x86/topology: Update the 'cpu cores' field in /proc/cpuinfo correctly across CPU...
[cris-mirror.git] / arch / x86 / kvm / x86.c
blobc8a0b545ac20c71a464738a1dd0cd7e1c3df388e
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
59 #include <trace/events/kvm.h>
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
73 #define CREATE_TRACE_POINTS
74 #include "trace.h"
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
81 #define emul_to_vcpu(ctxt) \
82 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
84 /* EFER defaults:
85 * - enable syscall per default because its emulated by KVM
86 * - enable LME and LMA per default on 64 bit KVM
88 #ifdef CONFIG_X86_64
89 static
90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
91 #else
92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
93 #endif
95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
101 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
102 static void process_nmi(struct kvm_vcpu *vcpu);
103 static void enter_smm(struct kvm_vcpu *vcpu);
104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
106 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
107 EXPORT_SYMBOL_GPL(kvm_x86_ops);
109 static bool __read_mostly ignore_msrs = 0;
110 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
112 static bool __read_mostly report_ignored_msrs = true;
113 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
115 unsigned int min_timer_period_us = 500;
116 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
118 static bool __read_mostly kvmclock_periodic_sync = true;
119 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
121 bool __read_mostly kvm_has_tsc_control;
122 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
123 u32 __read_mostly kvm_max_guest_tsc_khz;
124 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
125 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
126 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
127 u64 __read_mostly kvm_max_tsc_scaling_ratio;
128 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
129 u64 __read_mostly kvm_default_tsc_scaling_ratio;
130 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
132 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
133 static u32 __read_mostly tsc_tolerance_ppm = 250;
134 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
136 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
137 unsigned int __read_mostly lapic_timer_advance_ns = 0;
138 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
140 static bool __read_mostly vector_hashing = true;
141 module_param(vector_hashing, bool, S_IRUGO);
143 #define KVM_NR_SHARED_MSRS 16
145 struct kvm_shared_msrs_global {
146 int nr;
147 u32 msrs[KVM_NR_SHARED_MSRS];
150 struct kvm_shared_msrs {
151 struct user_return_notifier urn;
152 bool registered;
153 struct kvm_shared_msr_values {
154 u64 host;
155 u64 curr;
156 } values[KVM_NR_SHARED_MSRS];
159 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
160 static struct kvm_shared_msrs __percpu *shared_msrs;
162 struct kvm_stats_debugfs_item debugfs_entries[] = {
163 { "pf_fixed", VCPU_STAT(pf_fixed) },
164 { "pf_guest", VCPU_STAT(pf_guest) },
165 { "tlb_flush", VCPU_STAT(tlb_flush) },
166 { "invlpg", VCPU_STAT(invlpg) },
167 { "exits", VCPU_STAT(exits) },
168 { "io_exits", VCPU_STAT(io_exits) },
169 { "mmio_exits", VCPU_STAT(mmio_exits) },
170 { "signal_exits", VCPU_STAT(signal_exits) },
171 { "irq_window", VCPU_STAT(irq_window_exits) },
172 { "nmi_window", VCPU_STAT(nmi_window_exits) },
173 { "halt_exits", VCPU_STAT(halt_exits) },
174 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
175 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
176 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
177 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
178 { "hypercalls", VCPU_STAT(hypercalls) },
179 { "request_irq", VCPU_STAT(request_irq_exits) },
180 { "irq_exits", VCPU_STAT(irq_exits) },
181 { "host_state_reload", VCPU_STAT(host_state_reload) },
182 { "fpu_reload", VCPU_STAT(fpu_reload) },
183 { "insn_emulation", VCPU_STAT(insn_emulation) },
184 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
185 { "irq_injections", VCPU_STAT(irq_injections) },
186 { "nmi_injections", VCPU_STAT(nmi_injections) },
187 { "req_event", VCPU_STAT(req_event) },
188 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
189 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
190 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
191 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
192 { "mmu_flooded", VM_STAT(mmu_flooded) },
193 { "mmu_recycled", VM_STAT(mmu_recycled) },
194 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
195 { "mmu_unsync", VM_STAT(mmu_unsync) },
196 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
197 { "largepages", VM_STAT(lpages) },
198 { "max_mmu_page_hash_collisions",
199 VM_STAT(max_mmu_page_hash_collisions) },
200 { NULL }
203 u64 __read_mostly host_xcr0;
205 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
207 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
209 int i;
210 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
211 vcpu->arch.apf.gfns[i] = ~0;
214 static void kvm_on_user_return(struct user_return_notifier *urn)
216 unsigned slot;
217 struct kvm_shared_msrs *locals
218 = container_of(urn, struct kvm_shared_msrs, urn);
219 struct kvm_shared_msr_values *values;
220 unsigned long flags;
223 * Disabling irqs at this point since the following code could be
224 * interrupted and executed through kvm_arch_hardware_disable()
226 local_irq_save(flags);
227 if (locals->registered) {
228 locals->registered = false;
229 user_return_notifier_unregister(urn);
231 local_irq_restore(flags);
232 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
233 values = &locals->values[slot];
234 if (values->host != values->curr) {
235 wrmsrl(shared_msrs_global.msrs[slot], values->host);
236 values->curr = values->host;
241 static void shared_msr_update(unsigned slot, u32 msr)
243 u64 value;
244 unsigned int cpu = smp_processor_id();
245 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
247 /* only read, and nobody should modify it at this time,
248 * so don't need lock */
249 if (slot >= shared_msrs_global.nr) {
250 printk(KERN_ERR "kvm: invalid MSR slot!");
251 return;
253 rdmsrl_safe(msr, &value);
254 smsr->values[slot].host = value;
255 smsr->values[slot].curr = value;
258 void kvm_define_shared_msr(unsigned slot, u32 msr)
260 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
261 shared_msrs_global.msrs[slot] = msr;
262 if (slot >= shared_msrs_global.nr)
263 shared_msrs_global.nr = slot + 1;
265 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
267 static void kvm_shared_msr_cpu_online(void)
269 unsigned i;
271 for (i = 0; i < shared_msrs_global.nr; ++i)
272 shared_msr_update(i, shared_msrs_global.msrs[i]);
275 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
277 unsigned int cpu = smp_processor_id();
278 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
279 int err;
281 if (((value ^ smsr->values[slot].curr) & mask) == 0)
282 return 0;
283 smsr->values[slot].curr = value;
284 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
285 if (err)
286 return 1;
288 if (!smsr->registered) {
289 smsr->urn.on_user_return = kvm_on_user_return;
290 user_return_notifier_register(&smsr->urn);
291 smsr->registered = true;
293 return 0;
295 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
297 static void drop_user_return_notifiers(void)
299 unsigned int cpu = smp_processor_id();
300 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
302 if (smsr->registered)
303 kvm_on_user_return(&smsr->urn);
306 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
308 return vcpu->arch.apic_base;
310 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
312 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
314 u64 old_state = vcpu->arch.apic_base &
315 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
316 u64 new_state = msr_info->data &
317 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
318 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
319 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
321 if ((msr_info->data & reserved_bits) || new_state == X2APIC_ENABLE)
322 return 1;
323 if (!msr_info->host_initiated &&
324 ((new_state == MSR_IA32_APICBASE_ENABLE &&
325 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
326 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
327 old_state == 0)))
328 return 1;
330 kvm_lapic_set_base(vcpu, msr_info->data);
331 return 0;
333 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
335 asmlinkage __visible void kvm_spurious_fault(void)
337 /* Fault while not rebooting. We want the trace. */
338 BUG();
340 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
342 #define EXCPT_BENIGN 0
343 #define EXCPT_CONTRIBUTORY 1
344 #define EXCPT_PF 2
346 static int exception_class(int vector)
348 switch (vector) {
349 case PF_VECTOR:
350 return EXCPT_PF;
351 case DE_VECTOR:
352 case TS_VECTOR:
353 case NP_VECTOR:
354 case SS_VECTOR:
355 case GP_VECTOR:
356 return EXCPT_CONTRIBUTORY;
357 default:
358 break;
360 return EXCPT_BENIGN;
363 #define EXCPT_FAULT 0
364 #define EXCPT_TRAP 1
365 #define EXCPT_ABORT 2
366 #define EXCPT_INTERRUPT 3
368 static int exception_type(int vector)
370 unsigned int mask;
372 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
373 return EXCPT_INTERRUPT;
375 mask = 1 << vector;
377 /* #DB is trap, as instruction watchpoints are handled elsewhere */
378 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
379 return EXCPT_TRAP;
381 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
382 return EXCPT_ABORT;
384 /* Reserved exceptions will result in fault */
385 return EXCPT_FAULT;
388 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
389 unsigned nr, bool has_error, u32 error_code,
390 bool reinject)
392 u32 prev_nr;
393 int class1, class2;
395 kvm_make_request(KVM_REQ_EVENT, vcpu);
397 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
398 queue:
399 if (has_error && !is_protmode(vcpu))
400 has_error = false;
401 if (reinject) {
403 * On vmentry, vcpu->arch.exception.pending is only
404 * true if an event injection was blocked by
405 * nested_run_pending. In that case, however,
406 * vcpu_enter_guest requests an immediate exit,
407 * and the guest shouldn't proceed far enough to
408 * need reinjection.
410 WARN_ON_ONCE(vcpu->arch.exception.pending);
411 vcpu->arch.exception.injected = true;
412 } else {
413 vcpu->arch.exception.pending = true;
414 vcpu->arch.exception.injected = false;
416 vcpu->arch.exception.has_error_code = has_error;
417 vcpu->arch.exception.nr = nr;
418 vcpu->arch.exception.error_code = error_code;
419 return;
422 /* to check exception */
423 prev_nr = vcpu->arch.exception.nr;
424 if (prev_nr == DF_VECTOR) {
425 /* triple fault -> shutdown */
426 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
427 return;
429 class1 = exception_class(prev_nr);
430 class2 = exception_class(nr);
431 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
432 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
434 * Generate double fault per SDM Table 5-5. Set
435 * exception.pending = true so that the double fault
436 * can trigger a nested vmexit.
