2 * umip.c Emulation for instruction protected by the Intel User-Mode
3 * Instruction Prevention feature
5 * Copyright (c) 2017, Intel Corporation.
6 * Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
9 #include <linux/uaccess.h>
11 #include <asm/traps.h>
13 #include <asm/insn-eval.h>
14 #include <linux/ratelimit.h>
17 #define pr_fmt(fmt) "umip: " fmt
19 /** DOC: Emulation for User-Mode Instruction Prevention (UMIP)
21 * The feature User-Mode Instruction Prevention present in recent Intel
22 * processor prevents a group of instructions (sgdt, sidt, sldt, smsw, and str)
23 * from being executed with CPL > 0. Otherwise, a general protection fault is
26 * Rather than relaying to the user space the general protection fault caused by
27 * the UMIP-protected instructions (in the form of a SIGSEGV signal), it can be
28 * trapped and emulate the result of such instructions to provide dummy values.
29 * This allows to both conserve the current kernel behavior and not reveal the
30 * system resources that UMIP intends to protect (i.e., the locations of the
31 * global descriptor and interrupt descriptor tables, the segment selectors of
32 * the local descriptor table, the value of the task state register and the
33 * contents of the CR0 register).
35 * This emulation is needed because certain applications (e.g., WineHQ and
36 * DOSEMU2) rely on this subset of instructions to function.
38 * The instructions protected by UMIP can be split in two groups. Those which
39 * return a kernel memory address (sgdt and sidt) and those which return a
40 * value (sldt, str and smsw).
42 * For the instructions that return a kernel memory address, applications
43 * such as WineHQ rely on the result being located in the kernel memory space,
44 * not the actual location of the table. The result is emulated as a hard-coded
45 * value that, lies close to the top of the kernel memory. The limit for the GDT
46 * and the IDT are set to zero.
48 * Given that sldt and str are not commonly used in programs that run on WineHQ
49 * or DOSEMU2, they are not emulated.
51 * The instruction smsw is emulated to return the value that the register CR0
52 * has at boot time as set in the head_32.
54 * Also, emulation is provided only for 32-bit processes; 64-bit processes
55 * that attempt to use the instructions that UMIP protects will receive the
56 * SIGSEGV signal issued as a consequence of the general protection fault.
58 * Care is taken to appropriately emulate the results when segmentation is
59 * used. That is, rather than relying on USER_DS and USER_CS, the function
60 * insn_get_addr_ref() inspects the segment descriptor pointed by the
61 * registers in pt_regs. This ensures that we correctly obtain the segment
62 * base address and the address and operand sizes even if the user space
63 * application uses a local descriptor table.
66 #define UMIP_DUMMY_GDT_BASE 0xfffe0000
67 #define UMIP_DUMMY_IDT_BASE 0xffff0000
70 * The SGDT and SIDT instructions store the contents of the global descriptor
71 * table and interrupt table registers, respectively. The destination is a
72 * memory operand of X+2 bytes. X bytes are used to store the base address of
73 * the table and 2 bytes are used to store the limit. In 32-bit processes, the
74 * only processes for which emulation is provided, X has a value of 4.
