2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
27 #include "kvm_cache_regs.h"
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
59 #include <trace/events/kvm.h>
61 #include <asm/debugreg.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
73 #define CREATE_TRACE_POINTS
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported
= MCG_CTL_P
| MCG_SER_P
;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported
);
81 #define emul_to_vcpu(ctxt) \
82 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
85 * - enable syscall per default because its emulated by KVM
86 * - enable LME and LMA per default on 64 bit KVM
90 u64 __read_mostly efer_reserved_bits
= ~((u64
)(EFER_SCE
| EFER_LME
| EFER_LMA
));
92 static u64 __read_mostly efer_reserved_bits
= ~((u64
)EFER_SCE
);
95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
101 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
);
102 static void process_nmi(struct kvm_vcpu
*vcpu
);
103 static void enter_smm(struct kvm_vcpu
*vcpu
);
104 static void __kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
);
106 struct kvm_x86_ops
*kvm_x86_ops __read_mostly
;
107 EXPORT_SYMBOL_GPL(kvm_x86_ops
);
109 static bool __read_mostly ignore_msrs
= 0;
110 module_param(ignore_msrs
, bool, S_IRUGO
| S_IWUSR
);
112 static bool __read_mostly report_ignored_msrs
= true;
113 module_param(report_ignored_msrs
, bool, S_IRUGO
| S_IWUSR
);
115 unsigned int min_timer_period_us
= 500;
116 module_param(min_timer_period_us
, uint
, S_IRUGO
| S_IWUSR
);
118 static bool __read_mostly kvmclock_periodic_sync
= true;
119 module_param(kvmclock_periodic_sync
, bool, S_IRUGO
);
121 bool __read_mostly kvm_has_tsc_control
;
122 EXPORT_SYMBOL_GPL(kvm_has_tsc_control
);
123 u32 __read_mostly kvm_max_guest_tsc_khz
;
124 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz
);
125 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits
;
126 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits
);
127 u64 __read_mostly kvm_max_tsc_scaling_ratio
;
128 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio
);
129 u64 __read_mostly kvm_default_tsc_scaling_ratio
;
130 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio
);
132 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
133 static u32 __read_mostly tsc_tolerance_ppm
= 250;
134 module_param(tsc_tolerance_ppm
, uint
, S_IRUGO
| S_IWUSR
);
136 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
137 unsigned int __read_mostly lapic_timer_advance_ns
= 0;
138 module_param(lapic_timer_advance_ns
, uint
, S_IRUGO
| S_IWUSR
);
140 static bool __read_mostly vector_hashing
= true;
141 module_param(vector_hashing
, bool, S_IRUGO
);
143 #define KVM_NR_SHARED_MSRS 16
145 struct kvm_shared_msrs_global
{
147 u32 msrs
[KVM_NR_SHARED_MSRS
];
150 struct kvm_shared_msrs
{
151 struct user_return_notifier urn
;
153 struct kvm_shared_msr_values
{
156 } values
[KVM_NR_SHARED_MSRS
];
159 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global
;
160 static struct kvm_shared_msrs __percpu
*shared_msrs
;
162 struct kvm_stats_debugfs_item debugfs_entries
[] = {
163 { "pf_fixed", VCPU_STAT(pf_fixed
) },
164 { "pf_guest", VCPU_STAT(pf_guest
) },
165 { "tlb_flush", VCPU_STAT(tlb_flush
) },
166 { "invlpg", VCPU_STAT(invlpg
) },
167 { "exits", VCPU_STAT(exits
) },
168 { "io_exits", VCPU_STAT(io_exits
) },
169 { "mmio_exits", VCPU_STAT(mmio_exits
) },
170 { "signal_exits", VCPU_STAT(signal_exits
) },
171 { "irq_window", VCPU_STAT(irq_window_exits
) },
172 { "nmi_window", VCPU_STAT(nmi_window_exits
) },
173 { "halt_exits", VCPU_STAT(halt_exits
) },
174 { "halt_successful_poll", VCPU_STAT(halt_successful_poll
) },
175 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll
) },
176 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid
) },
177 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
178 { "hypercalls", VCPU_STAT(hypercalls
) },
179 { "request_irq", VCPU_STAT(request_irq_exits
) },
180 { "irq_exits", VCPU_STAT(irq_exits
) },
181 { "host_state_reload", VCPU_STAT(host_state_reload
) },
182 { "fpu_reload", VCPU_STAT(fpu_reload
) },
183 { "insn_emulation", VCPU_STAT(insn_emulation
) },
184 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
185 { "irq_injections", VCPU_STAT(irq_injections
) },
186 { "nmi_injections", VCPU_STAT(nmi_injections
) },
187 { "req_event", VCPU_STAT(req_event
) },
188 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
189 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
190 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
191 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
192 { "mmu_flooded", VM_STAT(mmu_flooded
) },
193 { "mmu_recycled", VM_STAT(mmu_recycled
) },
194 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
195 { "mmu_unsync", VM_STAT(mmu_unsync
) },
196 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
197 { "largepages", VM_STAT(lpages
) },
198 { "max_mmu_page_hash_collisions",
199 VM_STAT(max_mmu_page_hash_collisions
) },
203 u64 __read_mostly host_xcr0
;
205 static int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
);
207 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu
*vcpu
)
210 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
); i
++)
211 vcpu
->arch
.apf
.gfns
[i
] = ~0;
214 static void kvm_on_user_return(struct user_return_notifier
*urn
)
217 struct kvm_shared_msrs
*locals
218 = container_of(urn
, struct kvm_shared_msrs
, urn
);
219 struct kvm_shared_msr_values
*values
;
223 * Disabling irqs at this point since the following code could be
224 * interrupted and executed through kvm_arch_hardware_disable()
226 local_irq_save(flags
);
227 if (locals
->registered
) {
228 locals
->registered
= false;
229 user_return_notifier_unregister(urn
);
231 local_irq_restore(flags
);
232 for (slot
= 0; slot
< shared_msrs_global
.nr
; ++slot
) {
233 values
= &locals
->values
[slot
];
234 if (values
->host
!= values
->curr
) {
235 wrmsrl(shared_msrs_global
.msrs
[slot
], values
->host
);
236 values
->curr
= values
->host
;
241 static void shared_msr_update(unsigned slot
, u32 msr
)
244 unsigned int cpu
= smp_processor_id();
245 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
247 /* only read, and nobody should modify it at this time,
248 * so don't need lock */
249 if (slot
>= shared_msrs_global
.nr
) {
250 printk(KERN_ERR
"kvm: invalid MSR slot!");
253 rdmsrl_safe(msr
, &value
);
254 smsr
->values
[slot
].host
= value
;
255 smsr
->values
[slot
].curr
= value
;
258 void kvm_define_shared_msr(unsigned slot
, u32 msr
)
260 BUG_ON(slot
>= KVM_NR_SHARED_MSRS
);
261 shared_msrs_global
.msrs
[slot
] = msr
;
262 if (slot
>= shared_msrs_global
.nr
)
263 shared_msrs_global
.nr
= slot
+ 1;
265 EXPORT_SYMBOL_GPL(kvm_define_shared_msr
);
267 static void kvm_shared_msr_cpu_online(void)
271 for (i
= 0; i
< shared_msrs_global
.nr
; ++i
)
272 shared_msr_update(i
, shared_msrs_global
.msrs
[i
]);
275 int kvm_set_shared_msr(unsigned slot
, u64 value
, u64 mask
)
277 unsigned int cpu
= smp_processor_id();
278 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
281 if (((value
^ smsr
->values
[slot
].curr
) & mask
) == 0)
283 smsr
->values
[slot
].curr
= value
;
284 err
= wrmsrl_safe(shared_msrs_global
.msrs
[slot
], value
);
288 if (!smsr
->registered
) {
289 smsr
->urn
.on_user_return
= kvm_on_user_return
;
290 user_return_notifier_register(&smsr
->urn
);
291 smsr
->registered
= true;
295 EXPORT_SYMBOL_GPL(kvm_set_shared_msr
);
297 static void drop_user_return_notifiers(void)
299 unsigned int cpu
= smp_processor_id();
300 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
302 if (smsr
->registered
)
303 kvm_on_user_return(&smsr
->urn
);
306 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
308 return vcpu
->arch
.apic_base
;
310 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
312 int kvm_set_apic_base(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
314 u64 old_state
= vcpu
->arch
.apic_base
&
315 (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
);
316 u64 new_state
= msr_info
->data
&
317 (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
);
318 u64 reserved_bits
= ((~0ULL) << cpuid_maxphyaddr(vcpu
)) | 0x2ff |
319 (guest_cpuid_has(vcpu
, X86_FEATURE_X2APIC
) ? 0 : X2APIC_ENABLE
);
321 if ((msr_info
->data
& reserved_bits
) || new_state
== X2APIC_ENABLE
)
323 if (!msr_info
->host_initiated
&&
324 ((new_state
== MSR_IA32_APICBASE_ENABLE
&&
325 old_state
== (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
)) ||
326 (new_state
== (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
) &&
330 kvm_lapic_set_base(vcpu
, msr_info
->data
);
333 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
335 asmlinkage __visible
void kvm_spurious_fault(void)
337 /* Fault while not rebooting. We want the trace. */
340 EXPORT_SYMBOL_GPL(kvm_spurious_fault
);
342 #define EXCPT_BENIGN 0
343 #define EXCPT_CONTRIBUTORY 1
346 static int exception_class(int vector
)
356 return EXCPT_CONTRIBUTORY
;
363 #define EXCPT_FAULT 0
365 #define EXCPT_ABORT 2
366 #define EXCPT_INTERRUPT 3
368 static int exception_type(int vector
)
372 if (WARN_ON(vector
> 31 || vector
== NMI_VECTOR
))
373 return EXCPT_INTERRUPT
;
377 /* #DB is trap, as instruction watchpoints are handled elsewhere */
378 if (mask
& ((1 << DB_VECTOR
) | (1 << BP_VECTOR
) | (1 << OF_VECTOR
)))
381 if (mask
& ((1 << DF_VECTOR
) | (1 << MC_VECTOR
)))
384 /* Reserved exceptions will result in fault */
388 static void kvm_multiple_exception(struct kvm_vcpu
*vcpu
,
389 unsigned nr
, bool has_error
, u32 error_code
,
395 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
397 if (!vcpu
->arch
.exception
.pending
&& !vcpu
->arch
.exception
.injected
) {
399 if (has_error
&& !is_protmode(vcpu
))
403 * On vmentry, vcpu->arch.exception.pending is only
404 * true if an event injection was blocked by
405 * nested_run_pending. In that case, however,
406 * vcpu_enter_guest requests an immediate exit,
407 * and the guest shouldn't proceed far enough to
410 WARN_ON_ONCE(vcpu
->arch
.exception
.pending
);
411 vcpu
->arch
.exception
.injected
= true;
413 vcpu
->arch
.exception
.pending
= true;
414 vcpu
->arch
.exception
.injected
= false;
416 vcpu
->arch
.exception
.has_error_code
= has_error
;
417 vcpu
->arch
.exception
.nr
= nr
;
418 vcpu
->arch
.exception
.error_code
= error_code
;
422 /* to check exception */
423 prev_nr
= vcpu
->arch
.exception
.nr
;
424 if (prev_nr
== DF_VECTOR
) {
425 /* triple fault -> shutdown */
426 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
429 class1
= exception_class(prev_nr
);
430 class2
= exception_class(nr
);
431 if ((class1
== EXCPT_CONTRIBUTORY
&& class2
== EXCPT_CONTRIBUTORY
)
432 || (class1
== EXCPT_PF
&& class2
!= EXCPT_BENIGN
)) {
434 * Generate double fault per SDM Table 5-5. Set
435 * exception.pending = true so that the double fault
436 * can trigger a nested vmexit.
438 vcpu
->arch
.exception
.pending
= true;
439 vcpu
->arch
.exception
.injected
= false;
440 vcpu
->arch
.exception
.has_error_code
= true;
441 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
442 vcpu
->arch
.exception
.error_code
= 0;
444 /* replace previous exception with a new one in a hope
445 that instruction re-execution will regenerate lost
450 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
452 kvm_multiple_exception(vcpu
, nr
, false, 0, false);
454 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
456 void kvm_requeue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
458 kvm_multiple_exception(vcpu
, nr
, false, 0, true);
460 EXPORT_SYMBOL_GPL(kvm_requeue_exception
);
462 int kvm_complete_insn_gp(struct kvm_vcpu
*vcpu
, int err
)
465 kvm_inject_gp(vcpu
, 0);
467 return kvm_skip_emulated_instruction(vcpu
);
471 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp
);
473 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
475 ++vcpu
->stat
.pf_guest
;
476 vcpu
->arch
.exception
.nested_apf
=
477 is_guest_mode(vcpu
) && fault
->async_page_fault
;
478 if (vcpu
->arch
.exception
.nested_apf
)
479 vcpu
->arch
.apf
.nested_apf_token
= fault
->address
;
481 vcpu
->arch
.cr2
= fault
->address
;
482 kvm_queue_exception_e(vcpu
, PF_VECTOR
, fault
->error_code
);
484 EXPORT_SYMBOL_GPL(kvm_inject_page_fault
);
486 static bool kvm_propagate_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
488 if (mmu_is_nested(vcpu
) && !fault
->nested_page_fault
)
489 vcpu
->arch
.nested_mmu
.inject_page_fault(vcpu
, fault
);
491 vcpu
->arch
.mmu
.inject_page_fault(vcpu
, fault
);
493 return fault
->nested_page_fault
;
496 void kvm_inject_nmi(struct kvm_vcpu
*vcpu
)
498 atomic_inc(&vcpu
->arch
.nmi_queued
);
499 kvm_make_request(KVM_REQ_NMI
, vcpu
);
501 EXPORT_SYMBOL_GPL(kvm_inject_nmi
);
503 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
505 kvm_multiple_exception(vcpu
, nr
, true, error_code
, false);
507 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
509 void kvm_requeue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
511 kvm_multiple_exception(vcpu
, nr
, true, error_code
, true);
513 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e
);
516 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
517 * a #GP and return false.
519 bool kvm_require_cpl(struct kvm_vcpu
*vcpu
, int required_cpl
)
521 if (kvm_x86_ops
->get_cpl(vcpu
) <= required_cpl
)
523 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
526 EXPORT_SYMBOL_GPL(kvm_require_cpl
);
528 bool kvm_require_dr(struct kvm_vcpu
*vcpu
, int dr
)
530 if ((dr
!= 4 && dr
!= 5) || !kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
533 kvm_queue_exception(vcpu
, UD_VECTOR
);
536 EXPORT_SYMBOL_GPL(kvm_require_dr
);
539 * This function will be used to read from the physical memory of the currently
540 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
541 * can read from guest physical or from the guest's guest physical memory.
543 int kvm_read_guest_page_mmu(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
,
544 gfn_t ngfn
, void *data
, int offset
, int len
,
547 struct x86_exception exception
;
551 ngpa
= gfn_to_gpa(ngfn
);
552 real_gfn
= mmu
->translate_gpa(vcpu
, ngpa
, access
, &exception
);
553 if (real_gfn
== UNMAPPED_GVA
)
556 real_gfn
= gpa_to_gfn(real_gfn
);
558 return kvm_vcpu_read_guest_page(vcpu
, real_gfn
, data
, offset
, len
);
560 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu
);
562 static int kvm_read_nested_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
563 void *data
, int offset
, int len
, u32 access
)
565 return kvm_read_guest_page_mmu(vcpu
, vcpu
->arch
.walk_mmu
, gfn
,
566 data
, offset
, len
, access
);
570 * Load the pae pdptrs. Return true is they are all valid.
572 int load_pdptrs(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
, unsigned long cr3
)
574 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
575 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
578 u64 pdpte
[ARRAY_SIZE(mmu
->pdptrs
)];
580 ret
= kvm_read_guest_page_mmu(vcpu
, mmu
, pdpt_gfn
, pdpte
,
581 offset
* sizeof(u64
), sizeof(pdpte
),
582 PFERR_USER_MASK
|PFERR_WRITE_MASK
);
587 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
588 if ((pdpte
[i
] & PT_PRESENT_MASK
) &&
590 vcpu
->arch
.mmu
.guest_rsvd_check
.rsvd_bits_mask
[0][2])) {
597 memcpy(mmu
->pdptrs
, pdpte
, sizeof(mmu
->pdptrs
));
598 __set_bit(VCPU_EXREG_PDPTR
,
599 (unsigned long *)&vcpu
->arch
.regs_avail
);
600 __set_bit(VCPU_EXREG_PDPTR
,
601 (unsigned long *)&vcpu
->arch
.regs_dirty
);
606 EXPORT_SYMBOL_GPL(load_pdptrs
);
608 bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
610 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.walk_mmu
->pdptrs
)];
616 if (is_long_mode(vcpu
) || !is_pae(vcpu
))
619 if (!test_bit(VCPU_EXREG_PDPTR
,
620 (unsigned long *)&vcpu
->arch
.regs_avail
))
623 gfn
= (kvm_read_cr3(vcpu
) & 0xffffffe0ul
) >> PAGE_SHIFT
;
624 offset
= (kvm_read_cr3(vcpu
) & 0xffffffe0ul
) & (PAGE_SIZE
- 1);
625 r
= kvm_read_nested_guest_page(vcpu
, gfn
, pdpte
, offset
, sizeof(pdpte
),
626 PFERR_USER_MASK
| PFERR_WRITE_MASK
);
629 changed
= memcmp(pdpte
, vcpu
->arch
.walk_mmu
->pdptrs
, sizeof(pdpte
)) != 0;
634 EXPORT_SYMBOL_GPL(pdptrs_changed
);
636 int kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
638 unsigned long old_cr0
= kvm_read_cr0(vcpu
);
639 unsigned long update_bits
= X86_CR0_PG
| X86_CR0_WP
;
644 if (cr0
& 0xffffffff00000000UL
)
648 cr0
&= ~CR0_RESERVED_BITS
;
650 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
))
653 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
))
656 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
658 if ((vcpu
->arch
.efer
& EFER_LME
)) {
663 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
668 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
673 if (!(cr0
& X86_CR0_PG
) && kvm_read_cr4_bits(vcpu
, X86_CR4_PCIDE
))
676 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
678 if ((cr0
^ old_cr0
) & X86_CR0_PG
) {
679 kvm_clear_async_pf_completion_queue(vcpu
);
680 kvm_async_pf_hash_reset(vcpu
);
683 if ((cr0
^ old_cr0
) & update_bits
)
684 kvm_mmu_reset_context(vcpu
);
686 if (((cr0
^ old_cr0
) & X86_CR0_CD
) &&
687 kvm_arch_has_noncoherent_dma(vcpu
->kvm
) &&
688 !kvm_check_has_quirk(vcpu
->kvm
, KVM_X86_QUIRK_CD_NW_CLEARED
))
689 kvm_zap_gfn_range(vcpu
->kvm
, 0, ~0ULL);
693 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
695 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
697 (void)kvm_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~0x0eul
) | (msw
& 0x0f));
699 EXPORT_SYMBOL_GPL(kvm_lmsw
);
701 static void kvm_load_guest_xcr0(struct kvm_vcpu
*vcpu
)
703 if (kvm_read_cr4_bits(vcpu
, X86_CR4_OSXSAVE
) &&
704 !vcpu
->guest_xcr0_loaded
) {
705 /* kvm_set_xcr() also depends on this */
706 if (vcpu
->arch
.xcr0
!= host_xcr0
)
707 xsetbv(XCR_XFEATURE_ENABLED_MASK
, vcpu
->arch
.xcr0
);
708 vcpu
->guest_xcr0_loaded
= 1;
712 static void kvm_put_guest_xcr0(struct kvm_vcpu
*vcpu
)
714 if (vcpu
->guest_xcr0_loaded
) {
715 if (vcpu
->arch
.xcr0
!= host_xcr0
)
716 xsetbv(XCR_XFEATURE_ENABLED_MASK
, host_xcr0
);
717 vcpu
->guest_xcr0_loaded
= 0;
721 static int __kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
724 u64 old_xcr0
= vcpu
->arch
.xcr0
;
727 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
728 if (index
!= XCR_XFEATURE_ENABLED_MASK
)
730 if (!(xcr0
& XFEATURE_MASK_FP
))
732 if ((xcr0
& XFEATURE_MASK_YMM
) && !(xcr0
& XFEATURE_MASK_SSE
))
736 * Do not allow the guest to set bits that we do not support
737 * saving. However, xcr0 bit 0 is always set, even if the
738 * emulated CPU does not support XSAVE (see fx_init).
740 valid_bits
= vcpu
->arch
.guest_supported_xcr0
| XFEATURE_MASK_FP
;
741 if (xcr0
& ~valid_bits
)
744 if ((!(xcr0
& XFEATURE_MASK_BNDREGS
)) !=
745 (!(xcr0
& XFEATURE_MASK_BNDCSR
)))
748 if (xcr0
& XFEATURE_MASK_AVX512
) {
749 if (!(xcr0
& XFEATURE_MASK_YMM
))
751 if ((xcr0
& XFEATURE_MASK_AVX512
) != XFEATURE_MASK_AVX512
)
754 vcpu
->arch
.xcr0
= xcr0
;
756 if ((xcr0
^ old_xcr0
) & XFEATURE_MASK_EXTEND
)
757 kvm_update_cpuid(vcpu
);
761 int kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
763 if (kvm_x86_ops
->get_cpl(vcpu
) != 0 ||
764 __kvm_set_xcr(vcpu
, index
, xcr
)) {
765 kvm_inject_gp(vcpu
, 0);
770 EXPORT_SYMBOL_GPL(kvm_set_xcr
);
772 int kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
774 unsigned long old_cr4
= kvm_read_cr4(vcpu
);
775 unsigned long pdptr_bits
= X86_CR4_PGE
| X86_CR4_PSE
| X86_CR4_PAE
|
776 X86_CR4_SMEP
| X86_CR4_SMAP
| X86_CR4_PKE
;
778 if (cr4
& CR4_RESERVED_BITS
)
781 if (!guest_cpuid_has(vcpu
, X86_FEATURE_XSAVE
) && (cr4
& X86_CR4_OSXSAVE
))
784 if (!guest_cpuid_has(vcpu
, X86_FEATURE_SMEP
) && (cr4
& X86_CR4_SMEP
))
787 if (!guest_cpuid_has(vcpu
, X86_FEATURE_SMAP
) && (cr4
& X86_CR4_SMAP
))
790 if (!guest_cpuid_has(vcpu
, X86_FEATURE_FSGSBASE
) && (cr4
& X86_CR4_FSGSBASE
))
793 if (!guest_cpuid_has(vcpu
, X86_FEATURE_PKU
) && (cr4
& X86_CR4_PKE
))
796 if (!guest_cpuid_has(vcpu
, X86_FEATURE_LA57
) && (cr4
& X86_CR4_LA57
))
799 if (!guest_cpuid_has(vcpu
, X86_FEATURE_UMIP
) && (cr4
& X86_CR4_UMIP
))
802 if (is_long_mode(vcpu
)) {
803 if (!(cr4
& X86_CR4_PAE
))
805 } else if (is_paging(vcpu
) && (cr4
& X86_CR4_PAE
)
806 && ((cr4
^ old_cr4
) & pdptr_bits
)
807 && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
811 if ((cr4
& X86_CR4_PCIDE
) && !(old_cr4
& X86_CR4_PCIDE
)) {
812 if (!guest_cpuid_has(vcpu
, X86_FEATURE_PCID
))
815 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
816 if ((kvm_read_cr3(vcpu
) & X86_CR3_PCID_MASK
) || !is_long_mode(vcpu
))
820 if (kvm_x86_ops
->set_cr4(vcpu
, cr4
))
823 if (((cr4
^ old_cr4
) & pdptr_bits
) ||
824 (!(cr4
& X86_CR4_PCIDE
) && (old_cr4
& X86_CR4_PCIDE
)))
825 kvm_mmu_reset_context(vcpu
);
827 if ((cr4
^ old_cr4
) & (X86_CR4_OSXSAVE
| X86_CR4_PKE
))
828 kvm_update_cpuid(vcpu
);
832 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
834 int kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
837 cr3
&= ~CR3_PCID_INVD
;
840 if (cr3
== kvm_read_cr3(vcpu
) && !pdptrs_changed(vcpu
)) {
841 kvm_mmu_sync_roots(vcpu
);
842 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
846 if (is_long_mode(vcpu
) &&
847 (cr3
& rsvd_bits(cpuid_maxphyaddr(vcpu
), 62)))
849 else if (is_pae(vcpu
) && is_paging(vcpu
) &&
850 !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, cr3
))
853 vcpu
->arch
.cr3
= cr3
;
854 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
855 kvm_mmu_new_cr3(vcpu
);
858 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
860 int kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
862 if (cr8
& CR8_RESERVED_BITS
)
864 if (lapic_in_kernel(vcpu
))
865 kvm_lapic_set_tpr(vcpu
, cr8
);
867 vcpu
->arch
.cr8
= cr8
;
870 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
872 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
874 if (lapic_in_kernel(vcpu
))
875 return kvm_lapic_get_cr8(vcpu
);
877 return vcpu
->arch
.cr8
;
879 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
881 static void kvm_update_dr0123(struct kvm_vcpu
*vcpu
)
885 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)) {
886 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
887 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
888 vcpu
->arch
.switch_db_regs
|= KVM_DEBUGREG_RELOAD
;
892 static void kvm_update_dr6(struct kvm_vcpu
*vcpu
)
894 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
895 kvm_x86_ops
->set_dr6(vcpu
, vcpu
->arch
.dr6
);
898 static void kvm_update_dr7(struct kvm_vcpu
*vcpu
)
902 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
903 dr7
= vcpu
->arch
.guest_debug_dr7
;
905 dr7
= vcpu
->arch
.dr7
;
906 kvm_x86_ops
->set_dr7(vcpu
, dr7
);
907 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_BP_ENABLED
;
908 if (dr7
& DR7_BP_EN_MASK
)
909 vcpu
->arch
.switch_db_regs
|= KVM_DEBUGREG_BP_ENABLED
;
912 static u64
kvm_dr6_fixed(struct kvm_vcpu
*vcpu
)
914 u64 fixed
= DR6_FIXED_1
;
916 if (!guest_cpuid_has(vcpu
, X86_FEATURE_RTM
))
921 static int __kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
925 vcpu
->arch
.db
[dr
] = val
;
926 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
927 vcpu
->arch
.eff_db
[dr
] = val
;
932 if (val
& 0xffffffff00000000ULL
)
934 vcpu
->arch
.dr6
= (val
& DR6_VOLATILE
) | kvm_dr6_fixed(vcpu
);
935 kvm_update_dr6(vcpu
);
940 if (val
& 0xffffffff00000000ULL
)
942 vcpu
->arch
.dr7
= (val
& DR7_VOLATILE
) | DR7_FIXED_1
;
943 kvm_update_dr7(vcpu
);
950 int kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
952 if (__kvm_set_dr(vcpu
, dr
, val
)) {
953 kvm_inject_gp(vcpu
, 0);
958 EXPORT_SYMBOL_GPL(kvm_set_dr
);
960 int kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *val
)
964 *val
= vcpu
->arch
.db
[dr
];
969 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
970 *val
= vcpu
->arch
.dr6
;
972 *val
= kvm_x86_ops
->get_dr6(vcpu
);
977 *val
= vcpu
->arch
.dr7
;
982 EXPORT_SYMBOL_GPL(kvm_get_dr
);
984 bool kvm_rdpmc(struct kvm_vcpu
*vcpu
)
986 u32 ecx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
990 err
= kvm_pmu_rdpmc(vcpu
, ecx
, &data
);
993 kvm_register_write(vcpu
, VCPU_REGS_RAX
, (u32
)data
);
994 kvm_register_write(vcpu
, VCPU_REGS_RDX
, data
>> 32);
997 EXPORT_SYMBOL_GPL(kvm_rdpmc
);
1000 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1001 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1003 * This list is modified at module load time to reflect the
1004 * capabilities of the host cpu. This capabilities test skips MSRs that are
1005 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1006 * may depend on host virtualization features rather than host cpu features.
1009 static u32 msrs_to_save
[] = {
1010 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
1012 #ifdef CONFIG_X86_64
1013 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
1015 MSR_IA32_TSC
, MSR_IA32_CR_PAT
, MSR_VM_HSAVE_PA
,
1016 MSR_IA32_FEATURE_CONTROL
, MSR_IA32_BNDCFGS
, MSR_TSC_AUX
,
1017 MSR_IA32_SPEC_CTRL
, MSR_IA32_ARCH_CAPABILITIES
1020 static unsigned num_msrs_to_save
;
1022 static u32 emulated_msrs
[] = {
1023 MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
1024 MSR_KVM_SYSTEM_TIME_NEW
, MSR_KVM_WALL_CLOCK_NEW
,
1025 HV_X64_MSR_GUEST_OS_ID
, HV_X64_MSR_HYPERCALL
,
1026 HV_X64_MSR_TIME_REF_COUNT
, HV_X64_MSR_REFERENCE_TSC
,
1027 HV_X64_MSR_TSC_FREQUENCY
, HV_X64_MSR_APIC_FREQUENCY
,
1028 HV_X64_MSR_CRASH_P0
, HV_X64_MSR_CRASH_P1
, HV_X64_MSR_CRASH_P2
,
1029 HV_X64_MSR_CRASH_P3
, HV_X64_MSR_CRASH_P4
, HV_X64_MSR_CRASH_CTL
,
1031 HV_X64_MSR_VP_INDEX
,
1032 HV_X64_MSR_VP_RUNTIME
,
1033 HV_X64_MSR_SCONTROL
,
1034 HV_X64_MSR_STIMER0_CONFIG
,
1035 HV_X64_MSR_APIC_ASSIST_PAGE
, MSR_KVM_ASYNC_PF_EN
, MSR_KVM_STEAL_TIME
,
1038 MSR_IA32_TSC_ADJUST
,
1039 MSR_IA32_TSCDEADLINE
,
1040 MSR_IA32_MISC_ENABLE
,
1041 MSR_IA32_MCG_STATUS
,
1043 MSR_IA32_MCG_EXT_CTL
,
1047 MSR_MISC_FEATURES_ENABLES
,
1050 static unsigned num_emulated_msrs
;
1052 bool kvm_valid_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
1054 if (efer
& efer_reserved_bits
)
1057 if (efer
& EFER_FFXSR
&& !guest_cpuid_has(vcpu
, X86_FEATURE_FXSR_OPT
))
1060 if (efer
& EFER_SVME
&& !guest_cpuid_has(vcpu
, X86_FEATURE_SVM
))
1065 EXPORT_SYMBOL_GPL(kvm_valid_efer
);
1067 static int set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
1069 u64 old_efer
= vcpu
->arch
.efer
;
1071 if (!kvm_valid_efer(vcpu
, efer
))
1075 && (vcpu
->arch
.efer
& EFER_LME
) != (efer
& EFER_LME
))
1079 efer
|= vcpu
->arch
.efer
& EFER_LMA
;
1081 kvm_x86_ops
->set_efer(vcpu
, efer
);
1083 /* Update reserved bits */
1084 if ((efer
^ old_efer
) & EFER_NX
)
1085 kvm_mmu_reset_context(vcpu
);
1090 void kvm_enable_efer_bits(u64 mask
)
1092 efer_reserved_bits
&= ~mask
;
1094 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
1097 * Writes msr value into into the appropriate "register".
1098 * Returns 0 on success, non-0 otherwise.
1099 * Assumes vcpu_load() was already called.
1101 int kvm_set_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
1103 switch (msr
->index
) {
1106 case MSR_KERNEL_GS_BASE
:
1109 if (is_noncanonical_address(msr
->data
, vcpu
))
1112 case MSR_IA32_SYSENTER_EIP
:
1113 case MSR_IA32_SYSENTER_ESP
:
1115 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1116 * non-canonical address is written on Intel but not on
1117 * AMD (which ignores the top 32-bits, because it does
1118 * not implement 64-bit SYSENTER).
1120 * 64-bit code should hence be able to write a non-canonical
1121 * value on AMD. Making the address canonical ensures that
1122 * vmentry does not fail on Intel after writing a non-canonical
1123 * value, and that something deterministic happens if the guest
1124 * invokes 64-bit SYSENTER.
1126 msr
->data
= get_canonical(msr
->data
, vcpu_virt_addr_bits(vcpu
));
1128 return kvm_x86_ops
->set_msr(vcpu
, msr
);
1130 EXPORT_SYMBOL_GPL(kvm_set_msr
);
1133 * Adapt set_msr() to msr_io()'s calling convention
1135 static int do_get_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
1137 struct msr_data msr
;
1141 msr
.host_initiated
= true;
1142 r
= kvm_get_msr(vcpu
, &msr
);
1150 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
1152 struct msr_data msr
;
1156 msr
.host_initiated
= true;
1157 return kvm_set_msr(vcpu
, &msr
);
1160 #ifdef CONFIG_X86_64
1161 struct pvclock_gtod_data
{
1164 struct { /* extract of a clocksource struct */
1177 static struct pvclock_gtod_data pvclock_gtod_data
;
1179 static void update_pvclock_gtod(struct timekeeper
*tk
)
1181 struct pvclock_gtod_data
*vdata
= &pvclock_gtod_data
;
1184 boot_ns
= ktime_to_ns(ktime_add(tk
->tkr_mono
.base
, tk
->offs_boot
));
1186 write_seqcount_begin(&vdata
->seq
);
1188 /* copy pvclock gtod data */
1189 vdata
->clock
.vclock_mode
= tk
->tkr_mono
.clock
->archdata
.vclock_mode
;
1190 vdata
->clock
.cycle_last
= tk
->tkr_mono
.cycle_last
;
1191 vdata
->clock
.mask
= tk
->tkr_mono
.mask
;
1192 vdata
->clock
.mult
= tk
->tkr_mono
.mult
;
1193 vdata
->clock
.shift
= tk
->tkr_mono
.shift
;
1195 vdata
->boot_ns
= boot_ns
;
1196 vdata
->nsec_base
= tk
->tkr_mono
.xtime_nsec
;
1198 vdata
->wall_time_sec
= tk
->xtime_sec
;
1200 write_seqcount_end(&vdata
->seq
);
1204 void kvm_set_pending_timer(struct kvm_vcpu
*vcpu
)
1207 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1208 * vcpu_enter_guest. This function is only called from
1209 * the physical CPU that is running vcpu.
1211 kvm_make_request(KVM_REQ_PENDING_TIMER
, vcpu
);
1214 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
)
1218 struct pvclock_wall_clock wc
;
1219 struct timespec64 boot
;
1224 r
= kvm_read_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1229 ++version
; /* first time write, random junk */
1233 if (kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
)))
1237 * The guest calculates current wall clock time by adding
1238 * system time (updated by kvm_guest_time_update below) to the
1239 * wall clock specified here. guest system time equals host
1240 * system time for us, thus we must fill in host boot time here.