438 vcpu->arch.exception.pending = true;
439 vcpu->arch.exception.injected = false;
440 vcpu->arch.exception.has_error_code = true;
441 vcpu->arch.exception.nr = DF_VECTOR;
442 vcpu->arch.exception.error_code = 0;
443 } else
444 /* replace previous exception with a new one in a hope
445 that instruction re-execution will regenerate lost
446 exception */
447 goto queue;
450 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
452 kvm_multiple_exception(vcpu, nr, false, 0, false);
454 EXPORT_SYMBOL_GPL(kvm_queue_exception);
456 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
458 kvm_multiple_exception(vcpu, nr, false, 0, true);
460 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
462 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
464 if (err)
465 kvm_inject_gp(vcpu, 0);
466 else
467 return kvm_skip_emulated_instruction(vcpu);
469 return 1;
471 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
473 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
475 ++vcpu->stat.pf_guest;
476 vcpu->arch.exception.nested_apf =
477 is_guest_mode(vcpu) && fault->async_page_fault;
478 if (vcpu->arch.exception.nested_apf)
479 vcpu->arch.apf.nested_apf_token = fault->address;
480 else
481 vcpu->arch.cr2 = fault->address;
482 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
484 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
486 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
488 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
489 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
490 else
491 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
493 return fault->nested_page_fault;
496 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
498 atomic_inc(&vcpu->arch.nmi_queued);
499 kvm_make_request(KVM_REQ_NMI, vcpu);
501 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
503 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
505 kvm_multiple_exception(vcpu, nr, true, error_code, false);
507 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
509 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
511 kvm_multiple_exception(vcpu, nr, true, error_code, true);
513 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
516 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
517 * a #GP and return false.
519 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
521 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
522 return true;
523 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
524 return false;
526 EXPORT_SYMBOL_GPL(kvm_require_cpl);
528 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
530 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
531 return true;
533 kvm_queue_exception(vcpu, UD_VECTOR);
534 return false;
536 EXPORT_SYMBOL_GPL(kvm_require_dr);
539 * This function will be used to read from the physical memory of the currently
540 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
541 * can read from guest physical or from the guest's guest physical memory.
543 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
544 gfn_t ngfn, void *data, int offset, int len,
545 u32 access)
547 struct x86_exception exception;
548 gfn_t real_gfn;
549 gpa_t ngpa;
551 ngpa = gfn_to_gpa(ngfn);
552 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
553 if (real_gfn == UNMAPPED_GVA)
554 return -EFAULT;
556 real_gfn = gpa_to_gfn(real_gfn);
558 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
560 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
562 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
563 void *data, int offset, int len, u32 access)
565 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
566 data, offset, len, access);
570 * Load the pae pdptrs. Return true is they are all valid.
572 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
574 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
575 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
576 int i;
577 int ret;
578 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
580 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
581 offset * sizeof(u64), sizeof(pdpte),
582 PFERR_USER_MASK|PFERR_WRITE_MASK);
583 if (ret < 0) {
584 ret = 0;
585 goto out;
587 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
588 if ((pdpte[i] & PT_PRESENT_MASK) &&
589 (pdpte[i] &
590 vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
591 ret = 0;
592 goto out;
595 ret = 1;
597 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
598 __set_bit(VCPU_EXREG_PDPTR,
599 (unsigned long *)&vcpu->arch.regs_avail);
600 __set_bit(VCPU_EXREG_PDPTR,
601 (unsigned long *)&vcpu->arch.regs_dirty);
602 out:
604 return ret;
606 EXPORT_SYMBOL_GPL(load_pdptrs);
608 bool pdptrs_changed(struct kvm_vcpu *vcpu)
610 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
611 bool changed = true;
612 int offset;
613 gfn_t gfn;
614 int r;
616 if (is_long_mode(vcpu) || !is_pae(vcpu))
617 return false;
619 if (!test_bit(VCPU_EXREG_PDPTR,
620 (unsigned long *)&vcpu->arch.regs_avail))
621 return true;
623 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
624 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
625 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
626 PFERR_USER_MASK | PFERR_WRITE_MASK);
627 if (r < 0)
628 goto out;
629 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
630 out:
632 return changed;
634 EXPORT_SYMBOL_GPL(pdptrs_changed);
636 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
638 unsigned long old_cr0 = kvm_read_cr0(vcpu);
639 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
641 cr0 |= X86_CR0_ET;
643 #ifdef CONFIG_X86_64
644 if (cr0 & 0xffffffff00000000UL)
645 return 1;
646 #endif
648 cr0 &= ~CR0_RESERVED_BITS;
650 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
651 return 1;
653 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
654 return 1;
656 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
657 #ifdef CONFIG_X86_64
658 if ((vcpu->arch.efer & EFER_LME)) {
659 int cs_db, cs_l;
661 if (!is_pae(vcpu))
662 return 1;
663 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
664 if (cs_l)
665 return 1;
666 } else
667 #endif
668 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
669 kvm_read_cr3(vcpu)))
670 return 1;
673 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
674 return 1;
676 kvm_x86_ops->set_cr0(vcpu, cr0);
678 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
679 kvm_clear_async_pf_completion_queue(vcpu);
680 kvm_async_pf_hash_reset(vcpu);
683 if ((cr0 ^ old_cr0) & update_bits)
684 kvm_mmu_reset_context(vcpu);
686 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
687 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
688 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
689 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
691 return 0;
693 EXPORT_SYMBOL_GPL(kvm_set_cr0);
695 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
697 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
699 EXPORT_SYMBOL_GPL(kvm_lmsw);
701 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
703 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
704 !vcpu->guest_xcr0_loaded) {
705 /* kvm_set_xcr() also depends on this */
706 if (vcpu->arch.xcr0 != host_xcr0)
707 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
708 vcpu->guest_xcr0_loaded = 1;
712 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
714 if (vcpu->guest_xcr0_loaded) {
715 if (vcpu->arch.xcr0 != host_xcr0)
716 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
717 vcpu->guest_xcr0_loaded = 0;
721 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
723 u64 xcr0 = xcr;
724 u64 old_xcr0 = vcpu->arch.xcr0;
725 u64 valid_bits;
727 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
728 if (index != XCR_XFEATURE_ENABLED_MASK)
729 return 1;
730 if (!(xcr0 & XFEATURE_MASK_FP))
731 return 1;
732 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
733 return 1;
736 * Do not allow the guest to set bits that we do not support
737 * saving. However, xcr0 bit 0 is always set, even if the
738 * emulated CPU does not support XSAVE (see fx_init).
740 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
741 if (xcr0 & ~valid_bits)
742 return 1;
744 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
745 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
746 return 1;
748 if (xcr0 & XFEATURE_MASK_AVX512) {
749 if (!(xcr0 & XFEATURE_MASK_YMM))
750 return 1;
751 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
752 return 1;
754 vcpu->arch.xcr0 = xcr0;
756 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
757 kvm_update_cpuid(vcpu);
758 return 0;
761 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
763 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
764 __kvm_set_xcr(vcpu, index, xcr)) {
765 kvm_inject_gp(vcpu, 0);
766 return 1;
768 return 0;
770 EXPORT_SYMBOL_GPL(kvm_set_xcr);
772 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
774 unsigned long old_cr4 = kvm_read_cr4(vcpu);
775 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
776 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
778 if (cr4 & CR4_RESERVED_BITS)
779 return 1;
781 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
782 return 1;
784 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
785 return 1;
787 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
788 return 1;
790 if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
791 return 1;
793 if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
794 return 1;
796 if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
797 return 1;
799 if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
800 return 1;
802 if (is_long_mode(vcpu)) {
803 if (!(cr4 & X86_CR4_PAE))
804 return 1;
805 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
806 && ((cr4 ^ old_cr4) & pdptr_bits)
807 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
808 kvm_read_cr3(vcpu)))
809 return 1;
811 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
812 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
813 return 1;
815 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
816 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
817 return 1;
820 if (kvm_x86_ops->set_cr4(vcpu, cr4))
821 return 1;
823 if (((cr4 ^ old_cr4) & pdptr_bits) ||
824 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
825 kvm_mmu_reset_context(vcpu);
827 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
828 kvm_update_cpuid(vcpu);
830 return 0;
832 EXPORT_SYMBOL_GPL(kvm_set_cr4);
834 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
836 #ifdef CONFIG_X86_64
837 cr3 &= ~CR3_PCID_INVD;
838 #endif
840 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
841 kvm_mmu_sync_roots(vcpu);
842 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
843 return 0;
846 if (is_long_mode(vcpu) &&
847 (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 62)))
848 return 1;
849 else if (is_pae(vcpu) && is_paging(vcpu) &&
850 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
851 return 1;
853 vcpu->arch.cr3 = cr3;
854 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
855 kvm_mmu_new_cr3(vcpu);
856 return 0;
858 EXPORT_SYMBOL_GPL(kvm_set_cr3);
860 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
862 if (cr8 & CR8_RESERVED_BITS)
863 return 1;
864 if (lapic_in_kernel(vcpu))
865 kvm_lapic_set_tpr(vcpu, cr8);
866 else
867 vcpu->arch.cr8 = cr8;
868 return 0;
870 EXPORT_SYMBOL_GPL(kvm_set_cr8);
872 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
874 if (lapic_in_kernel(vcpu))
875 return kvm_lapic_get_cr8(vcpu);
876 else
877 return vcpu->arch.cr8;
879 EXPORT_SYMBOL_GPL(kvm_get_cr8);
881 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
883 int i;
885 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
886 for (i = 0; i < KVM_NR_DB_REGS; i++)
887 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
888 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
892 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
894 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
895 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
898 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
900 unsigned long dr7;
902 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
903 dr7 = vcpu->arch.guest_debug_dr7;
904 else
905 dr7 = vcpu->arch.dr7;
906 kvm_x86_ops->set_dr7(vcpu, dr7);
907 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
908 if (dr7 & DR7_BP_EN_MASK)
909 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
912 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
914 u64 fixed = DR6_FIXED_1;
916 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
917 fixed |= DR6_RTM;
918 return fixed;
921 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
923 switch (dr) {
924 case 0 ... 3:
925 vcpu->arch.db[dr] = val;
926 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
927 vcpu->arch.eff_db[dr] = val;
928 break;
929 case 4:
930 /* fall through */
931 case 6:
932 if (val & 0xffffffff00000000ULL)
933 return -1; /* #GP */
934 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
935 kvm_update_dr6(vcpu);
936 break;
937 case 5:
938 /* fall through */
939 default: /* 7 */
940 if (val & 0xffffffff00000000ULL)
941 return -1; /* #GP */
942 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
943 kvm_update_dr7(vcpu);
944 break;
947 return 0;
950 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
952 if (__kvm_set_dr(vcpu, dr, val)) {
953 kvm_inject_gp(vcpu, 0);
954 return 1;
956 return 0;
958 EXPORT_SYMBOL_GPL(kvm_set_dr);
960 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
962 switch (dr) {
963 case 0 ... 3:
964 *val = vcpu->arch.db[dr];
965 break;
966 case 4:
967 /* fall through */
968 case 6:
969 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
970 *val = vcpu->arch.dr6;
971 else
972 *val = kvm_x86_ops->get_dr6(vcpu);
973 break;
974 case 5:
975 /* fall through */
976 default: /* 7 */
977 *val = vcpu->arch.dr7;
978 break;
980 return 0;
982 EXPORT_SYMBOL_GPL(kvm_get_dr);
984 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
986 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
987 u64 data;
988 int err;
990 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
991 if (err)
992 return err;
993 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
994 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
995 return err;
997 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1000 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1001 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1003 * This list is modified at module load time to reflect the
1004 * capabilities of the host cpu. This capabilities test skips MSRs that are
1005 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1006 * may depend on host virtualization features rather than host cpu features.
