 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
273 printk_ratelimit()) {
274 pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx",
275 tsk->comm, tsk->pid, str,
276 regs->ip, regs->sp, error_code);
277 print_vma_addr(KERN_CONT " in ", regs->ip);
278 pr_cont("\n");
281 force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk);
283 NOKPROBE_SYMBOL(do_trap);
285 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
286 unsigned long trapnr, int signr)
288 siginfo_t info;
290 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
293 * WARN*()s end up here; fix them up before we call the
294 * notifier chain.
296 if (!user_mode(regs) && fixup_bug(regs, trapnr))
297 return;
299 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
300 NOTIFY_STOP) {
301 cond_local_irq_enable(regs);
302 do_trap(trapnr, signr, str, regs, error_code,
303 fill_trap_info(regs, signr, trapnr, &info));
307 #define DO_ERROR(trapnr, signr, str, name) \
308 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
310 do_error_trap(regs, error_code, str, trapnr, signr); \
313 DO_ERROR(X86_TRAP_DE, SIGFPE, "divide error", divide_error)
314 DO_ERROR(X86_TRAP_OF, SIGSEGV, "overflow", overflow)
315 DO_ERROR(X86_TRAP_UD, SIGILL, "invalid opcode", invalid_op)
316 DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, "coprocessor segment overrun",coprocessor_segment_overrun)
317 DO_ERROR(X86_TRAP_TS, SIGSEGV, "invalid TSS", invalid_TSS)
318 DO_ERROR(X86_TRAP_NP, SIGBUS, "segment not present", segment_not_present)
319 DO_ERROR(X86_TRAP_SS, SIGBUS, "stack segment", stack_segment)
320 DO_ERROR(X86_TRAP_AC, SIGBUS, "alignment check", alignment_check)
322 #ifdef CONFIG_VMAP_STACK
323 __visible void __noreturn handle_stack_overflow(const char *message,
324 struct pt_regs *regs,
325 unsigned long fault_address)
327 printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
328 (void *)fault_address, current->stack,
329 (char *)current->stack + THREAD_SIZE - 1);
330 die(message, regs, 0);
332 /* Be absolutely certain we don't return. */
333 panic(message);
335 #endif
337 #ifdef CONFIG_X86_64
338 /* Runs on IST stack */
339 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
341 static const char str[] = "double fault";
342 struct task_struct *tsk = current;
343 #ifdef CONFIG_VMAP_STACK
344 unsigned long cr2;
345 #endif
347 #ifdef CONFIG_X86_ESPFIX64
348 extern unsigned char native_irq_return_iret[];
351 * If IRET takes a non-IST fault on the espfix64 stack, then we
352 * end up promoting it to a doublefault. In that case, take
353 * advantage of the fact that we're not using the normal (TSS.sp0)
354 * stack right now. We can write a fake #GP(0) frame at TSS.sp0
355 * and then modify our own IRET frame so that, when we return,
356 * we land directly at the #GP(0) vector with the stack already
357 * set up according to its expectations.
359 * The net result is that our #GP handler will think that we
360 * entered from usermode with the bad user context.
362 * No need for ist_enter here because we don't use RCU.
364 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
365 regs->cs == __KERNEL_CS &&
366 regs->ip == (unsigned long)native_irq_return_iret)
368 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
371 * regs->sp points to the failing IRET frame on the
372 * ESPFIX64 stack. Copy it to the entry stack. This fills
373 * in gpregs->ss through gpregs->ip.
376 memmove(&gpregs->ip, (void *)regs->sp, 5*8);
377 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */
380 * Adjust our frame so that we return straight to the #GP
381 * vector with the expected RSP value. This is safe because
382 * we won't enable interupts or schedule before we invoke
383 * general_protection, so nothing will clobber the stack
384 * frame we just set up.