1242 getboottime64(&boot
);
1244 if (kvm
->arch
.kvmclock_offset
) {
1245 struct timespec64 ts
= ns_to_timespec64(kvm
->arch
.kvmclock_offset
);
1246 boot
= timespec64_sub(boot
, ts
);
1248 wc
.sec
= (u32
)boot
.tv_sec
; /* overflow in 2106 guest time */
1249 wc
.nsec
= boot
.tv_nsec
;
1250 wc
.version
= version
;
1252 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
1255 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1258 static uint32_t div_frac(uint32_t dividend
, uint32_t divisor
)
1260 do_shl32_div32(dividend
, divisor
);
1264 static void kvm_get_time_scale(uint64_t scaled_hz
, uint64_t base_hz
,
1265 s8
*pshift
, u32
*pmultiplier
)
1273 scaled64
= scaled_hz
;
1274 while (tps64
> scaled64
*2 || tps64
& 0xffffffff00000000ULL
) {
1279 tps32
= (uint32_t)tps64
;
1280 while (tps32
<= scaled64
|| scaled64
& 0xffffffff00000000ULL
) {
1281 if (scaled64
& 0xffffffff00000000ULL
|| tps32
& 0x80000000)
1289 *pmultiplier
= div_frac(scaled64
, tps32
);
1291 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1292 __func__
, base_hz
, scaled_hz
, shift
, *pmultiplier
);
1295 #ifdef CONFIG_X86_64
1296 static atomic_t kvm_guest_has_master_clock
= ATOMIC_INIT(0);
1299 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz
);
1300 static unsigned long max_tsc_khz
;
1302 static u32
adjust_tsc_khz(u32 khz
, s32 ppm
)
1304 u64 v
= (u64
)khz
* (1000000 + ppm
);
1309 static int set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 user_tsc_khz
, bool scale
)
1313 /* Guest TSC same frequency as host TSC? */
1315 vcpu
->arch
.tsc_scaling_ratio
= kvm_default_tsc_scaling_ratio
;
1319 /* TSC scaling supported? */
1320 if (!kvm_has_tsc_control
) {
1321 if (user_tsc_khz
> tsc_khz
) {
1322 vcpu
->arch
.tsc_catchup
= 1;
1323 vcpu
->arch
.tsc_always_catchup
= 1;
1326 WARN(1, "user requested TSC rate below hardware speed\n");
1331 /* TSC scaling required - calculate ratio */
1332 ratio
= mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits
,
1333 user_tsc_khz
, tsc_khz
);
1335 if (ratio
== 0 || ratio
>= kvm_max_tsc_scaling_ratio
) {
1336 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1341 vcpu
->arch
.tsc_scaling_ratio
= ratio
;
1345 static int kvm_set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 user_tsc_khz
)
1347 u32 thresh_lo
, thresh_hi
;
1348 int use_scaling
= 0;
1350 /* tsc_khz can be zero if TSC calibration fails */
1351 if (user_tsc_khz
== 0) {
1352 /* set tsc_scaling_ratio to a safe value */
1353 vcpu
->arch
.tsc_scaling_ratio
= kvm_default_tsc_scaling_ratio
;
1357 /* Compute a scale to convert nanoseconds in TSC cycles */
1358 kvm_get_time_scale(user_tsc_khz
* 1000LL, NSEC_PER_SEC
,
1359 &vcpu
->arch
.virtual_tsc_shift
,
1360 &vcpu
->arch
.virtual_tsc_mult
);
1361 vcpu
->arch
.virtual_tsc_khz
= user_tsc_khz
;
1364 * Compute the variation in TSC rate which is acceptable
1365 * within the range of tolerance and decide if the
1366 * rate being applied is within that bounds of the hardware
1367 * rate. If so, no scaling or compensation need be done.
1369 thresh_lo
= adjust_tsc_khz(tsc_khz
, -tsc_tolerance_ppm
);
1370 thresh_hi
= adjust_tsc_khz(tsc_khz
, tsc_tolerance_ppm
);
1371 if (user_tsc_khz
< thresh_lo
|| user_tsc_khz
> thresh_hi
) {
1372 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz
, thresh_lo
, thresh_hi
);
1375 return set_tsc_khz(vcpu
, user_tsc_khz
, use_scaling
);
1378 static u64
compute_guest_tsc(struct kvm_vcpu
*vcpu
, s64 kernel_ns
)
1380 u64 tsc
= pvclock_scale_delta(kernel_ns
-vcpu
->arch
.this_tsc_nsec
,
1381 vcpu
->arch
.virtual_tsc_mult
,
1382 vcpu
->arch
.virtual_tsc_shift
);
1383 tsc
+= vcpu
->arch
.this_tsc_write
;
1387 static inline int gtod_is_based_on_tsc(int mode
)
1389 return mode
== VCLOCK_TSC
|| mode
== VCLOCK_HVCLOCK
;
1392 static void kvm_track_tsc_matching(struct kvm_vcpu
*vcpu
)
1394 #ifdef CONFIG_X86_64
1396 struct kvm_arch
*ka
= &vcpu
->kvm
->arch
;
1397 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1399 vcpus_matched
= (ka
->nr_vcpus_matched_tsc
+ 1 ==
1400 atomic_read(&vcpu
->kvm
->online_vcpus
));
1403 * Once the masterclock is enabled, always perform request in
1404 * order to update it.
1406 * In order to enable masterclock, the host clocksource must be TSC
1407 * and the vcpus need to have matched TSCs. When that happens,
1408 * perform request to enable masterclock.
1410 if (ka
->use_master_clock
||
1411 (gtod_is_based_on_tsc(gtod
->clock
.vclock_mode
) && vcpus_matched
))
1412 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
1414 trace_kvm_track_tsc(vcpu
->vcpu_id
, ka
->nr_vcpus_matched_tsc
,
1415 atomic_read(&vcpu
->kvm
->online_vcpus
),
1416 ka
->use_master_clock
, gtod
->clock
.vclock_mode
);
1420 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu
*vcpu
, s64 offset
)
1422 u64 curr_offset
= vcpu
->arch
.tsc_offset
;
1423 vcpu
->arch
.ia32_tsc_adjust_msr
+= offset
- curr_offset
;
1427 * Multiply tsc by a fixed point number represented by ratio.
1429 * The most significant 64-N bits (mult) of ratio represent the
1430 * integral part of the fixed point number; the remaining N bits
1431 * (frac) represent the fractional part, ie. ratio represents a fixed
1432 * point number (mult + frac * 2^(-N)).
1434 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1436 static inline u64
__scale_tsc(u64 ratio
, u64 tsc
)
1438 return mul_u64_u64_shr(tsc
, ratio
, kvm_tsc_scaling_ratio_frac_bits
);
1441 u64
kvm_scale_tsc(struct kvm_vcpu
*vcpu
, u64 tsc
)
1444 u64 ratio
= vcpu
->arch
.tsc_scaling_ratio
;
1446 if (ratio
!= kvm_default_tsc_scaling_ratio
)
1447 _tsc
= __scale_tsc(ratio
, tsc
);
1451 EXPORT_SYMBOL_GPL(kvm_scale_tsc
);
1453 static u64
kvm_compute_tsc_offset(struct kvm_vcpu
*vcpu
, u64 target_tsc
)
1457 tsc
= kvm_scale_tsc(vcpu
, rdtsc());
1459 return target_tsc
- tsc
;
1462 u64
kvm_read_l1_tsc(struct kvm_vcpu
*vcpu
, u64 host_tsc
)
1464 return vcpu
->arch
.tsc_offset
+ kvm_scale_tsc(vcpu
, host_tsc
);
1466 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc
);
1468 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu
*vcpu
, u64 offset
)
1470 kvm_x86_ops
->write_tsc_offset(vcpu
, offset
);
1471 vcpu
->arch
.tsc_offset
= offset
;
1474 static inline bool kvm_check_tsc_unstable(void)
1476 #ifdef CONFIG_X86_64
1478 * TSC is marked unstable when we're running on Hyper-V,
1479 * 'TSC page' clocksource is good.
1481 if (pvclock_gtod_data
.clock
.vclock_mode
== VCLOCK_HVCLOCK
)
1484 return check_tsc_unstable();
1487 void kvm_write_tsc(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
1489 struct kvm
*kvm
= vcpu
->kvm
;
1490 u64 offset
, ns
, elapsed
;
1491 unsigned long flags
;
1493 bool already_matched
;
1494 u64 data
= msr
->data
;
1495 bool synchronizing
= false;
1497 raw_spin_lock_irqsave(&kvm
->arch
.tsc_write_lock
, flags
);
1498 offset
= kvm_compute_tsc_offset(vcpu
, data
);
1499 ns
= ktime_get_boot_ns();
1500 elapsed
= ns
- kvm
->arch
.last_tsc_nsec
;
1502 if (vcpu
->arch
.virtual_tsc_khz
) {
1503 if (data
== 0 && msr
->host_initiated
) {
1505 * detection of vcpu initialization -- need to sync
1506 * with other vCPUs. This particularly helps to keep
1507 * kvm_clock stable after CPU hotplug
1509 synchronizing
= true;
1511 u64 tsc_exp
= kvm
->arch
.last_tsc_write
+
1512 nsec_to_cycles(vcpu
, elapsed
);
1513 u64 tsc_hz
= vcpu
->arch
.virtual_tsc_khz
* 1000LL;
1515 * Special case: TSC write with a small delta (1 second)
1516 * of virtual cycle time against real time is
1517 * interpreted as an attempt to synchronize the CPU.
1519 synchronizing
= data
< tsc_exp
+ tsc_hz
&&
1520 data
+ tsc_hz
> tsc_exp
;
1525 * For a reliable TSC, we can match TSC offsets, and for an unstable
1526 * TSC, we add elapsed time in this computation. We could let the
1527 * compensation code attempt to catch up if we fall behind, but
1528 * it's better to try to match offsets from the beginning.
1530 if (synchronizing
&&
1531 vcpu
->arch
.virtual_tsc_khz
== kvm
->arch
.last_tsc_khz
) {
1532 if (!kvm_check_tsc_unstable()) {
1533 offset
= kvm
->arch
.cur_tsc_offset
;
1534 pr_debug("kvm: matched tsc offset for %llu\n", data
);
1536 u64 delta
= nsec_to_cycles(vcpu
, elapsed
);
1538 offset
= kvm_compute_tsc_offset(vcpu
, data
);
1539 pr_debug("kvm: adjusted tsc offset by %llu\n", delta
);
1542 already_matched
= (vcpu
->arch
.this_tsc_generation
== kvm
->arch
.cur_tsc_generation
);
1545 * We split periods of matched TSC writes into generations.
1546 * For each generation, we track the original measured
1547 * nanosecond time, offset, and write, so if TSCs are in
1548 * sync, we can match exact offset, and if not, we can match
1549 * exact software computation in compute_guest_tsc()
1551 * These values are tracked in kvm->arch.cur_xxx variables.
1553 kvm
->arch
.cur_tsc_generation
++;
1554 kvm
->arch
.cur_tsc_nsec
= ns
;
1555 kvm
->arch
.cur_tsc_write
= data
;
1556 kvm
->arch
.cur_tsc_offset
= offset
;
1558 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1559 kvm
->arch
.cur_tsc_generation
, data
);
1563 * We also track th most recent recorded KHZ, write and time to
1564 * allow the matching interval to be extended at each write.
1566 kvm
->arch
.last_tsc_nsec
= ns
;
1567 kvm
->arch
.last_tsc_write
= data
;
1568 kvm
->arch
.last_tsc_khz
= vcpu
->arch
.virtual_tsc_khz
;
1570 vcpu
->arch
.last_guest_tsc
= data
;
1572 /* Keep track of which generation this VCPU has synchronized to */
1573 vcpu
->arch
.this_tsc_generation
= kvm
->arch
.cur_tsc_generation
;
1574 vcpu
->arch
.this_tsc_nsec
= kvm
->arch
.cur_tsc_nsec
;
1575 vcpu
->arch
.this_tsc_write
= kvm
->arch
.cur_tsc_write
;
1577 if (!msr
->host_initiated
&& guest_cpuid_has(vcpu
, X86_FEATURE_TSC_ADJUST
))
1578 update_ia32_tsc_adjust_msr(vcpu
, offset
);
1580 kvm_vcpu_write_tsc_offset(vcpu
, offset
);
1581 raw_spin_unlock_irqrestore(&kvm
->arch
.tsc_write_lock
, flags
);
1583 spin_lock(&kvm
->arch
.pvclock_gtod_sync_lock
);
1585 kvm
->arch
.nr_vcpus_matched_tsc
= 0;
1586 } else if (!already_matched
) {
1587 kvm
->arch
.nr_vcpus_matched_tsc
++;
1590 kvm_track_tsc_matching(vcpu
);
1591 spin_unlock(&kvm
->arch
.pvclock_gtod_sync_lock
);
1594 EXPORT_SYMBOL_GPL(kvm_write_tsc
);
1596 static inline void adjust_tsc_offset_guest(struct kvm_vcpu
*vcpu
,
1599 kvm_vcpu_write_tsc_offset(vcpu
, vcpu
->arch
.tsc_offset
+ adjustment
);
1602 static inline void adjust_tsc_offset_host(struct kvm_vcpu
*vcpu
, s64 adjustment
)
1604 if (vcpu
->arch
.tsc_scaling_ratio
!= kvm_default_tsc_scaling_ratio
)
1605 WARN_ON(adjustment
< 0);
1606 adjustment
= kvm_scale_tsc(vcpu
, (u64
) adjustment
);
1607 adjust_tsc_offset_guest(vcpu
, adjustment
);
1610 #ifdef CONFIG_X86_64
1612 static u64
read_tsc(void)
1614 u64 ret
= (u64
)rdtsc_ordered();
1615 u64 last
= pvclock_gtod_data
.clock
.cycle_last
;
1617 if (likely(ret
>= last
))
1621 * GCC likes to generate cmov here, but this branch is extremely
1622 * predictable (it's just a function of time and the likely is
1623 * very likely) and there's a data dependence, so force GCC
1624 * to generate a branch instead. I don't barrier() because
1625 * we don't actually need a barrier, and if this function
1626 * ever gets inlined it will generate worse code.
1632 static inline u64
vgettsc(u64
*tsc_timestamp
, int *mode
)
1635 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1638 switch (gtod
->clock
.vclock_mode
) {
1639 case VCLOCK_HVCLOCK
:
1640 tsc_pg_val
= hv_read_tsc_page_tsc(hv_get_tsc_page(),
1642 if (tsc_pg_val
!= U64_MAX
) {
1643 /* TSC page valid */
1644 *mode
= VCLOCK_HVCLOCK
;
1645 v
= (tsc_pg_val
- gtod
->clock
.cycle_last
) &
1648 /* TSC page invalid */
1649 *mode
= VCLOCK_NONE
;
1654 *tsc_timestamp
= read_tsc();
1655 v
= (*tsc_timestamp
- gtod
->clock
.cycle_last
) &
1659 *mode
= VCLOCK_NONE
;
1662 if (*mode
== VCLOCK_NONE
)
1663 *tsc_timestamp
= v
= 0;
1665 return v
* gtod
->clock
.mult
;
1668 static int do_monotonic_boot(s64
*t
, u64
*tsc_timestamp
)
1670 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1676 seq
= read_seqcount_begin(>od
->seq
);
1677 ns
= gtod
->nsec_base
;
1678 ns
+= vgettsc(tsc_timestamp
, &mode
);
1679 ns
>>= gtod
->clock
.shift
;
1680 ns
+= gtod
->boot_ns
;
1681 } while (unlikely(read_seqcount_retry(>od
->seq
, seq
)));
1687 static int do_realtime(struct timespec
*ts
, u64
*tsc_timestamp
)
1689 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1695 seq
= read_seqcount_begin(>od
->seq
);
1696 ts
->tv_sec
= gtod
->wall_time_sec
;
1697 ns
= gtod
->nsec_base
;
1698 ns
+= vgettsc(tsc_timestamp
, &mode
);
1699 ns
>>= gtod
->clock
.shift
;
1700 } while (unlikely(read_seqcount_retry(>od
->seq
, seq
)));
1702 ts
->tv_sec
+= __iter_div_u64_rem(ns
, NSEC_PER_SEC
, &ns
);
1708 /* returns true if host is using TSC based clocksource */
1709 static bool kvm_get_time_and_clockread(s64
*kernel_ns
, u64
*tsc_timestamp
)
1711 /* checked again under seqlock below */
1712 if (!gtod_is_based_on_tsc(pvclock_gtod_data
.clock
.vclock_mode
))
1715 return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns
,
1719 /* returns true if host is using TSC based clocksource */
1720 static bool kvm_get_walltime_and_clockread(struct timespec
*ts
,
1723 /* checked again under seqlock below */
1724 if (!gtod_is_based_on_tsc(pvclock_gtod_data
.clock
.vclock_mode
))
1727 return gtod_is_based_on_tsc(do_realtime(ts
, tsc_timestamp
));
1733 * Assuming a stable TSC across physical CPUS, and a stable TSC
1734 * across virtual CPUs, the following condition is possible.
1735 * Each numbered line represents an event visible to both
1736 * CPUs at the next numbered event.
1738 * "timespecX" represents host monotonic time. "tscX" represents
1741 * VCPU0 on CPU0 | VCPU1 on CPU1
1743 * 1. read timespec0,tsc0
1744 * 2. | timespec1 = timespec0 + N
1746 * 3. transition to guest | transition to guest
1747 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1748 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1749 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1751 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1754 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1756 * - 0 < N - M => M < N
1758 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1759 * always the case (the difference between two distinct xtime instances
1760 * might be smaller then the difference between corresponding TSC reads,
1761 * when updating guest vcpus pvclock areas).
1763 * To avoid that problem, do not allow visibility of distinct
1764 * system_timestamp/tsc_timestamp values simultaneously: use a master
1765 * copy of host monotonic time values. Update that master copy
1768 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1772 static void pvclock_update_vm_gtod_copy(struct kvm
*kvm
)
1774 #ifdef CONFIG_X86_64
1775 struct kvm_arch
*ka
= &kvm
->arch
;
1777 bool host_tsc_clocksource
, vcpus_matched
;
1779 vcpus_matched
= (ka
->nr_vcpus_matched_tsc
+ 1 ==
1780 atomic_read(&kvm
->online_vcpus
));
1783 * If the host uses TSC clock, then passthrough TSC as stable
1786 host_tsc_clocksource
= kvm_get_time_and_clockread(
1787 &ka
->master_kernel_ns
,
1788 &ka
->master_cycle_now
);
1790 ka
->use_master_clock
= host_tsc_clocksource
&& vcpus_matched
1791 && !ka
->backwards_tsc_observed
1792 && !ka
->boot_vcpu_runs_old_kvmclock
;
1794 if (ka
->use_master_clock
)
1795 atomic_set(&kvm_guest_has_master_clock
, 1);
1797 vclock_mode
= pvclock_gtod_data
.clock
.vclock_mode
;
1798 trace_kvm_update_master_clock(ka
->use_master_clock
, vclock_mode
,
1803 void kvm_make_mclock_inprogress_request(struct kvm
*kvm
)
1805 kvm_make_all_cpus_request(kvm
, KVM_REQ_MCLOCK_INPROGRESS
);
1808 static void kvm_gen_update_masterclock(struct kvm
*kvm
)
1810 #ifdef CONFIG_X86_64
1812 struct kvm_vcpu
*vcpu
;
1813 struct kvm_arch
*ka
= &kvm
->arch
;
1815 spin_lock(&ka
->pvclock_gtod_sync_lock
);
1816 kvm_make_mclock_inprogress_request(kvm
);
1817 /* no guest entries from this point */
1818 pvclock_update_vm_gtod_copy(kvm
);
1820 kvm_for_each_vcpu(i
, vcpu
, kvm
)
1821 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
1823 /* guest entries allowed */
1824 kvm_for_each_vcpu(i
, vcpu
, kvm
)
1825 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS
, vcpu
);
1827 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1831 u64
get_kvmclock_ns(struct kvm
*kvm
)
1833 struct kvm_arch
*ka
= &kvm
->arch
;
1834 struct pvclock_vcpu_time_info hv_clock
;
1837 spin_lock(&ka
->pvclock_gtod_sync_lock
);
1838 if (!ka
->use_master_clock
) {
1839 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1840 return ktime_get_boot_ns() + ka
->kvmclock_offset
;
1843 hv_clock
.tsc_timestamp
= ka
->master_cycle_now
;
1844 hv_clock
.system_time
= ka
->master_kernel_ns
+ ka
->kvmclock_offset
;
1845 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1847 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1850 if (__this_cpu_read(cpu_tsc_khz
)) {
1851 kvm_get_time_scale(NSEC_PER_SEC
, __this_cpu_read(cpu_tsc_khz
) * 1000LL,
1852 &hv_clock
.tsc_shift
,
1853 &hv_clock
.tsc_to_system_mul
);
1854 ret
= __pvclock_read_cycles(&hv_clock
, rdtsc());
1856 ret
= ktime_get_boot_ns() + ka
->kvmclock_offset
;
1863 static void kvm_setup_pvclock_page(struct kvm_vcpu
*v
)
1865 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
1866 struct pvclock_vcpu_time_info guest_hv_clock
;
1868 if (unlikely(kvm_read_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1869 &guest_hv_clock
, sizeof(guest_hv_clock
))))
1872 /* This VCPU is paused, but it's legal for a guest to read another
1873 * VCPU's kvmclock, so we really have to follow the specification where
1874 * it says that version is odd if data is being modified, and even after
1877 * Version field updates must be kept separate. This is because
1878 * kvm_write_guest_cached might use a "rep movs" instruction, and
1879 * writes within a string instruction are weakly ordered. So there
1880 * are three writes overall.
1882 * As a small optimization, only write the version field in the first
1883 * and third write. The vcpu->pv_time cache is still valid, because the
1884 * version field is the first in the struct.
1886 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info
, version
) != 0);
1888 if (guest_hv_clock
.version
& 1)
1889 ++guest_hv_clock
.version
; /* first time write, random junk */
1891 vcpu
->hv_clock
.version
= guest_hv_clock
.version
+ 1;
1892 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1894 sizeof(vcpu
->hv_clock
.version
));
1898 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1899 vcpu
->hv_clock
.flags
|= (guest_hv_clock
.flags
& PVCLOCK_GUEST_STOPPED
);
1901 if (vcpu
->pvclock_set_guest_stopped_request
) {
1902 vcpu
->hv_clock
.flags
|= PVCLOCK_GUEST_STOPPED
;
1903 vcpu
->pvclock_set_guest_stopped_request
= false;
1906 trace_kvm_pvclock_update(v
->vcpu_id
, &vcpu
->hv_clock
);
1908 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1910 sizeof(vcpu
->hv_clock
));
1914 vcpu
->hv_clock
.version
++;
1915 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1917 sizeof(vcpu
->hv_clock
.version
));
1920 static int kvm_guest_time_update(struct kvm_vcpu
*v
)
1922 unsigned long flags
, tgt_tsc_khz
;
1923 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
1924 struct kvm_arch
*ka
= &v
->kvm
->arch
;
1926 u64 tsc_timestamp
, host_tsc
;
1928 bool use_master_clock
;
1934 * If the host uses TSC clock, then passthrough TSC as stable
1937 spin_lock(&ka
->pvclock_gtod_sync_lock
);
1938 use_master_clock
= ka
->use_master_clock
;
1939 if (use_master_clock
) {
1940 host_tsc
= ka
->master_cycle_now
;
1941 kernel_ns
= ka
->master_kernel_ns
;
1943 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1945 /* Keep irq disabled to prevent changes to the clock */
1946 local_irq_save(flags
);
1947 tgt_tsc_khz
= __this_cpu_read(cpu_tsc_khz
);
1948 if (unlikely(tgt_tsc_khz
== 0)) {
1949 local_irq_restore(flags
);
1950 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
1953 if (!use_master_clock
) {
1955 kernel_ns
= ktime_get_boot_ns();
1958 tsc_timestamp
= kvm_read_l1_tsc(v
, host_tsc
);
1961 * We may have to catch up the TSC to match elapsed wall clock
1962 * time for two reasons, even if kvmclock is used.
1963 * 1) CPU could have been running below the maximum TSC rate
1964 * 2) Broken TSC compensation resets the base at each VCPU
1965 * entry to avoid unknown leaps of TSC even when running
1966 * again on the same CPU. This may cause apparent elapsed
1967 * time to disappear, and the guest to stand still or run
1970 if (vcpu
->tsc_catchup
) {
1971 u64 tsc
= compute_guest_tsc(v
, kernel_ns
);
1972 if (tsc
> tsc_timestamp
) {
1973 adjust_tsc_offset_guest(v
, tsc
- tsc_timestamp
);
1974 tsc_timestamp
= tsc
;
1978 local_irq_restore(flags
);
1980 /* With all the info we got, fill in the values */
1982 if (kvm_has_tsc_control
)
1983 tgt_tsc_khz
= kvm_scale_tsc(v
, tgt_tsc_khz
);
1985 if (unlikely(vcpu
->hw_tsc_khz
!= tgt_tsc_khz
)) {
1986 kvm_get_time_scale(NSEC_PER_SEC
, tgt_tsc_khz
* 1000LL,
1987 &vcpu
->hv_clock
.tsc_shift
,
1988 &vcpu
->hv_clock
.tsc_to_system_mul
);
1989 vcpu
->hw_tsc_khz
= tgt_tsc_khz
;
1992 vcpu
->hv_clock
.tsc_timestamp
= tsc_timestamp
;
1993 vcpu
->hv_clock
.system_time
= kernel_ns
+ v
->kvm
->arch
.kvmclock_offset
;
1994 vcpu
->last_guest_tsc
= tsc_timestamp
;
1996 /* If the host uses TSC clocksource, then it is stable */
1998 if (use_master_clock
)
1999 pvclock_flags
|= PVCLOCK_TSC_STABLE_BIT
;
2001 vcpu
->hv_clock
.flags
= pvclock_flags
;
2003 if (vcpu
->pv_time_enabled
)
2004 kvm_setup_pvclock_page(v
);
2005 if (v
== kvm_get_vcpu(v
->kvm
, 0))
2006 kvm_hv_setup_tsc_page(v
->kvm
, &vcpu
->hv_clock
);
2011 * kvmclock updates which are isolated to a given vcpu, such as
2012 * vcpu->cpu migration, should not allow system_timestamp from
2013 * the rest of the vcpus to remain static. Otherwise ntp frequency
2014 * correction applies to one vcpu's system_timestamp but not
2017 * So in those cases, request a kvmclock update for all vcpus.
2018 * We need to rate-limit these requests though, as they can
2019 * considerably slow guests that have a large number of vcpus.
2020 * The time for a remote vcpu to update its kvmclock is bound
2021 * by the delay we use to rate-limit the updates.
2024 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2026 static void kvmclock_update_fn(struct work_struct
*work
)
2029 struct delayed_work
*dwork
= to_delayed_work(work
);
2030 struct kvm_arch
*ka
= container_of(dwork
, struct kvm_arch
,
2031 kvmclock_update_work
);
2032 struct kvm
*kvm
= container_of(ka
, struct kvm
, arch
);
2033 struct kvm_vcpu
*vcpu
;
2035 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
2036 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
2037 kvm_vcpu_kick(vcpu
);
2041 static void kvm_gen_kvmclock_update(struct kvm_vcpu
*v
)
2043 struct kvm
*kvm
= v
->kvm
;
2045 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
2046 schedule_delayed_work(&kvm
->arch
.kvmclock_update_work
,
2047 KVMCLOCK_UPDATE_DELAY
);
2050 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2052 static void kvmclock_sync_fn(struct work_struct
*work
)
2054 struct delayed_work
*dwork
= to_delayed_work(work
);
2055 struct kvm_arch
*ka
= container_of(dwork
, struct kvm_arch
,
2056 kvmclock_sync_work
);
2057 struct kvm
*kvm
= container_of(ka
, struct kvm
, arch
);
2059 if (!kvmclock_periodic_sync
)
2062 schedule_delayed_work(&kvm
->arch
.kvmclock_update_work
, 0);
2063 schedule_delayed_work(&kvm
->arch
.kvmclock_sync_work
,
2064 KVMCLOCK_SYNC_PERIOD
);
2067 static int set_msr_mce(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2069 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2070 unsigned bank_num
= mcg_cap
& 0xff;
2071 u32 msr
= msr_info
->index
;
2072 u64 data
= msr_info
->data
;
2075 case MSR_IA32_MCG_STATUS
:
2076 vcpu
->arch
.mcg_status
= data
;
2078 case MSR_IA32_MCG_CTL
:
2079 if (!(mcg_cap
& MCG_CTL_P
))
2081 if (data
!= 0 && data
!= ~(u64
)0)
2083 vcpu
->arch
.mcg_ctl
= data
;
2086 if (msr
>= MSR_IA32_MC0_CTL
&&
2087 msr
< MSR_IA32_MCx_CTL(bank_num
)) {
2088 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
2089 /* only 0 or all 1s can be written to IA32_MCi_CTL
2090 * some Linux kernels though clear bit 10 in bank 4 to
2091 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2092 * this to avoid an uncatched #GP in the guest
2094 if ((offset
& 0x3) == 0 &&
2095 data
!= 0 && (data
| (1 << 10)) != ~(u64
)0)
2097 if (!msr_info
->host_initiated
&&
2098 (offset
& 0x3) == 1 && data
!= 0)
2100 vcpu
->arch
.mce_banks
[offset
] = data
;
2108 static int xen_hvm_config(struct kvm_vcpu
*vcpu
, u64 data
)
2110 struct kvm
*kvm
= vcpu
->kvm
;
2111 int lm
= is_long_mode(vcpu
);
2112 u8
*blob_addr
= lm
? (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_64
2113 : (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_32
;
2114 u8 blob_size
= lm
? kvm
->arch
.xen_hvm_config
.blob_size_64
2115 : kvm
->arch
.xen_hvm_config
.blob_size_32
;
2116 u32 page_num
= data
& ~PAGE_MASK
;
2117 u64 page_addr
= data
& PAGE_MASK
;
2122 if (page_num
>= blob_size
)
2125 page
= memdup_user(blob_addr
+ (page_num
* PAGE_SIZE
), PAGE_SIZE
);
2130 if (kvm_vcpu_write_guest(vcpu
, page_addr
, page
, PAGE_SIZE
))
2139 static int kvm_pv_enable_async_pf(struct kvm_vcpu
*vcpu
, u64 data
)
2141 gpa_t gpa
= data
& ~0x3f;
2143 /* Bits 3:5 are reserved, Should be zero */
2147 vcpu
->arch
.apf
.msr_val
= data
;
2149 if (!(data
& KVM_ASYNC_PF_ENABLED
)) {
2150 kvm_clear_async_pf_completion_queue(vcpu
);
2151 kvm_async_pf_hash_reset(vcpu
);
2155 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, gpa
,
2159 vcpu
->arch
.apf
.send_user_only
= !(data
& KVM_ASYNC_PF_SEND_ALWAYS
);
2160 vcpu
->arch
.apf
.delivery_as_pf_vmexit
= data
& KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT
;
2161 kvm_async_pf_wakeup_all(vcpu
);
2165 static void kvmclock_reset(struct kvm_vcpu
*vcpu
)
2167 vcpu
->arch
.pv_time_enabled
= false;
2170 static void kvm_vcpu_flush_tlb(struct kvm_vcpu
*vcpu
, bool invalidate_gpa
)
2172 ++vcpu
->stat
.tlb_flush
;
2173 kvm_x86_ops
->tlb_flush(vcpu
, invalidate_gpa
);
2176 static void record_steal_time(struct kvm_vcpu
*vcpu
)
2178 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
2181 if (unlikely(kvm_read_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2182 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
))))
2186 * Doing a TLB flush here, on the guest's behalf, can avoid
2189 if (xchg(&vcpu
->arch
.st
.steal
.preempted
, 0) & KVM_VCPU_FLUSH_TLB
)
2190 kvm_vcpu_flush_tlb(vcpu
, false);
2192 if (vcpu
->arch
.st
.steal
.version
& 1)
2193 vcpu
->arch
.st
.steal
.version
+= 1; /* first time write, random junk */
2195 vcpu
->arch
.st
.steal
.version
+= 1;
2197 kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2198 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
));
2202 vcpu
->arch
.st
.steal
.steal
+= current
->sched_info
.run_delay
-
2203 vcpu
->arch
.st
.last_steal
;
2204 vcpu
->arch
.st
.last_steal
= current
->sched_info
.run_delay
;
2206 kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2207 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
));
2211 vcpu
->arch
.st
.steal
.version
+= 1;
2213 kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2214 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
));
2217 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2220 u32 msr
= msr_info
->index
;
2221 u64 data
= msr_info
->data
;
2224 case MSR_AMD64_NB_CFG
:
2225 case MSR_IA32_UCODE_REV
:
2226 case MSR_IA32_UCODE_WRITE
:
2227 case MSR_VM_HSAVE_PA
:
2228 case MSR_AMD64_PATCH_LOADER
:
2229 case MSR_AMD64_BU_CFG2
:
2230 case MSR_AMD64_DC_CFG
:
2234 return set_efer(vcpu
, data
);
2236 data
&= ~(u64
)0x40; /* ignore flush filter disable */
2237 data
&= ~(u64
)0x100; /* ignore ignne emulation enable */
2238 data
&= ~(u64
)0x8; /* ignore TLB cache disable */
2239 data
&= ~(u64
)0x40000; /* ignore Mc status write enable */
2241 vcpu_unimpl(vcpu
, "unimplemented HWCR wrmsr: 0x%llx\n",
2246 case MSR_FAM10H_MMIO_CONF_BASE
:
2248 vcpu_unimpl(vcpu
, "unimplemented MMIO_CONF_BASE wrmsr: "
2253 case MSR_IA32_DEBUGCTLMSR
:
2255 /* We support the non-activated case already */
2257 } else if (data
& ~(DEBUGCTLMSR_LBR
| DEBUGCTLMSR_BTF
)) {
2258 /* Values other than LBR and BTF are vendor-specific,
2259 thus reserved and should throw a #GP */
2262 vcpu_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2265 case 0x200 ... 0x2ff:
2266 return kvm_mtrr_set_msr(vcpu
, msr
, data
);
2267 case MSR_IA32_APICBASE
:
2268 return kvm_set_apic_base(vcpu
, msr_info
);
2269 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
2270 return kvm_x2apic_msr_write(vcpu
, msr
, data
);
2271 case MSR_IA32_TSCDEADLINE
:
2272 kvm_set_lapic_tscdeadline_msr(vcpu
, data
);
2274 case MSR_IA32_TSC_ADJUST
:
2275 if (guest_cpuid_has(vcpu
, X86_FEATURE_TSC_ADJUST
)) {
2276 if (!msr_info
->host_initiated
) {
2277 s64 adj
= data
- vcpu
->arch
.ia32_tsc_adjust_msr
;
2278 adjust_tsc_offset_guest(vcpu
, adj
);
2280 vcpu
->arch
.ia32_tsc_adjust_msr
= data
;
2283 case MSR_IA32_MISC_ENABLE
:
2284 vcpu
->arch
.ia32_misc_enable_msr
= data
;
2286 case MSR_IA32_SMBASE
:
2287 if (!msr_info
->host_initiated
)
2289 vcpu
->arch
.smbase
= data
;
2292 if (!msr_info
->host_initiated
)
2294 vcpu
->arch
.smi_count
= data
;
2296 case MSR_KVM_WALL_CLOCK_NEW
:
2297 case MSR_KVM_WALL_CLOCK
:
2298 vcpu
->kvm
->arch
.wall_clock
= data
;
2299 kvm_write_wall_clock(vcpu
->kvm
, data
);
2301 case MSR_KVM_SYSTEM_TIME_NEW
:
2302 case MSR_KVM_SYSTEM_TIME
: {
2303 struct kvm_arch
*ka
= &vcpu
->kvm
->arch
;
2305 kvmclock_reset(vcpu
);
2307 if (vcpu
->vcpu_id
== 0 && !msr_info
->host_initiated
) {
2308 bool tmp
= (msr
== MSR_KVM_SYSTEM_TIME
);
2310 if (ka
->boot_vcpu_runs_old_kvmclock
!= tmp
)
2311 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
2313 ka
->boot_vcpu_runs_old_kvmclock
= tmp
;
2316 vcpu
->arch
.time
= data
;
2317 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
);
2319 /* we verify if the enable bit is set... */
2323 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
,
2324 &vcpu
->arch
.pv_time
, data
& ~1ULL,
2325 sizeof(struct pvclock_vcpu_time_info
)))
2326 vcpu
->arch
.pv_time_enabled
= false;
2328 vcpu
->arch
.pv_time_enabled
= true;
2332 case MSR_KVM_ASYNC_PF_EN
:
2333 if (kvm_pv_enable_async_pf(vcpu
, data
))
2336 case MSR_KVM_STEAL_TIME
:
2338 if (unlikely(!sched_info_on()))
2341 if (data
& KVM_STEAL_RESERVED_MASK
)
2344 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2345 data
& KVM_STEAL_VALID_BITS
,
2346 sizeof(struct kvm_steal_time
)))
2349 vcpu
->arch
.st
.msr_val
= data
;
2351 if (!(data
& KVM_MSR_ENABLED
))
2354 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
2357 case MSR_KVM_PV_EOI_EN
:
2358 if (kvm_lapic_enable_pv_eoi(vcpu
, data
))
2362 case MSR_IA32_MCG_CTL
:
2363 case MSR_IA32_MCG_STATUS
:
2364 case MSR_IA32_MC0_CTL
... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS
) - 1:
2365 return set_msr_mce(vcpu
, msr_info
);
2367 case MSR_K7_PERFCTR0
... MSR_K7_PERFCTR3
:
2368 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR1
:
2369 pr
= true; /* fall through */
2370 case MSR_K7_EVNTSEL0
... MSR_K7_EVNTSEL3
:
2371 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL1
:
2372 if (kvm_pmu_is_valid_msr(vcpu
, msr
))
2373 return kvm_pmu_set_msr(vcpu
, msr_info
);
2375 if (pr
|| data
!= 0)
2376 vcpu_unimpl(vcpu
, "disabled perfctr wrmsr: "
2377 "0x%x data 0x%llx\n", msr
, data
);
2379 case MSR_K7_CLK_CTL
:
2381 * Ignore all writes to this no longer documented MSR.