76 #define UMIP_GDT_IDT_BASE_SIZE 4
77 #define UMIP_GDT_IDT_LIMIT_SIZE 2
79 #define UMIP_INST_SGDT 0 /* 0F 01 /0 */
80 #define UMIP_INST_SIDT 1 /* 0F 01 /1 */
81 #define UMIP_INST_SMSW 2 /* 0F 01 /4 */
82 #define UMIP_INST_SLDT 3 /* 0F 00 /0 */
83 #define UMIP_INST_STR 4 /* 0F 00 /1 */
85 const char * const umip_insns
[5] = {
86 [UMIP_INST_SGDT
] = "SGDT",
87 [UMIP_INST_SIDT
] = "SIDT",
88 [UMIP_INST_SMSW
] = "SMSW",
89 [UMIP_INST_SLDT
] = "SLDT",
90 [UMIP_INST_STR
] = "STR",
93 #define umip_pr_err(regs, fmt, ...) \
94 umip_printk(regs, KERN_ERR, fmt, ##__VA_ARGS__)
95 #define umip_pr_warning(regs, fmt, ...) \
96 umip_printk(regs, KERN_WARNING, fmt, ##__VA_ARGS__)
99 * umip_printk() - Print a rate-limited message
100 * @regs: Register set with the context in which the warning is printed
101 * @log_level: Kernel log level to print the message
102 * @fmt: The text string to print
104 * Print the text contained in @fmt. The print rate is limited to bursts of 5
105 * messages every two minutes. The purpose of this customized version of
106 * printk() is to print messages when user space processes use any of the
107 * UMIP-protected instructions. Thus, the printed text is prepended with the
108 * task name and process ID number of the current task as well as the
109 * instruction and stack pointers in @regs as seen when entering kernel mode.
115 static __printf(3, 4)
116 void umip_printk(const struct pt_regs
*regs
, const char *log_level
,
117 const char *fmt
, ...)
119 /* Bursts of 5 messages every two minutes */
120 static DEFINE_RATELIMIT_STATE(ratelimit
, 2 * 60 * HZ
, 5);
121 struct task_struct
*tsk
= current
;
122 struct va_format vaf
;
125 if (!__ratelimit(&ratelimit
))
131 printk("%s" pr_fmt("%s[%d] ip:%lx sp:%lx: %pV"), log_level
, tsk
->comm
,
132 task_pid_nr(tsk
), regs
->ip
, regs
->sp
, &vaf
);
137 * identify_insn() - Identify a UMIP-protected instruction
138 * @insn: Instruction structure with opcode and ModRM byte.
140 * From the opcode and ModRM.reg in @insn identify, if any, a UMIP-protected
141 * instruction that can be emulated.
145 * On success, a constant identifying a specific UMIP-protected instruction that
148 * -EINVAL on error or when not an UMIP-protected instruction that can be
151 static int identify_insn(struct insn
*insn
)
153 /* By getting modrm we also get the opcode. */
154 insn_get_modrm(insn
);
156 if (!insn
->modrm
.nbytes
)
159 /* All the instructions of interest start with 0x0f. */
160 if (insn
->opcode
.bytes
[0] != 0xf)
163 if (insn
->opcode
.bytes
[1] == 0x1) {
164 switch (X86_MODRM_REG(insn
->modrm
.value
)) {
166 return UMIP_INST_SGDT
;
168 return UMIP_INST_SIDT
;
170 return UMIP_INST_SMSW
;
174 } else if (insn
->opcode
.bytes
[1] == 0x0) {
175 if (X86_MODRM_REG(insn
->modrm
.value
) == 0)
176 return UMIP_INST_SLDT
;
177 else if (X86_MODRM_REG(insn
->modrm
.value
) == 1)
178 return UMIP_INST_STR
;
187 * emulate_umip_insn() - Emulate UMIP instructions and return dummy values
188 * @insn: Instruction structure with operands
189 * @umip_inst: A constant indicating the instruction to emulate
190 * @data: Buffer into which the dummy result is stored
191 * @data_size: Size of the emulated result
193 * Emulate an instruction protected by UMIP and provide a dummy result. The
194 * result of the emulation is saved in @data. The size of the results depends
195 * on both the instruction and type of operand (register vs memory address).
196 * The size of the result is updated in @data_size. Caller is responsible
197 * of providing a @data buffer of at least UMIP_GDT_IDT_BASE_SIZE +
198 * UMIP_GDT_IDT_LIMIT_SIZE bytes.
202 * 0 on success, -EINVAL on error while emulating.