386 regs->ip = (unsigned long)general_protection;
387 regs->sp = (unsigned long)&gpregs->orig_ax;
389 return;
391 #endif
393 ist_enter(regs);
394 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
396 tsk->thread.error_code = error_code;
397 tsk->thread.trap_nr = X86_TRAP_DF;
399 #ifdef CONFIG_VMAP_STACK
401 * If we overflow the stack into a guard page, the CPU will fail
402 * to deliver #PF and will send #DF instead. Similarly, if we
403 * take any non-IST exception while too close to the bottom of
404 * the stack, the processor will get a page fault while
405 * delivering the exception and will generate a double fault.
407 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
408 * Page-Fault Exception (#PF):
410 * Processors update CR2 whenever a page fault is detected. If a
411 * second page fault occurs while an earlier page fault is being
412 * delivered, the faulting linear address of the second fault will
413 * overwrite the contents of CR2 (replacing the previous
414 * address). These updates to CR2 occur even if the page fault
415 * results in a double fault or occurs during the delivery of a
416 * double fault.
418 * The logic below has a small possibility of incorrectly diagnosing
419 * some errors as stack overflows. For example, if the IDT or GDT
420 * gets corrupted such that #GP delivery fails due to a bad descriptor
421 * causing #GP and we hit this condition while CR2 coincidentally
422 * points to the stack guard page, we'll think we overflowed the
423 * stack. Given that we're going to panic one way or another
424 * if this happens, this isn't necessarily worth fixing.
426 * If necessary, we could improve the test by only diagnosing
427 * a stack overflow if the saved RSP points within 47 bytes of
428 * the bottom of the stack: if RSP == tsk_stack + 48 and we
429 * take an exception, the stack is already aligned and there
430 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
431 * possible error code, so a stack overflow would *not* double
432 * fault. With any less space left, exception delivery could
433 * fail, and, as a practical matter, we've overflowed the
434 * stack even if the actual trigger for the double fault was
435 * something else.
437 cr2 = read_cr2();
438 if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE)
439 handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2);
440 #endif
442 #ifdef CONFIG_DOUBLEFAULT
443 df_debug(regs, error_code);
444 #endif
446 * This is always a kernel trap and never fixable (and thus must
447 * never return).
449 for (;;)
450 die(str, regs, error_code);
452 #endif
454 dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
456 const struct mpx_bndcsr *bndcsr;
457 siginfo_t *info;
459 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
460 if (notify_die(DIE_TRAP, "bounds", regs, error_code,
461 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
462 return;
463 cond_local_irq_enable(regs);
465 if (!user_mode(regs))
466 die("bounds", regs, error_code);
468 if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
469 /* The exception is not from Intel MPX */
470 goto exit_trap;
474 * We need to look at BNDSTATUS to resolve this exception.
475 * A NULL here might mean that it is in its 'init state',
476 * which is all zeros which indicates MPX was not
477 * responsible for the exception.
479 bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
480 if (!bndcsr)
481 goto exit_trap;
483 trace_bounds_exception_mpx(bndcsr);
485 * The error code field of the BNDSTATUS register communicates status
486 * information of a bound range exception #BR or operation involving
487 * bound directory.
489 switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
490 case 2: /* Bound directory has invalid entry. */
491 if (mpx_handle_bd_fault())
492 goto exit_trap;
493 break; /* Success, it was handled */
494 case 1: /* Bound violation. */
495 info = mpx_generate_siginfo(regs);
496 if (IS_ERR(info)) {
498 * We failed to decode the MPX instruction. Act as if
499 * the exception was not caused by MPX.
501 goto exit_trap;
504 * Success, we decoded the instruction and retrieved
505 * an 'info' containing the address being accessed
506 * which caused the exception. This information
507 * allows and application to possibly handle the
508 * #BR exception itself.
510 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info);
511 kfree(info);
512 break;
513 case 0: /* No exception caused by Intel MPX operations. */
514 goto exit_trap;
515 default:
516 die("bounds", regs, error_code);
519 return;
521 exit_trap:
523 * This path out is for all the cases where we could not
524 * handle the exception in some way (like allocating a
525 * table or telling userspace about it. We will also end
526 * up here if the kernel has MPX turned off at compile
527 * time..