2382 * Writes are only relevant for old K7 processors,
2383 * all pre-dating SVM, but a recommended workaround from
2384 * AMD for these chips. It is possible to specify the
2385 * affected processor models on the command line, hence
2386 * the need to ignore the workaround.
2389 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
2390 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
2391 case HV_X64_MSR_CRASH_CTL
:
2392 case HV_X64_MSR_STIMER0_CONFIG
... HV_X64_MSR_STIMER3_COUNT
:
2393 return kvm_hv_set_msr_common(vcpu
, msr
, data
,
2394 msr_info
->host_initiated
);
2395 case MSR_IA32_BBL_CR_CTL3
:
2396 /* Drop writes to this legacy MSR -- see rdmsr
2397 * counterpart for further detail.
2399 if (report_ignored_msrs
)
2400 vcpu_unimpl(vcpu
, "ignored wrmsr: 0x%x data 0x%llx\n",
2403 case MSR_AMD64_OSVW_ID_LENGTH
:
2404 if (!guest_cpuid_has(vcpu
, X86_FEATURE_OSVW
))
2406 vcpu
->arch
.osvw
.length
= data
;
2408 case MSR_AMD64_OSVW_STATUS
:
2409 if (!guest_cpuid_has(vcpu
, X86_FEATURE_OSVW
))
2411 vcpu
->arch
.osvw
.status
= data
;
2413 case MSR_PLATFORM_INFO
:
2414 if (!msr_info
->host_initiated
||
2415 data
& ~MSR_PLATFORM_INFO_CPUID_FAULT
||
2416 (!(data
& MSR_PLATFORM_INFO_CPUID_FAULT
) &&
2417 cpuid_fault_enabled(vcpu
)))
2419 vcpu
->arch
.msr_platform_info
= data
;
2421 case MSR_MISC_FEATURES_ENABLES
:
2422 if (data
& ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT
||
2423 (data
& MSR_MISC_FEATURES_ENABLES_CPUID_FAULT
&&
2424 !supports_cpuid_fault(vcpu
)))
2426 vcpu
->arch
.msr_misc_features_enables
= data
;
2429 if (msr
&& (msr
== vcpu
->kvm
->arch
.xen_hvm_config
.msr
))
2430 return xen_hvm_config(vcpu
, data
);
2431 if (kvm_pmu_is_valid_msr(vcpu
, msr
))
2432 return kvm_pmu_set_msr(vcpu
, msr_info
);
2434 vcpu_debug_ratelimited(vcpu
, "unhandled wrmsr: 0x%x data 0x%llx\n",
2438 if (report_ignored_msrs
)
2440 "ignored wrmsr: 0x%x data 0x%llx\n",
2447 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
2451 * Reads an msr value (of 'msr_index') into 'pdata'.
2452 * Returns 0 on success, non-0 otherwise.
2453 * Assumes vcpu_load() was already called.
2455 int kvm_get_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
2457 return kvm_x86_ops
->get_msr(vcpu
, msr
);
2459 EXPORT_SYMBOL_GPL(kvm_get_msr
);
2461 static int get_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2464 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2465 unsigned bank_num
= mcg_cap
& 0xff;
2468 case MSR_IA32_P5_MC_ADDR
:
2469 case MSR_IA32_P5_MC_TYPE
:
2472 case MSR_IA32_MCG_CAP
:
2473 data
= vcpu
->arch
.mcg_cap
;
2475 case MSR_IA32_MCG_CTL
:
2476 if (!(mcg_cap
& MCG_CTL_P
))
2478 data
= vcpu
->arch
.mcg_ctl
;
2480 case MSR_IA32_MCG_STATUS
:
2481 data
= vcpu
->arch
.mcg_status
;
2484 if (msr
>= MSR_IA32_MC0_CTL
&&
2485 msr
< MSR_IA32_MCx_CTL(bank_num
)) {
2486 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
2487 data
= vcpu
->arch
.mce_banks
[offset
];
2496 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2498 switch (msr_info
->index
) {
2499 case MSR_IA32_PLATFORM_ID
:
2500 case MSR_IA32_EBL_CR_POWERON
:
2501 case MSR_IA32_DEBUGCTLMSR
:
2502 case MSR_IA32_LASTBRANCHFROMIP
:
2503 case MSR_IA32_LASTBRANCHTOIP
:
2504 case MSR_IA32_LASTINTFROMIP
:
2505 case MSR_IA32_LASTINTTOIP
:
2507 case MSR_K8_TSEG_ADDR
:
2508 case MSR_K8_TSEG_MASK
:
2510 case MSR_VM_HSAVE_PA
:
2511 case MSR_K8_INT_PENDING_MSG
:
2512 case MSR_AMD64_NB_CFG
:
2513 case MSR_FAM10H_MMIO_CONF_BASE
:
2514 case MSR_AMD64_BU_CFG2
:
2515 case MSR_IA32_PERF_CTL
:
2516 case MSR_AMD64_DC_CFG
:
2519 case MSR_K7_EVNTSEL0
... MSR_K7_EVNTSEL3
:
2520 case MSR_K7_PERFCTR0
... MSR_K7_PERFCTR3
:
2521 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR1
:
2522 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL1
:
2523 if (kvm_pmu_is_valid_msr(vcpu
, msr_info
->index
))
2524 return kvm_pmu_get_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
2527 case MSR_IA32_UCODE_REV
:
2528 msr_info
->data
= 0x100000000ULL
;
2531 case 0x200 ... 0x2ff:
2532 return kvm_mtrr_get_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
2533 case 0xcd: /* fsb frequency */
2537 * MSR_EBC_FREQUENCY_ID
2538 * Conservative value valid for even the basic CPU models.
2539 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2540 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2541 * and 266MHz for model 3, or 4. Set Core Clock
2542 * Frequency to System Bus Frequency Ratio to 1 (bits
2543 * 31:24) even though these are only valid for CPU
2544 * models > 2, however guests may end up dividing or
2545 * multiplying by zero otherwise.
2547 case MSR_EBC_FREQUENCY_ID
:
2548 msr_info
->data
= 1 << 24;
2550 case MSR_IA32_APICBASE
:
2551 msr_info
->data
= kvm_get_apic_base(vcpu
);
2553 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
2554 return kvm_x2apic_msr_read(vcpu
, msr_info
->index
, &msr_info
->data
);
2556 case MSR_IA32_TSCDEADLINE
:
2557 msr_info
->data
= kvm_get_lapic_tscdeadline_msr(vcpu
);
2559 case MSR_IA32_TSC_ADJUST
:
2560 msr_info
->data
= (u64
)vcpu
->arch
.ia32_tsc_adjust_msr
;
2562 case MSR_IA32_MISC_ENABLE
:
2563 msr_info
->data
= vcpu
->arch
.ia32_misc_enable_msr
;
2565 case MSR_IA32_SMBASE
:
2566 if (!msr_info
->host_initiated
)
2568 msr_info
->data
= vcpu
->arch
.smbase
;
2571 msr_info
->data
= vcpu
->arch
.smi_count
;
2573 case MSR_IA32_PERF_STATUS
:
2574 /* TSC increment by tick */
2575 msr_info
->data
= 1000ULL;
2576 /* CPU multiplier */
2577 msr_info
->data
|= (((uint64_t)4ULL) << 40);
2580 msr_info
->data
= vcpu
->arch
.efer
;
2582 case MSR_KVM_WALL_CLOCK
:
2583 case MSR_KVM_WALL_CLOCK_NEW
:
2584 msr_info
->data
= vcpu
->kvm
->arch
.wall_clock
;
2586 case MSR_KVM_SYSTEM_TIME
:
2587 case MSR_KVM_SYSTEM_TIME_NEW
:
2588 msr_info
->data
= vcpu
->arch
.time
;
2590 case MSR_KVM_ASYNC_PF_EN
:
2591 msr_info
->data
= vcpu
->arch
.apf
.msr_val
;
2593 case MSR_KVM_STEAL_TIME
:
2594 msr_info
->data
= vcpu
->arch
.st
.msr_val
;
2596 case MSR_KVM_PV_EOI_EN
:
2597 msr_info
->data
= vcpu
->arch
.pv_eoi
.msr_val
;
2599 case MSR_IA32_P5_MC_ADDR
:
2600 case MSR_IA32_P5_MC_TYPE
:
2601 case MSR_IA32_MCG_CAP
:
2602 case MSR_IA32_MCG_CTL
:
2603 case MSR_IA32_MCG_STATUS
:
2604 case MSR_IA32_MC0_CTL
... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS
) - 1:
2605 return get_msr_mce(vcpu
, msr_info
->index
, &msr_info
->data
);
2606 case MSR_K7_CLK_CTL
:
2608 * Provide expected ramp-up count for K7. All other
2609 * are set to zero, indicating minimum divisors for
2612 * This prevents guest kernels on AMD host with CPU
2613 * type 6, model 8 and higher from exploding due to
2614 * the rdmsr failing.
2616 msr_info
->data
= 0x20000000;
2618 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
2619 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
2620 case HV_X64_MSR_CRASH_CTL
:
2621 case HV_X64_MSR_STIMER0_CONFIG
... HV_X64_MSR_STIMER3_COUNT
:
2622 return kvm_hv_get_msr_common(vcpu
,
2623 msr_info
->index
, &msr_info
->data
);
2625 case MSR_IA32_BBL_CR_CTL3
:
2626 /* This legacy MSR exists but isn't fully documented in current
2627 * silicon. It is however accessed by winxp in very narrow
2628 * scenarios where it sets bit #19, itself documented as
2629 * a "reserved" bit. Best effort attempt to source coherent
2630 * read data here should the balance of the register be
2631 * interpreted by the guest:
2633 * L2 cache control register 3: 64GB range, 256KB size,
2634 * enabled, latency 0x1, configured
2636 msr_info
->data
= 0xbe702111;
2638 case MSR_AMD64_OSVW_ID_LENGTH
:
2639 if (!guest_cpuid_has(vcpu
, X86_FEATURE_OSVW
))
2641 msr_info
->data
= vcpu
->arch
.osvw
.length
;
2643 case MSR_AMD64_OSVW_STATUS
:
2644 if (!guest_cpuid_has(vcpu
, X86_FEATURE_OSVW
))
2646 msr_info
->data
= vcpu
->arch
.osvw
.status
;
2648 case MSR_PLATFORM_INFO
:
2649 msr_info
->data
= vcpu
->arch
.msr_platform_info
;
2651 case MSR_MISC_FEATURES_ENABLES
:
2652 msr_info
->data
= vcpu
->arch
.msr_misc_features_enables
;
2655 if (kvm_pmu_is_valid_msr(vcpu
, msr_info
->index
))
2656 return kvm_pmu_get_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
2658 vcpu_debug_ratelimited(vcpu
, "unhandled rdmsr: 0x%x\n",
2662 if (report_ignored_msrs
)
2663 vcpu_unimpl(vcpu
, "ignored rdmsr: 0x%x\n",
2671 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
2674 * Read or write a bunch of msrs. All parameters are kernel addresses.
2676 * @return number of msrs set successfully.
2678 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
2679 struct kvm_msr_entry
*entries
,
2680 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2681 unsigned index
, u64
*data
))
2685 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
2686 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
2687 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
2689 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
2695 * Read or write a bunch of msrs. Parameters are user addresses.
2697 * @return number of msrs set successfully.
2699 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
2700 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2701 unsigned index
, u64
*data
),
2704 struct kvm_msrs msrs
;
2705 struct kvm_msr_entry
*entries
;
2710 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
2714 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
2717 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
2718 entries
= memdup_user(user_msrs
->entries
, size
);
2719 if (IS_ERR(entries
)) {
2720 r
= PTR_ERR(entries
);
2724 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
2729 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
2740 int kvm_vm_ioctl_check_extension(struct kvm
*kvm
, long ext
)
2745 case KVM_CAP_IRQCHIP
:
2747 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
2748 case KVM_CAP_SET_TSS_ADDR
:
2749 case KVM_CAP_EXT_CPUID
:
2750 case KVM_CAP_EXT_EMUL_CPUID
:
2751 case KVM_CAP_CLOCKSOURCE
:
2753 case KVM_CAP_NOP_IO_DELAY
:
2754 case KVM_CAP_MP_STATE
:
2755 case KVM_CAP_SYNC_MMU
:
2756 case KVM_CAP_USER_NMI
:
2757 case KVM_CAP_REINJECT_CONTROL
:
2758 case KVM_CAP_IRQ_INJECT_STATUS
:
2759 case KVM_CAP_IOEVENTFD
:
2760 case KVM_CAP_IOEVENTFD_NO_LENGTH
:
2762 case KVM_CAP_PIT_STATE2
:
2763 case KVM_CAP_SET_IDENTITY_MAP_ADDR
:
2764 case KVM_CAP_XEN_HVM
:
2765 case KVM_CAP_VCPU_EVENTS
:
2766 case KVM_CAP_HYPERV
:
2767 case KVM_CAP_HYPERV_VAPIC
:
2768 case KVM_CAP_HYPERV_SPIN
:
2769 case KVM_CAP_HYPERV_SYNIC
:
2770 case KVM_CAP_HYPERV_SYNIC2
:
2771 case KVM_CAP_HYPERV_VP_INDEX
:
2772 case KVM_CAP_PCI_SEGMENT
:
2773 case KVM_CAP_DEBUGREGS
:
2774 case KVM_CAP_X86_ROBUST_SINGLESTEP
:
2776 case KVM_CAP_ASYNC_PF
:
2777 case KVM_CAP_GET_TSC_KHZ
:
2778 case KVM_CAP_KVMCLOCK_CTRL
:
2779 case KVM_CAP_READONLY_MEM
:
2780 case KVM_CAP_HYPERV_TIME
:
2781 case KVM_CAP_IOAPIC_POLARITY_IGNORED
:
2782 case KVM_CAP_TSC_DEADLINE_TIMER
:
2783 case KVM_CAP_ENABLE_CAP_VM
:
2784 case KVM_CAP_DISABLE_QUIRKS
:
2785 case KVM_CAP_SET_BOOT_CPU_ID
:
2786 case KVM_CAP_SPLIT_IRQCHIP
:
2787 case KVM_CAP_IMMEDIATE_EXIT
:
2790 case KVM_CAP_ADJUST_CLOCK
:
2791 r
= KVM_CLOCK_TSC_STABLE
;
2793 case KVM_CAP_X86_GUEST_MWAIT
:
2794 r
= kvm_mwait_in_guest();
2796 case KVM_CAP_X86_SMM
:
2797 /* SMBASE is usually relocated above 1M on modern chipsets,
2798 * and SMM handlers might indeed rely on 4G segment limits,
2799 * so do not report SMM to be available if real mode is
2800 * emulated via vm86 mode. Still, do not go to great lengths
2801 * to avoid userspace's usage of the feature, because it is a
2802 * fringe case that is not enabled except via specific settings
2803 * of the module parameters.
2805 r
= kvm_x86_ops
->cpu_has_high_real_mode_segbase();
2808 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
2810 case KVM_CAP_NR_VCPUS
:
2811 r
= KVM_SOFT_MAX_VCPUS
;
2813 case KVM_CAP_MAX_VCPUS
:
2816 case KVM_CAP_NR_MEMSLOTS
:
2817 r
= KVM_USER_MEM_SLOTS
;
2819 case KVM_CAP_PV_MMU
: /* obsolete */
2823 r
= KVM_MAX_MCE_BANKS
;
2826 r
= boot_cpu_has(X86_FEATURE_XSAVE
);
2828 case KVM_CAP_TSC_CONTROL
:
2829 r
= kvm_has_tsc_control
;
2831 case KVM_CAP_X2APIC_API
:
2832 r
= KVM_X2APIC_API_VALID_FLAGS
;
2842 long kvm_arch_dev_ioctl(struct file
*filp
,
2843 unsigned int ioctl
, unsigned long arg
)
2845 void __user
*argp
= (void __user
*)arg
;
2849 case KVM_GET_MSR_INDEX_LIST
: {
2850 struct kvm_msr_list __user
*user_msr_list
= argp
;
2851 struct kvm_msr_list msr_list
;
2855 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
2858 msr_list
.nmsrs
= num_msrs_to_save
+ num_emulated_msrs
;
2859 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
2862 if (n
< msr_list
.nmsrs
)
2865 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
2866 num_msrs_to_save
* sizeof(u32
)))
2868 if (copy_to_user(user_msr_list
->indices
+ num_msrs_to_save
,
2870 num_emulated_msrs
* sizeof(u32
)))
2875 case KVM_GET_SUPPORTED_CPUID
:
2876 case KVM_GET_EMULATED_CPUID
: {
2877 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
2878 struct kvm_cpuid2 cpuid
;
2881 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2884 r
= kvm_dev_ioctl_get_cpuid(&cpuid
, cpuid_arg
->entries
,
2890 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
2895 case KVM_X86_GET_MCE_CAP_SUPPORTED
: {
2897 if (copy_to_user(argp
, &kvm_mce_cap_supported
,
2898 sizeof(kvm_mce_cap_supported
)))
2910 static void wbinvd_ipi(void *garbage
)
2915 static bool need_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
2917 return kvm_arch_has_noncoherent_dma(vcpu
->kvm
);
2920 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
2922 /* Address WBINVD may be executed by guest */
2923 if (need_emulate_wbinvd(vcpu
)) {
2924 if (kvm_x86_ops
->has_wbinvd_exit())
2925 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
2926 else if (vcpu
->cpu
!= -1 && vcpu
->cpu
!= cpu
)
2927 smp_call_function_single(vcpu
->cpu
,
2928 wbinvd_ipi
, NULL
, 1);
2931 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
2933 /* Apply any externally detected TSC adjustments (due to suspend) */
2934 if (unlikely(vcpu
->arch
.tsc_offset_adjustment
)) {
2935 adjust_tsc_offset_host(vcpu
, vcpu
->arch
.tsc_offset_adjustment
);
2936 vcpu
->arch
.tsc_offset_adjustment
= 0;
2937 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
2940 if (unlikely(vcpu
->cpu
!= cpu
) || kvm_check_tsc_unstable()) {
2941 s64 tsc_delta
= !vcpu
->arch
.last_host_tsc
? 0 :
2942 rdtsc() - vcpu
->arch
.last_host_tsc
;
2944 mark_tsc_unstable("KVM discovered backwards TSC");
2946 if (kvm_check_tsc_unstable()) {
2947 u64 offset
= kvm_compute_tsc_offset(vcpu
,
2948 vcpu
->arch
.last_guest_tsc
);
2949 kvm_vcpu_write_tsc_offset(vcpu
, offset
);
2950 vcpu
->arch
.tsc_catchup
= 1;
2953 if (kvm_lapic_hv_timer_in_use(vcpu
))
2954 kvm_lapic_restart_hv_timer(vcpu
);
2957 * On a host with synchronized TSC, there is no need to update
2958 * kvmclock on vcpu->cpu migration
2960 if (!vcpu
->kvm
->arch
.use_master_clock
|| vcpu
->cpu
== -1)
2961 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
);
2962 if (vcpu
->cpu
!= cpu
)
2963 kvm_make_request(KVM_REQ_MIGRATE_TIMER
, vcpu
);
2967 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
2970 static void kvm_steal_time_set_preempted(struct kvm_vcpu
*vcpu
)
2972 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
2975 vcpu
->arch
.st
.steal
.preempted
= KVM_VCPU_PREEMPTED
;
2977 kvm_write_guest_offset_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2978 &vcpu
->arch
.st
.steal
.preempted
,
2979 offsetof(struct kvm_steal_time
, preempted
),
2980 sizeof(vcpu
->arch
.st
.steal
.preempted
));
2983 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
2987 if (vcpu
->preempted
)
2988 vcpu
->arch
.preempted_in_kernel
= !kvm_x86_ops
->get_cpl(vcpu
);
2991 * Disable page faults because we're in atomic context here.
2992 * kvm_write_guest_offset_cached() would call might_fault()
2993 * that relies on pagefault_disable() to tell if there's a
2994 * bug. NOTE: the write to guest memory may not go through if
2995 * during postcopy live migration or if there's heavy guest
2998 pagefault_disable();
3000 * kvm_memslots() will be called by
3001 * kvm_write_guest_offset_cached() so take the srcu lock.
3003 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
3004 kvm_steal_time_set_preempted(vcpu
);
3005 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
3007 kvm_x86_ops
->vcpu_put(vcpu
);
3008 vcpu
->arch
.last_host_tsc
= rdtsc();
3010 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3011 * on every vmexit, but if not, we might have a stale dr6 from the
3012 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3017 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
3018 struct kvm_lapic_state
*s
)
3020 if (vcpu
->arch
.apicv_active
)
3021 kvm_x86_ops
->sync_pir_to_irr(vcpu
);
3023 return kvm_apic_get_state(vcpu
, s
);
3026 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
3027 struct kvm_lapic_state
*s
)
3031 r
= kvm_apic_set_state(vcpu
, s
);
3034 update_cr8_intercept(vcpu
);
3039 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu
*vcpu
)
3041 return (!lapic_in_kernel(vcpu
) ||
3042 kvm_apic_accept_pic_intr(vcpu
));
3046 * if userspace requested an interrupt window, check that the
3047 * interrupt window is open.
3049 * No need to exit to userspace if we already have an interrupt queued.
3051 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu
*vcpu
)
3053 return kvm_arch_interrupt_allowed(vcpu
) &&
3054 !kvm_cpu_has_interrupt(vcpu
) &&
3055 !kvm_event_needs_reinjection(vcpu
) &&
3056 kvm_cpu_accept_dm_intr(vcpu
);
3059 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
3060 struct kvm_interrupt
*irq
)
3062 if (irq
->irq
>= KVM_NR_INTERRUPTS
)
3065 if (!irqchip_in_kernel(vcpu
->kvm
)) {
3066 kvm_queue_interrupt(vcpu
, irq
->irq
, false);
3067 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
3072 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3073 * fail for in-kernel 8259.
3075 if (pic_in_kernel(vcpu
->kvm
))
3078 if (vcpu
->arch
.pending_external_vector
!= -1)
3081 vcpu
->arch
.pending_external_vector
= irq
->irq
;
3082 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
3086 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu
*vcpu
)
3088 kvm_inject_nmi(vcpu
);
3093 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu
*vcpu
)
3095 kvm_make_request(KVM_REQ_SMI
, vcpu
);
3100 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
3101 struct kvm_tpr_access_ctl
*tac
)
3105 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
3109 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu
*vcpu
,
3113 unsigned bank_num
= mcg_cap
& 0xff, bank
;
3116 if (!bank_num
|| bank_num
>= KVM_MAX_MCE_BANKS
)
3118 if (mcg_cap
& ~(kvm_mce_cap_supported
| 0xff | 0xff0000))
3121 vcpu
->arch
.mcg_cap
= mcg_cap
;
3122 /* Init IA32_MCG_CTL to all 1s */
3123 if (mcg_cap
& MCG_CTL_P
)
3124 vcpu
->arch
.mcg_ctl
= ~(u64
)0;
3125 /* Init IA32_MCi_CTL to all 1s */
3126 for (bank
= 0; bank
< bank_num
; bank
++)
3127 vcpu
->arch
.mce_banks
[bank
*4] = ~(u64
)0;
3129 if (kvm_x86_ops
->setup_mce
)
3130 kvm_x86_ops
->setup_mce(vcpu
);
3135 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu
*vcpu
,
3136 struct kvm_x86_mce
*mce
)
3138 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
3139 unsigned bank_num
= mcg_cap
& 0xff;
3140 u64
*banks
= vcpu
->arch
.mce_banks
;
3142 if (mce
->bank
>= bank_num
|| !(mce
->status
& MCI_STATUS_VAL
))
3145 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3146 * reporting is disabled
3148 if ((mce
->status
& MCI_STATUS_UC
) && (mcg_cap
& MCG_CTL_P
) &&
3149 vcpu
->arch
.mcg_ctl
!= ~(u64
)0)
3151 banks
+= 4 * mce
->bank
;
3153 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3154 * reporting is disabled for the bank
3156 if ((mce
->status
& MCI_STATUS_UC
) && banks
[0] != ~(u64
)0)
3158 if (mce
->status
& MCI_STATUS_UC
) {
3159 if ((vcpu
->arch
.mcg_status
& MCG_STATUS_MCIP
) ||
3160 !kvm_read_cr4_bits(vcpu
, X86_CR4_MCE
)) {
3161 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
3164 if (banks
[1] & MCI_STATUS_VAL
)
3165 mce
->status
|= MCI_STATUS_OVER
;
3166 banks
[2] = mce
->addr
;
3167 banks
[3] = mce
->misc
;
3168 vcpu
->arch
.mcg_status
= mce
->mcg_status
;
3169 banks
[1] = mce
->status
;
3170 kvm_queue_exception(vcpu
, MC_VECTOR
);
3171 } else if (!(banks
[1] & MCI_STATUS_VAL
)
3172 || !(banks
[1] & MCI_STATUS_UC
)) {
3173 if (banks
[1] & MCI_STATUS_VAL
)
3174 mce
->status
|= MCI_STATUS_OVER
;
3175 banks
[2] = mce
->addr
;
3176 banks
[3] = mce
->misc
;
3177 banks
[1] = mce
->status
;
3179 banks
[1] |= MCI_STATUS_OVER
;
3183 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu
*vcpu
,
3184 struct kvm_vcpu_events
*events
)
3188 * FIXME: pass injected and pending separately. This is only
3189 * needed for nested virtualization, whose state cannot be
3190 * migrated yet. For now we can combine them.
3192 events
->exception
.injected
=
3193 (vcpu
->arch
.exception
.pending
||
3194 vcpu
->arch
.exception
.injected
) &&
3195 !kvm_exception_is_soft(vcpu
->arch
.exception
.nr
);
3196 events
->exception
.nr
= vcpu
->arch
.exception
.nr
;
3197 events
->exception
.has_error_code
= vcpu
->arch
.exception
.has_error_code
;
3198 events
->exception
.pad
= 0;
3199 events
->exception
.error_code
= vcpu
->arch
.exception
.error_code
;
3201 events
->interrupt
.injected
=
3202 vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
;
3203 events
->interrupt
.nr
= vcpu
->arch
.interrupt
.nr
;
3204 events
->interrupt
.soft
= 0;
3205 events
->interrupt
.shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
);
3207 events
->nmi
.injected
= vcpu
->arch
.nmi_injected
;
3208 events
->nmi
.pending
= vcpu
->arch
.nmi_pending
!= 0;
3209 events
->nmi
.masked
= kvm_x86_ops
->get_nmi_mask(vcpu
);
3210 events
->nmi
.pad
= 0;
3212 events
->sipi_vector
= 0; /* never valid when reporting to user space */
3214 events
->smi
.smm
= is_smm(vcpu
);
3215 events
->smi
.pending
= vcpu
->arch
.smi_pending
;
3216 events
->smi
.smm_inside_nmi
=
3217 !!(vcpu
->arch
.hflags
& HF_SMM_INSIDE_NMI_MASK
);
3218 events
->smi
.latched_init
= kvm_lapic_latched_init(vcpu
);
3220 events
->flags
= (KVM_VCPUEVENT_VALID_NMI_PENDING
3221 | KVM_VCPUEVENT_VALID_SHADOW
3222 | KVM_VCPUEVENT_VALID_SMM
);
3223 memset(&events
->reserved
, 0, sizeof(events
->reserved
));
3226 static void kvm_set_hflags(struct kvm_vcpu
*vcpu
, unsigned emul_flags
);
3228 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu
*vcpu
,
3229 struct kvm_vcpu_events
*events
)
3231 if (events
->flags
& ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3232 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3233 | KVM_VCPUEVENT_VALID_SHADOW
3234 | KVM_VCPUEVENT_VALID_SMM
))
3237 if (events
->exception
.injected
&&
3238 (events
->exception
.nr
> 31 || events
->exception
.nr
== NMI_VECTOR
||
3239 is_guest_mode(vcpu
)))
3242 /* INITs are latched while in SMM */
3243 if (events
->flags
& KVM_VCPUEVENT_VALID_SMM
&&
3244 (events
->smi
.smm
|| events
->smi
.pending
) &&
3245 vcpu
->arch
.mp_state
== KVM_MP_STATE_INIT_RECEIVED
)
3249 vcpu
->arch
.exception
.injected
= false;
3250 vcpu
->arch
.exception
.pending
= events
->exception
.injected
;
3251 vcpu
->arch
.exception
.nr
= events
->exception
.nr
;
3252 vcpu
->arch
.exception
.has_error_code
= events
->exception
.has_error_code
;
3253 vcpu
->arch
.exception
.error_code
= events
->exception
.error_code
;
3255 vcpu
->arch
.interrupt
.pending
= events
->interrupt
.injected
;
3256 vcpu
->arch
.interrupt
.nr
= events
->interrupt
.nr
;
3257 vcpu
->arch
.interrupt
.soft
= events
->interrupt
.soft
;
3258 if (events
->flags
& KVM_VCPUEVENT_VALID_SHADOW
)
3259 kvm_x86_ops
->set_interrupt_shadow(vcpu
,
3260 events
->interrupt
.shadow
);
3262 vcpu
->arch
.nmi_injected
= events
->nmi
.injected
;
3263 if (events
->flags
& KVM_VCPUEVENT_VALID_NMI_PENDING
)
3264 vcpu
->arch
.nmi_pending
= events
->nmi
.pending
;
3265 kvm_x86_ops
->set_nmi_mask(vcpu
, events
->nmi
.masked
);
3267 if (events
->flags
& KVM_VCPUEVENT_VALID_SIPI_VECTOR
&&
3268 lapic_in_kernel(vcpu
))
3269 vcpu
->arch
.apic
->sipi_vector
= events
->sipi_vector
;
3271 if (events
->flags
& KVM_VCPUEVENT_VALID_SMM
) {
3272 u32 hflags
= vcpu
->arch
.hflags
;
3273 if (events
->smi
.smm
)
3274 hflags
|= HF_SMM_MASK
;
3276 hflags
&= ~HF_SMM_MASK
;
3277 kvm_set_hflags(vcpu
, hflags
);
3279 vcpu
->arch
.smi_pending
= events
->smi
.pending
;
3281 if (events
->smi
.smm
) {
3282 if (events
->smi
.smm_inside_nmi
)
3283 vcpu
->arch
.hflags
|= HF_SMM_INSIDE_NMI_MASK
;
3285 vcpu
->arch
.hflags
&= ~HF_SMM_INSIDE_NMI_MASK
;
3286 if (lapic_in_kernel(vcpu
)) {
3287 if (events
->smi
.latched_init
)
3288 set_bit(KVM_APIC_INIT
, &vcpu
->arch
.apic
->pending_events
);
3290 clear_bit(KVM_APIC_INIT
, &vcpu
->arch
.apic
->pending_events
);
3295 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
3300 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu
*vcpu
,
3301 struct kvm_debugregs
*dbgregs
)
3305 memcpy(dbgregs
->db
, vcpu
->arch
.db
, sizeof(vcpu
->arch
.db
));
3306 kvm_get_dr(vcpu
, 6, &val
);
3308 dbgregs
->dr7
= vcpu
->arch
.dr7
;
3310 memset(&dbgregs
->reserved
, 0, sizeof(dbgregs
->reserved
));
3313 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu
*vcpu
,
3314 struct kvm_debugregs
*dbgregs
)
3319 if (dbgregs
->dr6
& ~0xffffffffull
)
3321 if (dbgregs
->dr7
& ~0xffffffffull
)
3324 memcpy(vcpu
->arch
.db
, dbgregs
->db
, sizeof(vcpu
->arch
.db
));
3325 kvm_update_dr0123(vcpu
);
3326 vcpu
->arch
.dr6
= dbgregs
->dr6
;
3327 kvm_update_dr6(vcpu
);
3328 vcpu
->arch
.dr7
= dbgregs
->dr7
;
3329 kvm_update_dr7(vcpu
);
3334 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3336 static void fill_xsave(u8
*dest
, struct kvm_vcpu
*vcpu
)
3338 struct xregs_state
*xsave
= &vcpu
->arch
.guest_fpu
.state
.xsave
;
3339 u64 xstate_bv
= xsave
->header
.xfeatures
;
3343 * Copy legacy XSAVE area, to avoid complications with CPUID
3344 * leaves 0 and 1 in the loop below.
