x86/topology: Update the 'cpu cores' field in /proc/cpuinfo correctly across CPU...
[cris-mirror.git] / arch / x86 / kvm / cpuid.c
bloba0c5a69bc7c4a324078db14ad27753443d65aa85
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 * cpuid support routines
5 * derived from arch/x86/kvm/x86.c
7 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
8 * Copyright IBM Corporation, 2008
10 * This work is licensed under the terms of the GNU GPL, version 2. See
11 * the COPYING file in the top-level directory.
15 #include <linux/kvm_host.h>
16 #include <linux/export.h>
17 #include <linux/vmalloc.h>
18 #include <linux/uaccess.h>
19 #include <linux/sched/stat.h>
21 #include <asm/processor.h>
22 #include <asm/user.h>
23 #include <asm/fpu/xstate.h>
24 #include "cpuid.h"
25 #include "lapic.h"
26 #include "mmu.h"
27 #include "trace.h"
28 #include "pmu.h"
30 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
32 int feature_bit = 0;
33 u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
35 xstate_bv &= XFEATURE_MASK_EXTEND;
36 while (xstate_bv) {
37 if (xstate_bv & 0x1) {
38 u32 eax, ebx, ecx, edx, offset;
39 cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
40 offset = compacted ? ret : ebx;
41 ret = max(ret, offset + eax);
44 xstate_bv >>= 1;
45 feature_bit++;
48 return ret;
51 bool kvm_mpx_supported(void)
53 return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
54 && kvm_x86_ops->mpx_supported());
56 EXPORT_SYMBOL_GPL(kvm_mpx_supported);
58 u64 kvm_supported_xcr0(void)
60 u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
62 if (!kvm_mpx_supported())
63 xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
65 return xcr0;
68 #define F(x) bit(X86_FEATURE_##x)
70 /* For scattered features from cpufeatures.h; we currently expose none */
71 #define KF(x) bit(KVM_CPUID_BIT_##x)
73 int kvm_update_cpuid(struct kvm_vcpu *vcpu)
75 struct kvm_cpuid_entry2 *best;
76 struct kvm_lapic *apic = vcpu->arch.apic;
78 best = kvm_find_cpuid_entry(vcpu, 1, 0);
79 if (!best)
80 return 0;
82 /* Update OSXSAVE bit */
83 if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) {
84 best->ecx &= ~F(OSXSAVE);
85 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
86 best->ecx |= F(OSXSAVE);
89 best->edx &= ~F(APIC);
90 if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)
91 best->edx |= F(APIC);
93 if (apic) {
94 if (best->ecx & F(TSC_DEADLINE_TIMER))
95 apic->lapic_timer.timer_mode_mask = 3 << 17;
96 else
97 apic->lapic_timer.timer_mode_mask = 1 << 17;
100 best = kvm_find_cpuid_entry(vcpu, 7, 0);
101 if (best) {
102 /* Update OSPKE bit */
103 if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
104 best->ecx &= ~F(OSPKE);
105 if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
106 best->ecx |= F(OSPKE);
110 best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
111 if (!best) {
112 vcpu->arch.guest_supported_xcr0 = 0;
113 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
114 } else {
115 vcpu->arch.guest_supported_xcr0 =
116 (best->eax | ((u64)best->edx << 32)) &
117 kvm_supported_xcr0();
118 vcpu->arch.guest_xstate_size = best->ebx =
119 xstate_required_size(vcpu->arch.xcr0, false);
122 best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
123 if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
124 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
127 * The existing code assumes virtual address is 48-bit or 57-bit in the
128 * canonical address checks; exit if it is ever changed.