529 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL);
532 dotraplinkage void
533 do_general_protection(struct pt_regs *regs, long error_code)
535 struct task_struct *tsk;
537 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
538 cond_local_irq_enable(regs);
540 if (static_cpu_has(X86_FEATURE_UMIP)) {
541 if (user_mode(regs) && fixup_umip_exception(regs))
542 return;
545 if (v8086_mode(regs)) {
546 local_irq_enable();
547 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
548 return;
551 tsk = current;
552 if (!user_mode(regs)) {
553 if (fixup_exception(regs, X86_TRAP_GP))
554 return;
556 tsk->thread.error_code = error_code;
557 tsk->thread.trap_nr = X86_TRAP_GP;
558 if (notify_die(DIE_GPF, "general protection fault", regs, error_code,
559 X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
560 die("general protection fault", regs, error_code);
561 return;
564 tsk->thread.error_code = error_code;
565 tsk->thread.trap_nr = X86_TRAP_GP;
567 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
568 printk_ratelimit()) {
569 pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx",
570 tsk->comm, task_pid_nr(tsk),
571 regs->ip, regs->sp, error_code);
572 print_vma_addr(KERN_CONT " in ", regs->ip);
573 pr_cont("\n");
576 force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
578 NOKPROBE_SYMBOL(do_general_protection);
580 /* May run on IST stack. */
581 dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
583 #ifdef CONFIG_DYNAMIC_FTRACE
585 * ftrace must be first, everything else may cause a recursive crash.
586 * See note by declaration of modifying_ftrace_code in ftrace.c
588 if (unlikely(atomic_read(&modifying_ftrace_code)) &&
589 ftrace_int3_handler(regs))
590 return;
591 #endif
592 if (poke_int3_handler(regs))
593 return;
595 ist_enter(regs);
596 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
597 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
598 if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
599 SIGTRAP) == NOTIFY_STOP)
600 goto exit;
601 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
603 #ifdef CONFIG_KPROBES
604 if (kprobe_int3_handler(regs))
605 goto exit;
606 #endif
608 if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
609 SIGTRAP) == NOTIFY_STOP)
610 goto exit;
613 * Let others (NMI) know that the debug stack is in use
614 * as we may switch to the interrupt stack.
616 debug_stack_usage_inc();
617 cond_local_irq_enable(regs);
618 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL);
619 cond_local_irq_disable(regs);
620 debug_stack_usage_dec();
621 exit:
622 ist_exit(regs);
624 NOKPROBE_SYMBOL(do_int3);
626 #ifdef CONFIG_X86_64
628 * Help handler running on a per-cpu (IST or entry trampoline) stack
629 * to switch to the normal thread stack if the interrupted code was in
630 * user mode. The actual stack switch is done in entry_64.S
632 asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
634 struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
635 if (regs != eregs)
636 *regs = *eregs;
637 return regs;
639 NOKPROBE_SYMBOL(sync_regs);
641 struct bad_iret_stack {
642 void *error_entry_ret;
643 struct pt_regs regs;
646 asmlinkage __visible notrace
647 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
650 * This is called from entry_64.S early in handling a fault
651 * caused by a bad iret to user mode. To handle the fault
652 * correctly, we want to move our stack frame to where it would
653 * be had we entered directly on the entry stack (rather than
654 * just below the IRET frame) and we want to pretend that the
655 * exception came from the IRET target.
657 struct bad_iret_stack *new_stack =
658 (struct bad_iret_stack *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
660 /* Copy the IRET target to the new stack. */
661 memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
663 /* Copy the remainder of the stack from the current stack. */
664 memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
666 BUG_ON(!user_mode(&new_stack->regs));
667 return new_stack;
669 NOKPROBE_SYMBOL(fixup_bad_iret);
670 #endif
672 static bool is_sysenter_singlestep(struct pt_regs *regs)
675 * We don't try for precision here. If we're anywhere in the region of
676 * code that can be single-stepped in the SYSENTER entry path, then
677 * assume that this is a useless single-step trap due to SYSENTER
678 * being invoked with TF set. (We don't know in advance exactly
679 * which instructions will be hit because BTF could plausibly
680 * be set.)