3346 memcpy(dest
, xsave
, XSAVE_HDR_OFFSET
);
3349 xstate_bv
&= vcpu
->arch
.guest_supported_xcr0
| XFEATURE_MASK_FPSSE
;
3350 *(u64
*)(dest
+ XSAVE_HDR_OFFSET
) = xstate_bv
;
3353 * Copy each region from the possibly compacted offset to the
3354 * non-compacted offset.
3356 valid
= xstate_bv
& ~XFEATURE_MASK_FPSSE
;
3358 u64 feature
= valid
& -valid
;
3359 int index
= fls64(feature
) - 1;
3360 void *src
= get_xsave_addr(xsave
, feature
);
3363 u32 size
, offset
, ecx
, edx
;
3364 cpuid_count(XSTATE_CPUID
, index
,
3365 &size
, &offset
, &ecx
, &edx
);
3366 if (feature
== XFEATURE_MASK_PKRU
)
3367 memcpy(dest
+ offset
, &vcpu
->arch
.pkru
,
3368 sizeof(vcpu
->arch
.pkru
));
3370 memcpy(dest
+ offset
, src
, size
);
3378 static void load_xsave(struct kvm_vcpu
*vcpu
, u8
*src
)
3380 struct xregs_state
*xsave
= &vcpu
->arch
.guest_fpu
.state
.xsave
;
3381 u64 xstate_bv
= *(u64
*)(src
+ XSAVE_HDR_OFFSET
);
3385 * Copy legacy XSAVE area, to avoid complications with CPUID
3386 * leaves 0 and 1 in the loop below.
3388 memcpy(xsave
, src
, XSAVE_HDR_OFFSET
);
3390 /* Set XSTATE_BV and possibly XCOMP_BV. */
3391 xsave
->header
.xfeatures
= xstate_bv
;
3392 if (boot_cpu_has(X86_FEATURE_XSAVES
))
3393 xsave
->header
.xcomp_bv
= host_xcr0
| XSTATE_COMPACTION_ENABLED
;
3396 * Copy each region from the non-compacted offset to the
3397 * possibly compacted offset.
3399 valid
= xstate_bv
& ~XFEATURE_MASK_FPSSE
;
3401 u64 feature
= valid
& -valid
;
3402 int index
= fls64(feature
) - 1;
3403 void *dest
= get_xsave_addr(xsave
, feature
);
3406 u32 size
, offset
, ecx
, edx
;
3407 cpuid_count(XSTATE_CPUID
, index
,
3408 &size
, &offset
, &ecx
, &edx
);
3409 if (feature
== XFEATURE_MASK_PKRU
)
3410 memcpy(&vcpu
->arch
.pkru
, src
+ offset
,
3411 sizeof(vcpu
->arch
.pkru
));
3413 memcpy(dest
, src
+ offset
, size
);
3420 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu
*vcpu
,
3421 struct kvm_xsave
*guest_xsave
)
3423 if (boot_cpu_has(X86_FEATURE_XSAVE
)) {
3424 memset(guest_xsave
, 0, sizeof(struct kvm_xsave
));
3425 fill_xsave((u8
*) guest_xsave
->region
, vcpu
);
3427 memcpy(guest_xsave
->region
,
3428 &vcpu
->arch
.guest_fpu
.state
.fxsave
,
3429 sizeof(struct fxregs_state
));
3430 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)] =
3431 XFEATURE_MASK_FPSSE
;
3435 #define XSAVE_MXCSR_OFFSET 24
3437 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu
*vcpu
,
3438 struct kvm_xsave
*guest_xsave
)
3441 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)];
3442 u32 mxcsr
= *(u32
*)&guest_xsave
->region
[XSAVE_MXCSR_OFFSET
/ sizeof(u32
)];
3444 if (boot_cpu_has(X86_FEATURE_XSAVE
)) {
3446 * Here we allow setting states that are not present in
3447 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3448 * with old userspace.
3450 if (xstate_bv
& ~kvm_supported_xcr0() ||
3451 mxcsr
& ~mxcsr_feature_mask
)
3453 load_xsave(vcpu
, (u8
*)guest_xsave
->region
);
3455 if (xstate_bv
& ~XFEATURE_MASK_FPSSE
||
3456 mxcsr
& ~mxcsr_feature_mask
)
3458 memcpy(&vcpu
->arch
.guest_fpu
.state
.fxsave
,
3459 guest_xsave
->region
, sizeof(struct fxregs_state
));
3464 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu
*vcpu
,
3465 struct kvm_xcrs
*guest_xcrs
)
3467 if (!boot_cpu_has(X86_FEATURE_XSAVE
)) {
3468 guest_xcrs
->nr_xcrs
= 0;
3472 guest_xcrs
->nr_xcrs
= 1;
3473 guest_xcrs
->flags
= 0;
3474 guest_xcrs
->xcrs
[0].xcr
= XCR_XFEATURE_ENABLED_MASK
;
3475 guest_xcrs
->xcrs
[0].value
= vcpu
->arch
.xcr0
;
3478 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu
*vcpu
,
3479 struct kvm_xcrs
*guest_xcrs
)
3483 if (!boot_cpu_has(X86_FEATURE_XSAVE
))
3486 if (guest_xcrs
->nr_xcrs
> KVM_MAX_XCRS
|| guest_xcrs
->flags
)
3489 for (i
= 0; i
< guest_xcrs
->nr_xcrs
; i
++)
3490 /* Only support XCR0 currently */
3491 if (guest_xcrs
->xcrs
[i
].xcr
== XCR_XFEATURE_ENABLED_MASK
) {
3492 r
= __kvm_set_xcr(vcpu
, XCR_XFEATURE_ENABLED_MASK
,
3493 guest_xcrs
->xcrs
[i
].value
);
3502 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3503 * stopped by the hypervisor. This function will be called from the host only.
3504 * EINVAL is returned when the host attempts to set the flag for a guest that
3505 * does not support pv clocks.
3507 static int kvm_set_guest_paused(struct kvm_vcpu
*vcpu
)
3509 if (!vcpu
->arch
.pv_time_enabled
)
3511 vcpu
->arch
.pvclock_set_guest_stopped_request
= true;
3512 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
3516 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu
*vcpu
,
3517 struct kvm_enable_cap
*cap
)
3523 case KVM_CAP_HYPERV_SYNIC2
:
3526 case KVM_CAP_HYPERV_SYNIC
:
3527 if (!irqchip_in_kernel(vcpu
->kvm
))
3529 return kvm_hv_activate_synic(vcpu
, cap
->cap
==
3530 KVM_CAP_HYPERV_SYNIC2
);
3536 long kvm_arch_vcpu_ioctl(struct file
*filp
,
3537 unsigned int ioctl
, unsigned long arg
)
3539 struct kvm_vcpu
*vcpu
= filp
->private_data
;
3540 void __user
*argp
= (void __user
*)arg
;
3543 struct kvm_lapic_state
*lapic
;
3544 struct kvm_xsave
*xsave
;
3545 struct kvm_xcrs
*xcrs
;
3553 case KVM_GET_LAPIC
: {
3555 if (!lapic_in_kernel(vcpu
))
3557 u
.lapic
= kzalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
3562 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, u
.lapic
);
3566 if (copy_to_user(argp
, u
.lapic
, sizeof(struct kvm_lapic_state
)))
3571 case KVM_SET_LAPIC
: {
3573 if (!lapic_in_kernel(vcpu
))
3575 u
.lapic
= memdup_user(argp
, sizeof(*u
.lapic
));
3576 if (IS_ERR(u
.lapic
)) {
3577 r
= PTR_ERR(u
.lapic
);
3581 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, u
.lapic
);
3584 case KVM_INTERRUPT
: {
3585 struct kvm_interrupt irq
;
3588 if (copy_from_user(&irq
, argp
, sizeof irq
))
3590 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
3594 r
= kvm_vcpu_ioctl_nmi(vcpu
);
3598 r
= kvm_vcpu_ioctl_smi(vcpu
);
3601 case KVM_SET_CPUID
: {
3602 struct kvm_cpuid __user
*cpuid_arg
= argp
;
3603 struct kvm_cpuid cpuid
;
3606 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3608 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
3611 case KVM_SET_CPUID2
: {
3612 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3613 struct kvm_cpuid2 cpuid
;
3616 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3618 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
3619 cpuid_arg
->entries
);
3622 case KVM_GET_CPUID2
: {
3623 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3624 struct kvm_cpuid2 cpuid
;
3627 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3629 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
3630 cpuid_arg
->entries
);
3634 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
3640 r
= msr_io(vcpu
, argp
, do_get_msr
, 1);
3643 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
3645 case KVM_TPR_ACCESS_REPORTING
: {
3646 struct kvm_tpr_access_ctl tac
;
3649 if (copy_from_user(&tac
, argp
, sizeof tac
))
3651 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
3655 if (copy_to_user(argp
, &tac
, sizeof tac
))
3660 case KVM_SET_VAPIC_ADDR
: {
3661 struct kvm_vapic_addr va
;
3665 if (!lapic_in_kernel(vcpu
))
3668 if (copy_from_user(&va
, argp
, sizeof va
))
3670 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
3671 r
= kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
3672 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
3675 case KVM_X86_SETUP_MCE
: {
3679 if (copy_from_user(&mcg_cap
, argp
, sizeof mcg_cap
))
3681 r
= kvm_vcpu_ioctl_x86_setup_mce(vcpu
, mcg_cap
);
3684 case KVM_X86_SET_MCE
: {
3685 struct kvm_x86_mce mce
;
3688 if (copy_from_user(&mce
, argp
, sizeof mce
))
3690 r
= kvm_vcpu_ioctl_x86_set_mce(vcpu
, &mce
);
3693 case KVM_GET_VCPU_EVENTS
: {
3694 struct kvm_vcpu_events events
;
3696 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu
, &events
);
3699 if (copy_to_user(argp
, &events
, sizeof(struct kvm_vcpu_events
)))
3704 case KVM_SET_VCPU_EVENTS
: {
3705 struct kvm_vcpu_events events
;
3708 if (copy_from_user(&events
, argp
, sizeof(struct kvm_vcpu_events
)))
3711 r
= kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu
, &events
);
3714 case KVM_GET_DEBUGREGS
: {
3715 struct kvm_debugregs dbgregs
;
3717 kvm_vcpu_ioctl_x86_get_debugregs(vcpu
, &dbgregs
);
3720 if (copy_to_user(argp
, &dbgregs
,
3721 sizeof(struct kvm_debugregs
)))
3726 case KVM_SET_DEBUGREGS
: {
3727 struct kvm_debugregs dbgregs
;
3730 if (copy_from_user(&dbgregs
, argp
,
3731 sizeof(struct kvm_debugregs
)))
3734 r
= kvm_vcpu_ioctl_x86_set_debugregs(vcpu
, &dbgregs
);
3737 case KVM_GET_XSAVE
: {
3738 u
.xsave
= kzalloc(sizeof(struct kvm_xsave
), GFP_KERNEL
);
3743 kvm_vcpu_ioctl_x86_get_xsave(vcpu
, u
.xsave
);
3746 if (copy_to_user(argp
, u
.xsave
, sizeof(struct kvm_xsave
)))
3751 case KVM_SET_XSAVE
: {
3752 u
.xsave
= memdup_user(argp
, sizeof(*u
.xsave
));
3753 if (IS_ERR(u
.xsave
)) {
3754 r
= PTR_ERR(u
.xsave
);
3758 r
= kvm_vcpu_ioctl_x86_set_xsave(vcpu
, u
.xsave
);
3761 case KVM_GET_XCRS
: {
3762 u
.xcrs
= kzalloc(sizeof(struct kvm_xcrs
), GFP_KERNEL
);
3767 kvm_vcpu_ioctl_x86_get_xcrs(vcpu
, u
.xcrs
);
3770 if (copy_to_user(argp
, u
.xcrs
,
3771 sizeof(struct kvm_xcrs
)))
3776 case KVM_SET_XCRS
: {
3777 u
.xcrs
= memdup_user(argp
, sizeof(*u
.xcrs
));
3778 if (IS_ERR(u
.xcrs
)) {
3779 r
= PTR_ERR(u
.xcrs
);
3783 r
= kvm_vcpu_ioctl_x86_set_xcrs(vcpu
, u
.xcrs
);
3786 case KVM_SET_TSC_KHZ
: {
3790 user_tsc_khz
= (u32
)arg
;
3792 if (user_tsc_khz
>= kvm_max_guest_tsc_khz
)
3795 if (user_tsc_khz
== 0)
3796 user_tsc_khz
= tsc_khz
;
3798 if (!kvm_set_tsc_khz(vcpu
, user_tsc_khz
))
3803 case KVM_GET_TSC_KHZ
: {
3804 r
= vcpu
->arch
.virtual_tsc_khz
;
3807 case KVM_KVMCLOCK_CTRL
: {
3808 r
= kvm_set_guest_paused(vcpu
);
3811 case KVM_ENABLE_CAP
: {
3812 struct kvm_enable_cap cap
;
3815 if (copy_from_user(&cap
, argp
, sizeof(cap
)))
3817 r
= kvm_vcpu_ioctl_enable_cap(vcpu
, &cap
);
3830 int kvm_arch_vcpu_fault(struct kvm_vcpu
*vcpu
, struct vm_fault
*vmf
)
3832 return VM_FAULT_SIGBUS
;
3835 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
3839 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
3841 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
3845 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm
*kvm
,
3848 kvm
->arch
.ept_identity_map_addr
= ident_addr
;
3852 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
3853 u32 kvm_nr_mmu_pages
)
3855 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
3858 mutex_lock(&kvm
->slots_lock
);
3860 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
3861 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
3863 mutex_unlock(&kvm
->slots_lock
);
3867 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
3869 return kvm
->arch
.n_max_mmu_pages
;
3872 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3874 struct kvm_pic
*pic
= kvm
->arch
.vpic
;
3878 switch (chip
->chip_id
) {
3879 case KVM_IRQCHIP_PIC_MASTER
:
3880 memcpy(&chip
->chip
.pic
, &pic
->pics
[0],
3881 sizeof(struct kvm_pic_state
));
3883 case KVM_IRQCHIP_PIC_SLAVE
:
3884 memcpy(&chip
->chip
.pic
, &pic
->pics
[1],
3885 sizeof(struct kvm_pic_state
));
3887 case KVM_IRQCHIP_IOAPIC
:
3888 kvm_get_ioapic(kvm
, &chip
->chip
.ioapic
);
3897 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3899 struct kvm_pic
*pic
= kvm
->arch
.vpic
;
3903 switch (chip
->chip_id
) {
3904 case KVM_IRQCHIP_PIC_MASTER
:
3905 spin_lock(&pic
->lock
);
3906 memcpy(&pic
->pics
[0], &chip
->chip
.pic
,
3907 sizeof(struct kvm_pic_state
));
3908 spin_unlock(&pic
->lock
);
3910 case KVM_IRQCHIP_PIC_SLAVE
:
3911 spin_lock(&pic
->lock
);
3912 memcpy(&pic
->pics
[1], &chip
->chip
.pic
,
3913 sizeof(struct kvm_pic_state
));
3914 spin_unlock(&pic
->lock
);
3916 case KVM_IRQCHIP_IOAPIC
:
3917 kvm_set_ioapic(kvm
, &chip
->chip
.ioapic
);
3923 kvm_pic_update_irq(pic
);
3927 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3929 struct kvm_kpit_state
*kps
= &kvm
->arch
.vpit
->pit_state
;
3931 BUILD_BUG_ON(sizeof(*ps
) != sizeof(kps
->channels
));
3933 mutex_lock(&kps
->lock
);
3934 memcpy(ps
, &kps
->channels
, sizeof(*ps
));
3935 mutex_unlock(&kps
->lock
);
3939 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3942 struct kvm_pit
*pit
= kvm
->arch
.vpit
;
3944 mutex_lock(&pit
->pit_state
.lock
);
3945 memcpy(&pit
->pit_state
.channels
, ps
, sizeof(*ps
));
3946 for (i
= 0; i
< 3; i
++)
3947 kvm_pit_load_count(pit
, i
, ps
->channels
[i
].count
, 0);
3948 mutex_unlock(&pit
->pit_state
.lock
);
3952 static int kvm_vm_ioctl_get_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3954 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3955 memcpy(ps
->channels
, &kvm
->arch
.vpit
->pit_state
.channels
,
3956 sizeof(ps
->channels
));
3957 ps
->flags
= kvm
->arch
.vpit
->pit_state
.flags
;
3958 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3959 memset(&ps
->reserved
, 0, sizeof(ps
->reserved
));
3963 static int kvm_vm_ioctl_set_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3967 u32 prev_legacy
, cur_legacy
;
3968 struct kvm_pit
*pit
= kvm
->arch
.vpit
;
3970 mutex_lock(&pit
->pit_state
.lock
);
3971 prev_legacy
= pit
->pit_state
.flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3972 cur_legacy
= ps
->flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3973 if (!prev_legacy
&& cur_legacy
)
3975 memcpy(&pit
->pit_state
.channels
, &ps
->channels
,
3976 sizeof(pit
->pit_state
.channels
));
3977 pit
->pit_state
.flags
= ps
->flags
;
3978 for (i
= 0; i
< 3; i
++)
3979 kvm_pit_load_count(pit
, i
, pit
->pit_state
.channels
[i
].count
,
3981 mutex_unlock(&pit
->pit_state
.lock
);
3985 static int kvm_vm_ioctl_reinject(struct kvm
*kvm
,
3986 struct kvm_reinject_control
*control
)
3988 struct kvm_pit
*pit
= kvm
->arch
.vpit
;
3993 /* pit->pit_state.lock was overloaded to prevent userspace from getting
3994 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3995 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
3997 mutex_lock(&pit
->pit_state
.lock
);
3998 kvm_pit_set_reinject(pit
, control
->pit_reinject
);
3999 mutex_unlock(&pit
->pit_state
.lock
);
4005 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4006 * @kvm: kvm instance
4007 * @log: slot id and address to which we copy the log
4009 * Steps 1-4 below provide general overview of dirty page logging. See
4010 * kvm_get_dirty_log_protect() function description for additional details.
4012 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4013 * always flush the TLB (step 4) even if previous step failed and the dirty
4014 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4015 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4016 * writes will be marked dirty for next log read.
4018 * 1. Take a snapshot of the bit and clear it if needed.
4019 * 2. Write protect the corresponding page.
4020 * 3. Copy the snapshot to the userspace.
4021 * 4. Flush TLB's if needed.
4023 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
, struct kvm_dirty_log
*log
)
4025 bool is_dirty
= false;
4028 mutex_lock(&kvm
->slots_lock
);
4031 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4033 if (kvm_x86_ops
->flush_log_dirty
)
4034 kvm_x86_ops
->flush_log_dirty(kvm
);
4036 r
= kvm_get_dirty_log_protect(kvm
, log
, &is_dirty
);
4039 * All the TLBs can be flushed out of mmu lock, see the comments in
4040 * kvm_mmu_slot_remove_write_access().
4042 lockdep_assert_held(&kvm
->slots_lock
);
4044 kvm_flush_remote_tlbs(kvm
);
4046 mutex_unlock(&kvm
->slots_lock
);
4050 int kvm_vm_ioctl_irq_line(struct kvm
*kvm
, struct kvm_irq_level
*irq_event
,
4053 if (!irqchip_in_kernel(kvm
))
4056 irq_event
->status
= kvm_set_irq(kvm
, KVM_USERSPACE_IRQ_SOURCE_ID
,
4057 irq_event
->irq
, irq_event
->level
,
4062 static int kvm_vm_ioctl_enable_cap(struct kvm
*kvm
,
4063 struct kvm_enable_cap
*cap
)
4071 case KVM_CAP_DISABLE_QUIRKS
:
4072 kvm
->arch
.disabled_quirks
= cap
->args
[0];
4075 case KVM_CAP_SPLIT_IRQCHIP
: {
4076 mutex_lock(&kvm
->lock
);
4078 if (cap
->args
[0] > MAX_NR_RESERVED_IOAPIC_PINS
)
4079 goto split_irqchip_unlock
;
4081 if (irqchip_in_kernel(kvm
))
4082 goto split_irqchip_unlock
;
4083 if (kvm
->created_vcpus
)
4084 goto split_irqchip_unlock
;
4085 r
= kvm_setup_empty_irq_routing(kvm
);
4087 goto split_irqchip_unlock
;
4088 /* Pairs with irqchip_in_kernel. */
4090 kvm
->arch
.irqchip_mode
= KVM_IRQCHIP_SPLIT
;
4091 kvm
->arch
.nr_reserved_ioapic_pins
= cap
->args
[0];
4093 split_irqchip_unlock
:
4094 mutex_unlock(&kvm
->lock
);
4097 case KVM_CAP_X2APIC_API
:
4099 if (cap
->args
[0] & ~KVM_X2APIC_API_VALID_FLAGS
)
4102 if (cap
->args
[0] & KVM_X2APIC_API_USE_32BIT_IDS
)
4103 kvm
->arch
.x2apic_format
= true;
4104 if (cap
->args
[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK
)
4105 kvm
->arch
.x2apic_broadcast_quirk_disabled
= true;
4116 long kvm_arch_vm_ioctl(struct file
*filp
,
4117 unsigned int ioctl
, unsigned long arg
)
4119 struct kvm
*kvm
= filp
->private_data
;
4120 void __user
*argp
= (void __user
*)arg
;
4123 * This union makes it completely explicit to gcc-3.x
4124 * that these two variables' stack usage should be
4125 * combined, not added together.
4128 struct kvm_pit_state ps
;
4129 struct kvm_pit_state2 ps2
;
4130 struct kvm_pit_config pit_config
;
4134 case KVM_SET_TSS_ADDR
:
4135 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
4137 case KVM_SET_IDENTITY_MAP_ADDR
: {
4140 mutex_lock(&kvm
->lock
);
4142 if (kvm
->created_vcpus
)
4143 goto set_identity_unlock
;
4145 if (copy_from_user(&ident_addr
, argp
, sizeof ident_addr
))
4146 goto set_identity_unlock
;
4147 r
= kvm_vm_ioctl_set_identity_map_addr(kvm
, ident_addr
);
4148 set_identity_unlock
:
4149 mutex_unlock(&kvm
->lock
);
4152 case KVM_SET_NR_MMU_PAGES
:
4153 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
4155 case KVM_GET_NR_MMU_PAGES
:
4156 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
4158 case KVM_CREATE_IRQCHIP
: {
4159 mutex_lock(&kvm
->lock
);
4162 if (irqchip_in_kernel(kvm
))
4163 goto create_irqchip_unlock
;
4166 if (kvm
->created_vcpus
)
4167 goto create_irqchip_unlock
;
4169 r
= kvm_pic_init(kvm
);
4171 goto create_irqchip_unlock
;
4173 r
= kvm_ioapic_init(kvm
);
4175 kvm_pic_destroy(kvm
);
4176 goto create_irqchip_unlock
;
4179 r
= kvm_setup_default_irq_routing(kvm
);
4181 kvm_ioapic_destroy(kvm
);
4182 kvm_pic_destroy(kvm
);
4183 goto create_irqchip_unlock
;
4185 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4187 kvm
->arch
.irqchip_mode
= KVM_IRQCHIP_KERNEL
;
4188 create_irqchip_unlock
:
4189 mutex_unlock(&kvm
->lock
);
4192 case KVM_CREATE_PIT
:
4193 u
.pit_config
.flags
= KVM_PIT_SPEAKER_DUMMY
;
4195 case KVM_CREATE_PIT2
:
4197 if (copy_from_user(&u
.pit_config
, argp
,
4198 sizeof(struct kvm_pit_config
)))
4201 mutex_lock(&kvm
->lock
);
4204 goto create_pit_unlock
;
4206 kvm
->arch
.vpit
= kvm_create_pit(kvm
, u
.pit_config
.flags
);
4210 mutex_unlock(&kvm
->lock
);
4212 case KVM_GET_IRQCHIP
: {
4213 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4214 struct kvm_irqchip
*chip
;
4216 chip
= memdup_user(argp
, sizeof(*chip
));
4223 if (!irqchip_kernel(kvm
))
4224 goto get_irqchip_out
;
4225 r
= kvm_vm_ioctl_get_irqchip(kvm
, chip
);
4227 goto get_irqchip_out
;
4229 if (copy_to_user(argp
, chip
, sizeof *chip
))
4230 goto get_irqchip_out
;
4236 case KVM_SET_IRQCHIP
: {
4237 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4238 struct kvm_irqchip
*chip
;
4240 chip
= memdup_user(argp
, sizeof(*chip
));
4247 if (!irqchip_kernel(kvm
))
4248 goto set_irqchip_out
;
4249 r
= kvm_vm_ioctl_set_irqchip(kvm
, chip
);
4251 goto set_irqchip_out
;
4259 if (copy_from_user(&u
.ps
, argp
, sizeof(struct kvm_pit_state
)))
4262 if (!kvm
->arch
.vpit
)
4264 r
= kvm_vm_ioctl_get_pit(kvm
, &u
.ps
);
4268 if (copy_to_user(argp
, &u
.ps
, sizeof(struct kvm_pit_state
)))
4275 if (copy_from_user(&u
.ps
, argp
, sizeof u
.ps
))
4278 if (!kvm
->arch
.vpit
)
4280 r
= kvm_vm_ioctl_set_pit(kvm
, &u
.ps
);
4283 case KVM_GET_PIT2
: {
4285 if (!kvm
->arch
.vpit
)
4287 r
= kvm_vm_ioctl_get_pit2(kvm
, &u
.ps2
);
4291 if (copy_to_user(argp
, &u
.ps2
, sizeof(u
.ps2
)))
4296 case KVM_SET_PIT2
: {
4298 if (copy_from_user(&u
.ps2
, argp
, sizeof(u
.ps2
)))
4301 if (!kvm
->arch
.vpit
)
4303 r
= kvm_vm_ioctl_set_pit2(kvm
, &u
.ps2
);
4306 case KVM_REINJECT_CONTROL
: {
4307 struct kvm_reinject_control control
;
4309 if (copy_from_user(&control
, argp
, sizeof(control
)))
4311 r
= kvm_vm_ioctl_reinject(kvm
, &control
);
4314 case KVM_SET_BOOT_CPU_ID
:
4316 mutex_lock(&kvm
->lock
);
4317 if (kvm
->created_vcpus
)
4320 kvm
->arch
.bsp_vcpu_id
= arg
;
4321 mutex_unlock(&kvm
->lock
);
4323 case KVM_XEN_HVM_CONFIG
: {
4324 struct kvm_xen_hvm_config xhc
;
4326 if (copy_from_user(&xhc
, argp
, sizeof(xhc
)))
4331 memcpy(&kvm
->arch
.xen_hvm_config
, &xhc
, sizeof(xhc
));
4335 case KVM_SET_CLOCK
: {
4336 struct kvm_clock_data user_ns
;
4340 if (copy_from_user(&user_ns
, argp
, sizeof(user_ns
)))
4349 * TODO: userspace has to take care of races with VCPU_RUN, so
4350 * kvm_gen_update_masterclock() can be cut down to locked
4351 * pvclock_update_vm_gtod_copy().
4353 kvm_gen_update_masterclock(kvm
);
4354 now_ns
= get_kvmclock_ns(kvm
);
4355 kvm
->arch
.kvmclock_offset
+= user_ns
.clock
- now_ns
;
4356 kvm_make_all_cpus_request(kvm
, KVM_REQ_CLOCK_UPDATE
);
4359 case KVM_GET_CLOCK
: {
4360 struct kvm_clock_data user_ns
;
4363 now_ns
= get_kvmclock_ns(kvm
);
4364 user_ns
.clock
= now_ns
;
4365 user_ns
.flags
= kvm
->arch
.use_master_clock
? KVM_CLOCK_TSC_STABLE
: 0;
4366 memset(&user_ns
.pad
, 0, sizeof(user_ns
.pad
));
4369 if (copy_to_user(argp
, &user_ns
, sizeof(user_ns
)))
4374 case KVM_ENABLE_CAP
: {
4375 struct kvm_enable_cap cap
;
4378 if (copy_from_user(&cap
, argp
, sizeof(cap
)))
4380 r
= kvm_vm_ioctl_enable_cap(kvm
, &cap
);
4383 case KVM_MEMORY_ENCRYPT_OP
: {
4385 if (kvm_x86_ops
->mem_enc_op
)
4386 r
= kvm_x86_ops
->mem_enc_op(kvm
, argp
);
4389 case KVM_MEMORY_ENCRYPT_REG_REGION
: {
4390 struct kvm_enc_region region
;
4393 if (copy_from_user(®ion
, argp
, sizeof(region
)))
4397 if (kvm_x86_ops
->mem_enc_reg_region
)
4398 r
= kvm_x86_ops
->mem_enc_reg_region(kvm
, ®ion
);
4401 case KVM_MEMORY_ENCRYPT_UNREG_REGION
: {
4402 struct kvm_enc_region region
;
4405 if (copy_from_user(®ion
, argp
, sizeof(region
)))
4409 if (kvm_x86_ops
->mem_enc_unreg_region
)
4410 r
= kvm_x86_ops
->mem_enc_unreg_region(kvm
, ®ion
);
4420 static void kvm_init_msr_list(void)
4425 for (i
= j
= 0; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
4426 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
4430 * Even MSRs that are valid in the host may not be exposed
4431 * to the guests in some cases.
4433 switch (msrs_to_save
[i
]) {
4434 case MSR_IA32_BNDCFGS
:
4435 if (!kvm_x86_ops
->mpx_supported())
4439 if (!kvm_x86_ops
->rdtscp_supported())
4447 msrs_to_save
[j
] = msrs_to_save
[i
];
4450 num_msrs_to_save
= j
;
4452 for (i
= j
= 0; i
< ARRAY_SIZE(emulated_msrs
); i
++) {
4453 switch (emulated_msrs
[i
]) {
4454 case MSR_IA32_SMBASE
:
4455 if (!kvm_x86_ops
->cpu_has_high_real_mode_segbase())
4463 emulated_msrs
[j
] = emulated_msrs
[i
];
4466 num_emulated_msrs
= j
;
4469 static int vcpu_mmio_write(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
,
4477 if (!(lapic_in_kernel(vcpu
) &&
4478 !kvm_iodevice_write(vcpu
, &vcpu
->arch
.apic
->dev
, addr
, n
, v
))
4479 && kvm_io_bus_write(vcpu
, KVM_MMIO_BUS
, addr
, n
, v
))
4490 static int vcpu_mmio_read(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
, void *v
)
4497 if (!(lapic_in_kernel(vcpu
) &&
4498 !kvm_iodevice_read(vcpu
, &vcpu
->arch
.apic
->dev
,
4500 && kvm_io_bus_read(vcpu
, KVM_MMIO_BUS
, addr
, n
, v
))
4502 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, n
, addr
, v
);
4512 static void kvm_set_segment(struct kvm_vcpu
*vcpu
,
4513 struct kvm_segment
*var
, int seg
)
4515 kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
4518 void kvm_get_segment(struct kvm_vcpu
*vcpu
,
4519 struct kvm_segment
*var
, int seg
)
4521 kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
4524 gpa_t
translate_nested_gpa(struct kvm_vcpu
*vcpu
, gpa_t gpa
, u32 access
,
4525 struct x86_exception
*exception
)
4529 BUG_ON(!mmu_is_nested(vcpu
));
4531 /* NPT walks are always user-walks */
4532 access
|= PFERR_USER_MASK
;
4533 t_gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, gpa
, access
, exception
);
4538 gpa_t
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu
*vcpu
, gva_t gva
,
4539 struct x86_exception
*exception
)
4541 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4542 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4545 gpa_t
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu
*vcpu
, gva_t gva
,
4546 struct x86_exception
*exception
)
4548 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4549 access
|= PFERR_FETCH_MASK
;
4550 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4553 gpa_t
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu
*vcpu
, gva_t gva
,
4554 struct x86_exception
*exception
)
4556 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4557 access
|= PFERR_WRITE_MASK
;
4558 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4561 /* uses this to access any guest's mapped memory without checking CPL */
4562 gpa_t
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu
*vcpu
, gva_t gva
,
4563 struct x86_exception
*exception
)
4565 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, 0, exception
);
4568 static int kvm_read_guest_virt_helper(gva_t addr
, void *val
, unsigned int bytes
,
4569 struct kvm_vcpu
*vcpu
, u32 access
,
4570 struct x86_exception
*exception
)
4573 int r
= X86EMUL_CONTINUE
;
4576 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
, access
,
4578 unsigned offset
= addr
& (PAGE_SIZE
-1);
4579 unsigned toread
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
4582 if (gpa
== UNMAPPED_GVA
)
4583 return X86EMUL_PROPAGATE_FAULT
;
4584 ret
= kvm_vcpu_read_guest_page(vcpu
, gpa
>> PAGE_SHIFT
, data
,
4587 r
= X86EMUL_IO_NEEDED
;
4599 /* used for instruction fetching */
4600 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt
*ctxt
,
4601 gva_t addr
, void *val
, unsigned int bytes
,
4602 struct x86_exception
*exception
)
4604 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4605 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4609 /* Inline kvm_read_guest_virt_helper for speed. */
4610 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
, access
|PFERR_FETCH_MASK
,
4612 if (unlikely(gpa
== UNMAPPED_GVA
))
4613 return X86EMUL_PROPAGATE_FAULT
;
4615 offset
= addr
& (PAGE_SIZE
-1);
4616 if (WARN_ON(offset
+ bytes
> PAGE_SIZE
))
4617 bytes
= (unsigned)PAGE_SIZE
- offset
;
4618 ret
= kvm_vcpu_read_guest_page(vcpu
, gpa
>> PAGE_SHIFT
, val
,
4620 if (unlikely(ret
< 0))
4621 return X86EMUL_IO_NEEDED
;
4623 return X86EMUL_CONTINUE
;
4626 int kvm_read_guest_virt(struct x86_emulate_ctxt
*ctxt
,
4627 gva_t addr
, void *val
, unsigned int bytes
,
4628 struct x86_exception
*exception
)
4630 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4631 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4633 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, access
,
4636 EXPORT_SYMBOL_GPL(kvm_read_guest_virt
);
4638 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
4639 gva_t addr
, void *val
, unsigned int bytes
,
4640 struct x86_exception
*exception
)
4642 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4643 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, 0, exception
);
4646 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt
*ctxt
,
4647 unsigned long addr
, void *val
, unsigned int bytes
)
4649 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4650 int r
= kvm_vcpu_read_guest(vcpu
, addr
, val
, bytes
);
4652 return r
< 0 ? X86EMUL_IO_NEEDED
: X86EMUL_CONTINUE
;
4655 int kvm_write_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
4656 gva_t addr
, void *val
,
4658 struct x86_exception
*exception
)
4660 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4662 int r
= X86EMUL_CONTINUE
;
4665 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
,
4668 unsigned offset
= addr
& (PAGE_SIZE
-1);
4669 unsigned towrite
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
4672 if (gpa
== UNMAPPED_GVA
)
4673 return X86EMUL_PROPAGATE_FAULT
;
4674 ret
= kvm_vcpu_write_guest(vcpu
, gpa
, data
, towrite
);
4676 r
= X86EMUL_IO_NEEDED
;
4687 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system
);
4689 static int vcpu_is_mmio_gpa(struct kvm_vcpu
*vcpu
, unsigned long gva
,
4690 gpa_t gpa
, bool write
)
4692 /* For APIC access vmexit */
4693 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
4696 if (vcpu_match_mmio_gpa(vcpu
, gpa
)) {
4697 trace_vcpu_match_mmio(gva
, gpa
, write
, true);
4704 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu
*vcpu
, unsigned long gva
,
4705 gpa_t
*gpa
, struct x86_exception
*exception
,
4708 u32 access
= ((kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0)
4709 | (write
? PFERR_WRITE_MASK
: 0);
4712 * currently PKRU is only applied to ept enabled guest so
4713 * there is no pkey in EPT page table for L1 guest or EPT
4714 * shadow page table for L2 guest.