130 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
131 if (best) {
132 int vaddr_bits = (best->eax & 0xff00) >> 8;
134 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
135 return -EINVAL;
138 /* Update physical-address width */
139 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
140 kvm_mmu_reset_context(vcpu);
142 kvm_pmu_refresh(vcpu);
143 return 0;
146 static int is_efer_nx(void)
148 unsigned long long efer = 0;
150 rdmsrl_safe(MSR_EFER, &efer);
151 return efer & EFER_NX;
154 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
156 int i;
157 struct kvm_cpuid_entry2 *e, *entry;
159 entry = NULL;
160 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
161 e = &vcpu->arch.cpuid_entries[i];
162 if (e->function == 0x80000001) {
163 entry = e;
164 break;
167 if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
168 entry->edx &= ~F(NX);
169 printk(KERN_INFO "kvm: guest NX capability removed\n");
173 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
175 struct kvm_cpuid_entry2 *best;
177 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
178 if (!best || best->eax < 0x80000008)
179 goto not_found;
180 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
181 if (best)
182 return best->eax & 0xff;
183 not_found:
184 return 36;
186 EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
188 /* when an old userspace process fills a new kernel module */
189 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
190 struct kvm_cpuid *cpuid,
191 struct kvm_cpuid_entry __user *entries)
193 int r, i;
194 struct kvm_cpuid_entry *cpuid_entries = NULL;
196 r = -E2BIG;
197 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
198 goto out;
199 r = -ENOMEM;
200 if (cpuid->nent) {
201 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) *
202 cpuid->nent);
203 if (!cpuid_entries)
204 goto out;
205 r = -EFAULT;
206 if (copy_from_user(cpuid_entries, entries,
207 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
208 goto out;
210 for (i = 0; i < cpuid->nent; i++) {
211 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
212 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
213 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
214 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
215 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
216 vcpu->arch.cpuid_entries[i].index = 0;
217 vcpu->arch.cpuid_entries[i].flags = 0;
218 vcpu->arch.cpuid_entries[i].padding[0] = 0;
219 vcpu->arch.cpuid_entries[i].padding[1] = 0;
220 vcpu->arch.cpuid_entries[i].padding[2] = 0;
222 vcpu->arch.cpuid_nent = cpuid->nent;
223 cpuid_fix_nx_cap(vcpu);
224 kvm_apic_set_version(vcpu);
225 kvm_x86_ops->cpuid_update(vcpu);
226 r = kvm_update_cpuid(vcpu);
228 out:
229 vfree(cpuid_entries);
230 return r;
233 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
234 struct kvm_cpuid2 *cpuid,
235 struct kvm_cpuid_entry2 __user *entries)
237 int r;
239 r = -E2BIG;
240 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
241 goto out;
242 r = -EFAULT;
243 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
244 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
245 goto out;
246 vcpu->arch.cpuid_nent = cpuid->nent;
247 kvm_apic_set_version(vcpu);
248 kvm_x86_ops->cpuid_update(vcpu);
249 r = kvm_update_cpuid(vcpu);
250 out:
251 return r;
254 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
255 struct kvm_cpuid2 *cpuid,
256 struct kvm_cpuid_entry2 __user *entries)
258 int r;
260 r = -E2BIG;
261 if (cpuid->nent < vcpu->arch.cpuid_nent)
262 goto out;
263 r = -EFAULT;
264 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
265 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
266 goto out;
267 return 0;
269 out:
270 cpuid->nent = vcpu->arch.cpuid_nent;
271 return r;
274 static void cpuid_mask(u32 *word, int wordnum)
276 *word &= boot_cpu_data.x86_capability[wordnum];
279 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
280 u32 index)
282 entry->function = function;
283 entry->index = index;
284 cpuid_count(entry->function, entry->index,
285 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
286 entry->flags = 0;
289 static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
290 u32 func, u32 index, int *nent, int maxnent)
292 switch (func) {
293 case 0:
294 entry->eax = 7;
295 ++*nent;
296 break;
297 case 1:
298 entry->ecx = F(MOVBE);
299 ++*nent;
300 break;
301 case 7:
302 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
303 if (index == 0)
304 entry->ecx = F(RDPID);
305 ++*nent;
306 default:
307 break;
310 entry->function = func;
311 entry->index = index;
313 return 0;
316 static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
317 u32 index, int *nent, int maxnent)
319 int r;
320 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
321 #ifdef CONFIG_X86_64
322 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
323 ? F(GBPAGES) : 0;
324 unsigned f_lm = F(LM);
325 #else
326 unsigned f_gbpages = 0;
327 unsigned f_lm = 0;
328 #endif
329 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
330 unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
331 unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
332 unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
333 unsigned f_umip = kvm_x86_ops->umip_emulated() ? F(UMIP) : 0;
335 /* cpuid 1.edx */
336 const u32 kvm_cpuid_1_edx_x86_features =
337 F(FPU) | F(VME) | F(DE) | F(PSE) |
338 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
339 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
340 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
341 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
342 0 /* Reserved, DS, ACPI */ | F(MMX) |
343 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
344 0 /* HTT, TM, Reserved, PBE */;
345 /* cpuid 0x80000001.edx */
346 const u32 kvm_cpuid_8000_0001_edx_x86_features =
347 F(FPU) | F(VME) | F(DE) | F(PSE) |
348 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
349 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
350 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
351 F(PAT) | F(PSE36) | 0 /* Reserved */ |
352 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
353 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
354 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
355 /* cpuid 1.ecx */
356 const u32 kvm_cpuid_1_ecx_x86_features =
357 /* NOTE: MONITOR (and MWAIT) are emulated as NOP,
358 * but *not* advertised to guests via CPUID ! */
359 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
360 0 /* DS-CPL, VMX, SMX, EST */ |
361 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
362 F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
363 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
364 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
365 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
366 F(F16C) | F(RDRAND);
367 /* cpuid 0x80000001.ecx */
368 const u32 kvm_cpuid_8000_0001_ecx_x86_features =
369 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
370 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
371 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
372 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
373 F(TOPOEXT);
375 /* cpuid 0x80000008.ebx */
376 const u32 kvm_cpuid_8000_0008_ebx_x86_features =
377 F(IBPB) | F(IBRS);
379 /* cpuid 0xC0000001.edx */
380 const u32 kvm_cpuid_C000_0001_edx_x86_features =
381 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
382 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
383 F(PMM) | F(PMM_EN);
385 /* cpuid 7.0.ebx */
386 const u32 kvm_cpuid_7_0_ebx_x86_features =
387 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
388 F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
389 F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
390 F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
391 F(SHA_NI) | F(AVX512BW) | F(AVX512VL);
393 /* cpuid 0xD.1.eax */
394 const u32 kvm_cpuid_D_1_eax_x86_features =
395 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
397 /* cpuid 7.0.ecx*/
398 const u32 kvm_cpuid_7_0_ecx_x86_features =
399 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ |
400 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
401 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG);
403 /* cpuid 7.0.edx*/
404 const u32 kvm_cpuid_7_0_edx_x86_features =
405 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
406 F(ARCH_CAPABILITIES);
408 /* all calls to cpuid_count() should be made on the same cpu */
409 get_cpu();
411 r = -E2BIG;
413 if (*nent >= maxnent)
414 goto out;
416 do_cpuid_1_ent(entry, function, index);
417 ++*nent;
419 switch (function) {
420 case 0:
421 entry->eax = min(entry->eax, (u32)0xd);
422 break;
423 case 1:
424 entry->edx &= kvm_cpuid_1_edx_x86_features;
425 cpuid_mask(&entry->edx, CPUID_1_EDX);
426 entry->ecx &= kvm_cpuid_1_ecx_x86_features;
427 cpuid_mask(&entry->ecx, CPUID_1_ECX);
428 /* we support x2apic emulation even if host does not support
429 * it since we emulate x2apic in software */
430 entry->ecx |= F(X2APIC);
431 break;
432 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
433 * may return different values. This forces us to get_cpu() before
434 * issuing the first command, and also to emulate this annoying behavior
435 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
436 case 2: {
437 int t, times = entry->eax & 0xff;
439 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
440 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
441 for (t = 1; t < times; ++t) {
442 if (*nent >= maxnent)
443 goto out;
445 do_cpuid_1_ent(&entry[t], function, 0);
446 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
447 ++*nent;
449 break;
451 /* function 4 has additional index. */
452 case 4: {
453 int i, cache_type;
455 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
456 /* read more entries until cache_type is zero */
457 for (i = 1; ; ++i) {
458 if (*nent >= maxnent)
459 goto out;
461 cache_type = entry[i - 1].eax & 0x1f;
462 if (!cache_type)
463 break;
464 do_cpuid_1_ent(&entry[i], function, i);
465 entry[i].flags |=
466 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
467 ++*nent;
469 break;
471 case 6: /* Thermal management */
472 entry->eax = 0x4; /* allow ARAT */
473 entry->ebx = 0;
474 entry->ecx = 0;
475 entry->edx = 0;
476 break;
477 case 7: {
478 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
479 /* Mask ebx against host capability word 9 */
480 if (index == 0) {
481 entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
482 cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
483 // TSC_ADJUST is emulated
484 entry->ebx |= F(TSC_ADJUST);
485 entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
486 cpuid_mask(&entry->ecx, CPUID_7_ECX);
487 entry->ecx |= f_umip;
488 /* PKU is not yet implemented for shadow paging. */
489 if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
490 entry->ecx &= ~F(PKU);
491 entry->edx &= kvm_cpuid_7_0_edx_x86_features;
492 cpuid_mask(&entry->edx, CPUID_7_EDX);
493 } else {
494 entry->ebx = 0;
495 entry->ecx = 0;
496 entry->edx = 0;
498 entry->eax = 0;
499 break;
501 case 9:
502 break;
503 case 0xa: { /* Architectural Performance Monitoring */
504 struct x86_pmu_capability cap;
505 union cpuid10_eax eax;
506 union cpuid10_edx edx;
508 perf_get_x86_pmu_capability(&cap);
511 * Only support guest architectural pmu on a host
512 * with architectural pmu.
514 if (!cap.version)
515 memset(&cap, 0, sizeof(cap));
517 eax.split.version_id = min(cap.version, 2);
518 eax.split.num_counters = cap.num_counters_gp;
519 eax.split.bit_width = cap.bit_width_gp;
520 eax.split.mask_length = cap.events_mask_len;
522 edx.split.num_counters_fixed = cap.num_counters_fixed;
523 edx.split.bit_width_fixed = cap.bit_width_fixed;
524 edx.split.reserved = 0;
526 entry->eax = eax.full;
527 entry->ebx = cap.events_mask;
528 entry->ecx = 0;
529 entry->edx = edx.full;
530 break;
532 /* function 0xb has additional index. */
533 case 0xb: {
534 int i, level_type;
536 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
537 /* read more entries until level_type is zero */
538 for (i = 1; ; ++i) {
539 if (*nent >= maxnent)
540 goto out;
542 level_type = entry[i - 1].ecx & 0xff00;
543 if (!level_type)
544 break;
545 do_cpuid_1_ent(&entry[i], function, i);
546 entry[i].flags |=
547 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
548 ++*nent;
550 break;
552 case 0xd: {
553 int idx, i;
554 u64 supported = kvm_supported_xcr0();
556 entry->eax &= supported;
557 entry->ebx = xstate_required_size(supported, false);
558 entry->ecx = entry->ebx;
559 entry->edx &= supported >> 32;
560 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
561 if (!supported)
562 break;
564 for (idx = 1, i = 1; idx < 64; ++idx) {
565 u64 mask = ((u64)1 << idx);
566 if (*nent >= maxnent)
567 goto out;
569 do_cpuid_1_ent(&entry[i], function, idx);
570 if (idx == 1) {
571 entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