204 static int emulate_umip_insn(struct insn
*insn
, int umip_inst
,
205 unsigned char *data
, int *data_size
)
207 unsigned long dummy_base_addr
, dummy_value
;
208 unsigned short dummy_limit
= 0;
210 if (!data
|| !data_size
|| !insn
)
213 * These two instructions return the base address and limit of the
214 * global and interrupt descriptor table, respectively. According to the
215 * Intel Software Development manual, the base address can be 24-bit,
216 * 32-bit or 64-bit. Limit is always 16-bit. If the operand size is
217 * 16-bit, the returned value of the base address is supposed to be a
218 * zero-extended 24-byte number. However, it seems that a 32-byte number
219 * is always returned irrespective of the operand size.
221 if (umip_inst
== UMIP_INST_SGDT
|| umip_inst
== UMIP_INST_SIDT
) {
222 /* SGDT and SIDT do not use registers operands. */
223 if (X86_MODRM_MOD(insn
->modrm
.value
) == 3)
226 if (umip_inst
== UMIP_INST_SGDT
)
227 dummy_base_addr
= UMIP_DUMMY_GDT_BASE
;
229 dummy_base_addr
= UMIP_DUMMY_IDT_BASE
;
231 *data_size
= UMIP_GDT_IDT_LIMIT_SIZE
+ UMIP_GDT_IDT_BASE_SIZE
;
233 memcpy(data
+ 2, &dummy_base_addr
, UMIP_GDT_IDT_BASE_SIZE
);
234 memcpy(data
, &dummy_limit
, UMIP_GDT_IDT_LIMIT_SIZE
);
236 } else if (umip_inst
== UMIP_INST_SMSW
) {
237 dummy_value
= CR0_STATE
;
240 * Even though the CR0 register has 4 bytes, the number
241 * of bytes to be copied in the result buffer is determined
242 * by whether the operand is a register or a memory location.
243 * If operand is a register, return as many bytes as the operand
244 * size. If operand is memory, return only the two least
245 * siginificant bytes of CR0.
247 if (X86_MODRM_MOD(insn
->modrm
.value
) == 3)
248 *data_size
= insn
->opnd_bytes
;
252 memcpy(data
, &dummy_value
, *data_size
);
253 /* STR and SLDT are not emulated */
262 * force_sig_info_umip_fault() - Force a SIGSEGV with SEGV_MAPERR
263 * @addr: Address that caused the signal
264 * @regs: Register set containing the instruction pointer
266 * Force a SIGSEGV signal with SEGV_MAPERR as the error code. This function is
267 * intended to be used to provide a segmentation fault when the result of the
268 * UMIP emulation could not be copied to the user space memory.
272 static void force_sig_info_umip_fault(void __user
*addr
, struct pt_regs
*regs
)
275 struct task_struct
*tsk
= current
;
277 tsk
->thread
.cr2
= (unsigned long)addr
;
278 tsk
->thread
.error_code
= X86_PF_USER
| X86_PF_WRITE
;
279 tsk
->thread
.trap_nr
= X86_TRAP_PF
;
281 info
.si_signo
= SIGSEGV
;
283 info
.si_code
= SEGV_MAPERR
;
285 force_sig_info(SIGSEGV
, &info
, tsk
);
287 if (!(show_unhandled_signals
&& unhandled_signal(tsk
, SIGSEGV
)))
290 umip_pr_err(regs
, "segfault in emulation. error%x\n",
291 X86_PF_USER
| X86_PF_WRITE
);
295 * fixup_umip_exception() - Fixup a general protection fault caused by UMIP
296 * @regs: Registers as saved when entering the #GP handler
298 * The instructions sgdt, sidt, str, smsw, sldt cause a general protection
299 * fault if executed with CPL > 0 (i.e., from user space). If the offending
300 * user-space process is not in long mode, this function fixes the exception
301 * up and provides dummy results for sgdt, sidt and smsw; str and sldt are not
302 * fixed up. Also long mode user-space processes are not fixed up.
304 * If operands are memory addresses, results are copied to user-space memory as
305 * indicated by the instruction pointed by eIP using the registers indicated in
306 * the instruction operands. If operands are registers, results are copied into
307 * the context that was saved when entering kernel mode.