4716 if (vcpu_match_mmio_gva(vcpu
, gva
)
4717 && !permission_fault(vcpu
, vcpu
->arch
.walk_mmu
,
4718 vcpu
->arch
.access
, 0, access
)) {
4719 *gpa
= vcpu
->arch
.mmio_gfn
<< PAGE_SHIFT
|
4720 (gva
& (PAGE_SIZE
- 1));
4721 trace_vcpu_match_mmio(gva
, *gpa
, write
, false);
4725 *gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4727 if (*gpa
== UNMAPPED_GVA
)
4730 return vcpu_is_mmio_gpa(vcpu
, gva
, *gpa
, write
);
4733 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4734 const void *val
, int bytes
)
4738 ret
= kvm_vcpu_write_guest(vcpu
, gpa
, val
, bytes
);
4741 kvm_page_track_write(vcpu
, gpa
, val
, bytes
);
4745 struct read_write_emulator_ops
{
4746 int (*read_write_prepare
)(struct kvm_vcpu
*vcpu
, void *val
,
4748 int (*read_write_emulate
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4749 void *val
, int bytes
);
4750 int (*read_write_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4751 int bytes
, void *val
);
4752 int (*read_write_exit_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4753 void *val
, int bytes
);
4757 static int read_prepare(struct kvm_vcpu
*vcpu
, void *val
, int bytes
)
4759 if (vcpu
->mmio_read_completed
) {
4760 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, bytes
,
4761 vcpu
->mmio_fragments
[0].gpa
, val
);
4762 vcpu
->mmio_read_completed
= 0;
4769 static int read_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4770 void *val
, int bytes
)
4772 return !kvm_vcpu_read_guest(vcpu
, gpa
, val
, bytes
);
4775 static int write_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4776 void *val
, int bytes
)
4778 return emulator_write_phys(vcpu
, gpa
, val
, bytes
);
4781 static int write_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
, int bytes
, void *val
)
4783 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE
, bytes
, gpa
, val
);
4784 return vcpu_mmio_write(vcpu
, gpa
, bytes
, val
);
4787 static int read_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4788 void *val
, int bytes
)
4790 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED
, bytes
, gpa
, NULL
);
4791 return X86EMUL_IO_NEEDED
;
4794 static int write_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4795 void *val
, int bytes
)
4797 struct kvm_mmio_fragment
*frag
= &vcpu
->mmio_fragments
[0];
4799 memcpy(vcpu
->run
->mmio
.data
, frag
->data
, min(8u, frag
->len
));
4800 return X86EMUL_CONTINUE
;
4803 static const struct read_write_emulator_ops read_emultor
= {
4804 .read_write_prepare
= read_prepare
,
4805 .read_write_emulate
= read_emulate
,
4806 .read_write_mmio
= vcpu_mmio_read
,
4807 .read_write_exit_mmio
= read_exit_mmio
,
4810 static const struct read_write_emulator_ops write_emultor
= {
4811 .read_write_emulate
= write_emulate
,
4812 .read_write_mmio
= write_mmio
,
4813 .read_write_exit_mmio
= write_exit_mmio
,
4817 static int emulator_read_write_onepage(unsigned long addr
, void *val
,
4819 struct x86_exception
*exception
,
4820 struct kvm_vcpu
*vcpu
,
4821 const struct read_write_emulator_ops
*ops
)
4825 bool write
= ops
->write
;
4826 struct kvm_mmio_fragment
*frag
;
4827 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4830 * If the exit was due to a NPF we may already have a GPA.
4831 * If the GPA is present, use it to avoid the GVA to GPA table walk.
4832 * Note, this cannot be used on string operations since string
4833 * operation using rep will only have the initial GPA from the NPF
4836 if (vcpu
->arch
.gpa_available
&&
4837 emulator_can_use_gpa(ctxt
) &&
4838 (addr
& ~PAGE_MASK
) == (vcpu
->arch
.gpa_val
& ~PAGE_MASK
)) {
4839 gpa
= vcpu
->arch
.gpa_val
;
4840 ret
= vcpu_is_mmio_gpa(vcpu
, addr
, gpa
, write
);
4842 ret
= vcpu_mmio_gva_to_gpa(vcpu
, addr
, &gpa
, exception
, write
);
4844 return X86EMUL_PROPAGATE_FAULT
;
4847 if (!ret
&& ops
->read_write_emulate(vcpu
, gpa
, val
, bytes
))
4848 return X86EMUL_CONTINUE
;
4851 * Is this MMIO handled locally?
4853 handled
= ops
->read_write_mmio(vcpu
, gpa
, bytes
, val
);
4854 if (handled
== bytes
)
4855 return X86EMUL_CONTINUE
;
4861 WARN_ON(vcpu
->mmio_nr_fragments
>= KVM_MAX_MMIO_FRAGMENTS
);
4862 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_nr_fragments
++];
4866 return X86EMUL_CONTINUE
;
4869 static int emulator_read_write(struct x86_emulate_ctxt
*ctxt
,
4871 void *val
, unsigned int bytes
,
4872 struct x86_exception
*exception
,
4873 const struct read_write_emulator_ops
*ops
)
4875 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4879 if (ops
->read_write_prepare
&&
4880 ops
->read_write_prepare(vcpu
, val
, bytes
))
4881 return X86EMUL_CONTINUE
;
4883 vcpu
->mmio_nr_fragments
= 0;
4885 /* Crossing a page boundary? */
4886 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
4889 now
= -addr
& ~PAGE_MASK
;
4890 rc
= emulator_read_write_onepage(addr
, val
, now
, exception
,
4893 if (rc
!= X86EMUL_CONTINUE
)
4896 if (ctxt
->mode
!= X86EMUL_MODE_PROT64
)
4902 rc
= emulator_read_write_onepage(addr
, val
, bytes
, exception
,
4904 if (rc
!= X86EMUL_CONTINUE
)
4907 if (!vcpu
->mmio_nr_fragments
)
4910 gpa
= vcpu
->mmio_fragments
[0].gpa
;
4912 vcpu
->mmio_needed
= 1;
4913 vcpu
->mmio_cur_fragment
= 0;
4915 vcpu
->run
->mmio
.len
= min(8u, vcpu
->mmio_fragments
[0].len
);
4916 vcpu
->run
->mmio
.is_write
= vcpu
->mmio_is_write
= ops
->write
;
4917 vcpu
->run
->exit_reason
= KVM_EXIT_MMIO
;
4918 vcpu
->run
->mmio
.phys_addr
= gpa
;
4920 return ops
->read_write_exit_mmio(vcpu
, gpa
, val
, bytes
);
4923 static int emulator_read_emulated(struct x86_emulate_ctxt
*ctxt
,
4927 struct x86_exception
*exception
)
4929 return emulator_read_write(ctxt
, addr
, val
, bytes
,
4930 exception
, &read_emultor
);
4933 static int emulator_write_emulated(struct x86_emulate_ctxt
*ctxt
,
4937 struct x86_exception
*exception
)
4939 return emulator_read_write(ctxt
, addr
, (void *)val
, bytes
,
4940 exception
, &write_emultor
);
4943 #define CMPXCHG_TYPE(t, ptr, old, new) \
4944 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4946 #ifdef CONFIG_X86_64
4947 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4949 # define CMPXCHG64(ptr, old, new) \
4950 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4953 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt
*ctxt
,
4958 struct x86_exception
*exception
)
4960 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4966 /* guests cmpxchg8b have to be emulated atomically */
4967 if (bytes
> 8 || (bytes
& (bytes
- 1)))
4970 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, addr
, NULL
);
4972 if (gpa
== UNMAPPED_GVA
||
4973 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
4976 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
4979 page
= kvm_vcpu_gfn_to_page(vcpu
, gpa
>> PAGE_SHIFT
);
4980 if (is_error_page(page
))
4983 kaddr
= kmap_atomic(page
);
4984 kaddr
+= offset_in_page(gpa
);
4987 exchanged
= CMPXCHG_TYPE(u8
, kaddr
, old
, new);
4990 exchanged
= CMPXCHG_TYPE(u16
, kaddr
, old
, new);
4993 exchanged
= CMPXCHG_TYPE(u32
, kaddr
, old
, new);
4996 exchanged
= CMPXCHG64(kaddr
, old
, new);
5001 kunmap_atomic(kaddr
);
5002 kvm_release_page_dirty(page
);
5005 return X86EMUL_CMPXCHG_FAILED
;
5007 kvm_vcpu_mark_page_dirty(vcpu
, gpa
>> PAGE_SHIFT
);
5008 kvm_page_track_write(vcpu
, gpa
, new, bytes
);
5010 return X86EMUL_CONTINUE
;
5013 printk_once(KERN_WARNING
"kvm: emulating exchange as write\n");
5015 return emulator_write_emulated(ctxt
, addr
, new, bytes
, exception
);
5018 static int kernel_pio(struct kvm_vcpu
*vcpu
, void *pd
)
5022 for (i
= 0; i
< vcpu
->arch
.pio
.count
; i
++) {
5023 if (vcpu
->arch
.pio
.in
)
5024 r
= kvm_io_bus_read(vcpu
, KVM_PIO_BUS
, vcpu
->arch
.pio
.port
,
5025 vcpu
->arch
.pio
.size
, pd
);
5027 r
= kvm_io_bus_write(vcpu
, KVM_PIO_BUS
,
5028 vcpu
->arch
.pio
.port
, vcpu
->arch
.pio
.size
,
5032 pd
+= vcpu
->arch
.pio
.size
;
5037 static int emulator_pio_in_out(struct kvm_vcpu
*vcpu
, int size
,
5038 unsigned short port
, void *val
,
5039 unsigned int count
, bool in
)
5041 vcpu
->arch
.pio
.port
= port
;
5042 vcpu
->arch
.pio
.in
= in
;
5043 vcpu
->arch
.pio
.count
= count
;
5044 vcpu
->arch
.pio
.size
= size
;
5046 if (!kernel_pio(vcpu
, vcpu
->arch
.pio_data
)) {
5047 vcpu
->arch
.pio
.count
= 0;
5051 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
5052 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
5053 vcpu
->run
->io
.size
= size
;
5054 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
5055 vcpu
->run
->io
.count
= count
;
5056 vcpu
->run
->io
.port
= port
;
5061 static int emulator_pio_in_emulated(struct x86_emulate_ctxt
*ctxt
,
5062 int size
, unsigned short port
, void *val
,
5065 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5068 if (vcpu
->arch
.pio
.count
)
5071 memset(vcpu
->arch
.pio_data
, 0, size
* count
);
5073 ret
= emulator_pio_in_out(vcpu
, size
, port
, val
, count
, true);
5076 memcpy(val
, vcpu
->arch
.pio_data
, size
* count
);
5077 trace_kvm_pio(KVM_PIO_IN
, port
, size
, count
, vcpu
->arch
.pio_data
);
5078 vcpu
->arch
.pio
.count
= 0;
5085 static int emulator_pio_out_emulated(struct x86_emulate_ctxt
*ctxt
,
5086 int size
, unsigned short port
,
5087 const void *val
, unsigned int count
)
5089 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5091 memcpy(vcpu
->arch
.pio_data
, val
, size
* count
);
5092 trace_kvm_pio(KVM_PIO_OUT
, port
, size
, count
, vcpu
->arch
.pio_data
);
5093 return emulator_pio_in_out(vcpu
, size
, port
, (void *)val
, count
, false);
5096 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
5098 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
5101 static void emulator_invlpg(struct x86_emulate_ctxt
*ctxt
, ulong address
)
5103 kvm_mmu_invlpg(emul_to_vcpu(ctxt
), address
);
5106 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu
*vcpu
)
5108 if (!need_emulate_wbinvd(vcpu
))
5109 return X86EMUL_CONTINUE
;
5111 if (kvm_x86_ops
->has_wbinvd_exit()) {
5112 int cpu
= get_cpu();
5114 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
5115 smp_call_function_many(vcpu
->arch
.wbinvd_dirty_mask
,
5116 wbinvd_ipi
, NULL
, 1);
5118 cpumask_clear(vcpu
->arch
.wbinvd_dirty_mask
);
5121 return X86EMUL_CONTINUE
;
5124 int kvm_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
5126 kvm_emulate_wbinvd_noskip(vcpu
);
5127 return kvm_skip_emulated_instruction(vcpu
);
5129 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd
);
5133 static void emulator_wbinvd(struct x86_emulate_ctxt
*ctxt
)
5135 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt
));
5138 static int emulator_get_dr(struct x86_emulate_ctxt
*ctxt
, int dr
,
5139 unsigned long *dest
)
5141 return kvm_get_dr(emul_to_vcpu(ctxt
), dr
, dest
);
5144 static int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
,
5145 unsigned long value
)
5148 return __kvm_set_dr(emul_to_vcpu(ctxt
), dr
, value
);
5151 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
5153 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
5156 static unsigned long emulator_get_cr(struct x86_emulate_ctxt
*ctxt
, int cr
)
5158 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5159 unsigned long value
;
5163 value
= kvm_read_cr0(vcpu
);
5166 value
= vcpu
->arch
.cr2
;
5169 value
= kvm_read_cr3(vcpu
);
5172 value
= kvm_read_cr4(vcpu
);
5175 value
= kvm_get_cr8(vcpu
);
5178 kvm_err("%s: unexpected cr %u\n", __func__
, cr
);
5185 static int emulator_set_cr(struct x86_emulate_ctxt
*ctxt
, int cr
, ulong val
)
5187 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5192 res
= kvm_set_cr0(vcpu
, mk_cr_64(kvm_read_cr0(vcpu
), val
));
5195 vcpu
->arch
.cr2
= val
;
5198 res
= kvm_set_cr3(vcpu
, val
);
5201 res
= kvm_set_cr4(vcpu
, mk_cr_64(kvm_read_cr4(vcpu
), val
));
5204 res
= kvm_set_cr8(vcpu
, val
);
5207 kvm_err("%s: unexpected cr %u\n", __func__
, cr
);
5214 static int emulator_get_cpl(struct x86_emulate_ctxt
*ctxt
)
5216 return kvm_x86_ops
->get_cpl(emul_to_vcpu(ctxt
));
5219 static void emulator_get_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
5221 kvm_x86_ops
->get_gdt(emul_to_vcpu(ctxt
), dt
);
5224 static void emulator_get_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
5226 kvm_x86_ops
->get_idt(emul_to_vcpu(ctxt
), dt
);
5229 static void emulator_set_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
5231 kvm_x86_ops
->set_gdt(emul_to_vcpu(ctxt
), dt
);
5234 static void emulator_set_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
5236 kvm_x86_ops
->set_idt(emul_to_vcpu(ctxt
), dt
);
5239 static unsigned long emulator_get_cached_segment_base(
5240 struct x86_emulate_ctxt
*ctxt
, int seg
)
5242 return get_segment_base(emul_to_vcpu(ctxt
), seg
);
5245 static bool emulator_get_segment(struct x86_emulate_ctxt
*ctxt
, u16
*selector
,
5246 struct desc_struct
*desc
, u32
*base3
,
5249 struct kvm_segment var
;
5251 kvm_get_segment(emul_to_vcpu(ctxt
), &var
, seg
);
5252 *selector
= var
.selector
;
5255 memset(desc
, 0, sizeof(*desc
));
5263 set_desc_limit(desc
, var
.limit
);
5264 set_desc_base(desc
, (unsigned long)var
.base
);
5265 #ifdef CONFIG_X86_64
5267 *base3
= var
.base
>> 32;
5269 desc
->type
= var
.type
;
5271 desc
->dpl
= var
.dpl
;
5272 desc
->p
= var
.present
;
5273 desc
->avl
= var
.avl
;
5281 static void emulator_set_segment(struct x86_emulate_ctxt
*ctxt
, u16 selector
,
5282 struct desc_struct
*desc
, u32 base3
,
5285 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5286 struct kvm_segment var
;
5288 var
.selector
= selector
;
5289 var
.base
= get_desc_base(desc
);
5290 #ifdef CONFIG_X86_64
5291 var
.base
|= ((u64
)base3
) << 32;
5293 var
.limit
= get_desc_limit(desc
);
5295 var
.limit
= (var
.limit
<< 12) | 0xfff;
5296 var
.type
= desc
->type
;
5297 var
.dpl
= desc
->dpl
;
5302 var
.avl
= desc
->avl
;
5303 var
.present
= desc
->p
;
5304 var
.unusable
= !var
.present
;
5307 kvm_set_segment(vcpu
, &var
, seg
);
5311 static int emulator_get_msr(struct x86_emulate_ctxt
*ctxt
,
5312 u32 msr_index
, u64
*pdata
)
5314 struct msr_data msr
;
5317 msr
.index
= msr_index
;
5318 msr
.host_initiated
= false;
5319 r
= kvm_get_msr(emul_to_vcpu(ctxt
), &msr
);
5327 static int emulator_set_msr(struct x86_emulate_ctxt
*ctxt
,
5328 u32 msr_index
, u64 data
)
5330 struct msr_data msr
;
5333 msr
.index
= msr_index
;
5334 msr
.host_initiated
= false;
5335 return kvm_set_msr(emul_to_vcpu(ctxt
), &msr
);
5338 static u64
emulator_get_smbase(struct x86_emulate_ctxt
*ctxt
)
5340 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5342 return vcpu
->arch
.smbase
;
5345 static void emulator_set_smbase(struct x86_emulate_ctxt
*ctxt
, u64 smbase
)
5347 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5349 vcpu
->arch
.smbase
= smbase
;
5352 static int emulator_check_pmc(struct x86_emulate_ctxt
*ctxt
,
5355 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt
), pmc
);
5358 static int emulator_read_pmc(struct x86_emulate_ctxt
*ctxt
,
5359 u32 pmc
, u64
*pdata
)
5361 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt
), pmc
, pdata
);
5364 static void emulator_halt(struct x86_emulate_ctxt
*ctxt
)
5366 emul_to_vcpu(ctxt
)->arch
.halt_request
= 1;
5369 static int emulator_intercept(struct x86_emulate_ctxt
*ctxt
,
5370 struct x86_instruction_info
*info
,
5371 enum x86_intercept_stage stage
)
5373 return kvm_x86_ops
->check_intercept(emul_to_vcpu(ctxt
), info
, stage
);
5376 static bool emulator_get_cpuid(struct x86_emulate_ctxt
*ctxt
,
5377 u32
*eax
, u32
*ebx
, u32
*ecx
, u32
*edx
, bool check_limit
)
5379 return kvm_cpuid(emul_to_vcpu(ctxt
), eax
, ebx
, ecx
, edx
, check_limit
);
5382 static ulong
emulator_read_gpr(struct x86_emulate_ctxt
*ctxt
, unsigned reg
)
5384 return kvm_register_read(emul_to_vcpu(ctxt
), reg
);
5387 static void emulator_write_gpr(struct x86_emulate_ctxt
*ctxt
, unsigned reg
, ulong val
)
5389 kvm_register_write(emul_to_vcpu(ctxt
), reg
, val
);
5392 static void emulator_set_nmi_mask(struct x86_emulate_ctxt
*ctxt
, bool masked
)
5394 kvm_x86_ops
->set_nmi_mask(emul_to_vcpu(ctxt
), masked
);
5397 static unsigned emulator_get_hflags(struct x86_emulate_ctxt
*ctxt
)
5399 return emul_to_vcpu(ctxt
)->arch
.hflags
;
5402 static void emulator_set_hflags(struct x86_emulate_ctxt
*ctxt
, unsigned emul_flags
)
5404 kvm_set_hflags(emul_to_vcpu(ctxt
), emul_flags
);
5407 static int emulator_pre_leave_smm(struct x86_emulate_ctxt
*ctxt
, u64 smbase
)
5409 return kvm_x86_ops
->pre_leave_smm(emul_to_vcpu(ctxt
), smbase
);
5412 static const struct x86_emulate_ops emulate_ops
= {
5413 .read_gpr
= emulator_read_gpr
,
5414 .write_gpr
= emulator_write_gpr
,
5415 .read_std
= kvm_read_guest_virt_system
,
5416 .write_std
= kvm_write_guest_virt_system
,
5417 .read_phys
= kvm_read_guest_phys_system
,
5418 .fetch
= kvm_fetch_guest_virt
,
5419 .read_emulated
= emulator_read_emulated
,
5420 .write_emulated
= emulator_write_emulated
,
5421 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
5422 .invlpg
= emulator_invlpg
,
5423 .pio_in_emulated
= emulator_pio_in_emulated
,
5424 .pio_out_emulated
= emulator_pio_out_emulated
,
5425 .get_segment
= emulator_get_segment
,
5426 .set_segment
= emulator_set_segment
,
5427 .get_cached_segment_base
= emulator_get_cached_segment_base
,
5428 .get_gdt
= emulator_get_gdt
,
5429 .get_idt
= emulator_get_idt
,
5430 .set_gdt
= emulator_set_gdt
,
5431 .set_idt
= emulator_set_idt
,
5432 .get_cr
= emulator_get_cr
,
5433 .set_cr
= emulator_set_cr
,
5434 .cpl
= emulator_get_cpl
,
5435 .get_dr
= emulator_get_dr
,
5436 .set_dr
= emulator_set_dr
,
5437 .get_smbase
= emulator_get_smbase
,
5438 .set_smbase
= emulator_set_smbase
,
5439 .set_msr
= emulator_set_msr
,
5440 .get_msr
= emulator_get_msr
,
5441 .check_pmc
= emulator_check_pmc
,
5442 .read_pmc
= emulator_read_pmc
,
5443 .halt
= emulator_halt
,
5444 .wbinvd
= emulator_wbinvd
,
5445 .fix_hypercall
= emulator_fix_hypercall
,
5446 .intercept
= emulator_intercept
,
5447 .get_cpuid
= emulator_get_cpuid
,
5448 .set_nmi_mask
= emulator_set_nmi_mask
,
5449 .get_hflags
= emulator_get_hflags
,
5450 .set_hflags
= emulator_set_hflags
,
5451 .pre_leave_smm
= emulator_pre_leave_smm
,
5454 static void toggle_interruptibility(struct kvm_vcpu
*vcpu
, u32 mask
)
5456 u32 int_shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
);
5458 * an sti; sti; sequence only disable interrupts for the first
5459 * instruction. So, if the last instruction, be it emulated or
5460 * not, left the system with the INT_STI flag enabled, it
5461 * means that the last instruction is an sti. We should not
5462 * leave the flag on in this case. The same goes for mov ss
5464 if (int_shadow
& mask
)
5466 if (unlikely(int_shadow
|| mask
)) {
5467 kvm_x86_ops
->set_interrupt_shadow(vcpu
, mask
);
5469 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5473 static bool inject_emulated_exception(struct kvm_vcpu
*vcpu
)
5475 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5476 if (ctxt
->exception
.vector
== PF_VECTOR
)
5477 return kvm_propagate_fault(vcpu
, &ctxt
->exception
);
5479 if (ctxt
->exception
.error_code_valid
)
5480 kvm_queue_exception_e(vcpu
, ctxt
->exception
.vector
,
5481 ctxt
->exception
.error_code
);
5483 kvm_queue_exception(vcpu
, ctxt
->exception
.vector
);
5487 static void init_emulate_ctxt(struct kvm_vcpu
*vcpu
)
5489 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5492 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
5494 ctxt
->eflags
= kvm_get_rflags(vcpu
);
5495 ctxt
->tf
= (ctxt
->eflags
& X86_EFLAGS_TF
) != 0;
5497 ctxt
->eip
= kvm_rip_read(vcpu
);
5498 ctxt
->mode
= (!is_protmode(vcpu
)) ? X86EMUL_MODE_REAL
:
5499 (ctxt
->eflags
& X86_EFLAGS_VM
) ? X86EMUL_MODE_VM86
:
5500 (cs_l
&& is_long_mode(vcpu
)) ? X86EMUL_MODE_PROT64
:
5501 cs_db
? X86EMUL_MODE_PROT32
:
5502 X86EMUL_MODE_PROT16
;
5503 BUILD_BUG_ON(HF_GUEST_MASK
!= X86EMUL_GUEST_MASK
);
5504 BUILD_BUG_ON(HF_SMM_MASK
!= X86EMUL_SMM_MASK
);
5505 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK
!= X86EMUL_SMM_INSIDE_NMI_MASK
);
5507 init_decode_cache(ctxt
);
5508 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
5511 int kvm_inject_realmode_interrupt(struct kvm_vcpu
*vcpu
, int irq
, int inc_eip
)
5513 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5516 init_emulate_ctxt(vcpu
);
5520 ctxt
->_eip
= ctxt
->eip
+ inc_eip
;
5521 ret
= emulate_int_real(ctxt
, irq
);
5523 if (ret
!= X86EMUL_CONTINUE
)
5524 return EMULATE_FAIL
;
5526 ctxt
->eip
= ctxt
->_eip
;
5527 kvm_rip_write(vcpu
, ctxt
->eip
);
5528 kvm_set_rflags(vcpu
, ctxt
->eflags
);
5530 if (irq
== NMI_VECTOR
)
5531 vcpu
->arch
.nmi_pending
= 0;
5533 vcpu
->arch
.interrupt
.pending
= false;
5535 return EMULATE_DONE
;
5537 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt
);
5539 static int handle_emulation_failure(struct kvm_vcpu
*vcpu
)
5541 int r
= EMULATE_DONE
;
5543 ++vcpu
->stat
.insn_emulation_fail
;
5544 trace_kvm_emulate_insn_failed(vcpu
);
5545 if (!is_guest_mode(vcpu
) && kvm_x86_ops
->get_cpl(vcpu
) == 0) {
5546 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
5547 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
5548 vcpu
->run
->internal
.ndata
= 0;
5549 r
= EMULATE_USER_EXIT
;
5551 kvm_queue_exception(vcpu
, UD_VECTOR
);
5556 static bool reexecute_instruction(struct kvm_vcpu
*vcpu
, gva_t cr2
,
5557 bool write_fault_to_shadow_pgtable
,
5563 if (emulation_type
& EMULTYPE_NO_REEXECUTE
)
5566 if (!vcpu
->arch
.mmu
.direct_map
) {
5568 * Write permission should be allowed since only
5569 * write access need to be emulated.
5571 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, cr2
, NULL
);
5574 * If the mapping is invalid in guest, let cpu retry
5575 * it to generate fault.
5577 if (gpa
== UNMAPPED_GVA
)
5582 * Do not retry the unhandleable instruction if it faults on the
5583 * readonly host memory, otherwise it will goto a infinite loop:
5584 * retry instruction -> write #PF -> emulation fail -> retry
5585 * instruction -> ...
5587 pfn
= gfn_to_pfn(vcpu
->kvm
, gpa_to_gfn(gpa
));
5590 * If the instruction failed on the error pfn, it can not be fixed,
5591 * report the error to userspace.
5593 if (is_error_noslot_pfn(pfn
))
5596 kvm_release_pfn_clean(pfn
);
5598 /* The instructions are well-emulated on direct mmu. */
5599 if (vcpu
->arch
.mmu
.direct_map
) {
5600 unsigned int indirect_shadow_pages
;
5602 spin_lock(&vcpu
->kvm
->mmu_lock
);
5603 indirect_shadow_pages
= vcpu
->kvm
->arch
.indirect_shadow_pages
;
5604 spin_unlock(&vcpu
->kvm
->mmu_lock
);
5606 if (indirect_shadow_pages
)
5607 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
5613 * if emulation was due to access to shadowed page table
5614 * and it failed try to unshadow page and re-enter the
5615 * guest to let CPU execute the instruction.
5617 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
5620 * If the access faults on its page table, it can not
5621 * be fixed by unprotecting shadow page and it should
5622 * be reported to userspace.
5624 return !write_fault_to_shadow_pgtable
;
5627 static bool retry_instruction(struct x86_emulate_ctxt
*ctxt
,
5628 unsigned long cr2
, int emulation_type
)
5630 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5631 unsigned long last_retry_eip
, last_retry_addr
, gpa
= cr2
;
5633 last_retry_eip
= vcpu
->arch
.last_retry_eip
;
5634 last_retry_addr
= vcpu
->arch
.last_retry_addr
;
5637 * If the emulation is caused by #PF and it is non-page_table
5638 * writing instruction, it means the VM-EXIT is caused by shadow
5639 * page protected, we can zap the shadow page and retry this
5640 * instruction directly.
5642 * Note: if the guest uses a non-page-table modifying instruction
5643 * on the PDE that points to the instruction, then we will unmap
5644 * the instruction and go to an infinite loop. So, we cache the
5645 * last retried eip and the last fault address, if we meet the eip
5646 * and the address again, we can break out of the potential infinite
5649 vcpu
->arch
.last_retry_eip
= vcpu
->arch
.last_retry_addr
= 0;
5651 if (!(emulation_type
& EMULTYPE_RETRY
))
5654 if (x86_page_table_writing_insn(ctxt
))
5657 if (ctxt
->eip
== last_retry_eip
&& last_retry_addr
== cr2
)
5660 vcpu
->arch
.last_retry_eip
= ctxt
->eip
;
5661 vcpu
->arch
.last_retry_addr
= cr2
;
5663 if (!vcpu
->arch
.mmu
.direct_map
)
5664 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, cr2
, NULL
);
5666 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
5671 static int complete_emulated_mmio(struct kvm_vcpu
*vcpu
);
5672 static int complete_emulated_pio(struct kvm_vcpu
*vcpu
);
5674 static void kvm_smm_changed(struct kvm_vcpu
*vcpu
)
5676 if (!(vcpu
->arch
.hflags
& HF_SMM_MASK
)) {
5677 /* This is a good place to trace that we are exiting SMM. */
5678 trace_kvm_enter_smm(vcpu
->vcpu_id
, vcpu
->arch
.smbase
, false);
5680 /* Process a latched INIT or SMI, if any. */
5681 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5684 kvm_mmu_reset_context(vcpu
);
5687 static void kvm_set_hflags(struct kvm_vcpu
*vcpu
, unsigned emul_flags
)
5689 unsigned changed
= vcpu
->arch
.hflags
^ emul_flags
;
5691 vcpu
->arch
.hflags
= emul_flags
;
5693 if (changed
& HF_SMM_MASK
)
5694 kvm_smm_changed(vcpu
);
5697 static int kvm_vcpu_check_hw_bp(unsigned long addr
, u32 type
, u32 dr7
,
5706 for (i
= 0; i
< 4; i
++, enable
>>= 2, rwlen
>>= 4)
5707 if ((enable
& 3) && (rwlen
& 15) == type
&& db
[i
] == addr
)
5712 static void kvm_vcpu_do_singlestep(struct kvm_vcpu
*vcpu
, int *r
)
5714 struct kvm_run
*kvm_run
= vcpu
->run
;
5716 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
) {
5717 kvm_run
->debug
.arch
.dr6
= DR6_BS
| DR6_FIXED_1
| DR6_RTM
;
5718 kvm_run
->debug
.arch
.pc
= vcpu
->arch
.singlestep_rip
;
5719 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
5720 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
5721 *r
= EMULATE_USER_EXIT
;
5724 * "Certain debug exceptions may clear bit 0-3. The
5725 * remaining contents of the DR6 register are never
5726 * cleared by the processor".
5728 vcpu
->arch
.dr6
&= ~15;
5729 vcpu
->arch
.dr6
|= DR6_BS
| DR6_RTM
;
5730 kvm_queue_exception(vcpu
, DB_VECTOR
);
5734 int kvm_skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
5736 unsigned long rflags
= kvm_x86_ops
->get_rflags(vcpu
);
5737 int r
= EMULATE_DONE
;
5739 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
5742 * rflags is the old, "raw" value of the flags. The new value has
5743 * not been saved yet.
5745 * This is correct even for TF set by the guest, because "the
5746 * processor will not generate this exception after the instruction
5747 * that sets the TF flag".