1009 static u32 msrs_to_save[] = {
1010 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1011 MSR_STAR,
1012 #ifdef CONFIG_X86_64
1013 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1014 #endif
1015 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1016 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1017 MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
1020 static unsigned num_msrs_to_save;
1022 static u32 emulated_msrs[] = {
1023 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1024 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1025 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1026 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1027 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1028 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1029 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1030 HV_X64_MSR_RESET,
1031 HV_X64_MSR_VP_INDEX,
1032 HV_X64_MSR_VP_RUNTIME,
1033 HV_X64_MSR_SCONTROL,
1034 HV_X64_MSR_STIMER0_CONFIG,
1035 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1036 MSR_KVM_PV_EOI_EN,
1038 MSR_IA32_TSC_ADJUST,
1039 MSR_IA32_TSCDEADLINE,
1040 MSR_IA32_MISC_ENABLE,
1041 MSR_IA32_MCG_STATUS,
1042 MSR_IA32_MCG_CTL,
1043 MSR_IA32_MCG_EXT_CTL,
1044 MSR_IA32_SMBASE,
1045 MSR_SMI_COUNT,
1046 MSR_PLATFORM_INFO,
1047 MSR_MISC_FEATURES_ENABLES,
1050 static unsigned num_emulated_msrs;
1052 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1054 if (efer & efer_reserved_bits)
1055 return false;
1057 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1058 return false;
1060 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1061 return false;
1063 return true;
1065 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1067 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1069 u64 old_efer = vcpu->arch.efer;
1071 if (!kvm_valid_efer(vcpu, efer))
1072 return 1;
1074 if (is_paging(vcpu)
1075 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1076 return 1;
1078 efer &= ~EFER_LMA;
1079 efer |= vcpu->arch.efer & EFER_LMA;
1081 kvm_x86_ops->set_efer(vcpu, efer);
1083 /* Update reserved bits */
1084 if ((efer ^ old_efer) & EFER_NX)
1085 kvm_mmu_reset_context(vcpu);
1087 return 0;
1090 void kvm_enable_efer_bits(u64 mask)
1092 efer_reserved_bits &= ~mask;
1094 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1097 * Writes msr value into into the appropriate "register".
1098 * Returns 0 on success, non-0 otherwise.
1099 * Assumes vcpu_load() was already called.
1101 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1103 switch (msr->index) {
1104 case MSR_FS_BASE:
1105 case MSR_GS_BASE:
1106 case MSR_KERNEL_GS_BASE:
1107 case MSR_CSTAR:
1108 case MSR_LSTAR:
1109 if (is_noncanonical_address(msr->data, vcpu))
1110 return 1;
1111 break;
1112 case MSR_IA32_SYSENTER_EIP:
1113 case MSR_IA32_SYSENTER_ESP:
1115 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1116 * non-canonical address is written on Intel but not on
1117 * AMD (which ignores the top 32-bits, because it does
1118 * not implement 64-bit SYSENTER).
1120 * 64-bit code should hence be able to write a non-canonical
1121 * value on AMD. Making the address canonical ensures that
1122 * vmentry does not fail on Intel after writing a non-canonical
1123 * value, and that something deterministic happens if the guest
1124 * invokes 64-bit SYSENTER.
1126 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1128 return kvm_x86_ops->set_msr(vcpu, msr);
1130 EXPORT_SYMBOL_GPL(kvm_set_msr);
1133 * Adapt set_msr() to msr_io()'s calling convention
1135 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1137 struct msr_data msr;
1138 int r;
1140 msr.index = index;
1141 msr.host_initiated = true;
1142 r = kvm_get_msr(vcpu, &msr);
1143 if (r)
1144 return r;
1146 *data = msr.data;
1147 return 0;
1150 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1152 struct msr_data msr;
1154 msr.data = *data;
1155 msr.index = index;
1156 msr.host_initiated = true;
1157 return kvm_set_msr(vcpu, &msr);
1160 #ifdef CONFIG_X86_64
1161 struct pvclock_gtod_data {
1162 seqcount_t seq;
1164 struct { /* extract of a clocksource struct */
1165 int vclock_mode;
1166 u64 cycle_last;
1167 u64 mask;
1168 u32 mult;
1169 u32 shift;
1170 } clock;
1172 u64 boot_ns;
1173 u64 nsec_base;
1174 u64 wall_time_sec;
1177 static struct pvclock_gtod_data pvclock_gtod_data;
1179 static void update_pvclock_gtod(struct timekeeper *tk)
1181 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1182 u64 boot_ns;
1184 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1186 write_seqcount_begin(&vdata->seq);
1188 /* copy pvclock gtod data */
1189 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1190 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1191 vdata->clock.mask = tk->tkr_mono.mask;
1192 vdata->clock.mult = tk->tkr_mono.mult;
1193 vdata->clock.shift = tk->tkr_mono.shift;
1195 vdata->boot_ns = boot_ns;
1196 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1198 vdata->wall_time_sec = tk->xtime_sec;
1200 write_seqcount_end(&vdata->seq);
1202 #endif
1204 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1207 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1208 * vcpu_enter_guest. This function is only called from
1209 * the physical CPU that is running vcpu.
1211 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1214 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1216 int version;
1217 int r;
1218 struct pvclock_wall_clock wc;
1219 struct timespec64 boot;
1221 if (!wall_clock)
1222 return;
1224 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1225 if (r)
1226 return;
1228 if (version & 1)
1229 ++version; /* first time write, random junk */
1231 ++version;
1233 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1234 return;
1237 * The guest calculates current wall clock time by adding
1238 * system time (updated by kvm_guest_time_update below) to the
1239 * wall clock specified here. guest system time equals host
1240 * system time for us, thus we must fill in host boot time here.
1242 getboottime64(&boot);
1244 if (kvm->arch.kvmclock_offset) {
1245 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1246 boot = timespec64_sub(boot, ts);
1248 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1249 wc.nsec = boot.tv_nsec;
1250 wc.version = version;
1252 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1254 version++;
1255 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1258 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1260 do_shl32_div32(dividend, divisor);
1261 return dividend;
1264 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1265 s8 *pshift, u32 *pmultiplier)
1267 uint64_t scaled64;
1268 int32_t shift = 0;
1269 uint64_t tps64;
1270 uint32_t tps32;
1272 tps64 = base_hz;
1273 scaled64 = scaled_hz;
1274 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1275 tps64 >>= 1;
1276 shift--;
1279 tps32 = (uint32_t)tps64;
1280 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1281 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1282 scaled64 >>= 1;
1283 else
1284 tps32 <<= 1;
1285 shift++;
1288 *pshift = shift;
1289 *pmultiplier = div_frac(scaled64, tps32);
1291 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1292 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1295 #ifdef CONFIG_X86_64
1296 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1297 #endif
1299 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1300 static unsigned long max_tsc_khz;
1302 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1304 u64 v = (u64)khz * (1000000 + ppm);
1305 do_div(v, 1000000);
1306 return v;
1309 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1311 u64 ratio;
1313 /* Guest TSC same frequency as host TSC? */
1314 if (!scale) {
1315 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1316 return 0;
1319 /* TSC scaling supported? */
1320 if (!kvm_has_tsc_control) {
1321 if (user_tsc_khz > tsc_khz) {
1322 vcpu->arch.tsc_catchup = 1;
1323 vcpu->arch.tsc_always_catchup = 1;
1324 return 0;
1325 } else {
1326 WARN(1, "user requested TSC rate below hardware speed\n");
1327 return -1;
1331 /* TSC scaling required - calculate ratio */
1332 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1333 user_tsc_khz, tsc_khz);
1335 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1336 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1337 user_tsc_khz);
1338 return -1;
1341 vcpu->arch.tsc_scaling_ratio = ratio;
1342 return 0;
1345 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1347 u32 thresh_lo, thresh_hi;
1348 int use_scaling = 0;
1350 /* tsc_khz can be zero if TSC calibration fails */
1351 if (user_tsc_khz == 0) {
1352 /* set tsc_scaling_ratio to a safe value */
1353 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1354 return -1;
1357 /* Compute a scale to convert nanoseconds in TSC cycles */
1358 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1359 &vcpu->arch.virtual_tsc_shift,
1360 &vcpu->arch.virtual_tsc_mult);
1361 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1364 * Compute the variation in TSC rate which is acceptable
1365 * within the range of tolerance and decide if the
1366 * rate being applied is within that bounds of the hardware
1367 * rate. If so, no scaling or compensation need be done.