572 cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
573 entry[i].ebx = 0;
574 if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
575 entry[i].ebx =
576 xstate_required_size(supported,
577 true);
578 } else {
579 if (entry[i].eax == 0 || !(supported & mask))
580 continue;
581 if (WARN_ON_ONCE(entry[i].ecx & 1))
582 continue;
584 entry[i].ecx = 0;
585 entry[i].edx = 0;
586 entry[i].flags |=
587 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
588 ++*nent;
589 ++i;
591 break;
593 case KVM_CPUID_SIGNATURE: {
594 static const char signature[12] = "KVMKVMKVM\0\0";
595 const u32 *sigptr = (const u32 *)signature;
596 entry->eax = KVM_CPUID_FEATURES;
597 entry->ebx = sigptr[0];
598 entry->ecx = sigptr[1];
599 entry->edx = sigptr[2];
600 break;
602 case KVM_CPUID_FEATURES:
603 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
604 (1 << KVM_FEATURE_NOP_IO_DELAY) |
605 (1 << KVM_FEATURE_CLOCKSOURCE2) |
606 (1 << KVM_FEATURE_ASYNC_PF) |
607 (1 << KVM_FEATURE_PV_EOI) |
608 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
609 (1 << KVM_FEATURE_PV_UNHALT) |
610 (1 << KVM_FEATURE_PV_TLB_FLUSH);
612 if (sched_info_on())
613 entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
615 entry->ebx = 0;
616 entry->ecx = 0;
617 entry->edx = 0;
618 break;
619 case 0x80000000:
620 entry->eax = min(entry->eax, 0x8000001f);
621 break;
622 case 0x80000001:
623 entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
624 cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
625 entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
626 cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
627 break;
628 case 0x80000007: /* Advanced power management */
629 /* invariant TSC is CPUID.80000007H:EDX[8] */
630 entry->edx &= (1 << 8);
631 /* mask against host */
632 entry->edx &= boot_cpu_data.x86_power;
633 entry->eax = entry->ebx = entry->ecx = 0;
634 break;
635 case 0x80000008: {
636 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
637 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
638 unsigned phys_as = entry->eax & 0xff;
640 if (!g_phys_as)
641 g_phys_as = phys_as;
642 entry->eax = g_phys_as | (virt_as << 8);
643 entry->edx = 0;
644 /* IBRS and IBPB aren't necessarily present in hardware cpuid */
645 if (boot_cpu_has(X86_FEATURE_IBPB))
646 entry->ebx |= F(IBPB);
647 if (boot_cpu_has(X86_FEATURE_IBRS))
648 entry->ebx |= F(IBRS);
649 entry->ebx &= kvm_cpuid_8000_0008_ebx_x86_features;
650 cpuid_mask(&entry->ebx, CPUID_8000_0008_EBX);
651 break;
653 case 0x80000019:
654 entry->ecx = entry->edx = 0;
655 break;
656 case 0x8000001a:
657 break;
658 case 0x8000001d:
659 break;
660 /*Add support for Centaur's CPUID instruction*/
661 case 0xC0000000:
662 /*Just support up to 0xC0000004 now*/
663 entry->eax = min(entry->eax, 0xC0000004);
664 break;
665 case 0xC0000001:
666 entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
667 cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
668 break;
669 case 3: /* Processor serial number */
670 case 5: /* MONITOR/MWAIT */
671 case 0xC0000002:
672 case 0xC0000003:
673 case 0xC0000004:
674 default:
675 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
676 break;
679 kvm_x86_ops->set_supported_cpuid(function, entry);
681 r = 0;
683 out:
684 put_cpu();
686 return r;
689 static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
690 u32 idx, int *nent, int maxnent, unsigned int type)
692 if (type == KVM_GET_EMULATED_CPUID)
693 return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
695 return __do_cpuid_ent(entry, func, idx, nent, maxnent);
698 #undef F
700 struct kvm_cpuid_param {
701 u32 func;
702 u32 idx;
703 bool has_leaf_count;
704 bool (*qualifier)(const struct kvm_cpuid_param *param);
707 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
709 return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
712 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
713 __u32 num_entries, unsigned int ioctl_type)
715 int i;
716 __u32 pad[3];
718 if (ioctl_type != KVM_GET_EMULATED_CPUID)
719 return false;
722 * We want to make sure that ->padding is being passed clean from
723 * userspace in case we want to use it for something in the future.
725 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
726 * have to give ourselves satisfied only with the emulated side. /me
727 * sheds a tear.