5749 if (unlikely(rflags
& X86_EFLAGS_TF
))
5750 kvm_vcpu_do_singlestep(vcpu
, &r
);
5751 return r
== EMULATE_DONE
;
5753 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction
);
5755 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu
*vcpu
, int *r
)
5757 if (unlikely(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) &&
5758 (vcpu
->arch
.guest_debug_dr7
& DR7_BP_EN_MASK
)) {
5759 struct kvm_run
*kvm_run
= vcpu
->run
;
5760 unsigned long eip
= kvm_get_linear_rip(vcpu
);
5761 u32 dr6
= kvm_vcpu_check_hw_bp(eip
, 0,
5762 vcpu
->arch
.guest_debug_dr7
,
5766 kvm_run
->debug
.arch
.dr6
= dr6
| DR6_FIXED_1
| DR6_RTM
;
5767 kvm_run
->debug
.arch
.pc
= eip
;
5768 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
5769 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
5770 *r
= EMULATE_USER_EXIT
;
5775 if (unlikely(vcpu
->arch
.dr7
& DR7_BP_EN_MASK
) &&
5776 !(kvm_get_rflags(vcpu
) & X86_EFLAGS_RF
)) {
5777 unsigned long eip
= kvm_get_linear_rip(vcpu
);
5778 u32 dr6
= kvm_vcpu_check_hw_bp(eip
, 0,
5783 vcpu
->arch
.dr6
&= ~15;
5784 vcpu
->arch
.dr6
|= dr6
| DR6_RTM
;
5785 kvm_queue_exception(vcpu
, DB_VECTOR
);
5794 int x86_emulate_instruction(struct kvm_vcpu
*vcpu
,
5801 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5802 bool writeback
= true;
5803 bool write_fault_to_spt
= vcpu
->arch
.write_fault_to_shadow_pgtable
;
5806 * Clear write_fault_to_shadow_pgtable here to ensure it is
5809 vcpu
->arch
.write_fault_to_shadow_pgtable
= false;
5810 kvm_clear_exception_queue(vcpu
);
5812 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
5813 init_emulate_ctxt(vcpu
);
5816 * We will reenter on the same instruction since
5817 * we do not set complete_userspace_io. This does not
5818 * handle watchpoints yet, those would be handled in
5821 if (!(emulation_type
& EMULTYPE_SKIP
) &&
5822 kvm_vcpu_check_breakpoint(vcpu
, &r
))
5825 ctxt
->interruptibility
= 0;
5826 ctxt
->have_exception
= false;
5827 ctxt
->exception
.vector
= -1;
5828 ctxt
->perm_ok
= false;
5830 ctxt
->ud
= emulation_type
& EMULTYPE_TRAP_UD
;
5832 r
= x86_decode_insn(ctxt
, insn
, insn_len
);
5834 trace_kvm_emulate_insn_start(vcpu
);
5835 ++vcpu
->stat
.insn_emulation
;
5836 if (r
!= EMULATION_OK
) {
5837 if (emulation_type
& EMULTYPE_TRAP_UD
)
5838 return EMULATE_FAIL
;
5839 if (reexecute_instruction(vcpu
, cr2
, write_fault_to_spt
,
5841 return EMULATE_DONE
;
5842 if (ctxt
->have_exception
&& inject_emulated_exception(vcpu
))
5843 return EMULATE_DONE
;
5844 if (emulation_type
& EMULTYPE_SKIP
)
5845 return EMULATE_FAIL
;
5846 return handle_emulation_failure(vcpu
);
5850 if (emulation_type
& EMULTYPE_SKIP
) {
5851 kvm_rip_write(vcpu
, ctxt
->_eip
);
5852 if (ctxt
->eflags
& X86_EFLAGS_RF
)
5853 kvm_set_rflags(vcpu
, ctxt
->eflags
& ~X86_EFLAGS_RF
);
5854 return EMULATE_DONE
;
5857 if (retry_instruction(ctxt
, cr2
, emulation_type
))
5858 return EMULATE_DONE
;
5860 /* this is needed for vmware backdoor interface to work since it
5861 changes registers values during IO operation */
5862 if (vcpu
->arch
.emulate_regs_need_sync_from_vcpu
) {
5863 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
5864 emulator_invalidate_register_cache(ctxt
);
5868 /* Save the faulting GPA (cr2) in the address field */
5869 ctxt
->exception
.address
= cr2
;
5871 r
= x86_emulate_insn(ctxt
);
5873 if (r
== EMULATION_INTERCEPTED
)
5874 return EMULATE_DONE
;
5876 if (r
== EMULATION_FAILED
) {
5877 if (reexecute_instruction(vcpu
, cr2
, write_fault_to_spt
,
5879 return EMULATE_DONE
;
5881 return handle_emulation_failure(vcpu
);
5884 if (ctxt
->have_exception
) {
5886 if (inject_emulated_exception(vcpu
))
5888 } else if (vcpu
->arch
.pio
.count
) {
5889 if (!vcpu
->arch
.pio
.in
) {
5890 /* FIXME: return into emulator if single-stepping. */
5891 vcpu
->arch
.pio
.count
= 0;
5894 vcpu
->arch
.complete_userspace_io
= complete_emulated_pio
;
5896 r
= EMULATE_USER_EXIT
;
5897 } else if (vcpu
->mmio_needed
) {
5898 if (!vcpu
->mmio_is_write
)
5900 r
= EMULATE_USER_EXIT
;
5901 vcpu
->arch
.complete_userspace_io
= complete_emulated_mmio
;
5902 } else if (r
== EMULATION_RESTART
)
5908 unsigned long rflags
= kvm_x86_ops
->get_rflags(vcpu
);
5909 toggle_interruptibility(vcpu
, ctxt
->interruptibility
);
5910 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
5911 kvm_rip_write(vcpu
, ctxt
->eip
);
5912 if (r
== EMULATE_DONE
&&
5913 (ctxt
->tf
|| (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)))
5914 kvm_vcpu_do_singlestep(vcpu
, &r
);
5915 if (!ctxt
->have_exception
||
5916 exception_type(ctxt
->exception
.vector
) == EXCPT_TRAP
)
5917 __kvm_set_rflags(vcpu
, ctxt
->eflags
);
5920 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5921 * do nothing, and it will be requested again as soon as
5922 * the shadow expires. But we still need to check here,
5923 * because POPF has no interrupt shadow.
5925 if (unlikely((ctxt
->eflags
& ~rflags
) & X86_EFLAGS_IF
))
5926 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5928 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= true;
5932 EXPORT_SYMBOL_GPL(x86_emulate_instruction
);
5934 int kvm_fast_pio_out(struct kvm_vcpu
*vcpu
, int size
, unsigned short port
)
5936 unsigned long val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
5937 int ret
= emulator_pio_out_emulated(&vcpu
->arch
.emulate_ctxt
,
5938 size
, port
, &val
, 1);
5939 /* do not return to emulator after return from userspace */
5940 vcpu
->arch
.pio
.count
= 0;
5943 EXPORT_SYMBOL_GPL(kvm_fast_pio_out
);
5945 static int complete_fast_pio_in(struct kvm_vcpu
*vcpu
)
5949 /* We should only ever be called with arch.pio.count equal to 1 */
5950 BUG_ON(vcpu
->arch
.pio
.count
!= 1);
5952 /* For size less than 4 we merge, else we zero extend */
5953 val
= (vcpu
->arch
.pio
.size
< 4) ? kvm_register_read(vcpu
, VCPU_REGS_RAX
)
5957 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5958 * the copy and tracing
5960 emulator_pio_in_emulated(&vcpu
->arch
.emulate_ctxt
, vcpu
->arch
.pio
.size
,
5961 vcpu
->arch
.pio
.port
, &val
, 1);
5962 kvm_register_write(vcpu
, VCPU_REGS_RAX
, val
);
5967 int kvm_fast_pio_in(struct kvm_vcpu
*vcpu
, int size
, unsigned short port
)
5972 /* For size less than 4 we merge, else we zero extend */
5973 val
= (size
< 4) ? kvm_register_read(vcpu
, VCPU_REGS_RAX
) : 0;
5975 ret
= emulator_pio_in_emulated(&vcpu
->arch
.emulate_ctxt
, size
, port
,
5978 kvm_register_write(vcpu
, VCPU_REGS_RAX
, val
);
5982 vcpu
->arch
.complete_userspace_io
= complete_fast_pio_in
;
5986 EXPORT_SYMBOL_GPL(kvm_fast_pio_in
);
5988 static int kvmclock_cpu_down_prep(unsigned int cpu
)
5990 __this_cpu_write(cpu_tsc_khz
, 0);
5994 static void tsc_khz_changed(void *data
)
5996 struct cpufreq_freqs
*freq
= data
;
5997 unsigned long khz
= 0;
6001 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
6002 khz
= cpufreq_quick_get(raw_smp_processor_id());
6005 __this_cpu_write(cpu_tsc_khz
, khz
);
6008 #ifdef CONFIG_X86_64
6009 static void kvm_hyperv_tsc_notifier(void)
6012 struct kvm_vcpu
*vcpu
;
6015 spin_lock(&kvm_lock
);
6016 list_for_each_entry(kvm
, &vm_list
, vm_list
)
6017 kvm_make_mclock_inprogress_request(kvm
);
6019 hyperv_stop_tsc_emulation();
6021 /* TSC frequency always matches when on Hyper-V */
6022 for_each_present_cpu(cpu
)
6023 per_cpu(cpu_tsc_khz
, cpu
) = tsc_khz
;
6024 kvm_max_guest_tsc_khz
= tsc_khz
;
6026 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
6027 struct kvm_arch
*ka
= &kvm
->arch
;
6029 spin_lock(&ka
->pvclock_gtod_sync_lock
);
6031 pvclock_update_vm_gtod_copy(kvm
);
6033 kvm_for_each_vcpu(cpu
, vcpu
, kvm
)
6034 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
6036 kvm_for_each_vcpu(cpu
, vcpu
, kvm
)
6037 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS
, vcpu
);
6039 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
6041 spin_unlock(&kvm_lock
);
6045 static int kvmclock_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
6048 struct cpufreq_freqs
*freq
= data
;
6050 struct kvm_vcpu
*vcpu
;
6051 int i
, send_ipi
= 0;
6054 * We allow guests to temporarily run on slowing clocks,
6055 * provided we notify them after, or to run on accelerating
6056 * clocks, provided we notify them before. Thus time never
6059 * However, we have a problem. We can't atomically update
6060 * the frequency of a given CPU from this function; it is
6061 * merely a notifier, which can be called from any CPU.
6062 * Changing the TSC frequency at arbitrary points in time
6063 * requires a recomputation of local variables related to
6064 * the TSC for each VCPU. We must flag these local variables
6065 * to be updated and be sure the update takes place with the
6066 * new frequency before any guests proceed.
6068 * Unfortunately, the combination of hotplug CPU and frequency
6069 * change creates an intractable locking scenario; the order
6070 * of when these callouts happen is undefined with respect to
6071 * CPU hotplug, and they can race with each other. As such,
6072 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6073 * undefined; you can actually have a CPU frequency change take
6074 * place in between the computation of X and the setting of the
6075 * variable. To protect against this problem, all updates of
6076 * the per_cpu tsc_khz variable are done in an interrupt
6077 * protected IPI, and all callers wishing to update the value
6078 * must wait for a synchronous IPI to complete (which is trivial
6079 * if the caller is on the CPU already). This establishes the
6080 * necessary total order on variable updates.
6082 * Note that because a guest time update may take place
6083 * anytime after the setting of the VCPU's request bit, the
6084 * correct TSC value must be set before the request. However,
6085 * to ensure the update actually makes it to any guest which
6086 * starts running in hardware virtualization between the set
6087 * and the acquisition of the spinlock, we must also ping the
6088 * CPU after setting the request bit.
6092 if (val
== CPUFREQ_PRECHANGE
&& freq
->old
> freq
->new)
6094 if (val
== CPUFREQ_POSTCHANGE
&& freq
->old
< freq
->new)
6097 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
6099 spin_lock(&kvm_lock
);
6100 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
6101 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
6102 if (vcpu
->cpu
!= freq
->cpu
)
6104 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
6105 if (vcpu
->cpu
!= smp_processor_id())
6109 spin_unlock(&kvm_lock
);
6111 if (freq
->old
< freq
->new && send_ipi
) {
6113 * We upscale the frequency. Must make the guest
6114 * doesn't see old kvmclock values while running with
6115 * the new frequency, otherwise we risk the guest sees
6116 * time go backwards.
6118 * In case we update the frequency for another cpu
6119 * (which might be in guest context) send an interrupt
6120 * to kick the cpu out of guest context. Next time
6121 * guest context is entered kvmclock will be updated,
6122 * so the guest will not see stale values.
6124 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
6129 static struct notifier_block kvmclock_cpufreq_notifier_block
= {
6130 .notifier_call
= kvmclock_cpufreq_notifier
6133 static int kvmclock_cpu_online(unsigned int cpu
)
6135 tsc_khz_changed(NULL
);
6139 static void kvm_timer_init(void)
6141 max_tsc_khz
= tsc_khz
;
6143 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
6144 #ifdef CONFIG_CPU_FREQ
6145 struct cpufreq_policy policy
;
6148 memset(&policy
, 0, sizeof(policy
));
6150 cpufreq_get_policy(&policy
, cpu
);
6151 if (policy
.cpuinfo
.max_freq
)
6152 max_tsc_khz
= policy
.cpuinfo
.max_freq
;
6155 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block
,
6156 CPUFREQ_TRANSITION_NOTIFIER
);
6158 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz
);
6160 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE
, "x86/kvm/clk:online",
6161 kvmclock_cpu_online
, kvmclock_cpu_down_prep
);
6164 static DEFINE_PER_CPU(struct kvm_vcpu
*, current_vcpu
);
6166 int kvm_is_in_guest(void)
6168 return __this_cpu_read(current_vcpu
) != NULL
;
6171 static int kvm_is_user_mode(void)
6175 if (__this_cpu_read(current_vcpu
))
6176 user_mode
= kvm_x86_ops
->get_cpl(__this_cpu_read(current_vcpu
));
6178 return user_mode
!= 0;
6181 static unsigned long kvm_get_guest_ip(void)
6183 unsigned long ip
= 0;
6185 if (__this_cpu_read(current_vcpu
))
6186 ip
= kvm_rip_read(__this_cpu_read(current_vcpu
));
6191 static struct perf_guest_info_callbacks kvm_guest_cbs
= {
6192 .is_in_guest
= kvm_is_in_guest
,
6193 .is_user_mode
= kvm_is_user_mode
,
6194 .get_guest_ip
= kvm_get_guest_ip
,
6197 void kvm_before_handle_nmi(struct kvm_vcpu
*vcpu
)
6199 __this_cpu_write(current_vcpu
, vcpu
);
6201 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi
);
6203 void kvm_after_handle_nmi(struct kvm_vcpu
*vcpu
)
6205 __this_cpu_write(current_vcpu
, NULL
);
6207 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi
);
6209 static void kvm_set_mmio_spte_mask(void)
6212 int maxphyaddr
= boot_cpu_data
.x86_phys_bits
;
6215 * Set the reserved bits and the present bit of an paging-structure
6216 * entry to generate page fault with PFER.RSV = 1.
6218 /* Mask the reserved physical address bits. */
6219 mask
= rsvd_bits(maxphyaddr
, 51);
6221 /* Set the present bit. */
6224 #ifdef CONFIG_X86_64
6226 * If reserved bit is not supported, clear the present bit to disable
6229 if (maxphyaddr
== 52)
6233 kvm_mmu_set_mmio_spte_mask(mask
, mask
);
6236 #ifdef CONFIG_X86_64
6237 static void pvclock_gtod_update_fn(struct work_struct
*work
)
6241 struct kvm_vcpu
*vcpu
;
6244 spin_lock(&kvm_lock
);
6245 list_for_each_entry(kvm
, &vm_list
, vm_list
)
6246 kvm_for_each_vcpu(i
, vcpu
, kvm
)
6247 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
6248 atomic_set(&kvm_guest_has_master_clock
, 0);
6249 spin_unlock(&kvm_lock
);
6252 static DECLARE_WORK(pvclock_gtod_work
, pvclock_gtod_update_fn
);
6255 * Notification about pvclock gtod data update.
6257 static int pvclock_gtod_notify(struct notifier_block
*nb
, unsigned long unused
,
6260 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
6261 struct timekeeper
*tk
= priv
;
6263 update_pvclock_gtod(tk
);
6265 /* disable master clock if host does not trust, or does not
6266 * use, TSC based clocksource.
6268 if (!gtod_is_based_on_tsc(gtod
->clock
.vclock_mode
) &&
6269 atomic_read(&kvm_guest_has_master_clock
) != 0)
6270 queue_work(system_long_wq
, &pvclock_gtod_work
);
6275 static struct notifier_block pvclock_gtod_notifier
= {
6276 .notifier_call
= pvclock_gtod_notify
,
6280 int kvm_arch_init(void *opaque
)
6283 struct kvm_x86_ops
*ops
= opaque
;
6286 printk(KERN_ERR
"kvm: already loaded the other module\n");
6291 if (!ops
->cpu_has_kvm_support()) {
6292 printk(KERN_ERR
"kvm: no hardware support\n");
6296 if (ops
->disabled_by_bios()) {
6297 printk(KERN_ERR
"kvm: disabled by bios\n");
6303 shared_msrs
= alloc_percpu(struct kvm_shared_msrs
);
6305 printk(KERN_ERR
"kvm: failed to allocate percpu kvm_shared_msrs\n");
6309 r
= kvm_mmu_module_init();
6311 goto out_free_percpu
;
6313 kvm_set_mmio_spte_mask();
6317 kvm_mmu_set_mask_ptes(PT_USER_MASK
, PT_ACCESSED_MASK
,
6318 PT_DIRTY_MASK
, PT64_NX_MASK
, 0,
6319 PT_PRESENT_MASK
, 0, sme_me_mask
);
6322 perf_register_guest_info_callbacks(&kvm_guest_cbs
);
6324 if (boot_cpu_has(X86_FEATURE_XSAVE
))
6325 host_xcr0
= xgetbv(XCR_XFEATURE_ENABLED_MASK
);
6328 #ifdef CONFIG_X86_64
6329 pvclock_gtod_register_notifier(&pvclock_gtod_notifier
);
6331 if (hypervisor_is_type(X86_HYPER_MS_HYPERV
))
6332 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier
);
6338 free_percpu(shared_msrs
);
6343 void kvm_arch_exit(void)
6345 #ifdef CONFIG_X86_64
6346 if (hypervisor_is_type(X86_HYPER_MS_HYPERV
))
6347 clear_hv_tscchange_cb();
6350 perf_unregister_guest_info_callbacks(&kvm_guest_cbs
);
6352 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
6353 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block
,
6354 CPUFREQ_TRANSITION_NOTIFIER
);
6355 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE
);
6356 #ifdef CONFIG_X86_64
6357 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier
);
6360 kvm_mmu_module_exit();
6361 free_percpu(shared_msrs
);
6364 int kvm_vcpu_halt(struct kvm_vcpu
*vcpu
)
6366 ++vcpu
->stat
.halt_exits
;
6367 if (lapic_in_kernel(vcpu
)) {
6368 vcpu
->arch
.mp_state
= KVM_MP_STATE_HALTED
;
6371 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
6375 EXPORT_SYMBOL_GPL(kvm_vcpu_halt
);
6377 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
6379 int ret
= kvm_skip_emulated_instruction(vcpu
);
6381 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6382 * KVM_EXIT_DEBUG here.
6384 return kvm_vcpu_halt(vcpu
) && ret
;
6386 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
6388 #ifdef CONFIG_X86_64
6389 static int kvm_pv_clock_pairing(struct kvm_vcpu
*vcpu
, gpa_t paddr
,
6390 unsigned long clock_type
)
6392 struct kvm_clock_pairing clock_pairing
;
6397 if (clock_type
!= KVM_CLOCK_PAIRING_WALLCLOCK
)
6398 return -KVM_EOPNOTSUPP
;
6400 if (kvm_get_walltime_and_clockread(&ts
, &cycle
) == false)
6401 return -KVM_EOPNOTSUPP
;
6403 clock_pairing
.sec
= ts
.tv_sec
;
6404 clock_pairing
.nsec
= ts
.tv_nsec
;
6405 clock_pairing
.tsc
= kvm_read_l1_tsc(vcpu
, cycle
);
6406 clock_pairing
.flags
= 0;
6409 if (kvm_write_guest(vcpu
->kvm
, paddr
, &clock_pairing
,
6410 sizeof(struct kvm_clock_pairing
)))
6418 * kvm_pv_kick_cpu_op: Kick a vcpu.
6420 * @apicid - apicid of vcpu to be kicked.
6422 static void kvm_pv_kick_cpu_op(struct kvm
*kvm
, unsigned long flags
, int apicid
)
6424 struct kvm_lapic_irq lapic_irq
;
6426 lapic_irq
.shorthand
= 0;
6427 lapic_irq
.dest_mode
= 0;
6428 lapic_irq
.level
= 0;
6429 lapic_irq
.dest_id
= apicid
;
6430 lapic_irq
.msi_redir_hint
= false;
6432 lapic_irq
.delivery_mode
= APIC_DM_REMRD
;
6433 kvm_irq_delivery_to_apic(kvm
, NULL
, &lapic_irq
, NULL
);
6436 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu
*vcpu
)
6438 vcpu
->arch
.apicv_active
= false;
6439 kvm_x86_ops
->refresh_apicv_exec_ctrl(vcpu
);
6442 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
6444 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
6447 r
= kvm_skip_emulated_instruction(vcpu
);
6449 if (kvm_hv_hypercall_enabled(vcpu
->kvm
))
6450 return kvm_hv_hypercall(vcpu
);
6452 nr
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
6453 a0
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
6454 a1
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
6455 a2
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
6456 a3
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
6458 trace_kvm_hypercall(nr
, a0
, a1
, a2
, a3
);
6460 op_64_bit
= is_64_bit_mode(vcpu
);
6469 if (kvm_x86_ops
->get_cpl(vcpu
) != 0) {
6475 case KVM_HC_VAPIC_POLL_IRQ
:
6478 case KVM_HC_KICK_CPU
:
6479 kvm_pv_kick_cpu_op(vcpu
->kvm
, a0
, a1
);
6482 #ifdef CONFIG_X86_64
6483 case KVM_HC_CLOCK_PAIRING
:
6484 ret
= kvm_pv_clock_pairing(vcpu
, a0
, a1
);
6494 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
6495 ++vcpu
->stat
.hypercalls
;
6498 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
6500 static int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
)
6502 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
6503 char instruction
[3];
6504 unsigned long rip
= kvm_rip_read(vcpu
);
6506 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
6508 return emulator_write_emulated(ctxt
, rip
, instruction
, 3,
6512 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
)
6514 return vcpu
->run
->request_interrupt_window
&&
6515 likely(!pic_in_kernel(vcpu
->kvm
));
6518 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
)
6520 struct kvm_run
*kvm_run
= vcpu
->run
;
6522 kvm_run
->if_flag
= (kvm_get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
6523 kvm_run
->flags
= is_smm(vcpu
) ? KVM_RUN_X86_SMM
: 0;
6524 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
6525 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
6526 kvm_run
->ready_for_interrupt_injection
=
6527 pic_in_kernel(vcpu
->kvm
) ||
6528 kvm_vcpu_ready_for_interrupt_injection(vcpu
);
6531 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
)
6535 if (!kvm_x86_ops
->update_cr8_intercept
)
6538 if (!lapic_in_kernel(vcpu
))
6541 if (vcpu
->arch
.apicv_active
)
6544 if (!vcpu
->arch
.apic
->vapic_addr
)
6545 max_irr
= kvm_lapic_find_highest_irr(vcpu
);
6552 tpr
= kvm_lapic_get_cr8(vcpu
);
6554 kvm_x86_ops
->update_cr8_intercept(vcpu
, tpr
, max_irr
);
6557 static int inject_pending_event(struct kvm_vcpu
*vcpu
, bool req_int_win
)
6561 /* try to reinject previous events if any */
6562 if (vcpu
->arch
.exception
.injected
) {
6563 kvm_x86_ops
->queue_exception(vcpu
);
6568 * Exceptions must be injected immediately, or the exception
6569 * frame will have the address of the NMI or interrupt handler.
6571 if (!vcpu
->arch
.exception
.pending
) {
6572 if (vcpu
->arch
.nmi_injected
) {
6573 kvm_x86_ops
->set_nmi(vcpu
);
6577 if (vcpu
->arch
.interrupt
.pending
) {
6578 kvm_x86_ops
->set_irq(vcpu
);
6583 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
) {
6584 r
= kvm_x86_ops
->check_nested_events(vcpu
, req_int_win
);
6589 /* try to inject new event if pending */
6590 if (vcpu
->arch
.exception
.pending
) {
6591 trace_kvm_inj_exception(vcpu
->arch
.exception
.nr
,
6592 vcpu
->arch
.exception
.has_error_code
,
6593 vcpu
->arch
.exception
.error_code
);
6595 vcpu
->arch
.exception
.pending
= false;
6596 vcpu
->arch
.exception
.injected
= true;
6598 if (exception_type(vcpu
->arch
.exception
.nr
) == EXCPT_FAULT
)
6599 __kvm_set_rflags(vcpu
, kvm_get_rflags(vcpu
) |
6602 if (vcpu
->arch
.exception
.nr
== DB_VECTOR
&&
6603 (vcpu
->arch
.dr7
& DR7_GD
)) {
6604 vcpu
->arch
.dr7
&= ~DR7_GD
;
6605 kvm_update_dr7(vcpu
);
6608 kvm_x86_ops
->queue_exception(vcpu
);
6609 } else if (vcpu
->arch
.smi_pending
&& !is_smm(vcpu
) && kvm_x86_ops
->smi_allowed(vcpu
)) {
6610 vcpu
->arch
.smi_pending
= false;
6611 ++vcpu
->arch
.smi_count
;
6613 } else if (vcpu
->arch
.nmi_pending
&& kvm_x86_ops
->nmi_allowed(vcpu
)) {
6614 --vcpu
->arch
.nmi_pending
;
6615 vcpu
->arch
.nmi_injected
= true;
6616 kvm_x86_ops
->set_nmi(vcpu
);
6617 } else if (kvm_cpu_has_injectable_intr(vcpu
)) {
6619 * Because interrupts can be injected asynchronously, we are
6620 * calling check_nested_events again here to avoid a race condition.
6621 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6622 * proposal and current concerns. Perhaps we should be setting
6623 * KVM_REQ_EVENT only on certain events and not unconditionally?
6625 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
) {
6626 r
= kvm_x86_ops
->check_nested_events(vcpu
, req_int_win
);
6630 if (kvm_x86_ops
->interrupt_allowed(vcpu
)) {
6631 kvm_queue_interrupt(vcpu
, kvm_cpu_get_interrupt(vcpu
),
6633 kvm_x86_ops
->set_irq(vcpu
);
6640 static void process_nmi(struct kvm_vcpu
*vcpu
)
6645 * x86 is limited to one NMI running, and one NMI pending after it.
6646 * If an NMI is already in progress, limit further NMIs to just one.
6647 * Otherwise, allow two (and we'll inject the first one immediately).
6649 if (kvm_x86_ops
->get_nmi_mask(vcpu
) || vcpu
->arch
.nmi_injected
)
6652 vcpu
->arch
.nmi_pending
+= atomic_xchg(&vcpu
->arch
.nmi_queued
, 0);
6653 vcpu
->arch
.nmi_pending
= min(vcpu
->arch
.nmi_pending
, limit
);
6654 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6657 static u32
enter_smm_get_segment_flags(struct kvm_segment
*seg
)
6660 flags
|= seg
->g
<< 23;
6661 flags
|= seg
->db
<< 22;
6662 flags
|= seg
->l
<< 21;
6663 flags
|= seg
->avl
<< 20;
6664 flags
|= seg
->present
<< 15;
6665 flags
|= seg
->dpl
<< 13;
6666 flags
|= seg
->s
<< 12;
6667 flags
|= seg
->type
<< 8;
6671 static void enter_smm_save_seg_32(struct kvm_vcpu
*vcpu
, char *buf
, int n
)
6673 struct kvm_segment seg
;
6676 kvm_get_segment(vcpu
, &seg
, n
);
6677 put_smstate(u32
, buf
, 0x7fa8 + n
* 4, seg
.selector
);
6680 offset
= 0x7f84 + n
* 12;
6682 offset
= 0x7f2c + (n
- 3) * 12;
6684 put_smstate(u32
, buf
, offset
+ 8, seg
.base
);
6685 put_smstate(u32
, buf
, offset
+ 4, seg
.limit
);
6686 put_smstate(u32
, buf
, offset
, enter_smm_get_segment_flags(&seg
));
6689 #ifdef CONFIG_X86_64
6690 static void enter_smm_save_seg_64(struct kvm_vcpu
*vcpu
, char *buf
, int n
)
6692 struct kvm_segment seg
;
6696 kvm_get_segment(vcpu
, &seg
, n
);
6697 offset
= 0x7e00 + n
* 16;
6699 flags
= enter_smm_get_segment_flags(&seg
) >> 8;
6700 put_smstate(u16
, buf
, offset
, seg
.selector
);
6701 put_smstate(u16
, buf
, offset
+ 2, flags
);
6702 put_smstate(u32
, buf
, offset
+ 4, seg
.limit
);
6703 put_smstate(u64
, buf
, offset
+ 8, seg
.base
);
6707 static void enter_smm_save_state_32(struct kvm_vcpu
*vcpu
, char *buf
)
6710 struct kvm_segment seg
;
6714 put_smstate(u32
, buf
, 0x7ffc, kvm_read_cr0(vcpu
));
6715 put_smstate(u32
, buf
, 0x7ff8, kvm_read_cr3(vcpu
));
6716 put_smstate(u32
, buf
, 0x7ff4, kvm_get_rflags(vcpu
));
6717 put_smstate(u32
, buf
, 0x7ff0, kvm_rip_read(vcpu
));
6719 for (i
= 0; i
< 8; i
++)
6720 put_smstate(u32
, buf
, 0x7fd0 + i
* 4, kvm_register_read(vcpu
, i
));
6722 kvm_get_dr(vcpu
, 6, &val
);
6723 put_smstate(u32
, buf
, 0x7fcc, (u32
)val
);
6724 kvm_get_dr(vcpu
, 7, &val
);
6725 put_smstate(u32
, buf
, 0x7fc8, (u32
)val
);
6727 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_TR
);
6728 put_smstate(u32
, buf
, 0x7fc4, seg
.selector
);
6729 put_smstate(u32
, buf
, 0x7f64, seg
.base
);
6730 put_smstate(u32
, buf
, 0x7f60, seg
.limit
);
6731 put_smstate(u32
, buf
, 0x7f5c, enter_smm_get_segment_flags(&seg
));
6733 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_LDTR
);
6734 put_smstate(u32
, buf
, 0x7fc0, seg
.selector
);
6735 put_smstate(u32
, buf
, 0x7f80, seg
.base
);
6736 put_smstate(u32
, buf
, 0x7f7c, seg
.limit
);
6737 put_smstate(u32
, buf
, 0x7f78, enter_smm_get_segment_flags(&seg
));
6739 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
6740 put_smstate(u32
, buf
, 0x7f74, dt
.address
);
6741 put_smstate(u32
, buf
, 0x7f70, dt
.size
);
6743 kvm_x86_ops
->get_idt(vcpu
, &dt
);
6744 put_smstate(u32
, buf
, 0x7f58, dt
.address
);
6745 put_smstate(u32
, buf
, 0x7f54, dt
.size
);
6747 for (i
= 0; i
< 6; i
++)
6748 enter_smm_save_seg_32(vcpu
, buf
, i
);
6750 put_smstate(u32
, buf
, 0x7f14, kvm_read_cr4(vcpu
));
6753 put_smstate(u32
, buf
, 0x7efc, 0x00020000);
6754 put_smstate(u32
, buf
, 0x7ef8, vcpu
->arch
.smbase
);
6757 static void enter_smm_save_state_64(struct kvm_vcpu
*vcpu
, char *buf
)
6759 #ifdef CONFIG_X86_64
6761 struct kvm_segment seg
;
6765 for (i
= 0; i
< 16; i
++)
6766 put_smstate(u64
, buf
, 0x7ff8 - i
* 8, kvm_register_read(vcpu
, i
));
6768 put_smstate(u64
, buf
, 0x7f78, kvm_rip_read(vcpu
));
6769 put_smstate(u32
, buf
, 0x7f70, kvm_get_rflags(vcpu
));
6771 kvm_get_dr(vcpu
, 6, &val
);
6772 put_smstate(u64
, buf
, 0x7f68, val
);
6773 kvm_get_dr(vcpu
, 7, &val
);
6774 put_smstate(u64
, buf
, 0x7f60, val
);
6776 put_smstate(u64
, buf
, 0x7f58, kvm_read_cr0(vcpu
));
6777 put_smstate(u64
, buf
, 0x7f50, kvm_read_cr3(vcpu
));
6778 put_smstate(u64
, buf
, 0x7f48, kvm_read_cr4(vcpu
));
6780 put_smstate(u32
, buf
, 0x7f00, vcpu
->arch
.smbase
);
6783 put_smstate(u32
, buf
, 0x7efc, 0x00020064);
6785 put_smstate(u64
, buf
, 0x7ed0, vcpu
->arch
.efer
);
6787 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_TR
);
6788 put_smstate(u16
, buf
, 0x7e90, seg
.selector
);
6789 put_smstate(u16
, buf
, 0x7e92, enter_smm_get_segment_flags(&seg
) >> 8);
6790 put_smstate(u32
, buf
, 0x7e94, seg
.limit
);
6791 put_smstate(u64
, buf
, 0x7e98, seg
.base
);
6793 kvm_x86_ops
->get_idt(vcpu
, &dt
);
6794 put_smstate(u32
, buf
, 0x7e84, dt
.size
);
6795 put_smstate(u64
, buf
, 0x7e88, dt
.address
);
6797 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_LDTR
);
6798 put_smstate(u16
, buf
, 0x7e70, seg
.selector
);
6799 put_smstate(u16
, buf
, 0x7e72, enter_smm_get_segment_flags(&seg
) >> 8);
6800 put_smstate(u32
, buf
, 0x7e74, seg
.limit
);
6801 put_smstate(u64
, buf
, 0x7e78, seg
.base
);
6803 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
6804 put_smstate(u32
, buf
, 0x7e64, dt
.size
);
6805 put_smstate(u64
, buf
, 0x7e68, dt
.address
);
6807 for (i
= 0; i
< 6; i
++)
6808 enter_smm_save_seg_64(vcpu
, buf
, i
);
6814 static void enter_smm(struct kvm_vcpu
*vcpu
)
6816 struct kvm_segment cs
, ds
;
6821 trace_kvm_enter_smm(vcpu
->vcpu_id
, vcpu
->arch
.smbase
, true);
6822 memset(buf
, 0, 512);
6823 if (guest_cpuid_has(vcpu
, X86_FEATURE_LM
))
6824 enter_smm_save_state_64(vcpu
, buf
);
6826 enter_smm_save_state_32(vcpu
, buf
);
6829 * Give pre_enter_smm() a chance to make ISA-specific changes to the
6830 * vCPU state (e.g. leave guest mode) after we've saved the state into
6831 * the SMM state-save area.
6833 kvm_x86_ops
->pre_enter_smm(vcpu
, buf
);
6835 vcpu
->arch
.hflags
|= HF_SMM_MASK
;
6836 kvm_vcpu_write_guest(vcpu
, vcpu
->arch
.smbase
+ 0xfe00, buf
, sizeof(buf
));
6838 if (kvm_x86_ops
->get_nmi_mask(vcpu
))
6839 vcpu
->arch
.hflags
|= HF_SMM_INSIDE_NMI_MASK
;
6841 kvm_x86_ops
->set_nmi_mask(vcpu
, true);
6843 kvm_set_rflags(vcpu
, X86_EFLAGS_FIXED
);
6844 kvm_rip_write(vcpu
, 0x8000);
6846 cr0
= vcpu
->arch
.cr0
& ~(X86_CR0_PE
| X86_CR0_EM
| X86_CR0_TS
| X86_CR0_PG
);
6847 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
6848 vcpu
->arch
.cr0
= cr0
;
6850 kvm_x86_ops
->set_cr4(vcpu
, 0);
6852 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6853 dt
.address
= dt
.size
= 0;
6854 kvm_x86_ops
->set_idt(vcpu
, &dt
);
6856 __kvm_set_dr(vcpu
, 7, DR7_FIXED_1
);
6858 cs
.selector
= (vcpu
->arch
.smbase
>> 4) & 0xffff;
6859 cs
.base
= vcpu
->arch
.smbase
;
6864 cs
.limit
= ds
.limit
= 0xffffffff;
6865 cs
.type
= ds
.type
= 0x3;
6866 cs
.dpl
= ds
.dpl
= 0;
6871 cs
.avl
= ds
.avl
= 0;
6872 cs
.present
= ds
.present
= 1;
6873 cs
.unusable
= ds
.unusable
= 0;
6874 cs
.padding
= ds
.padding
= 0;
6876 kvm_set_segment(vcpu
, &cs
, VCPU_SREG_CS
);
6877 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_DS
);
6878 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_ES
);
6879 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_FS
);
6880 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_GS
);
6881 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_SS
);
6883 if (guest_cpuid_has(vcpu
, X86_FEATURE_LM
))
6884 kvm_x86_ops
->set_efer(vcpu
, 0);
6886 kvm_update_cpuid(vcpu
);
6887 kvm_mmu_reset_context(vcpu
);
6890 static void process_smi(struct kvm_vcpu
*vcpu
)
6892 vcpu
->arch
.smi_pending
= true;
6893 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6896 void kvm_make_scan_ioapic_request(struct kvm
*kvm
)
6898 kvm_make_all_cpus_request(kvm
, KVM_REQ_SCAN_IOAPIC
);
6901 static void vcpu_scan_ioapic(struct kvm_vcpu
*vcpu
)
6903 u64 eoi_exit_bitmap
[4];
6905 if (!kvm_apic_hw_enabled(vcpu
->arch
.apic
))
6908 bitmap_zero(vcpu
->arch
.ioapic_handled_vectors
, 256);
6910 if (irqchip_split(vcpu
->kvm
))
6911 kvm_scan_ioapic_routes(vcpu
, vcpu
->arch
.ioapic_handled_vectors
);
6913 if (vcpu
->arch
.apicv_active
)
6914 kvm_x86_ops
->sync_pir_to_irr(vcpu
);
6915 kvm_ioapic_scan_entry(vcpu
, vcpu
->arch
.ioapic_handled_vectors
);
6917 bitmap_or((ulong
*)eoi_exit_bitmap
, vcpu
->arch
.ioapic_handled_vectors
,
6918 vcpu_to_synic(vcpu
)->vec_bitmap
, 256);
6919 kvm_x86_ops
->load_eoi_exitmap(vcpu
, eoi_exit_bitmap
);
6922 void kvm_arch_mmu_notifier_invalidate_range(struct kvm
*kvm
,
6923 unsigned long start
, unsigned long end
)
6925 unsigned long apic_address
;
6928 * The physical address of apic access page is stored in the VMCS.