1369 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1370 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1371 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1372 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1373 use_scaling = 1;
1375 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1378 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1380 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1381 vcpu->arch.virtual_tsc_mult,
1382 vcpu->arch.virtual_tsc_shift);
1383 tsc += vcpu->arch.this_tsc_write;
1384 return tsc;
1387 static inline int gtod_is_based_on_tsc(int mode)
1389 return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1392 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1394 #ifdef CONFIG_X86_64
1395 bool vcpus_matched;
1396 struct kvm_arch *ka = &vcpu->kvm->arch;
1397 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1399 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1400 atomic_read(&vcpu->kvm->online_vcpus));
1403 * Once the masterclock is enabled, always perform request in
1404 * order to update it.
1406 * In order to enable masterclock, the host clocksource must be TSC
1407 * and the vcpus need to have matched TSCs. When that happens,
1408 * perform request to enable masterclock.
1410 if (ka->use_master_clock ||
1411 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1412 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1414 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1415 atomic_read(&vcpu->kvm->online_vcpus),
1416 ka->use_master_clock, gtod->clock.vclock_mode);
1417 #endif
1420 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1422 u64 curr_offset = vcpu->arch.tsc_offset;
1423 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1427 * Multiply tsc by a fixed point number represented by ratio.
1429 * The most significant 64-N bits (mult) of ratio represent the
1430 * integral part of the fixed point number; the remaining N bits
1431 * (frac) represent the fractional part, ie. ratio represents a fixed
1432 * point number (mult + frac * 2^(-N)).
1434 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1436 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1438 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1441 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1443 u64 _tsc = tsc;
1444 u64 ratio = vcpu->arch.tsc_scaling_ratio;
1446 if (ratio != kvm_default_tsc_scaling_ratio)
1447 _tsc = __scale_tsc(ratio, tsc);
1449 return _tsc;
1451 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1453 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1455 u64 tsc;
1457 tsc = kvm_scale_tsc(vcpu, rdtsc());
1459 return target_tsc - tsc;
1462 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1464 return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1466 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1468 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1470 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1471 vcpu->arch.tsc_offset = offset;
1474 static inline bool kvm_check_tsc_unstable(void)
1476 #ifdef CONFIG_X86_64
1478 * TSC is marked unstable when we're running on Hyper-V,
1479 * 'TSC page' clocksource is good.
1481 if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1482 return false;
1483 #endif
1484 return check_tsc_unstable();
1487 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1489 struct kvm *kvm = vcpu->kvm;
1490 u64 offset, ns, elapsed;
1491 unsigned long flags;
1492 bool matched;
1493 bool already_matched;
1494 u64 data = msr->data;
1495 bool synchronizing = false;
1497 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1498 offset = kvm_compute_tsc_offset(vcpu, data);
1499 ns = ktime_get_boot_ns();
1500 elapsed = ns - kvm->arch.last_tsc_nsec;
1502 if (vcpu->arch.virtual_tsc_khz) {
1503 if (data == 0 && msr->host_initiated) {
1505 * detection of vcpu initialization -- need to sync
1506 * with other vCPUs. This particularly helps to keep
1507 * kvm_clock stable after CPU hotplug
1509 synchronizing = true;
1510 } else {
1511 u64 tsc_exp = kvm->arch.last_tsc_write +
1512 nsec_to_cycles(vcpu, elapsed);
1513 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1515 * Special case: TSC write with a small delta (1 second)
1516 * of virtual cycle time against real time is
1517 * interpreted as an attempt to synchronize the CPU.
1519 synchronizing = data < tsc_exp + tsc_hz &&
1520 data + tsc_hz > tsc_exp;
1525 * For a reliable TSC, we can match TSC offsets, and for an unstable
1526 * TSC, we add elapsed time in this computation. We could let the
1527 * compensation code attempt to catch up if we fall behind, but
1528 * it's better to try to match offsets from the beginning.
1530 if (synchronizing &&
1531 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1532 if (!kvm_check_tsc_unstable()) {
1533 offset = kvm->arch.cur_tsc_offset;
1534 pr_debug("kvm: matched tsc offset for %llu\n", data);
1535 } else {
1536 u64 delta = nsec_to_cycles(vcpu, elapsed);
1537 data += delta;
1538 offset = kvm_compute_tsc_offset(vcpu, data);
1539 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1541 matched = true;
1542 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1543 } else {
1545 * We split periods of matched TSC writes into generations.
1546 * For each generation, we track the original measured
1547 * nanosecond time, offset, and write, so if TSCs are in
1548 * sync, we can match exact offset, and if not, we can match
1549 * exact software computation in compute_guest_tsc()
1551 * These values are tracked in kvm->arch.cur_xxx variables.
1553 kvm->arch.cur_tsc_generation++;
1554 kvm->arch.cur_tsc_nsec = ns;
1555 kvm->arch.cur_tsc_write = data;
1556 kvm->arch.cur_tsc_offset = offset;
1557 matched = false;
1558 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1559 kvm->arch.cur_tsc_generation, data);
1563 * We also track th most recent recorded KHZ, write and time to
1564 * allow the matching interval to be extended at each write.
1566 kvm->arch.last_tsc_nsec = ns;
1567 kvm->arch.last_tsc_write = data;
1568 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1570 vcpu->arch.last_guest_tsc = data;
1572 /* Keep track of which generation this VCPU has synchronized to */
1573 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1574 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1575 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1577 if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1578 update_ia32_tsc_adjust_msr(vcpu, offset);
1580 kvm_vcpu_write_tsc_offset(vcpu, offset);
1581 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1583 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1584 if (!matched) {
1585 kvm->arch.nr_vcpus_matched_tsc = 0;
1586 } else if (!already_matched) {
1587 kvm->arch.nr_vcpus_matched_tsc++;
1590 kvm_track_tsc_matching(vcpu);
1591 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1594 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1596 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1597 s64 adjustment)
1599 kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1602 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1604 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1605 WARN_ON(adjustment < 0);
1606 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1607 adjust_tsc_offset_guest(vcpu, adjustment);
1610 #ifdef CONFIG_X86_64
1612 static u64 read_tsc(void)
1614 u64 ret = (u64)rdtsc_ordered();
1615 u64 last = pvclock_gtod_data.clock.cycle_last;
1617 if (likely(ret >= last))
1618 return ret;
1621 * GCC likes to generate cmov here, but this branch is extremely
1622 * predictable (it's just a function of time and the likely is
1623 * very likely) and there's a data dependence, so force GCC
1624 * to generate a branch instead. I don't barrier() because
1625 * we don't actually need a barrier, and if this function
1626 * ever gets inlined it will generate worse code.
1628 asm volatile ("");
1629 return last;
1632 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1634 long v;
1635 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1636 u64 tsc_pg_val;
1638 switch (gtod->clock.vclock_mode) {
1639 case VCLOCK_HVCLOCK:
1640 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1641 tsc_timestamp);
1642 if (tsc_pg_val != U64_MAX) {
1643 /* TSC page valid */
1644 *mode = VCLOCK_HVCLOCK;
1645 v = (tsc_pg_val - gtod->clock.cycle_last) &
1646 gtod->clock.mask;
1647 } else {
1648 /* TSC page invalid */
1649 *mode = VCLOCK_NONE;
1651 break;
1652 case VCLOCK_TSC:
1653 *mode = VCLOCK_TSC;
1654 *tsc_timestamp = read_tsc();
1655 v = (*tsc_timestamp - gtod->clock.cycle_last) &
1656 gtod->clock.mask;
1657 break;
1658 default:
1659 *mode = VCLOCK_NONE;
1662 if (*mode == VCLOCK_NONE)
1663 *tsc_timestamp = v = 0;
1665 return v * gtod->clock.mult;
1668 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1670 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1671 unsigned long seq;
1672 int mode;
1673 u64 ns;
1675 do {
1676 seq = read_seqcount_begin(&gtod->seq);
1677 ns = gtod->nsec_base;
1678 ns += vgettsc(tsc_timestamp, &mode);
1679 ns >>= gtod->clock.shift;
1680 ns += gtod->boot_ns;
1681 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1682 *t = ns;
1684 return mode;
1687 static int do_realtime(struct timespec *ts, u64 *tsc_timestamp)
1689 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1690 unsigned long seq;
1691 int mode;
1692 u64 ns;
1694 do {
1695 seq = read_seqcount_begin(&gtod->seq);
1696 ts->tv_sec = gtod->wall_time_sec;
1697 ns = gtod->nsec_base;
1698 ns += vgettsc(tsc_timestamp, &mode);
1699 ns >>= gtod->clock.shift;
1700 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1702 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1703 ts->tv_nsec = ns;
1705 return mode;
1708 /* returns true if host is using TSC based clocksource */
1709 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1711 /* checked again under seqlock below */
1712 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1713 return false;
1715 return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1716 tsc_timestamp));
1719 /* returns true if host is using TSC based clocksource */
1720 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1721 u64 *tsc_timestamp)
1723 /* checked again under seqlock below */
1724 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1725 return false;
1727 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1729 #endif
1733 * Assuming a stable TSC across physical CPUS, and a stable TSC
1734 * across virtual CPUs, the following condition is possible.
1735 * Each numbered line represents an event visible to both
1736 * CPUs at the next numbered event.