729 for (i = 0; i < num_entries; i++) {
730 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
731 return true;
733 if (pad[0] || pad[1] || pad[2])
734 return true;
736 return false;
739 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
740 struct kvm_cpuid_entry2 __user *entries,
741 unsigned int type)
743 struct kvm_cpuid_entry2 *cpuid_entries;
744 int limit, nent = 0, r = -E2BIG, i;
745 u32 func;
746 static const struct kvm_cpuid_param param[] = {
747 { .func = 0, .has_leaf_count = true },
748 { .func = 0x80000000, .has_leaf_count = true },
749 { .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
750 { .func = KVM_CPUID_SIGNATURE },
751 { .func = KVM_CPUID_FEATURES },
754 if (cpuid->nent < 1)
755 goto out;
756 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
757 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
759 if (sanity_check_entries(entries, cpuid->nent, type))
760 return -EINVAL;
762 r = -ENOMEM;
763 cpuid_entries = vzalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
764 if (!cpuid_entries)
765 goto out;
767 r = 0;
768 for (i = 0; i < ARRAY_SIZE(param); i++) {
769 const struct kvm_cpuid_param *ent = &param[i];
771 if (ent->qualifier && !ent->qualifier(ent))
772 continue;
774 r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
775 &nent, cpuid->nent, type);
777 if (r)
778 goto out_free;
780 if (!ent->has_leaf_count)
781 continue;
783 limit = cpuid_entries[nent - 1].eax;
784 for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
785 r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
786 &nent, cpuid->nent, type);
788 if (r)
789 goto out_free;
792 r = -EFAULT;
793 if (copy_to_user(entries, cpuid_entries,
794 nent * sizeof(struct kvm_cpuid_entry2)))
795 goto out_free;
796 cpuid->nent = nent;
797 r = 0;
799 out_free:
800 vfree(cpuid_entries);
801 out:
802 return r;
805 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
807 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
808 struct kvm_cpuid_entry2 *ej;
809 int j = i;
810 int nent = vcpu->arch.cpuid_nent;
812 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
813 /* when no next entry is found, the current entry[i] is reselected */
814 do {
815 j = (j + 1) % nent;
816 ej = &vcpu->arch.cpuid_entries[j];
817 } while (ej->function != e->function);
819 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
821 return j;
824 /* find an entry with matching function, matching index (if needed), and that
825 * should be read next (if it's stateful) */
826 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
827 u32 function, u32 index)
829 if (e->function != function)
830 return 0;
831 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
832 return 0;
833 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
834 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
835 return 0;
836 return 1;
839 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
840 u32 function, u32 index)
842 int i;
843 struct kvm_cpuid_entry2 *best = NULL;
845 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
846 struct kvm_cpuid_entry2 *e;
848 e = &vcpu->arch.cpuid_entries[i];
849 if (is_matching_cpuid_entry(e, function, index)) {
850 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
851 move_to_next_stateful_cpuid_entry(vcpu, i);
852 best = e;
853 break;
856 return best;
858 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
861 * If no match is found, check whether we exceed the vCPU's limit
862 * and return the content of the highest valid _standard_ leaf instead.
863 * This is to satisfy the CPUID specification.
865 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
866 u32 function, u32 index)
868 struct kvm_cpuid_entry2 *maxlevel;
870 maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
871 if (!maxlevel || maxlevel->eax >= function)
872 return NULL;
873 if (function & 0x80000000) {
874 maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
875 if (!maxlevel)
876 return NULL;
878 return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
881 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
882 u32 *ecx, u32 *edx, bool check_limit)
884 u32 function = *eax, index = *ecx;
885 struct kvm_cpuid_entry2 *best;
886 bool entry_found = true;
888 best = kvm_find_cpuid_entry(vcpu, function, index);
890 if (!best) {
891 entry_found = false;
892 if (!check_limit)
893 goto out;
895 best = check_cpuid_limit(vcpu, function, index);
898 out:
899 if (best) {
900 *eax = best->eax;
901 *ebx = best->ebx;
902 *ecx = best->ecx;
903 *edx = best->edx;
904 } else
905 *eax = *ebx = *ecx = *edx = 0;
906 trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx, entry_found);
907 return entry_found;
909 EXPORT_SYMBOL_GPL(kvm_cpuid);
911 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
913 u32 eax, ebx, ecx, edx;
915 if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
916 return 1;
918 eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
919 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
920 kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, true);
921 kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
922 kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
923 kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
924 kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
925 return kvm_skip_emulated_instruction(vcpu);
927 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);