6929 * Update it when it becomes invalid.
6931 apic_address
= gfn_to_hva(kvm
, APIC_DEFAULT_PHYS_BASE
>> PAGE_SHIFT
);
6932 if (start
<= apic_address
&& apic_address
< end
)
6933 kvm_make_all_cpus_request(kvm
, KVM_REQ_APIC_PAGE_RELOAD
);
6936 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu
*vcpu
)
6938 struct page
*page
= NULL
;
6940 if (!lapic_in_kernel(vcpu
))
6943 if (!kvm_x86_ops
->set_apic_access_page_addr
)
6946 page
= gfn_to_page(vcpu
->kvm
, APIC_DEFAULT_PHYS_BASE
>> PAGE_SHIFT
);
6947 if (is_error_page(page
))
6949 kvm_x86_ops
->set_apic_access_page_addr(vcpu
, page_to_phys(page
));
6952 * Do not pin apic access page in memory, the MMU notifier
6953 * will call us again if it is migrated or swapped out.
6957 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page
);
6960 * Returns 1 to let vcpu_run() continue the guest execution loop without
6961 * exiting to the userspace. Otherwise, the value will be returned to the
6964 static int vcpu_enter_guest(struct kvm_vcpu
*vcpu
)
6968 dm_request_for_irq_injection(vcpu
) &&
6969 kvm_cpu_accept_dm_intr(vcpu
);
6971 bool req_immediate_exit
= false;
6973 if (kvm_request_pending(vcpu
)) {
6974 if (kvm_check_request(KVM_REQ_MMU_RELOAD
, vcpu
))
6975 kvm_mmu_unload(vcpu
);
6976 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER
, vcpu
))
6977 __kvm_migrate_timers(vcpu
);
6978 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
))
6979 kvm_gen_update_masterclock(vcpu
->kvm
);
6980 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
))
6981 kvm_gen_kvmclock_update(vcpu
);
6982 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE
, vcpu
)) {
6983 r
= kvm_guest_time_update(vcpu
);
6987 if (kvm_check_request(KVM_REQ_MMU_SYNC
, vcpu
))
6988 kvm_mmu_sync_roots(vcpu
);
6989 if (kvm_check_request(KVM_REQ_TLB_FLUSH
, vcpu
))
6990 kvm_vcpu_flush_tlb(vcpu
, true);
6991 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS
, vcpu
)) {
6992 vcpu
->run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
6996 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT
, vcpu
)) {
6997 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
6998 vcpu
->mmio_needed
= 0;
7002 if (kvm_check_request(KVM_REQ_APF_HALT
, vcpu
)) {
7003 /* Page is swapped out. Do synthetic halt */
7004 vcpu
->arch
.apf
.halted
= true;
7008 if (kvm_check_request(KVM_REQ_STEAL_UPDATE
, vcpu
))
7009 record_steal_time(vcpu
);
7010 if (kvm_check_request(KVM_REQ_SMI
, vcpu
))
7012 if (kvm_check_request(KVM_REQ_NMI
, vcpu
))
7014 if (kvm_check_request(KVM_REQ_PMU
, vcpu
))
7015 kvm_pmu_handle_event(vcpu
);
7016 if (kvm_check_request(KVM_REQ_PMI
, vcpu
))
7017 kvm_pmu_deliver_pmi(vcpu
);
7018 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT
, vcpu
)) {
7019 BUG_ON(vcpu
->arch
.pending_ioapic_eoi
> 255);
7020 if (test_bit(vcpu
->arch
.pending_ioapic_eoi
,
7021 vcpu
->arch
.ioapic_handled_vectors
)) {
7022 vcpu
->run
->exit_reason
= KVM_EXIT_IOAPIC_EOI
;
7023 vcpu
->run
->eoi
.vector
=
7024 vcpu
->arch
.pending_ioapic_eoi
;
7029 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC
, vcpu
))
7030 vcpu_scan_ioapic(vcpu
);
7031 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD
, vcpu
))
7032 kvm_vcpu_reload_apic_access_page(vcpu
);
7033 if (kvm_check_request(KVM_REQ_HV_CRASH
, vcpu
)) {
7034 vcpu
->run
->exit_reason
= KVM_EXIT_SYSTEM_EVENT
;
7035 vcpu
->run
->system_event
.type
= KVM_SYSTEM_EVENT_CRASH
;
7039 if (kvm_check_request(KVM_REQ_HV_RESET
, vcpu
)) {
7040 vcpu
->run
->exit_reason
= KVM_EXIT_SYSTEM_EVENT
;
7041 vcpu
->run
->system_event
.type
= KVM_SYSTEM_EVENT_RESET
;
7045 if (kvm_check_request(KVM_REQ_HV_EXIT
, vcpu
)) {
7046 vcpu
->run
->exit_reason
= KVM_EXIT_HYPERV
;
7047 vcpu
->run
->hyperv
= vcpu
->arch
.hyperv
.exit
;
7053 * KVM_REQ_HV_STIMER has to be processed after
7054 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7055 * depend on the guest clock being up-to-date
7057 if (kvm_check_request(KVM_REQ_HV_STIMER
, vcpu
))
7058 kvm_hv_process_stimers(vcpu
);
7061 if (kvm_check_request(KVM_REQ_EVENT
, vcpu
) || req_int_win
) {
7062 ++vcpu
->stat
.req_event
;
7063 kvm_apic_accept_events(vcpu
);
7064 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_INIT_RECEIVED
) {
7069 if (inject_pending_event(vcpu
, req_int_win
) != 0)
7070 req_immediate_exit
= true;
7072 /* Enable SMI/NMI/IRQ window open exits if needed.
7074 * SMIs have three cases:
7075 * 1) They can be nested, and then there is nothing to
7076 * do here because RSM will cause a vmexit anyway.
7077 * 2) There is an ISA-specific reason why SMI cannot be
7078 * injected, and the moment when this changes can be
7080 * 3) Or the SMI can be pending because
7081 * inject_pending_event has completed the injection
7082 * of an IRQ or NMI from the previous vmexit, and
7083 * then we request an immediate exit to inject the
7086 if (vcpu
->arch
.smi_pending
&& !is_smm(vcpu
))
7087 if (!kvm_x86_ops
->enable_smi_window(vcpu
))
7088 req_immediate_exit
= true;
7089 if (vcpu
->arch
.nmi_pending
)
7090 kvm_x86_ops
->enable_nmi_window(vcpu
);
7091 if (kvm_cpu_has_injectable_intr(vcpu
) || req_int_win
)
7092 kvm_x86_ops
->enable_irq_window(vcpu
);
7093 WARN_ON(vcpu
->arch
.exception
.pending
);
7096 if (kvm_lapic_enabled(vcpu
)) {
7097 update_cr8_intercept(vcpu
);
7098 kvm_lapic_sync_to_vapic(vcpu
);
7102 r
= kvm_mmu_reload(vcpu
);
7104 goto cancel_injection
;
7109 kvm_x86_ops
->prepare_guest_switch(vcpu
);
7112 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
7113 * IPI are then delayed after guest entry, which ensures that they
7114 * result in virtual interrupt delivery.
7116 local_irq_disable();
7117 vcpu
->mode
= IN_GUEST_MODE
;
7119 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
7122 * 1) We should set ->mode before checking ->requests. Please see
7123 * the comment in kvm_vcpu_exiting_guest_mode().
7125 * 2) For APICv, we should set ->mode before checking PIR.ON. This
7126 * pairs with the memory barrier implicit in pi_test_and_set_on
7127 * (see vmx_deliver_posted_interrupt).
7129 * 3) This also orders the write to mode from any reads to the page
7130 * tables done while the VCPU is running. Please see the comment
7131 * in kvm_flush_remote_tlbs.
7133 smp_mb__after_srcu_read_unlock();
7136 * This handles the case where a posted interrupt was
7137 * notified with kvm_vcpu_kick.
7139 if (kvm_lapic_enabled(vcpu
) && vcpu
->arch
.apicv_active
)
7140 kvm_x86_ops
->sync_pir_to_irr(vcpu
);
7142 if (vcpu
->mode
== EXITING_GUEST_MODE
|| kvm_request_pending(vcpu
)
7143 || need_resched() || signal_pending(current
)) {
7144 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
7148 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
7150 goto cancel_injection
;
7153 kvm_load_guest_xcr0(vcpu
);
7155 if (req_immediate_exit
) {
7156 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7157 smp_send_reschedule(vcpu
->cpu
);
7160 trace_kvm_entry(vcpu
->vcpu_id
);
7161 if (lapic_timer_advance_ns
)
7162 wait_lapic_expire(vcpu
);
7163 guest_enter_irqoff();
7165 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
7167 set_debugreg(vcpu
->arch
.eff_db
[0], 0);
7168 set_debugreg(vcpu
->arch
.eff_db
[1], 1);
7169 set_debugreg(vcpu
->arch
.eff_db
[2], 2);
7170 set_debugreg(vcpu
->arch
.eff_db
[3], 3);
7171 set_debugreg(vcpu
->arch
.dr6
, 6);
7172 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_RELOAD
;
7175 kvm_x86_ops
->run(vcpu
);
7178 * Do this here before restoring debug registers on the host. And
7179 * since we do this before handling the vmexit, a DR access vmexit
7180 * can (a) read the correct value of the debug registers, (b) set
7181 * KVM_DEBUGREG_WONT_EXIT again.
7183 if (unlikely(vcpu
->arch
.switch_db_regs
& KVM_DEBUGREG_WONT_EXIT
)) {
7184 WARN_ON(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
);
7185 kvm_x86_ops
->sync_dirty_debug_regs(vcpu
);
7186 kvm_update_dr0123(vcpu
);
7187 kvm_update_dr6(vcpu
);
7188 kvm_update_dr7(vcpu
);
7189 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_RELOAD
;
7193 * If the guest has used debug registers, at least dr7
7194 * will be disabled while returning to the host.
7195 * If we don't have active breakpoints in the host, we don't
7196 * care about the messed up debug address registers. But if
7197 * we have some of them active, restore the old state.
7199 if (hw_breakpoint_active())
7200 hw_breakpoint_restore();
7202 vcpu
->arch
.last_guest_tsc
= kvm_read_l1_tsc(vcpu
, rdtsc());
7204 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
7207 kvm_put_guest_xcr0(vcpu
);
7209 kvm_x86_ops
->handle_external_intr(vcpu
);
7213 guest_exit_irqoff();
7218 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
7221 * Profile KVM exit RIPs:
7223 if (unlikely(prof_on
== KVM_PROFILING
)) {
7224 unsigned long rip
= kvm_rip_read(vcpu
);
7225 profile_hit(KVM_PROFILING
, (void *)rip
);
7228 if (unlikely(vcpu
->arch
.tsc_always_catchup
))
7229 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
7231 if (vcpu
->arch
.apic_attention
)
7232 kvm_lapic_sync_from_vapic(vcpu
);
7234 vcpu
->arch
.gpa_available
= false;
7235 r
= kvm_x86_ops
->handle_exit(vcpu
);
7239 kvm_x86_ops
->cancel_injection(vcpu
);
7240 if (unlikely(vcpu
->arch
.apic_attention
))
7241 kvm_lapic_sync_from_vapic(vcpu
);
7246 static inline int vcpu_block(struct kvm
*kvm
, struct kvm_vcpu
*vcpu
)
7248 if (!kvm_arch_vcpu_runnable(vcpu
) &&
7249 (!kvm_x86_ops
->pre_block
|| kvm_x86_ops
->pre_block(vcpu
) == 0)) {
7250 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
7251 kvm_vcpu_block(vcpu
);
7252 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
7254 if (kvm_x86_ops
->post_block
)
7255 kvm_x86_ops
->post_block(vcpu
);
7257 if (!kvm_check_request(KVM_REQ_UNHALT
, vcpu
))
7261 kvm_apic_accept_events(vcpu
);
7262 switch(vcpu
->arch
.mp_state
) {
7263 case KVM_MP_STATE_HALTED
:
7264 vcpu
->arch
.pv
.pv_unhalted
= false;
7265 vcpu
->arch
.mp_state
=
7266 KVM_MP_STATE_RUNNABLE
;
7267 case KVM_MP_STATE_RUNNABLE
:
7268 vcpu
->arch
.apf
.halted
= false;
7270 case KVM_MP_STATE_INIT_RECEIVED
:
7279 static inline bool kvm_vcpu_running(struct kvm_vcpu
*vcpu
)
7281 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
)
7282 kvm_x86_ops
->check_nested_events(vcpu
, false);
7284 return (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
7285 !vcpu
->arch
.apf
.halted
);
7288 static int vcpu_run(struct kvm_vcpu
*vcpu
)
7291 struct kvm
*kvm
= vcpu
->kvm
;
7293 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
7296 if (kvm_vcpu_running(vcpu
)) {
7297 r
= vcpu_enter_guest(vcpu
);
7299 r
= vcpu_block(kvm
, vcpu
);
7305 kvm_clear_request(KVM_REQ_PENDING_TIMER
, vcpu
);
7306 if (kvm_cpu_has_pending_timer(vcpu
))
7307 kvm_inject_pending_timer_irqs(vcpu
);
7309 if (dm_request_for_irq_injection(vcpu
) &&
7310 kvm_vcpu_ready_for_interrupt_injection(vcpu
)) {
7312 vcpu
->run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
7313 ++vcpu
->stat
.request_irq_exits
;
7317 kvm_check_async_pf_completion(vcpu
);
7319 if (signal_pending(current
)) {
7321 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
7322 ++vcpu
->stat
.signal_exits
;
7325 if (need_resched()) {
7326 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
7328 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
7332 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
7337 static inline int complete_emulated_io(struct kvm_vcpu
*vcpu
)
7340 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
7341 r
= emulate_instruction(vcpu
, EMULTYPE_NO_DECODE
);
7342 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
7343 if (r
!= EMULATE_DONE
)
7348 static int complete_emulated_pio(struct kvm_vcpu
*vcpu
)
7350 BUG_ON(!vcpu
->arch
.pio
.count
);
7352 return complete_emulated_io(vcpu
);
7356 * Implements the following, as a state machine:
7360 * for each mmio piece in the fragment
7368 * for each mmio piece in the fragment
7373 static int complete_emulated_mmio(struct kvm_vcpu
*vcpu
)
7375 struct kvm_run
*run
= vcpu
->run
;
7376 struct kvm_mmio_fragment
*frag
;
7379 BUG_ON(!vcpu
->mmio_needed
);
7381 /* Complete previous fragment */
7382 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_cur_fragment
];
7383 len
= min(8u, frag
->len
);
7384 if (!vcpu
->mmio_is_write
)
7385 memcpy(frag
->data
, run
->mmio
.data
, len
);
7387 if (frag
->len
<= 8) {
7388 /* Switch to the next fragment. */
7390 vcpu
->mmio_cur_fragment
++;
7392 /* Go forward to the next mmio piece. */
7398 if (vcpu
->mmio_cur_fragment
>= vcpu
->mmio_nr_fragments
) {
7399 vcpu
->mmio_needed
= 0;
7401 /* FIXME: return into emulator if single-stepping. */
7402 if (vcpu
->mmio_is_write
)
7404 vcpu
->mmio_read_completed
= 1;
7405 return complete_emulated_io(vcpu
);
7408 run
->exit_reason
= KVM_EXIT_MMIO
;
7409 run
->mmio
.phys_addr
= frag
->gpa
;
7410 if (vcpu
->mmio_is_write
)
7411 memcpy(run
->mmio
.data
, frag
->data
, min(8u, frag
->len
));
7412 run
->mmio
.len
= min(8u, frag
->len
);
7413 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
7414 vcpu
->arch
.complete_userspace_io
= complete_emulated_mmio
;
7419 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
7424 kvm_sigset_activate(vcpu
);
7425 kvm_load_guest_fpu(vcpu
);
7427 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
7428 if (kvm_run
->immediate_exit
) {
7432 kvm_vcpu_block(vcpu
);
7433 kvm_apic_accept_events(vcpu
);
7434 kvm_clear_request(KVM_REQ_UNHALT
, vcpu
);
7436 if (signal_pending(current
)) {
7438 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
7439 ++vcpu
->stat
.signal_exits
;
7444 /* re-sync apic's tpr */
7445 if (!lapic_in_kernel(vcpu
)) {
7446 if (kvm_set_cr8(vcpu
, kvm_run
->cr8
) != 0) {
7452 if (unlikely(vcpu
->arch
.complete_userspace_io
)) {
7453 int (*cui
)(struct kvm_vcpu
*) = vcpu
->arch
.complete_userspace_io
;
7454 vcpu
->arch
.complete_userspace_io
= NULL
;
7459 WARN_ON(vcpu
->arch
.pio
.count
|| vcpu
->mmio_needed
);
7461 if (kvm_run
->immediate_exit
)
7467 kvm_put_guest_fpu(vcpu
);
7468 post_kvm_run_save(vcpu
);
7469 kvm_sigset_deactivate(vcpu
);
7475 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
7479 if (vcpu
->arch
.emulate_regs_need_sync_to_vcpu
) {
7481 * We are here if userspace calls get_regs() in the middle of
7482 * instruction emulation. Registers state needs to be copied
7483 * back from emulation context to vcpu. Userspace shouldn't do
7484 * that usually, but some bad designed PV devices (vmware
7485 * backdoor interface) need this to work
7487 emulator_writeback_register_cache(&vcpu
->arch
.emulate_ctxt
);
7488 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
7490 regs
->rax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
7491 regs
->rbx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
7492 regs
->rcx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
7493 regs
->rdx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
7494 regs
->rsi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
7495 regs
->rdi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
7496 regs
->rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
7497 regs
->rbp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
7498 #ifdef CONFIG_X86_64
7499 regs
->r8
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
7500 regs
->r9
= kvm_register_read(vcpu
, VCPU_REGS_R9
);
7501 regs
->r10
= kvm_register_read(vcpu
, VCPU_REGS_R10
);
7502 regs
->r11
= kvm_register_read(vcpu
, VCPU_REGS_R11
);
7503 regs
->r12
= kvm_register_read(vcpu
, VCPU_REGS_R12
);
7504 regs
->r13
= kvm_register_read(vcpu
, VCPU_REGS_R13
);
7505 regs
->r14
= kvm_register_read(vcpu
, VCPU_REGS_R14
);
7506 regs
->r15
= kvm_register_read(vcpu
, VCPU_REGS_R15
);
7509 regs
->rip
= kvm_rip_read(vcpu
);
7510 regs
->rflags
= kvm_get_rflags(vcpu
);
7516 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
7520 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= true;
7521 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
7523 kvm_register_write(vcpu
, VCPU_REGS_RAX
, regs
->rax
);
7524 kvm_register_write(vcpu
, VCPU_REGS_RBX
, regs
->rbx
);
7525 kvm_register_write(vcpu
, VCPU_REGS_RCX
, regs
->rcx
);
7526 kvm_register_write(vcpu
, VCPU_REGS_RDX
, regs
->rdx
);
7527 kvm_register_write(vcpu
, VCPU_REGS_RSI
, regs
->rsi
);
7528 kvm_register_write(vcpu
, VCPU_REGS_RDI
, regs
->rdi
);
7529 kvm_register_write(vcpu
, VCPU_REGS_RSP
, regs
->rsp
);
7530 kvm_register_write(vcpu
, VCPU_REGS_RBP
, regs
->rbp
);
7531 #ifdef CONFIG_X86_64
7532 kvm_register_write(vcpu
, VCPU_REGS_R8
, regs
->r8
);
7533 kvm_register_write(vcpu
, VCPU_REGS_R9
, regs
->r9
);
7534 kvm_register_write(vcpu
, VCPU_REGS_R10
, regs
->r10
);
7535 kvm_register_write(vcpu
, VCPU_REGS_R11
, regs
->r11
);
7536 kvm_register_write(vcpu
, VCPU_REGS_R12
, regs
->r12
);
7537 kvm_register_write(vcpu
, VCPU_REGS_R13
, regs
->r13
);
7538 kvm_register_write(vcpu
, VCPU_REGS_R14
, regs
->r14
);
7539 kvm_register_write(vcpu
, VCPU_REGS_R15
, regs
->r15
);
7542 kvm_rip_write(vcpu
, regs
->rip
);
7543 kvm_set_rflags(vcpu
, regs
->rflags
| X86_EFLAGS_FIXED
);
7545 vcpu
->arch
.exception
.pending
= false;
7547 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7553 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
7555 struct kvm_segment cs
;
7557 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
7561 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
7563 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
7564 struct kvm_sregs
*sregs
)
7570 kvm_get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
7571 kvm_get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
7572 kvm_get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
7573 kvm_get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
7574 kvm_get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
7575 kvm_get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
7577 kvm_get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
7578 kvm_get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
7580 kvm_x86_ops
->get_idt(vcpu
, &dt
);
7581 sregs
->idt
.limit
= dt
.size
;
7582 sregs
->idt
.base
= dt
.address
;
7583 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
7584 sregs
->gdt
.limit
= dt
.size
;
7585 sregs
->gdt
.base
= dt
.address
;
7587 sregs
->cr0
= kvm_read_cr0(vcpu
);
7588 sregs
->cr2
= vcpu
->arch
.cr2
;
7589 sregs
->cr3
= kvm_read_cr3(vcpu
);
7590 sregs
->cr4
= kvm_read_cr4(vcpu
);
7591 sregs
->cr8
= kvm_get_cr8(vcpu
);
7592 sregs
->efer
= vcpu
->arch
.efer
;
7593 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
7595 memset(sregs
->interrupt_bitmap
, 0, sizeof sregs
->interrupt_bitmap
);
7597 if (vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
)
7598 set_bit(vcpu
->arch
.interrupt
.nr
,
7599 (unsigned long *)sregs
->interrupt_bitmap
);
7605 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
7606 struct kvm_mp_state
*mp_state
)
7610 kvm_apic_accept_events(vcpu
);
7611 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_HALTED
&&
7612 vcpu
->arch
.pv
.pv_unhalted
)
7613 mp_state
->mp_state
= KVM_MP_STATE_RUNNABLE
;
7615 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
7621 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
7622 struct kvm_mp_state
*mp_state
)
7628 if (!lapic_in_kernel(vcpu
) &&
7629 mp_state
->mp_state
!= KVM_MP_STATE_RUNNABLE
)
7632 /* INITs are latched while in SMM */
7633 if ((is_smm(vcpu
) || vcpu
->arch
.smi_pending
) &&
7634 (mp_state
->mp_state
== KVM_MP_STATE_SIPI_RECEIVED
||
7635 mp_state
->mp_state
== KVM_MP_STATE_INIT_RECEIVED
))
7638 if (mp_state
->mp_state
== KVM_MP_STATE_SIPI_RECEIVED
) {
7639 vcpu
->arch
.mp_state
= KVM_MP_STATE_INIT_RECEIVED
;
7640 set_bit(KVM_APIC_SIPI
, &vcpu
->arch
.apic
->pending_events
);
7642 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
7643 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7651 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int idt_index
,
7652 int reason
, bool has_error_code
, u32 error_code
)
7654 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
7657 init_emulate_ctxt(vcpu
);
7659 ret
= emulator_task_switch(ctxt
, tss_selector
, idt_index
, reason
,
7660 has_error_code
, error_code
);
7663 return EMULATE_FAIL
;
7665 kvm_rip_write(vcpu
, ctxt
->eip
);
7666 kvm_set_rflags(vcpu
, ctxt
->eflags
);
7667 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7668 return EMULATE_DONE
;
7670 EXPORT_SYMBOL_GPL(kvm_task_switch
);
7672 int kvm_valid_sregs(struct kvm_vcpu
*vcpu
, struct kvm_sregs
*sregs
)
7674 if ((sregs
->efer
& EFER_LME
) && (sregs
->cr0
& X86_CR0_PG
)) {
7676 * When EFER.LME and CR0.PG are set, the processor is in
7677 * 64-bit mode (though maybe in a 32-bit code segment).
7678 * CR4.PAE and EFER.LMA must be set.
7680 if (!(sregs
->cr4
& X86_CR4_PAE
)
7681 || !(sregs
->efer
& EFER_LMA
))
7685 * Not in 64-bit mode: EFER.LMA is clear and the code
7686 * segment cannot be 64-bit.
7688 if (sregs
->efer
& EFER_LMA
|| sregs
->cs
.l
)
7695 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
7696 struct kvm_sregs
*sregs
)
7698 struct msr_data apic_base_msr
;
7699 int mmu_reset_needed
= 0;
7700 int pending_vec
, max_bits
, idx
;
7706 if (!guest_cpuid_has(vcpu
, X86_FEATURE_XSAVE
) &&
7707 (sregs
->cr4
& X86_CR4_OSXSAVE
))
7710 if (kvm_valid_sregs(vcpu
, sregs
))
7713 apic_base_msr
.data
= sregs
->apic_base
;
7714 apic_base_msr
.host_initiated
= true;
7715 if (kvm_set_apic_base(vcpu
, &apic_base_msr
))
7718 dt
.size
= sregs
->idt
.limit
;
7719 dt
.address
= sregs
->idt
.base
;
7720 kvm_x86_ops
->set_idt(vcpu
, &dt
);
7721 dt
.size
= sregs
->gdt
.limit
;
7722 dt
.address
= sregs
->gdt
.base
;
7723 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
7725 vcpu
->arch
.cr2
= sregs
->cr2
;
7726 mmu_reset_needed
|= kvm_read_cr3(vcpu
) != sregs
->cr3
;
7727 vcpu
->arch
.cr3
= sregs
->cr3
;
7728 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
7730 kvm_set_cr8(vcpu
, sregs
->cr8
);
7732 mmu_reset_needed
|= vcpu
->arch
.efer
!= sregs
->efer
;
7733 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
7735 mmu_reset_needed
|= kvm_read_cr0(vcpu
) != sregs
->cr0
;
7736 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
7737 vcpu
->arch
.cr0
= sregs
->cr0
;
7739 mmu_reset_needed
|= kvm_read_cr4(vcpu
) != sregs
->cr4
;
7740 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
7741 if (sregs
->cr4
& (X86_CR4_OSXSAVE
| X86_CR4_PKE
))
7742 kvm_update_cpuid(vcpu
);
7744 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
7745 if (!is_long_mode(vcpu
) && is_pae(vcpu
)) {
7746 load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, kvm_read_cr3(vcpu
));
7747 mmu_reset_needed
= 1;
7749 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
7751 if (mmu_reset_needed
)
7752 kvm_mmu_reset_context(vcpu
);
7754 max_bits
= KVM_NR_INTERRUPTS
;
7755 pending_vec
= find_first_bit(
7756 (const unsigned long *)sregs
->interrupt_bitmap
, max_bits
);
7757 if (pending_vec
< max_bits
) {
7758 kvm_queue_interrupt(vcpu
, pending_vec
, false);
7759 pr_debug("Set back pending irq %d\n", pending_vec
);
7762 kvm_set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
7763 kvm_set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
7764 kvm_set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
7765 kvm_set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
7766 kvm_set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
7767 kvm_set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
7769 kvm_set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
7770 kvm_set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
7772 update_cr8_intercept(vcpu
);
7774 /* Older userspace won't unhalt the vcpu on reset. */
7775 if (kvm_vcpu_is_bsp(vcpu
) && kvm_rip_read(vcpu
) == 0xfff0 &&
7776 sregs
->cs
.selector
== 0xf000 && sregs
->cs
.base
== 0xffff0000 &&
7778 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
7780 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7788 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
7789 struct kvm_guest_debug
*dbg
)
7791 unsigned long rflags
;
7796 if (dbg
->control
& (KVM_GUESTDBG_INJECT_DB
| KVM_GUESTDBG_INJECT_BP
)) {
7798 if (vcpu
->arch
.exception
.pending
)
7800 if (dbg
->control
& KVM_GUESTDBG_INJECT_DB
)
7801 kvm_queue_exception(vcpu
, DB_VECTOR
);
7803 kvm_queue_exception(vcpu
, BP_VECTOR
);
7807 * Read rflags as long as potentially injected trace flags are still
7810 rflags
= kvm_get_rflags(vcpu
);
7812 vcpu
->guest_debug
= dbg
->control
;
7813 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
))
7814 vcpu
->guest_debug
= 0;
7816 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
7817 for (i
= 0; i
< KVM_NR_DB_REGS
; ++i
)
7818 vcpu
->arch
.eff_db
[i
] = dbg
->arch
.debugreg
[i
];
7819 vcpu
->arch
.guest_debug_dr7
= dbg
->arch
.debugreg
[7];
7821 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
7822 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
7824 kvm_update_dr7(vcpu
);
7826 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
7827 vcpu
->arch
.singlestep_rip
= kvm_rip_read(vcpu
) +
7828 get_segment_base(vcpu
, VCPU_SREG_CS
);
7831 * Trigger an rflags update that will inject or remove the trace
7834 kvm_set_rflags(vcpu
, rflags
);
7836 kvm_x86_ops
->update_bp_intercept(vcpu
);
7846 * Translate a guest virtual address to a guest physical address.
7848 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
7849 struct kvm_translation
*tr
)
7851 unsigned long vaddr
= tr
->linear_address
;
7857 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
7858 gpa
= kvm_mmu_gva_to_gpa_system(vcpu
, vaddr
, NULL
);
7859 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
7860 tr
->physical_address
= gpa
;
7861 tr
->valid
= gpa
!= UNMAPPED_GVA
;
7869 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
7871 struct fxregs_state
*fxsave
;
7875 fxsave
= &vcpu
->arch
.guest_fpu
.state
.fxsave
;
7876 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
7877 fpu
->fcw
= fxsave
->cwd
;
7878 fpu
->fsw
= fxsave
->swd
;
7879 fpu
->ftwx
= fxsave
->twd
;
7880 fpu
->last_opcode
= fxsave
->fop
;
7881 fpu
->last_ip
= fxsave
->rip
;
7882 fpu
->last_dp
= fxsave
->rdp
;
7883 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
7889 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
7891 struct fxregs_state
*fxsave
;
7895 fxsave
= &vcpu
->arch
.guest_fpu
.state
.fxsave
;
7897 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
7898 fxsave
->cwd
= fpu
->fcw
;
7899 fxsave
->swd
= fpu
->fsw
;
7900 fxsave
->twd
= fpu
->ftwx
;
7901 fxsave
->fop
= fpu
->last_opcode
;
7902 fxsave
->rip
= fpu
->last_ip
;
7903 fxsave
->rdp
= fpu
->last_dp
;
7904 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
7910 static void fx_init(struct kvm_vcpu
*vcpu
)
7912 fpstate_init(&vcpu
->arch
.guest_fpu
.state
);
7913 if (boot_cpu_has(X86_FEATURE_XSAVES
))
7914 vcpu
->arch
.guest_fpu
.state
.xsave
.header
.xcomp_bv
=
7915 host_xcr0
| XSTATE_COMPACTION_ENABLED
;
7918 * Ensure guest xcr0 is valid for loading
7920 vcpu
->arch
.xcr0
= XFEATURE_MASK_FP
;
7922 vcpu
->arch
.cr0
|= X86_CR0_ET
;
7925 /* Swap (qemu) user FPU context for the guest FPU context. */
7926 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
7929 copy_fpregs_to_fpstate(&vcpu
->arch
.user_fpu
);
7930 /* PKRU is separately restored in kvm_x86_ops->run. */
7931 __copy_kernel_to_fpregs(&vcpu
->arch
.guest_fpu
.state
,
7932 ~XFEATURE_MASK_PKRU
);
7937 /* When vcpu_run ends, restore user space FPU context. */
7938 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
7941 copy_fpregs_to_fpstate(&vcpu
->arch
.guest_fpu
);
7942 copy_kernel_to_fpregs(&vcpu
->arch
.user_fpu
.state
);
7944 ++vcpu
->stat
.fpu_reload
;
7948 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
7950 void *wbinvd_dirty_mask
= vcpu
->arch
.wbinvd_dirty_mask
;
7952 kvmclock_reset(vcpu
);
7954 kvm_x86_ops
->vcpu_free(vcpu
);
7955 free_cpumask_var(wbinvd_dirty_mask
);
7958 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
7961 struct kvm_vcpu
*vcpu
;
7963 if (kvm_check_tsc_unstable() && atomic_read(&kvm
->online_vcpus
) != 0)
7964 printk_once(KERN_WARNING
7965 "kvm: SMP vm created on host with unstable TSC; "
7966 "guest TSC will not be reliable\n");
7968 vcpu
= kvm_x86_ops
->vcpu_create(kvm
, id
);
7973 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
7975 kvm_vcpu_mtrr_init(vcpu
);
7977 kvm_vcpu_reset(vcpu
, false);
7978 kvm_mmu_setup(vcpu
);
7983 void kvm_arch_vcpu_postcreate(struct kvm_vcpu
*vcpu
)
7985 struct msr_data msr
;
7986 struct kvm
*kvm
= vcpu
->kvm
;
7988 kvm_hv_vcpu_postcreate(vcpu
);
7990 if (mutex_lock_killable(&vcpu
->mutex
))
7994 msr
.index
= MSR_IA32_TSC
;
7995 msr
.host_initiated
= true;
7996 kvm_write_tsc(vcpu
, &msr
);
7998 mutex_unlock(&vcpu
->mutex
);
8000 if (!kvmclock_periodic_sync
)
8003 schedule_delayed_work(&kvm
->arch
.kvmclock_sync_work
,
8004 KVMCLOCK_SYNC_PERIOD
);
8007 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
8009 vcpu
->arch
.apf
.msr_val
= 0;
8012 kvm_mmu_unload(vcpu
);
8015 kvm_x86_ops
->vcpu_free(vcpu
);
8018 void kvm_vcpu_reset(struct kvm_vcpu
*vcpu
, bool init_event
)
8020 vcpu
->arch
.hflags
= 0;
8022 vcpu
->arch
.smi_pending
= 0;
8023 vcpu
->arch
.smi_count
= 0;
8024 atomic_set(&vcpu
->arch
.nmi_queued
, 0);
8025 vcpu
->arch
.nmi_pending
= 0;
8026 vcpu
->arch
.nmi_injected
= false;
8027 kvm_clear_interrupt_queue(vcpu
);
8028 kvm_clear_exception_queue(vcpu
);
8029 vcpu
->arch
.exception
.pending
= false;
8031 memset(vcpu
->arch
.db
, 0, sizeof(vcpu
->arch
.db
));
8032 kvm_update_dr0123(vcpu
);
8033 vcpu
->arch
.dr6
= DR6_INIT
;
8034 kvm_update_dr6(vcpu
);
8035 vcpu
->arch
.dr7
= DR7_FIXED_1
;
8036 kvm_update_dr7(vcpu
);
8040 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
8041 vcpu
->arch
.apf
.msr_val
= 0;
8042 vcpu
->arch
.st
.msr_val
= 0;
8044 kvmclock_reset(vcpu
);
8046 kvm_clear_async_pf_completion_queue(vcpu
);
8047 kvm_async_pf_hash_reset(vcpu
);
8048 vcpu
->arch
.apf
.halted
= false;
8050 if (kvm_mpx_supported()) {
8051 void *mpx_state_buffer
;
8054 * To avoid have the INIT path from kvm_apic_has_events() that be
8055 * called with loaded FPU and does not let userspace fix the state.