1738 * "timespecX" represents host monotonic time. "tscX" represents
1739 * RDTSC value.
1741 * VCPU0 on CPU0 | VCPU1 on CPU1
1743 * 1. read timespec0,tsc0
1744 * 2. | timespec1 = timespec0 + N
1745 * | tsc1 = tsc0 + M
1746 * 3. transition to guest | transition to guest
1747 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1748 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1749 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1751 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1753 * - ret0 < ret1
1754 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1755 * ...
1756 * - 0 < N - M => M < N
1758 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1759 * always the case (the difference between two distinct xtime instances
1760 * might be smaller then the difference between corresponding TSC reads,
1761 * when updating guest vcpus pvclock areas).
1763 * To avoid that problem, do not allow visibility of distinct
1764 * system_timestamp/tsc_timestamp values simultaneously: use a master
1765 * copy of host monotonic time values. Update that master copy
1766 * in lockstep.
1768 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1772 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1774 #ifdef CONFIG_X86_64
1775 struct kvm_arch *ka = &kvm->arch;
1776 int vclock_mode;
1777 bool host_tsc_clocksource, vcpus_matched;
1779 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1780 atomic_read(&kvm->online_vcpus));
1783 * If the host uses TSC clock, then passthrough TSC as stable
1784 * to the guest.
1786 host_tsc_clocksource = kvm_get_time_and_clockread(
1787 &ka->master_kernel_ns,
1788 &ka->master_cycle_now);
1790 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1791 && !ka->backwards_tsc_observed
1792 && !ka->boot_vcpu_runs_old_kvmclock;
1794 if (ka->use_master_clock)
1795 atomic_set(&kvm_guest_has_master_clock, 1);
1797 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1798 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1799 vcpus_matched);
1800 #endif
1803 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1805 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1808 static void kvm_gen_update_masterclock(struct kvm *kvm)
1810 #ifdef CONFIG_X86_64
1811 int i;
1812 struct kvm_vcpu *vcpu;
1813 struct kvm_arch *ka = &kvm->arch;
1815 spin_lock(&ka->pvclock_gtod_sync_lock);
1816 kvm_make_mclock_inprogress_request(kvm);
1817 /* no guest entries from this point */
1818 pvclock_update_vm_gtod_copy(kvm);
1820 kvm_for_each_vcpu(i, vcpu, kvm)
1821 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1823 /* guest entries allowed */
1824 kvm_for_each_vcpu(i, vcpu, kvm)
1825 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1827 spin_unlock(&ka->pvclock_gtod_sync_lock);
1828 #endif
1831 u64 get_kvmclock_ns(struct kvm *kvm)
1833 struct kvm_arch *ka = &kvm->arch;
1834 struct pvclock_vcpu_time_info hv_clock;
1835 u64 ret;
1837 spin_lock(&ka->pvclock_gtod_sync_lock);
1838 if (!ka->use_master_clock) {
1839 spin_unlock(&ka->pvclock_gtod_sync_lock);
1840 return ktime_get_boot_ns() + ka->kvmclock_offset;
1843 hv_clock.tsc_timestamp = ka->master_cycle_now;
1844 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1845 spin_unlock(&ka->pvclock_gtod_sync_lock);
1847 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1848 get_cpu();
1850 if (__this_cpu_read(cpu_tsc_khz)) {
1851 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1852 &hv_clock.tsc_shift,
1853 &hv_clock.tsc_to_system_mul);
1854 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1855 } else
1856 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
1858 put_cpu();
1860 return ret;
1863 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1865 struct kvm_vcpu_arch *vcpu = &v->arch;
1866 struct pvclock_vcpu_time_info guest_hv_clock;
1868 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1869 &guest_hv_clock, sizeof(guest_hv_clock))))
1870 return;
1872 /* This VCPU is paused, but it's legal for a guest to read another
1873 * VCPU's kvmclock, so we really have to follow the specification where
1874 * it says that version is odd if data is being modified, and even after
1875 * it is consistent.
1877 * Version field updates must be kept separate. This is because
1878 * kvm_write_guest_cached might use a "rep movs" instruction, and
1879 * writes within a string instruction are weakly ordered. So there
1880 * are three writes overall.
1882 * As a small optimization, only write the version field in the first
1883 * and third write. The vcpu->pv_time cache is still valid, because the
1884 * version field is the first in the struct.
1886 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1888 if (guest_hv_clock.version & 1)
1889 ++guest_hv_clock.version; /* first time write, random junk */
1891 vcpu->hv_clock.version = guest_hv_clock.version + 1;
1892 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1893 &vcpu->hv_clock,
1894 sizeof(vcpu->hv_clock.version));
1896 smp_wmb();
1898 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1899 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1901 if (vcpu->pvclock_set_guest_stopped_request) {
1902 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1903 vcpu->pvclock_set_guest_stopped_request = false;
1906 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1908 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1909 &vcpu->hv_clock,
1910 sizeof(vcpu->hv_clock));
1912 smp_wmb();
1914 vcpu->hv_clock.version++;
1915 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1916 &vcpu->hv_clock,
1917 sizeof(vcpu->hv_clock.version));
1920 static int kvm_guest_time_update(struct kvm_vcpu *v)
1922 unsigned long flags, tgt_tsc_khz;
1923 struct kvm_vcpu_arch *vcpu = &v->arch;
1924 struct kvm_arch *ka = &v->kvm->arch;
1925 s64 kernel_ns;
1926 u64 tsc_timestamp, host_tsc;
1927 u8 pvclock_flags;
1928 bool use_master_clock;
1930 kernel_ns = 0;
1931 host_tsc = 0;
1934 * If the host uses TSC clock, then passthrough TSC as stable
1935 * to the guest.
1937 spin_lock(&ka->pvclock_gtod_sync_lock);
1938 use_master_clock = ka->use_master_clock;
1939 if (use_master_clock) {
1940 host_tsc = ka->master_cycle_now;
1941 kernel_ns = ka->master_kernel_ns;
1943 spin_unlock(&ka->pvclock_gtod_sync_lock);
1945 /* Keep irq disabled to prevent changes to the clock */
1946 local_irq_save(flags);
1947 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1948 if (unlikely(tgt_tsc_khz == 0)) {
1949 local_irq_restore(flags);
1950 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1951 return 1;
1953 if (!use_master_clock) {
1954 host_tsc = rdtsc();
1955 kernel_ns = ktime_get_boot_ns();
1958 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1961 * We may have to catch up the TSC to match elapsed wall clock
1962 * time for two reasons, even if kvmclock is used.
1963 * 1) CPU could have been running below the maximum TSC rate
1964 * 2) Broken TSC compensation resets the base at each VCPU
1965 * entry to avoid unknown leaps of TSC even when running
1966 * again on the same CPU. This may cause apparent elapsed
1967 * time to disappear, and the guest to stand still or run
1968 * very slowly.
1970 if (vcpu->tsc_catchup) {
1971 u64 tsc = compute_guest_tsc(v, kernel_ns);
1972 if (tsc > tsc_timestamp) {
1973 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1974 tsc_timestamp = tsc;
1978 local_irq_restore(flags);
1980 /* With all the info we got, fill in the values */
1982 if (kvm_has_tsc_control)
1983 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1985 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1986 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1987 &vcpu->hv_clock.tsc_shift,
1988 &vcpu->hv_clock.tsc_to_system_mul);
1989 vcpu->hw_tsc_khz = tgt_tsc_khz;
1992 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1993 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1994 vcpu->last_guest_tsc = tsc_timestamp;
1996 /* If the host uses TSC clocksource, then it is stable */
1997 pvclock_flags = 0;
1998 if (use_master_clock)
1999 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2001 vcpu->hv_clock.flags = pvclock_flags;
2003 if (vcpu->pv_time_enabled)
2004 kvm_setup_pvclock_page(v);
2005 if (v == kvm_get_vcpu(v->kvm, 0))
2006 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2007 return 0;
2011 * kvmclock updates which are isolated to a given vcpu, such as
2012 * vcpu->cpu migration, should not allow system_timestamp from
2013 * the rest of the vcpus to remain static. Otherwise ntp frequency
2014 * correction applies to one vcpu's system_timestamp but not
2015 * the others.
2017 * So in those cases, request a kvmclock update for all vcpus.
2018 * We need to rate-limit these requests though, as they can
2019 * considerably slow guests that have a large number of vcpus.
2020 * The time for a remote vcpu to update its kvmclock is bound
2021 * by the delay we use to rate-limit the updates.