682 #ifdef CONFIG_X86_32
683 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
684 (unsigned long)__end_SYSENTER_singlestep_region -
685 (unsigned long)__begin_SYSENTER_singlestep_region;
686 #elif defined(CONFIG_IA32_EMULATION)
687 return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
688 (unsigned long)__end_entry_SYSENTER_compat -
689 (unsigned long)entry_SYSENTER_compat;
690 #else
691 return false;
692 #endif
696 * Our handling of the processor debug registers is non-trivial.
697 * We do not clear them on entry and exit from the kernel. Therefore
698 * it is possible to get a watchpoint trap here from inside the kernel.
699 * However, the code in ./ptrace.c has ensured that the user can
700 * only set watchpoints on userspace addresses. Therefore the in-kernel
701 * watchpoint trap can only occur in code which is reading/writing
702 * from user space. Such code must not hold kernel locks (since it
703 * can equally take a page fault), therefore it is safe to call
704 * force_sig_info even though that claims and releases locks.
706 * Code in ./signal.c ensures that the debug control register
707 * is restored before we deliver any signal, and therefore that
708 * user code runs with the correct debug control register even though
709 * we clear it here.
711 * Being careful here means that we don't have to be as careful in a
712 * lot of more complicated places (task switching can be a bit lazy
713 * about restoring all the debug state, and ptrace doesn't have to
714 * find every occurrence of the TF bit that could be saved away even
715 * by user code)
717 * May run on IST stack.
719 dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
721 struct task_struct *tsk = current;
722 int user_icebp = 0;
723 unsigned long dr6;
724 int si_code;
726 ist_enter(regs);
728 get_debugreg(dr6, 6);
730 * The Intel SDM says:
732 * Certain debug exceptions may clear bits 0-3. The remaining
733 * contents of the DR6 register are never cleared by the
734 * processor. To avoid confusion in identifying debug
735 * exceptions, debug handlers should clear the register before
736 * returning to the interrupted task.
738 * Keep it simple: clear DR6 immediately.
740 set_debugreg(0, 6);
742 /* Filter out all the reserved bits which are preset to 1 */
743 dr6 &= ~DR6_RESERVED;
746 * The SDM says "The processor clears the BTF flag when it
747 * generates a debug exception." Clear TIF_BLOCKSTEP to keep
748 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
750 clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
752 if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) &&
753 is_sysenter_singlestep(regs))) {
754 dr6 &= ~DR_STEP;
755 if (!dr6)
756 goto exit;
758 * else we might have gotten a single-step trap and hit a
759 * watchpoint at the same time, in which case we should fall
760 * through and handle the watchpoint.
765 * If dr6 has no reason to give us about the origin of this trap,
766 * then it's very likely the result of an icebp/int01 trap.
767 * User wants a sigtrap for that.
769 if (!dr6 && user_mode(regs))
770 user_icebp = 1;
772 /* Store the virtualized DR6 value */
773 tsk->thread.debugreg6 = dr6;
775 #ifdef CONFIG_KPROBES
776 if (kprobe_debug_handler(regs))
777 goto exit;
778 #endif
780 if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
781 SIGTRAP) == NOTIFY_STOP)
782 goto exit;
785 * Let others (NMI) know that the debug stack is in use
786 * as we may switch to the interrupt stack.
788 debug_stack_usage_inc();
790 /* It's safe to allow irq's after DR6 has been saved */
791 cond_local_irq_enable(regs);
793 if (v8086_mode(regs)) {
794 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
795 X86_TRAP_DB);
796 cond_local_irq_disable(regs);
797 debug_stack_usage_dec();
798 goto exit;
801 if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
803 * Historical junk that used to handle SYSENTER single-stepping.
804 * This should be unreachable now. If we survive for a while
805 * without anyone hitting this warning, we'll turn this into
806 * an oops.