8058 kvm_put_guest_fpu(vcpu
);
8059 mpx_state_buffer
= get_xsave_addr(&vcpu
->arch
.guest_fpu
.state
.xsave
,
8060 XFEATURE_MASK_BNDREGS
);
8061 if (mpx_state_buffer
)
8062 memset(mpx_state_buffer
, 0, sizeof(struct mpx_bndreg_state
));
8063 mpx_state_buffer
= get_xsave_addr(&vcpu
->arch
.guest_fpu
.state
.xsave
,
8064 XFEATURE_MASK_BNDCSR
);
8065 if (mpx_state_buffer
)
8066 memset(mpx_state_buffer
, 0, sizeof(struct mpx_bndcsr
));
8068 kvm_load_guest_fpu(vcpu
);
8072 kvm_pmu_reset(vcpu
);
8073 vcpu
->arch
.smbase
= 0x30000;
8075 vcpu
->arch
.msr_platform_info
= MSR_PLATFORM_INFO_CPUID_FAULT
;
8076 vcpu
->arch
.msr_misc_features_enables
= 0;
8078 vcpu
->arch
.xcr0
= XFEATURE_MASK_FP
;
8081 memset(vcpu
->arch
.regs
, 0, sizeof(vcpu
->arch
.regs
));
8082 vcpu
->arch
.regs_avail
= ~0;
8083 vcpu
->arch
.regs_dirty
= ~0;
8085 vcpu
->arch
.ia32_xss
= 0;
8087 kvm_x86_ops
->vcpu_reset(vcpu
, init_event
);
8090 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu
*vcpu
, u8 vector
)
8092 struct kvm_segment cs
;
8094 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
8095 cs
.selector
= vector
<< 8;
8096 cs
.base
= vector
<< 12;
8097 kvm_set_segment(vcpu
, &cs
, VCPU_SREG_CS
);
8098 kvm_rip_write(vcpu
, 0);
8101 int kvm_arch_hardware_enable(void)
8104 struct kvm_vcpu
*vcpu
;
8109 bool stable
, backwards_tsc
= false;
8111 kvm_shared_msr_cpu_online();
8112 ret
= kvm_x86_ops
->hardware_enable();
8116 local_tsc
= rdtsc();
8117 stable
= !kvm_check_tsc_unstable();
8118 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
8119 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
8120 if (!stable
&& vcpu
->cpu
== smp_processor_id())
8121 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
8122 if (stable
&& vcpu
->arch
.last_host_tsc
> local_tsc
) {
8123 backwards_tsc
= true;
8124 if (vcpu
->arch
.last_host_tsc
> max_tsc
)
8125 max_tsc
= vcpu
->arch
.last_host_tsc
;
8131 * Sometimes, even reliable TSCs go backwards. This happens on
8132 * platforms that reset TSC during suspend or hibernate actions, but
8133 * maintain synchronization. We must compensate. Fortunately, we can
8134 * detect that condition here, which happens early in CPU bringup,
8135 * before any KVM threads can be running. Unfortunately, we can't
8136 * bring the TSCs fully up to date with real time, as we aren't yet far
8137 * enough into CPU bringup that we know how much real time has actually
8138 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8139 * variables that haven't been updated yet.
8141 * So we simply find the maximum observed TSC above, then record the
8142 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
8143 * the adjustment will be applied. Note that we accumulate
8144 * adjustments, in case multiple suspend cycles happen before some VCPU
8145 * gets a chance to run again. In the event that no KVM threads get a
8146 * chance to run, we will miss the entire elapsed period, as we'll have
8147 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8148 * loose cycle time. This isn't too big a deal, since the loss will be
8149 * uniform across all VCPUs (not to mention the scenario is extremely
8150 * unlikely). It is possible that a second hibernate recovery happens
8151 * much faster than a first, causing the observed TSC here to be
8152 * smaller; this would require additional padding adjustment, which is
8153 * why we set last_host_tsc to the local tsc observed here.
8155 * N.B. - this code below runs only on platforms with reliable TSC,
8156 * as that is the only way backwards_tsc is set above. Also note
8157 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8158 * have the same delta_cyc adjustment applied if backwards_tsc
8159 * is detected. Note further, this adjustment is only done once,
8160 * as we reset last_host_tsc on all VCPUs to stop this from being
8161 * called multiple times (one for each physical CPU bringup).
8163 * Platforms with unreliable TSCs don't have to deal with this, they
8164 * will be compensated by the logic in vcpu_load, which sets the TSC to
8165 * catchup mode. This will catchup all VCPUs to real time, but cannot
8166 * guarantee that they stay in perfect synchronization.
8168 if (backwards_tsc
) {
8169 u64 delta_cyc
= max_tsc
- local_tsc
;
8170 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
8171 kvm
->arch
.backwards_tsc_observed
= true;
8172 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
8173 vcpu
->arch
.tsc_offset_adjustment
+= delta_cyc
;
8174 vcpu
->arch
.last_host_tsc
= local_tsc
;
8175 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
8179 * We have to disable TSC offset matching.. if you were
8180 * booting a VM while issuing an S4 host suspend....
8181 * you may have some problem. Solving this issue is
8182 * left as an exercise to the reader.
8184 kvm
->arch
.last_tsc_nsec
= 0;
8185 kvm
->arch
.last_tsc_write
= 0;
8192 void kvm_arch_hardware_disable(void)
8194 kvm_x86_ops
->hardware_disable();
8195 drop_user_return_notifiers();
8198 int kvm_arch_hardware_setup(void)
8202 r
= kvm_x86_ops
->hardware_setup();
8206 if (kvm_has_tsc_control
) {
8208 * Make sure the user can only configure tsc_khz values that
8209 * fit into a signed integer.
8210 * A min value is not calculated needed because it will always
8211 * be 1 on all machines.
8213 u64 max
= min(0x7fffffffULL
,
8214 __scale_tsc(kvm_max_tsc_scaling_ratio
, tsc_khz
));
8215 kvm_max_guest_tsc_khz
= max
;
8217 kvm_default_tsc_scaling_ratio
= 1ULL << kvm_tsc_scaling_ratio_frac_bits
;
8220 kvm_init_msr_list();
8224 void kvm_arch_hardware_unsetup(void)
8226 kvm_x86_ops
->hardware_unsetup();
8229 void kvm_arch_check_processor_compat(void *rtn
)
8231 kvm_x86_ops
->check_processor_compatibility(rtn
);
8234 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu
*vcpu
)
8236 return vcpu
->kvm
->arch
.bsp_vcpu_id
== vcpu
->vcpu_id
;
8238 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp
);
8240 bool kvm_vcpu_is_bsp(struct kvm_vcpu
*vcpu
)
8242 return (vcpu
->arch
.apic_base
& MSR_IA32_APICBASE_BSP
) != 0;
8245 struct static_key kvm_no_apic_vcpu __read_mostly
;
8246 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu
);
8248 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
8253 vcpu
->arch
.apicv_active
= kvm_x86_ops
->get_enable_apicv(vcpu
);
8254 vcpu
->arch
.emulate_ctxt
.ops
= &emulate_ops
;
8255 if (!irqchip_in_kernel(vcpu
->kvm
) || kvm_vcpu_is_reset_bsp(vcpu
))
8256 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
8258 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
8260 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
8265 vcpu
->arch
.pio_data
= page_address(page
);
8267 kvm_set_tsc_khz(vcpu
, max_tsc_khz
);
8269 r
= kvm_mmu_create(vcpu
);
8271 goto fail_free_pio_data
;
8273 if (irqchip_in_kernel(vcpu
->kvm
)) {
8274 r
= kvm_create_lapic(vcpu
);
8276 goto fail_mmu_destroy
;
8278 static_key_slow_inc(&kvm_no_apic_vcpu
);
8280 vcpu
->arch
.mce_banks
= kzalloc(KVM_MAX_MCE_BANKS
* sizeof(u64
) * 4,
8282 if (!vcpu
->arch
.mce_banks
) {
8284 goto fail_free_lapic
;
8286 vcpu
->arch
.mcg_cap
= KVM_MAX_MCE_BANKS
;
8288 if (!zalloc_cpumask_var(&vcpu
->arch
.wbinvd_dirty_mask
, GFP_KERNEL
)) {
8290 goto fail_free_mce_banks
;
8295 vcpu
->arch
.guest_xstate_size
= XSAVE_HDR_SIZE
+ XSAVE_HDR_OFFSET
;
8297 vcpu
->arch
.maxphyaddr
= cpuid_query_maxphyaddr(vcpu
);
8299 vcpu
->arch
.pat
= MSR_IA32_CR_PAT_DEFAULT
;
8301 kvm_async_pf_hash_reset(vcpu
);
8304 vcpu
->arch
.pending_external_vector
= -1;
8305 vcpu
->arch
.preempted_in_kernel
= false;
8307 kvm_hv_vcpu_init(vcpu
);
8311 fail_free_mce_banks
:
8312 kfree(vcpu
->arch
.mce_banks
);
8314 kvm_free_lapic(vcpu
);
8316 kvm_mmu_destroy(vcpu
);
8318 free_page((unsigned long)vcpu
->arch
.pio_data
);
8323 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
8327 kvm_hv_vcpu_uninit(vcpu
);
8328 kvm_pmu_destroy(vcpu
);
8329 kfree(vcpu
->arch
.mce_banks
);
8330 kvm_free_lapic(vcpu
);
8331 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
8332 kvm_mmu_destroy(vcpu
);
8333 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
8334 free_page((unsigned long)vcpu
->arch
.pio_data
);
8335 if (!lapic_in_kernel(vcpu
))
8336 static_key_slow_dec(&kvm_no_apic_vcpu
);
8339 void kvm_arch_sched_in(struct kvm_vcpu
*vcpu
, int cpu
)
8341 kvm_x86_ops
->sched_in(vcpu
, cpu
);
8344 int kvm_arch_init_vm(struct kvm
*kvm
, unsigned long type
)
8349 INIT_HLIST_HEAD(&kvm
->arch
.mask_notifier_list
);
8350 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
8351 INIT_LIST_HEAD(&kvm
->arch
.zapped_obsolete_pages
);
8352 INIT_LIST_HEAD(&kvm
->arch
.assigned_dev_head
);
8353 atomic_set(&kvm
->arch
.noncoherent_dma_count
, 0);
8355 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8356 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID
, &kvm
->arch
.irq_sources_bitmap
);
8357 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8358 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID
,
8359 &kvm
->arch
.irq_sources_bitmap
);
8361 raw_spin_lock_init(&kvm
->arch
.tsc_write_lock
);
8362 mutex_init(&kvm
->arch
.apic_map_lock
);
8363 mutex_init(&kvm
->arch
.hyperv
.hv_lock
);
8364 spin_lock_init(&kvm
->arch
.pvclock_gtod_sync_lock
);
8366 kvm
->arch
.kvmclock_offset
= -ktime_get_boot_ns();
8367 pvclock_update_vm_gtod_copy(kvm
);
8369 INIT_DELAYED_WORK(&kvm
->arch
.kvmclock_update_work
, kvmclock_update_fn
);
8370 INIT_DELAYED_WORK(&kvm
->arch
.kvmclock_sync_work
, kvmclock_sync_fn
);
8372 kvm_page_track_init(kvm
);
8373 kvm_mmu_init_vm(kvm
);
8375 if (kvm_x86_ops
->vm_init
)
8376 return kvm_x86_ops
->vm_init(kvm
);
8381 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
8384 kvm_mmu_unload(vcpu
);
8388 static void kvm_free_vcpus(struct kvm
*kvm
)
8391 struct kvm_vcpu
*vcpu
;
8394 * Unpin any mmu pages first.
8396 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
8397 kvm_clear_async_pf_completion_queue(vcpu
);
8398 kvm_unload_vcpu_mmu(vcpu
);
8400 kvm_for_each_vcpu(i
, vcpu
, kvm
)
8401 kvm_arch_vcpu_free(vcpu
);
8403 mutex_lock(&kvm
->lock
);
8404 for (i
= 0; i
< atomic_read(&kvm
->online_vcpus
); i
++)
8405 kvm
->vcpus
[i
] = NULL
;
8407 atomic_set(&kvm
->online_vcpus
, 0);
8408 mutex_unlock(&kvm
->lock
);
8411 void kvm_arch_sync_events(struct kvm
*kvm
)
8413 cancel_delayed_work_sync(&kvm
->arch
.kvmclock_sync_work
);
8414 cancel_delayed_work_sync(&kvm
->arch
.kvmclock_update_work
);
8418 int __x86_set_memory_region(struct kvm
*kvm
, int id
, gpa_t gpa
, u32 size
)
8422 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
8423 struct kvm_memory_slot
*slot
, old
;
8425 /* Called with kvm->slots_lock held. */
8426 if (WARN_ON(id
>= KVM_MEM_SLOTS_NUM
))
8429 slot
= id_to_memslot(slots
, id
);
8435 * MAP_SHARED to prevent internal slot pages from being moved
8438 hva
= vm_mmap(NULL
, 0, size
, PROT_READ
| PROT_WRITE
,
8439 MAP_SHARED
| MAP_ANONYMOUS
, 0);
8440 if (IS_ERR((void *)hva
))
8441 return PTR_ERR((void *)hva
);
8450 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++) {
8451 struct kvm_userspace_memory_region m
;
8453 m
.slot
= id
| (i
<< 16);
8455 m
.guest_phys_addr
= gpa
;
8456 m
.userspace_addr
= hva
;
8457 m
.memory_size
= size
;
8458 r
= __kvm_set_memory_region(kvm
, &m
);
8464 r
= vm_munmap(old
.userspace_addr
, old
.npages
* PAGE_SIZE
);
8470 EXPORT_SYMBOL_GPL(__x86_set_memory_region
);
8472 int x86_set_memory_region(struct kvm
*kvm
, int id
, gpa_t gpa
, u32 size
)
8476 mutex_lock(&kvm
->slots_lock
);
8477 r
= __x86_set_memory_region(kvm
, id
, gpa
, size
);
8478 mutex_unlock(&kvm
->slots_lock
);
8482 EXPORT_SYMBOL_GPL(x86_set_memory_region
);
8484 void kvm_arch_destroy_vm(struct kvm
*kvm
)
8486 if (current
->mm
== kvm
->mm
) {
8488 * Free memory regions allocated on behalf of userspace,
8489 * unless the the memory map has changed due to process exit
8492 x86_set_memory_region(kvm
, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
, 0, 0);
8493 x86_set_memory_region(kvm
, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT
, 0, 0);
8494 x86_set_memory_region(kvm
, TSS_PRIVATE_MEMSLOT
, 0, 0);
8496 if (kvm_x86_ops
->vm_destroy
)
8497 kvm_x86_ops
->vm_destroy(kvm
);
8498 kvm_pic_destroy(kvm
);
8499 kvm_ioapic_destroy(kvm
);
8500 kvm_free_vcpus(kvm
);
8501 kvfree(rcu_dereference_check(kvm
->arch
.apic_map
, 1));
8502 kvm_mmu_uninit_vm(kvm
);
8503 kvm_page_track_cleanup(kvm
);
8506 void kvm_arch_free_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*free
,
8507 struct kvm_memory_slot
*dont
)
8511 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
8512 if (!dont
|| free
->arch
.rmap
[i
] != dont
->arch
.rmap
[i
]) {
8513 kvfree(free
->arch
.rmap
[i
]);
8514 free
->arch
.rmap
[i
] = NULL
;
8519 if (!dont
|| free
->arch
.lpage_info
[i
- 1] !=
8520 dont
->arch
.lpage_info
[i
- 1]) {
8521 kvfree(free
->arch
.lpage_info
[i
- 1]);
8522 free
->arch
.lpage_info
[i
- 1] = NULL
;
8526 kvm_page_track_free_memslot(free
, dont
);
8529 int kvm_arch_create_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*slot
,
8530 unsigned long npages
)
8534 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
8535 struct kvm_lpage_info
*linfo
;
8540 lpages
= gfn_to_index(slot
->base_gfn
+ npages
- 1,
8541 slot
->base_gfn
, level
) + 1;
8543 slot
->arch
.rmap
[i
] =
8544 kvzalloc(lpages
* sizeof(*slot
->arch
.rmap
[i
]), GFP_KERNEL
);
8545 if (!slot
->arch
.rmap
[i
])
8550 linfo
= kvzalloc(lpages
* sizeof(*linfo
), GFP_KERNEL
);
8554 slot
->arch
.lpage_info
[i
- 1] = linfo
;
8556 if (slot
->base_gfn
& (KVM_PAGES_PER_HPAGE(level
) - 1))
8557 linfo
[0].disallow_lpage
= 1;
8558 if ((slot
->base_gfn
+ npages
) & (KVM_PAGES_PER_HPAGE(level
) - 1))
8559 linfo
[lpages
- 1].disallow_lpage
= 1;
8560 ugfn
= slot
->userspace_addr
>> PAGE_SHIFT
;
8562 * If the gfn and userspace address are not aligned wrt each
8563 * other, or if explicitly asked to, disable large page
8564 * support for this slot
8566 if ((slot
->base_gfn
^ ugfn
) & (KVM_PAGES_PER_HPAGE(level
) - 1) ||
8567 !kvm_largepages_enabled()) {
8570 for (j
= 0; j
< lpages
; ++j
)
8571 linfo
[j
].disallow_lpage
= 1;
8575 if (kvm_page_track_create_memslot(slot
, npages
))
8581 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
8582 kvfree(slot
->arch
.rmap
[i
]);
8583 slot
->arch
.rmap
[i
] = NULL
;
8587 kvfree(slot
->arch
.lpage_info
[i
- 1]);
8588 slot
->arch
.lpage_info
[i
- 1] = NULL
;
8593 void kvm_arch_memslots_updated(struct kvm
*kvm
, struct kvm_memslots
*slots
)
8596 * memslots->generation has been incremented.
8597 * mmio generation may have reached its maximum value.
8599 kvm_mmu_invalidate_mmio_sptes(kvm
, slots
);
8602 int kvm_arch_prepare_memory_region(struct kvm
*kvm
,
8603 struct kvm_memory_slot
*memslot
,
8604 const struct kvm_userspace_memory_region
*mem
,
8605 enum kvm_mr_change change
)
8610 static void kvm_mmu_slot_apply_flags(struct kvm
*kvm
,
8611 struct kvm_memory_slot
*new)
8613 /* Still write protect RO slot */
8614 if (new->flags
& KVM_MEM_READONLY
) {
8615 kvm_mmu_slot_remove_write_access(kvm
, new);
8620 * Call kvm_x86_ops dirty logging hooks when they are valid.
8622 * kvm_x86_ops->slot_disable_log_dirty is called when:
8624 * - KVM_MR_CREATE with dirty logging is disabled
8625 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8627 * The reason is, in case of PML, we need to set D-bit for any slots
8628 * with dirty logging disabled in order to eliminate unnecessary GPA
8629 * logging in PML buffer (and potential PML buffer full VMEXT). This
8630 * guarantees leaving PML enabled during guest's lifetime won't have
8631 * any additonal overhead from PML when guest is running with dirty
8632 * logging disabled for memory slots.
8634 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8635 * to dirty logging mode.
8637 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8639 * In case of write protect:
8641 * Write protect all pages for dirty logging.
8643 * All the sptes including the large sptes which point to this
8644 * slot are set to readonly. We can not create any new large
8645 * spte on this slot until the end of the logging.
8647 * See the comments in fast_page_fault().
8649 if (new->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
8650 if (kvm_x86_ops
->slot_enable_log_dirty
)
8651 kvm_x86_ops
->slot_enable_log_dirty(kvm
, new);
8653 kvm_mmu_slot_remove_write_access(kvm
, new);
8655 if (kvm_x86_ops
->slot_disable_log_dirty
)
8656 kvm_x86_ops
->slot_disable_log_dirty(kvm
, new);
8660 void kvm_arch_commit_memory_region(struct kvm
*kvm
,
8661 const struct kvm_userspace_memory_region
*mem
,
8662 const struct kvm_memory_slot
*old
,
8663 const struct kvm_memory_slot
*new,
8664 enum kvm_mr_change change
)
8666 int nr_mmu_pages
= 0;
8668 if (!kvm
->arch
.n_requested_mmu_pages
)
8669 nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
8672 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
8675 * Dirty logging tracks sptes in 4k granularity, meaning that large
8676 * sptes have to be split. If live migration is successful, the guest
8677 * in the source machine will be destroyed and large sptes will be
8678 * created in the destination. However, if the guest continues to run
8679 * in the source machine (for example if live migration fails), small
8680 * sptes will remain around and cause bad performance.
8682 * Scan sptes if dirty logging has been stopped, dropping those
8683 * which can be collapsed into a single large-page spte. Later
8684 * page faults will create the large-page sptes.
8686 if ((change
!= KVM_MR_DELETE
) &&
8687 (old
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) &&
8688 !(new->flags
& KVM_MEM_LOG_DIRTY_PAGES
))
8689 kvm_mmu_zap_collapsible_sptes(kvm
, new);
8692 * Set up write protection and/or dirty logging for the new slot.
8694 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8695 * been zapped so no dirty logging staff is needed for old slot. For
8696 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8697 * new and it's also covered when dealing with the new slot.
8699 * FIXME: const-ify all uses of struct kvm_memory_slot.
8701 if (change
!= KVM_MR_DELETE
)
8702 kvm_mmu_slot_apply_flags(kvm
, (struct kvm_memory_slot
*) new);
8705 void kvm_arch_flush_shadow_all(struct kvm
*kvm
)
8707 kvm_mmu_invalidate_zap_all_pages(kvm
);
8710 void kvm_arch_flush_shadow_memslot(struct kvm
*kvm
,
8711 struct kvm_memory_slot
*slot
)
8713 kvm_page_track_flush_slot(kvm
, slot
);
8716 static inline bool kvm_vcpu_has_events(struct kvm_vcpu
*vcpu
)
8718 if (!list_empty_careful(&vcpu
->async_pf
.done
))
8721 if (kvm_apic_has_events(vcpu
))
8724 if (vcpu
->arch
.pv
.pv_unhalted
)
8727 if (vcpu
->arch
.exception
.pending
)
8730 if (kvm_test_request(KVM_REQ_NMI
, vcpu
) ||
8731 (vcpu
->arch
.nmi_pending
&&
8732 kvm_x86_ops
->nmi_allowed(vcpu
)))
8735 if (kvm_test_request(KVM_REQ_SMI
, vcpu
) ||
8736 (vcpu
->arch
.smi_pending
&& !is_smm(vcpu
)))
8739 if (kvm_arch_interrupt_allowed(vcpu
) &&
8740 kvm_cpu_has_interrupt(vcpu
))
8743 if (kvm_hv_has_stimer_pending(vcpu
))
8749 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
8751 return kvm_vcpu_running(vcpu
) || kvm_vcpu_has_events(vcpu
);
8754 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu
*vcpu
)
8756 return vcpu
->arch
.preempted_in_kernel
;
8759 int kvm_arch_vcpu_should_kick(struct kvm_vcpu
*vcpu
)
8761 return kvm_vcpu_exiting_guest_mode(vcpu
) == IN_GUEST_MODE
;
8764 int kvm_arch_interrupt_allowed(struct kvm_vcpu
*vcpu
)
8766 return kvm_x86_ops
->interrupt_allowed(vcpu
);
8769 unsigned long kvm_get_linear_rip(struct kvm_vcpu
*vcpu
)
8771 if (is_64_bit_mode(vcpu
))
8772 return kvm_rip_read(vcpu
);
8773 return (u32
)(get_segment_base(vcpu
, VCPU_SREG_CS
) +
8774 kvm_rip_read(vcpu
));
8776 EXPORT_SYMBOL_GPL(kvm_get_linear_rip
);
8778 bool kvm_is_linear_rip(struct kvm_vcpu
*vcpu
, unsigned long linear_rip
)
8780 return kvm_get_linear_rip(vcpu
) == linear_rip
;
8782 EXPORT_SYMBOL_GPL(kvm_is_linear_rip
);
8784 unsigned long kvm_get_rflags(struct kvm_vcpu
*vcpu
)
8786 unsigned long rflags
;
8788 rflags
= kvm_x86_ops
->get_rflags(vcpu
);
8789 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
8790 rflags
&= ~X86_EFLAGS_TF
;
8793 EXPORT_SYMBOL_GPL(kvm_get_rflags
);
8795 static void __kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
8797 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
&&
8798 kvm_is_linear_rip(vcpu
, vcpu
->arch
.singlestep_rip
))
8799 rflags
|= X86_EFLAGS_TF
;
8800 kvm_x86_ops
->set_rflags(vcpu
, rflags
);
8803 void kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
8805 __kvm_set_rflags(vcpu
, rflags
);
8806 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
8808 EXPORT_SYMBOL_GPL(kvm_set_rflags
);
8810 void kvm_arch_async_page_ready(struct kvm_vcpu
*vcpu
, struct kvm_async_pf
*work
)
8814 if ((vcpu
->arch
.mmu
.direct_map
!= work
->arch
.direct_map
) ||
8818 r
= kvm_mmu_reload(vcpu
);
8822 if (!vcpu
->arch
.mmu
.direct_map
&&
8823 work
->arch
.cr3
!= vcpu
->arch
.mmu
.get_cr3(vcpu
))
8826 vcpu
->arch
.mmu
.page_fault(vcpu
, work
->gva
, 0, true);
8829 static inline u32
kvm_async_pf_hash_fn(gfn_t gfn
)
8831 return hash_32(gfn
& 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU
));
8834 static inline u32
kvm_async_pf_next_probe(u32 key
)
8836 return (key
+ 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU
) - 1);
8839 static void kvm_add_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
8841 u32 key
= kvm_async_pf_hash_fn(gfn
);
8843 while (vcpu
->arch
.apf
.gfns
[key
] != ~0)
8844 key
= kvm_async_pf_next_probe(key
);
8846 vcpu
->arch
.apf
.gfns
[key
] = gfn
;
8849 static u32
kvm_async_pf_gfn_slot(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
8852 u32 key
= kvm_async_pf_hash_fn(gfn
);
8854 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
) &&
8855 (vcpu
->arch
.apf
.gfns
[key
] != gfn
&&
8856 vcpu
->arch
.apf
.gfns
[key
] != ~0); i
++)
8857 key
= kvm_async_pf_next_probe(key
);
8862 bool kvm_find_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
8864 return vcpu
->arch
.apf
.gfns
[kvm_async_pf_gfn_slot(vcpu
, gfn
)] == gfn
;
8867 static void kvm_del_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
8871 i
= j
= kvm_async_pf_gfn_slot(vcpu
, gfn
);
8873 vcpu
->arch
.apf
.gfns
[i
] = ~0;
8875 j
= kvm_async_pf_next_probe(j
);
8876 if (vcpu
->arch
.apf
.gfns
[j
] == ~0)
8878 k
= kvm_async_pf_hash_fn(vcpu
->arch
.apf
.gfns
[j
]);
8880 * k lies cyclically in ]i,j]
8882 * |....j i.k.| or |.k..j i...|
8884 } while ((i
<= j
) ? (i
< k
&& k
<= j
) : (i
< k
|| k
<= j
));
8885 vcpu
->arch
.apf
.gfns
[i
] = vcpu
->arch
.apf
.gfns
[j
];
8890 static int apf_put_user(struct kvm_vcpu
*vcpu
, u32 val
)
8893 return kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, &val
,
8897 static int apf_get_user(struct kvm_vcpu
*vcpu
, u32
*val
)
8900 return kvm_read_guest_cached(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, val
,
8904 void kvm_arch_async_page_not_present(struct kvm_vcpu
*vcpu
,
8905 struct kvm_async_pf
*work
)
8907 struct x86_exception fault
;
8909 trace_kvm_async_pf_not_present(work
->arch
.token
, work
->gva
);
8910 kvm_add_async_pf_gfn(vcpu
, work
->arch
.gfn
);
8912 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) ||
8913 (vcpu
->arch
.apf
.send_user_only
&&
8914 kvm_x86_ops
->get_cpl(vcpu
) == 0))
8915 kvm_make_request(KVM_REQ_APF_HALT
, vcpu
);
8916 else if (!apf_put_user(vcpu
, KVM_PV_REASON_PAGE_NOT_PRESENT
)) {
8917 fault
.vector
= PF_VECTOR
;
8918 fault
.error_code_valid
= true;
8919 fault
.error_code
= 0;
8920 fault
.nested_page_fault
= false;
8921 fault
.address
= work
->arch
.token
;
8922 fault
.async_page_fault
= true;
8923 kvm_inject_page_fault(vcpu
, &fault
);
8927 void kvm_arch_async_page_present(struct kvm_vcpu
*vcpu
,
8928 struct kvm_async_pf
*work
)
8930 struct x86_exception fault
;
8933 if (work
->wakeup_all
)
8934 work
->arch
.token
= ~0; /* broadcast wakeup */
8936 kvm_del_async_pf_gfn(vcpu
, work
->arch
.gfn
);
8937 trace_kvm_async_pf_ready(work
->arch
.token
, work
->gva
);
8939 if (vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
&&
8940 !apf_get_user(vcpu
, &val
)) {
8941 if (val
== KVM_PV_REASON_PAGE_NOT_PRESENT
&&
8942 vcpu
->arch
.exception
.pending
&&
8943 vcpu
->arch
.exception
.nr
== PF_VECTOR
&&
8944 !apf_put_user(vcpu
, 0)) {
8945 vcpu
->arch
.exception
.injected
= false;
8946 vcpu
->arch
.exception
.pending
= false;
8947 vcpu
->arch
.exception
.nr
= 0;
8948 vcpu
->arch
.exception
.has_error_code
= false;
8949 vcpu
->arch
.exception
.error_code
= 0;
8950 } else if (!apf_put_user(vcpu
, KVM_PV_REASON_PAGE_READY
)) {
8951 fault
.vector
= PF_VECTOR
;
8952 fault
.error_code_valid
= true;
8953 fault
.error_code
= 0;
8954 fault
.nested_page_fault
= false;
8955 fault
.address
= work
->arch
.token
;
8956 fault
.async_page_fault
= true;
8957 kvm_inject_page_fault(vcpu
, &fault
);
8960 vcpu
->arch
.apf
.halted
= false;
8961 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
8964 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu
*vcpu
)
8966 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
))
8969 return kvm_can_do_async_pf(vcpu
);
8972 void kvm_arch_start_assignment(struct kvm
*kvm
)
8974 atomic_inc(&kvm
->arch
.assigned_device_count
);
8976 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment
);
8978 void kvm_arch_end_assignment(struct kvm
*kvm
)
8980 atomic_dec(&kvm
->arch
.assigned_device_count
);
8982 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment
);
8984 bool kvm_arch_has_assigned_device(struct kvm
*kvm
)
8986 return atomic_read(&kvm
->arch
.assigned_device_count
);
8988 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device
);
8990 void kvm_arch_register_noncoherent_dma(struct kvm
*kvm
)
8992 atomic_inc(&kvm
->arch
.noncoherent_dma_count
);
8994 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma
);
8996 void kvm_arch_unregister_noncoherent_dma(struct kvm
*kvm
)
8998 atomic_dec(&kvm
->arch
.noncoherent_dma_count
);
9000 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma
);
9002 bool kvm_arch_has_noncoherent_dma(struct kvm
*kvm
)
9004 return atomic_read(&kvm
->arch
.noncoherent_dma_count
);
9006 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma
);
9008 bool kvm_arch_has_irq_bypass(void)
9010 return kvm_x86_ops
->update_pi_irte
!= NULL
;
9013 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer
*cons
,
9014 struct irq_bypass_producer
*prod
)
9016 struct kvm_kernel_irqfd
*irqfd
=
9017 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
9019 irqfd
->producer
= prod
;
9021 return kvm_x86_ops
->update_pi_irte(irqfd
->kvm
,
9022 prod
->irq
, irqfd
->gsi
, 1);
9025 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer
*cons
,
9026 struct irq_bypass_producer
*prod
)
9029 struct kvm_kernel_irqfd
*irqfd
=
9030 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
9032 WARN_ON(irqfd
->producer
!= prod
);
9033 irqfd
->producer
= NULL
;
9036 * When producer of consumer is unregistered, we change back to
9037 * remapped mode, so we can re-use the current implementation
9038 * when the irq is masked/disabled or the consumer side (KVM
9039 * int this case doesn't want to receive the interrupts.
9041 ret
= kvm_x86_ops
->update_pi_irte(irqfd
->kvm
, prod
->irq
, irqfd
->gsi
, 0);
9043 printk(KERN_INFO
"irq bypass consumer (token %p) unregistration"
9044 " fails: %d\n", irqfd
->consumer
.token
, ret
);
9047 int kvm_arch_update_irqfd_routing(struct kvm
*kvm
, unsigned int host_irq
,
9048 uint32_t guest_irq
, bool set
)
9050 if (!kvm_x86_ops
->update_pi_irte
)
9053 return kvm_x86_ops
->update_pi_irte(kvm
, host_irq
, guest_irq
, set
);
9056 bool kvm_vector_hashing_enabled(void)
9058 return vector_hashing
;
9060 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled
);
9062 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit
);
9063 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio
);
9064 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq
);
9065 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault
);
9066 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr
);
9067 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr
);
9068 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun
);
9069 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit
);
9070 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject
);
9071 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit
);
9072 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga
);
9073 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit
);
9074 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts
);
9075 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset
);
9076 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window
);
9077 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full
);
9078 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update
);
9079 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access
);
9080 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi
);