2024 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2026 static void kvmclock_update_fn(struct work_struct *work)
2028 int i;
2029 struct delayed_work *dwork = to_delayed_work(work);
2030 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2031 kvmclock_update_work);
2032 struct kvm *kvm = container_of(ka, struct kvm, arch);
2033 struct kvm_vcpu *vcpu;
2035 kvm_for_each_vcpu(i, vcpu, kvm) {
2036 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2037 kvm_vcpu_kick(vcpu);
2041 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2043 struct kvm *kvm = v->kvm;
2045 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2046 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2047 KVMCLOCK_UPDATE_DELAY);
2050 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2052 static void kvmclock_sync_fn(struct work_struct *work)
2054 struct delayed_work *dwork = to_delayed_work(work);
2055 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2056 kvmclock_sync_work);
2057 struct kvm *kvm = container_of(ka, struct kvm, arch);
2059 if (!kvmclock_periodic_sync)
2060 return;
2062 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2063 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2064 KVMCLOCK_SYNC_PERIOD);
2067 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2069 u64 mcg_cap = vcpu->arch.mcg_cap;
2070 unsigned bank_num = mcg_cap & 0xff;
2071 u32 msr = msr_info->index;
2072 u64 data = msr_info->data;
2074 switch (msr) {
2075 case MSR_IA32_MCG_STATUS:
2076 vcpu->arch.mcg_status = data;
2077 break;
2078 case MSR_IA32_MCG_CTL:
2079 if (!(mcg_cap & MCG_CTL_P))
2080 return 1;
2081 if (data != 0 && data != ~(u64)0)
2082 return -1;
2083 vcpu->arch.mcg_ctl = data;
2084 break;
2085 default:
2086 if (msr >= MSR_IA32_MC0_CTL &&
2087 msr < MSR_IA32_MCx_CTL(bank_num)) {
2088 u32 offset = msr - MSR_IA32_MC0_CTL;
2089 /* only 0 or all 1s can be written to IA32_MCi_CTL
2090 * some Linux kernels though clear bit 10 in bank 4 to
2091 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2092 * this to avoid an uncatched #GP in the guest
2094 if ((offset & 0x3) == 0 &&
2095 data != 0 && (data | (1 << 10)) != ~(u64)0)
2096 return -1;
2097 if (!msr_info->host_initiated &&
2098 (offset & 0x3) == 1 && data != 0)
2099 return -1;
2100 vcpu->arch.mce_banks[offset] = data;
2101 break;
2103 return 1;
2105 return 0;
2108 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2110 struct kvm *kvm = vcpu->kvm;
2111 int lm = is_long_mode(vcpu);
2112 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2113 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2114 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2115 : kvm->arch.xen_hvm_config.blob_size_32;
2116 u32 page_num = data & ~PAGE_MASK;
2117 u64 page_addr = data & PAGE_MASK;
2118 u8 *page;
2119 int r;
2121 r = -E2BIG;
2122 if (page_num >= blob_size)
2123 goto out;
2124 r = -ENOMEM;
2125 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2126 if (IS_ERR(page)) {
2127 r = PTR_ERR(page);
2128 goto out;
2130 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2131 goto out_free;
2132 r = 0;
2133 out_free:
2134 kfree(page);
2135 out:
2136 return r;
2139 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2141 gpa_t gpa = data & ~0x3f;
2143 /* Bits 3:5 are reserved, Should be zero */
2144 if (data & 0x38)
2145 return 1;
2147 vcpu->arch.apf.msr_val = data;
2149 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2150 kvm_clear_async_pf_completion_queue(vcpu);
2151 kvm_async_pf_hash_reset(vcpu);
2152 return 0;
2155 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2156 sizeof(u32)))
2157 return 1;
2159 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2160 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2161 kvm_async_pf_wakeup_all(vcpu);
2162 return 0;
2165 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2167 vcpu->arch.pv_time_enabled = false;
2170 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2172 ++vcpu->stat.tlb_flush;
2173 kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2176 static void record_steal_time(struct kvm_vcpu *vcpu)
2178 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2179 return;
2181 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2182 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2183 return;
2186 * Doing a TLB flush here, on the guest's behalf, can avoid
2187 * expensive IPIs.
2189 if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2190 kvm_vcpu_flush_tlb(vcpu, false);
2192 if (vcpu->arch.st.steal.version & 1)
2193 vcpu->arch.st.steal.version += 1; /* first time write, random junk */
2195 vcpu->arch.st.steal.version += 1;
2197 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2198 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2200 smp_wmb();
2202 vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2203 vcpu->arch.st.last_steal;
2204 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2206 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2207 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2209 smp_wmb();
2211 vcpu->arch.st.steal.version += 1;
2213 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2214 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2217 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2219 bool pr = false;
2220 u32 msr = msr_info->index;
2221 u64 data = msr_info->data;
2223 switch (msr) {
2224 case MSR_AMD64_NB_CFG:
2225 case MSR_IA32_UCODE_REV:
2226 case MSR_IA32_UCODE_WRITE:
2227 case MSR_VM_HSAVE_PA:
2228 case MSR_AMD64_PATCH_LOADER:
2229 case MSR_AMD64_BU_CFG2:
2230 case MSR_AMD64_DC_CFG:
2231 break;
2233 case MSR_EFER:
2234 return set_efer(vcpu, data);
2235 case MSR_K7_HWCR:
2236 data &= ~(u64)0x40; /* ignore flush filter disable */
2237 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2238 data &= ~(u64)0x8; /* ignore TLB cache disable */
2239 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2240 if (data != 0) {
2241 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2242 data);
2243 return 1;
2245 break;
2246 case MSR_FAM10H_MMIO_CONF_BASE:
2247 if (data != 0) {
2248 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2249 "0x%llx\n", data);
2250 return 1;
2252 break;
2253 case MSR_IA32_DEBUGCTLMSR:
2254 if (!data) {
2255 /* We support the non-activated case already */
2256 break;
2257 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2258 /* Values other than LBR and BTF are vendor-specific,
2259 thus reserved and should throw a #GP */
2260 return 1;
2262 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2263 __func__, data);
2264 break;
2265 case 0x200 ... 0x2ff:
2266 return kvm_mtrr_set_msr(vcpu, msr, data);
2267 case MSR_IA32_APICBASE:
2268 return kvm_set_apic_base(vcpu, msr_info);
2269 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2270 return kvm_x2apic_msr_write(vcpu, msr, data);
2271 case MSR_IA32_TSCDEADLINE:
2272 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2273 break;
2274 case MSR_IA32_TSC_ADJUST:
2275 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2276 if (!msr_info->host_initiated) {
2277 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2278 adjust_tsc_offset_guest(vcpu, adj);
2280 vcpu->arch.ia32_tsc_adjust_msr = data;
2282 break;
2283 case MSR_IA32_MISC_ENABLE:
2284 vcpu->arch.ia32_misc_enable_msr = data;
2285 break;
2286 case MSR_IA32_SMBASE:
2287 if (!msr_info->host_initiated)
2288 return 1;
2289 vcpu->arch.smbase = data;
2290 break;
2291 case MSR_SMI_COUNT:
2292 if (!msr_info->host_initiated)
2293 return 1;
2294 vcpu->arch.smi_count = data;
2295 break;
2296 case MSR_KVM_WALL_CLOCK_NEW:
2297 case MSR_KVM_WALL_CLOCK:
2298 vcpu->kvm->arch.wall_clock = data;
2299 kvm_write_wall_clock(vcpu->kvm, data);
2300 break;
2301 case MSR_KVM_SYSTEM_TIME_NEW:
2302 case MSR_KVM_SYSTEM_TIME: {
2303 struct kvm_arch *ka = &vcpu->kvm->arch;
2305 kvmclock_reset(vcpu);
2307 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2308 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2310 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2311 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2313 ka->boot_vcpu_runs_old_kvmclock = tmp;
2316 vcpu->arch.time = data;
2317 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2319 /* we verify if the enable bit is set... */
2320 if (!(data & 1))
2321 break;
2323 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2324 &vcpu->arch.pv_time, data & ~1ULL,
2325 sizeof(struct pvclock_vcpu_time_info)))
2326 vcpu->arch.pv_time_enabled = false;
2327 else
2328 vcpu->arch.pv_time_enabled = true;
2330 break;
2332 case MSR_KVM_ASYNC_PF_EN:
2333 if (kvm_pv_enable_async_pf(vcpu, data))
2334 return 1;
2335 break;
2336 case MSR_KVM_STEAL_TIME:
2338 if (unlikely(!sched_info_on()))
2339 return 1;
2341 if (data & KVM_STEAL_RESERVED_MASK)
2342 return 1;
2344 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2345 data & KVM_STEAL_VALID_BITS,
2346 sizeof(struct kvm_steal_time)))
2347 return 1;
2349 vcpu->arch.st.msr_val = data;
2351 if (!(data & KVM_MSR_ENABLED))
2352 break;
2354 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2356 break;
2357 case MSR_KVM_PV_EOI_EN:
2358 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2359 return 1;
2360 break;
2362 case MSR_IA32_MCG_CTL:
2363 case MSR_IA32_MCG_STATUS:
2364 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2365 return set_msr_mce(vcpu, msr_info);
2367 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2368 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2369 pr = true; /* fall through */
2370 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2371 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2372 if (kvm_pmu_is_valid_msr(vcpu, msr))
2373 return kvm_pmu_set_msr(vcpu, msr_info);
2375 if (pr || data != 0)
2376 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2377 "0x%x data 0x%llx\n", msr, data);
2378 break;
2379 case MSR_K7_CLK_CTL:
2381 * Ignore all writes to this no longer documented MSR.
2382 * Writes are only relevant for old K7 processors,
2383 * all pre-dating SVM, but a recommended workaround from
2384 * AMD for these chips. It is possible to specify the
2385 * affected processor models on the command line, hence
2386 * the need to ignore the workaround.
2388 break;
2389 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2390 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2391 case HV_X64_MSR_CRASH_CTL:
2392 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2393 return kvm_hv_set_msr_common(vcpu, msr, data,
2394 msr_info->host_initiated);
2395 case MSR_IA32_BBL_CR_CTL3:
2396 /* Drop writes to this legacy MSR -- see rdmsr
2397 * counterpart for further detail.
2399 if (report_ignored_msrs)
2400 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2401 msr, data);
2402 break;
2403 case MSR_AMD64_OSVW_ID_LENGTH:
2404 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2405 return 1;
2406 vcpu->arch.osvw.length = data;
2407 break;
2408 case MSR_AMD64_OSVW_STATUS:
2409 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2410 return 1;
2411 vcpu->arch.osvw.status = data;
2412 break;
2413 case MSR_PLATFORM_INFO:
2414 if (!msr_info->host_initiated ||
2415 data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2416 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2417 cpuid_fault_enabled(vcpu)))
2418 return 1;
2419 vcpu->arch.msr_platform_info = data;
2420 break;
2421 case MSR_MISC_FEATURES_ENABLES:
2422 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2423 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2424 !supports_cpuid_fault(vcpu)))
2425 return 1;
2426 vcpu->arch.msr_misc_features_enables = data;
2427 break;
2428 default:
2429 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2430 return xen_hvm_config(vcpu, data);
2431 if (kvm_pmu_is_valid_msr(vcpu, msr))
2432 return kvm_pmu_set_msr(vcpu, msr_info);
2433 if (!ignore_msrs) {
2434 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2435 msr, data);
2436 return 1;
2437 } else {
2438 if (report_ignored_msrs)
2439 vcpu_unimpl(vcpu,
2440 "ignored wrmsr: 0x%x data 0x%llx\n",
2441 msr, data);
2442 break;
2445 return 0;
2447 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2451 * Reads an msr value (of 'msr_index') into 'pdata'.