808 tsk->thread.debugreg6 &= ~DR_STEP;
809 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
810 regs->flags &= ~X86_EFLAGS_TF;
812 si_code = get_si_code(tsk->thread.debugreg6);
813 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
814 send_sigtrap(tsk, regs, error_code, si_code);
815 cond_local_irq_disable(regs);
816 debug_stack_usage_dec();
818 exit:
819 ist_exit(regs);
821 NOKPROBE_SYMBOL(do_debug);
824 * Note that we play around with the 'TS' bit in an attempt to get
825 * the correct behaviour even in the presence of the asynchronous
826 * IRQ13 behaviour
828 static void math_error(struct pt_regs *regs, int error_code, int trapnr)
830 struct task_struct *task = current;
831 struct fpu *fpu = &task->thread.fpu;
832 siginfo_t info;
833 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
834 "simd exception";
836 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
837 return;
838 cond_local_irq_enable(regs);
840 if (!user_mode(regs)) {
841 if (!fixup_exception(regs, trapnr)) {
842 task->thread.error_code = error_code;
843 task->thread.trap_nr = trapnr;
844 die(str, regs, error_code);
846 return;
850 * Save the info for the exception handler and clear the error.
852 fpu__save(fpu);
854 task->thread.trap_nr = trapnr;
855 task->thread.error_code = error_code;
856 info.si_signo = SIGFPE;
857 info.si_errno = 0;
858 info.si_addr = (void __user *)uprobe_get_trap_addr(regs);
860 info.si_code = fpu__exception_code(fpu, trapnr);
862 /* Retry when we get spurious exceptions: */
863 if (!info.si_code)
864 return;
866 force_sig_info(SIGFPE, &info, task);
869 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
871 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
872 math_error(regs, error_code, X86_TRAP_MF);
875 dotraplinkage void
876 do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
878 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
879 math_error(regs, error_code, X86_TRAP_XF);
882 dotraplinkage void
883 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
885 cond_local_irq_enable(regs);
888 dotraplinkage void
889 do_device_not_available(struct pt_regs *regs, long error_code)
891 unsigned long cr0;
893 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
895 #ifdef CONFIG_MATH_EMULATION
896 if (!boot_cpu_has(X86_FEATURE_FPU) && (read_cr0() & X86_CR0_EM)) {
897 struct math_emu_info info = { };
899 cond_local_irq_enable(regs);
901 info.regs = regs;
902 math_emulate(&info);
903 return;
905 #endif
907 /* This should not happen. */
908 cr0 = read_cr0();
909 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
910 /* Try to fix it up and carry on. */
911 write_cr0(cr0 & ~X86_CR0_TS);
912 } else {
914 * Something terrible happened, and we're better off trying
915 * to kill the task than getting stuck in a never-ending
916 * loop of #NM faults.
918 die("unexpected #NM exception", regs, error_code);
921 NOKPROBE_SYMBOL(do_device_not_available);
923 #ifdef CONFIG_X86_32
924 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
926 siginfo_t info;
928 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
929 local_irq_enable();
931 info.si_signo = SIGILL;
932 info.si_errno = 0;
933 info.si_code = ILL_BADSTK;
934 info.si_addr = NULL;
935 if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
936 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
937 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
938 &info);
941 #endif
943 void __init trap_init(void)
945 /* Init cpu_entry_area before IST entries are set up */
946 setup_cpu_entry_areas();
948 idt_setup_traps();
951 * Set the IDT descriptor to a fixed read-only location, so that the
952 * "sidt" instruction will not leak the location of the kernel, and
953 * to defend the IDT against arbitrary memory write vulnerabilities.
954 * It will be reloaded in cpu_init() */
955 cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR, __pa_symbol(idt_table),
956 PAGE_KERNEL_RO);
957 idt_descr.address = CPU_ENTRY_AREA_RO_IDT;
960 * Should be a barrier for any external CPU state:
962 cpu_init();
964 idt_setup_ist_traps();
966 x86_init.irqs.trap_init();
968 idt_setup_debugidt_traps();