311 * True if emulation was successful; false if not.
313 bool fixup_umip_exception(struct pt_regs
*regs
)
315 int not_copied
, nr_copied
, reg_offset
, dummy_data_size
, umip_inst
;
316 unsigned long seg_base
= 0, *reg_addr
;
317 /* 10 bytes is the maximum size of the result of UMIP instructions */
318 unsigned char dummy_data
[10] = { 0 };
319 unsigned char buf
[MAX_INSN_SIZE
];
328 * If not in user-space long mode, a custom code segment could be in
329 * use. This is true in protected mode (if the process defined a local
330 * descriptor table), or virtual-8086 mode. In most of the cases
331 * seg_base will be zero as in USER_CS.
333 if (!user_64bit_mode(regs
))
334 seg_base
= insn_get_seg_base(regs
, INAT_SEG_REG_CS
);
339 not_copied
= copy_from_user(buf
, (void __user
*)(seg_base
+ regs
->ip
),
341 nr_copied
= sizeof(buf
) - not_copied
;
344 * The copy_from_user above could have failed if user code is protected
345 * by a memory protection key. Give up on emulation in such a case.
346 * Should we issue a page fault?
351 insn_init(&insn
, buf
, nr_copied
, user_64bit_mode(regs
));
354 * Override the default operand and address sizes with what is specified
355 * in the code segment descriptor. The instruction decoder only sets
356 * the address size it to either 4 or 8 address bytes and does nothing
357 * for the operand bytes. This OK for most of the cases, but we could
358 * have special cases where, for instance, a 16-bit code segment
359 * descriptor is used.
360 * If there is an address override prefix, the instruction decoder
361 * correctly updates these values, even for 16-bit defaults.
363 seg_defs
= insn_get_code_seg_params(regs
);
364 if (seg_defs
== -EINVAL
)
367 insn
.addr_bytes
= INSN_CODE_SEG_ADDR_SZ(seg_defs
);
368 insn
.opnd_bytes
= INSN_CODE_SEG_OPND_SZ(seg_defs
);
370 insn_get_length(&insn
);
371 if (nr_copied
< insn
.length
)
374 umip_inst
= identify_insn(&insn
);
378 umip_pr_warning(regs
, "%s instruction cannot be used by applications.\n",
379 umip_insns
[umip_inst
]);
381 /* Do not emulate SLDT, STR or user long mode processes. */
382 if (umip_inst
== UMIP_INST_STR
|| umip_inst
== UMIP_INST_SLDT
|| user_64bit_mode(regs
))
385 umip_pr_warning(regs
, "For now, expensive software emulation returns the result.\n");
387 if (emulate_umip_insn(&insn
, umip_inst
, dummy_data
, &dummy_data_size
))
391 * If operand is a register, write result to the copy of the register
392 * value that was pushed to the stack when entering into kernel mode.
393 * Upon exit, the value we write will be restored to the actual hardware
396 if (X86_MODRM_MOD(insn
.modrm
.value
) == 3) {
397 reg_offset
= insn_get_modrm_rm_off(&insn
, regs
);
400 * Negative values are usually errors. In memory addressing,
401 * the exception is -EDOM. Since we expect a register operand,
402 * all negative values are errors.
407 reg_addr
= (unsigned long *)((unsigned long)regs
+ reg_offset
);
408 memcpy(reg_addr
, dummy_data
, dummy_data_size
);
410 uaddr
= insn_get_addr_ref(&insn
, regs
);
411 if ((unsigned long)uaddr
== -1L)
414 nr_copied
= copy_to_user(uaddr
, dummy_data
, dummy_data_size
);
417 * If copy fails, send a signal and tell caller that
418 * fault was fixed up.
420 force_sig_info_umip_fault(uaddr
, regs
);
425 /* increase IP to let the program keep going */
426 regs
->ip
+= insn
.length
;