2452 * Returns 0 on success, non-0 otherwise.
2453 * Assumes vcpu_load() was already called.
2455 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2457 return kvm_x86_ops->get_msr(vcpu, msr);
2459 EXPORT_SYMBOL_GPL(kvm_get_msr);
2461 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2463 u64 data;
2464 u64 mcg_cap = vcpu->arch.mcg_cap;
2465 unsigned bank_num = mcg_cap & 0xff;
2467 switch (msr) {
2468 case MSR_IA32_P5_MC_ADDR:
2469 case MSR_IA32_P5_MC_TYPE:
2470 data = 0;
2471 break;
2472 case MSR_IA32_MCG_CAP:
2473 data = vcpu->arch.mcg_cap;
2474 break;
2475 case MSR_IA32_MCG_CTL:
2476 if (!(mcg_cap & MCG_CTL_P))
2477 return 1;
2478 data = vcpu->arch.mcg_ctl;
2479 break;
2480 case MSR_IA32_MCG_STATUS:
2481 data = vcpu->arch.mcg_status;
2482 break;
2483 default:
2484 if (msr >= MSR_IA32_MC0_CTL &&
2485 msr < MSR_IA32_MCx_CTL(bank_num)) {
2486 u32 offset = msr - MSR_IA32_MC0_CTL;
2487 data = vcpu->arch.mce_banks[offset];
2488 break;
2490 return 1;
2492 *pdata = data;
2493 return 0;
2496 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2498 switch (msr_info->index) {
2499 case MSR_IA32_PLATFORM_ID:
2500 case MSR_IA32_EBL_CR_POWERON:
2501 case MSR_IA32_DEBUGCTLMSR:
2502 case MSR_IA32_LASTBRANCHFROMIP:
2503 case MSR_IA32_LASTBRANCHTOIP:
2504 case MSR_IA32_LASTINTFROMIP:
2505 case MSR_IA32_LASTINTTOIP:
2506 case MSR_K8_SYSCFG:
2507 case MSR_K8_TSEG_ADDR:
2508 case MSR_K8_TSEG_MASK:
2509 case MSR_K7_HWCR:
2510 case MSR_VM_HSAVE_PA:
2511 case MSR_K8_INT_PENDING_MSG:
2512 case MSR_AMD64_NB_CFG:
2513 case MSR_FAM10H_MMIO_CONF_BASE:
2514 case MSR_AMD64_BU_CFG2:
2515 case MSR_IA32_PERF_CTL:
2516 case MSR_AMD64_DC_CFG:
2517 msr_info->data = 0;
2518 break;
2519 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2520 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2521 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2522 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2523 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2524 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2525 msr_info->data = 0;
2526 break;
2527 case MSR_IA32_UCODE_REV:
2528 msr_info->data = 0x100000000ULL;
2529 break;
2530 case MSR_MTRRcap:
2531 case 0x200 ... 0x2ff:
2532 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2533 case 0xcd: /* fsb frequency */
2534 msr_info->data = 3;
2535 break;
2537 * MSR_EBC_FREQUENCY_ID
2538 * Conservative value valid for even the basic CPU models.
2539 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2540 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2541 * and 266MHz for model 3, or 4. Set Core Clock
2542 * Frequency to System Bus Frequency Ratio to 1 (bits
2543 * 31:24) even though these are only valid for CPU
2544 * models > 2, however guests may end up dividing or
2545 * multiplying by zero otherwise.
2547 case MSR_EBC_FREQUENCY_ID:
2548 msr_info->data = 1 << 24;
2549 break;
2550 case MSR_IA32_APICBASE:
2551 msr_info->data = kvm_get_apic_base(vcpu);
2552 break;
2553 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2554 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2555 break;
2556 case MSR_IA32_TSCDEADLINE:
2557 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2558 break;
2559 case MSR_IA32_TSC_ADJUST:
2560 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2561 break;
2562 case MSR_IA32_MISC_ENABLE:
2563 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2564 break;
2565 case MSR_IA32_SMBASE:
2566 if (!msr_info->host_initiated)
2567 return 1;
2568 msr_info->data = vcpu->arch.smbase;
2569 break;
2570 case MSR_SMI_COUNT:
2571 msr_info->data = vcpu->arch.smi_count;
2572 break;
2573 case MSR_IA32_PERF_STATUS:
2574 /* TSC increment by tick */
2575 msr_info->data = 1000ULL;
2576 /* CPU multiplier */
2577 msr_info->data |= (((uint64_t)4ULL) << 40);
2578 break;
2579 case MSR_EFER:
2580 msr_info->data = vcpu->arch.efer;
2581 break;
2582 case MSR_KVM_WALL_CLOCK:
2583 case MSR_KVM_WALL_CLOCK_NEW:
2584 msr_info->data = vcpu->kvm->arch.wall_clock;
2585 break;
2586 case MSR_KVM_SYSTEM_TIME:
2587 case MSR_KVM_SYSTEM_TIME_NEW:
2588 msr_info->data = vcpu->arch.time;
2589 break;
2590 case MSR_KVM_ASYNC_PF_EN:
2591 msr_info->data = vcpu->arch.apf.msr_val;
2592 break;
2593 case MSR_KVM_STEAL_TIME:
2594 msr_info->data = vcpu->arch.st.msr_val;
2595 break;
2596 case MSR_KVM_PV_EOI_EN:
2597 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2598 break;
2599 case MSR_IA32_P5_MC_ADDR:
2600 case MSR_IA32_P5_MC_TYPE:
2601 case MSR_IA32_MCG_CAP:
2602 case MSR_IA32_MCG_CTL:
2603 case MSR_IA32_MCG_STATUS:
2604 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2605 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2606 case MSR_K7_CLK_CTL:
2608 * Provide expected ramp-up count for K7. All other
2609 * are set to zero, indicating minimum divisors for
2610 * every field.
2612 * This prevents guest kernels on AMD host with CPU
2613 * type 6, model 8 and higher from exploding due to
2614 * the rdmsr failing.
2616 msr_info->data = 0x20000000;
2617 break;
2618 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2619 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2620 case HV_X64_MSR_CRASH_CTL:
2621 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2622 return kvm_hv_get_msr_common(vcpu,
2623 msr_info->index, &msr_info->data);
2624 break;
2625 case MSR_IA32_BBL_CR_CTL3:
2626 /* This legacy MSR exists but isn't fully documented in current
2627 * silicon. It is however accessed by winxp in very narrow
2628 * scenarios where it sets bit #19, itself documented as
2629 * a "reserved" bit. Best effort attempt to source coherent
2630 * read data here should the balance of the register be
2631 * interpreted by the guest:
2633 * L2 cache control register 3: 64GB range, 256KB size,
2634 * enabled, latency 0x1, configured
2636 msr_info->data = 0xbe702111;
2637 break;
2638 case MSR_AMD64_OSVW_ID_LENGTH:
2639 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2640 return 1;
2641 msr_info->data = vcpu->arch.osvw.length;
2642 break;
2643 case MSR_AMD64_OSVW_STATUS:
2644 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2645 return 1;
2646 msr_info->data = vcpu->arch.osvw.status;
2647 break;
2648 case MSR_PLATFORM_INFO:
2649 msr_info->data = vcpu->arch.msr_platform_info;
2650 break;
2651 case MSR_MISC_FEATURES_ENABLES:
2652 msr_info->data = vcpu->arch.msr_misc_features_enables;
2653 break;
2654 default:
2655 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2656 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2657 if (!ignore_msrs) {
2658 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2659 msr_info->index);
2660 return 1;
2661 } else {
2662 if (report_ignored_msrs)
2663 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2664 msr_info->index);
2665 msr_info->data = 0;
2667 break;
2669 return 0;
2671 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2674 * Read or write a bunch of msrs. All parameters are kernel addresses.
2676 * @return number of msrs set successfully.
2678 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2679 struct kvm_msr_entry *entries,
2680 int (*do_msr)(struct kvm_vcpu *vcpu,
2681 unsigned index, u64 *data))
2683 int i, idx;
2685 idx = srcu_read_lock(&vcpu->kvm->srcu);
2686 for (i = 0; i < msrs->nmsrs; ++i)
2687 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2688 break;
2689 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2691 return i;
2695 * Read or write a bunch of msrs. Parameters are user addresses.
2697 * @return number of msrs set successfully.
2699 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2700 int (*do_msr)(struct kvm_vcpu *vcpu,
2701 unsigned index, u64 *data),
2702 int writeback)
2704 struct kvm_msrs msrs;
2705 struct kvm_msr_entry *entries;
2706 int r, n;
2707 unsigned size;
2709 r = -EFAULT;
2710 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2711 goto out;
2713 r = -E2BIG;
2714 if (msrs.nmsrs >= MAX_IO_MSRS)
2715 goto out;
2717 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2718 entries = memdup_user(user_msrs->entries, size);
2719 if (IS_ERR(entries)) {
2720 r = PTR_ERR(entries);
2721 goto out;
2724 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2725 if (r < 0)
2726 goto out_free;
2728 r = -EFAULT;
2729 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2730 goto out_free;
2732 r = n;
2734 out_free:
2735 kfree(entries);
2736 out:
2737 return r;
2740 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2742 int r;
2744 switch (ext) {
2745 case KVM_CAP_IRQCHIP:
2746 case KVM_CAP_HLT:
2747 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2748 case KVM_CAP_SET_TSS_ADDR:
2749 case KVM_CAP_EXT_CPUID:
2750 case KVM_CAP_EXT_EMUL_CPUID:
2751 case KVM_CAP_CLOCKSOURCE:
2752 case KVM_CAP_PIT:
2753 case KVM_CAP_NOP_IO_DELAY:
2754 case KVM_CAP_MP_STATE:
2755 case KVM_CAP_SYNC_MMU:
2756 case KVM_CAP_USER_NMI:
2757 case KVM_CAP_REINJECT_CONTROL:
2758 case KVM_CAP_IRQ_INJECT_STATUS:
2759 case KVM_CAP_IOEVENTFD:
2760 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2761 case KVM_CAP_PIT2:
2762 case KVM_CAP_PIT_STATE2:
2763 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2764 case KVM_CAP_XEN_HVM:
2765 case KVM_CAP_VCPU_EVENTS:
2766 case KVM_CAP_HYPERV:
2767 case KVM_CAP_HYPERV_VAPIC:
2768 case KVM_CAP_HYPERV_SPIN:
2769 case KVM_CAP_HYPERV_SYNIC:
2770 case KVM_CAP_HYPERV_SYNIC2:
2771 case KVM_CAP_HYPERV_VP_INDEX:
2772 case KVM_CAP_PCI_SEGMENT:
2773 case KVM_CAP_DEBUGREGS:
2774 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2775 case KVM_CAP_XSAVE:
2776 case KVM_CAP_ASYNC_PF:
2777 case KVM_CAP_GET_TSC_KHZ:
2778 case KVM_CAP_KVMCLOCK_CTRL:
2779 case KVM_CAP_READONLY_MEM:
2780 case KVM_CAP_HYPERV_TIME:
2781 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2782 case KVM_CAP_TSC_DEADLINE_TIMER:
2783 case KVM_CAP_ENABLE_CAP_VM:
2784 case KVM_CAP_DISABLE_QUIRKS:
2785 case KVM_CAP_SET_BOOT_CPU_ID:
2786 case KVM_CAP_SPLIT_IRQCHIP:
2787 case KVM_CAP_IMMEDIATE_EXIT:
2788 r = 1;
2789 break;
2790 case KVM_CAP_ADJUST_CLOCK:
2791 r = KVM_CLOCK_TSC_STABLE;
2792 break;
2793 case KVM_CAP_X86_GUEST_MWAIT:
2794 r = kvm_mwait_in_guest();
2795 break;
2796 case KVM_CAP_X86_SMM:
2797 /* SMBASE is usually relocated above 1M on modern chipsets,
2798 * and SMM handlers might indeed rely on 4G segment limits,
2799 * so do not report SMM to be available if real mode is
2800 * emulated via vm86 mode. Still, do not go to great lengths
2801 * to avoid userspace's usage of the feature, because it is a
2802 * fringe case that is not enabled except via specific settings
2803 * of the module parameters.
2805 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2806 break;
2807 case KVM_CAP_VAPIC:
2808 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2809 break;
2810 case KVM_CAP_NR_VCPUS:
2811 r = KVM_SOFT_MAX_VCPUS;
2812 break;
2813 case KVM_CAP_MAX_VCPUS:
2814 r = KVM_MAX_VCPUS;
2815 break;
2816 case KVM_CAP_NR_MEMSLOTS:
2817 r = KVM_USER_MEM_SLOTS;
2818 break;
2819 case KVM_CAP_PV_MMU: /* obsolete */
2820 r = 0;
2821 break;
2822 case KVM_CAP_MCE:
2823 r = KVM_MAX_MCE_BANKS;
2824 break;
2825 case KVM_CAP_XCRS:
2826 r = boot_cpu_has(X86_FEATURE_XSAVE);
2827 break;
2828 case KVM_CAP_TSC_CONTROL:
2829 r = kvm_has_tsc_control;
2830 break;
2831 case KVM_CAP_X2APIC_API:
2832 r = KVM_X2APIC_API_VALID_FLAGS;
2833 break;
2834 default:
2835 r = 0;
2836 break;
2838 return r;
2842 long kvm_arch_dev_ioctl(struct file *filp,
2843 unsigned int ioctl, unsigned long arg)
2845 void __user *argp = (void __user *)arg;
2846 long r;
2848 switch (ioctl) {
2849 case KVM_GET_MSR_INDEX_LIST: {
2850 struct kvm_msr_list __user *user_msr_list = argp;
2851 struct kvm_msr_list msr_list;
2852 unsigned n;
2854 r = -EFAULT;
2855 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2856 goto out;
2857 n = msr_list.nmsrs;
2858 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2859 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2860 goto out;
2861 r = -E2BIG;
2862 if (n < msr_list.nmsrs)
2863 goto out;
2864 r = -EFAULT;
2865 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2866 num_msrs_to_save * sizeof(u32)))
2867 goto out;
2868 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2869 &emulated_msrs,
2870 num_emulated_msrs * sizeof(u32)))
2871 goto out;
2872 r = 0;
2873 break;
2875 case KVM_GET_SUPPORTED_CPUID:
2876 case KVM_GET_EMULATED_CPUID: {
2877 struct kvm_cpuid2 __user *cpuid_arg = argp;
2878 struct kvm_cpuid2 cpuid;
2880 r = -EFAULT;
2881 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2882 goto out;
2884 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2885 ioctl);
2886 if (r)
2887 goto out;
2889 r = -EFAULT;
2890 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2891 goto out;
2892 r = 0;
2893 break;
2895 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2896 r = -EFAULT;
2897 if (copy_to_user(argp, &kvm_mce_cap_supported,
2898 sizeof(kvm_mce_cap_supported)))
2899 goto out;
2900 r = 0;
2901 break;
2903 default:
2904 r = -EINVAL;
2906 out:
2907 return r;
2910 static void wbinvd_ipi(void *garbage)
2912 wbinvd();
2915 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2917 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2920 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2922 /* Address WBINVD may be executed by guest */
2923 if (need_emulate_wbinvd(vcpu)) {
2924 if (kvm_x86_ops->has_wbinvd_exit())
2925 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2926 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2927 smp_call_function_single(vcpu->cpu,
2928 wbinvd_ipi, NULL, 1);
2931 kvm_x86_ops->vcpu_load(vcpu, cpu);
2933 /* Apply any externally detected TSC adjustments (due to suspend) */
2934 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2935 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2936 vcpu->arch.tsc_offset_adjustment = 0;
2937 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2940 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
2941 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2942 rdtsc() - vcpu->arch.last_host_tsc;
2943 if (tsc_delta < 0)
2944 mark_tsc_unstable("KVM discovered backwards TSC");
2946 if (kvm_check_tsc_unstable()) {
2947 u64 offset = kvm_compute_tsc_offset(vcpu,
2948 vcpu->arch.last_guest_tsc);
2949 kvm_vcpu_write_tsc_offset(vcpu, offset);
2950 vcpu->arch.tsc_catchup = 1;
2953 if (kvm_lapic_hv_timer_in_use(vcpu))
2954 kvm_lapic_restart_hv_timer(vcpu);
2957 * On a host with synchronized TSC, there is no need to update
2958 * kvmclock on vcpu->cpu migration
2960 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2961 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2962 if (vcpu->cpu != cpu)
2963 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
2964 vcpu->cpu = cpu;
2967 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2970 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2972 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2973 return;
2975 vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
2977 kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
2978 &vcpu->arch.st.steal.preempted,
2979 offsetof(struct kvm_steal_time, preempted),
2980 sizeof(vcpu->arch.st.steal.preempted));
2983 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2985 int idx;
2987 if (vcpu->preempted)
2988 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
2991 * Disable page faults because we're in atomic context here.
2992 * kvm_write_guest_offset_cached() would call might_fault()
2993 * that relies on pagefault_disable() to tell if there's a
2994 * bug. NOTE: the write to guest memory may not go through if
2995 * during postcopy live migration or if there's heavy guest
2996 * paging.
2998 pagefault_disable();
3000 * kvm_memslots() will be called by
3001 * kvm_write_guest_offset_cached() so take the srcu lock.
3003 idx = srcu_read_lock(&vcpu->kvm->srcu);
3004 kvm_steal_time_set_preempted(vcpu);
3005 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3006 pagefault_enable();
3007 kvm_x86_ops->vcpu_put(vcpu);
3008 vcpu->arch.last_host_tsc = rdtsc();
3010 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3011 * on every vmexit, but if not, we might have a stale dr6 from the
3012 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3014 set_debugreg(0, 6);
3017 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3018 struct kvm_lapic_state *s)
3020 if (vcpu->arch.apicv_active)
3021 kvm_x86_ops->sync_pir_to_irr(vcpu);
3023 return kvm_apic_get_state(vcpu, s);
3026 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3027 struct kvm_lapic_state *s)
3029 int r;
3031 r = kvm_apic_set_state(vcpu, s);
3032 if (r)
3033 return r;
3034 update_cr8_intercept(vcpu);
3036 return 0;
3039 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3041 return (!lapic_in_kernel(vcpu) ||
3042 kvm_apic_accept_pic_intr(vcpu));
3046 * if userspace requested an interrupt window, check that the
3047 * interrupt window is open.
3049 * No need to exit to userspace if we already have an interrupt queued.
3051 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3053 return kvm_arch_interrupt_allowed(vcpu) &&
3054 !kvm_cpu_has_interrupt(vcpu) &&
3055 !kvm_event_needs_reinjection(vcpu) &&
3056 kvm_cpu_accept_dm_intr(vcpu);
3059 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3060 struct kvm_interrupt *irq)
3062 if (irq->irq >= KVM_NR_INTERRUPTS)
3063 return -EINVAL;
3065 if (!irqchip_in_kernel(vcpu->kvm)) {
3066 kvm_queue_interrupt(vcpu, irq->irq, false);
3067 kvm_make_request(KVM_REQ_EVENT, vcpu);
3068 return 0;
3072 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3073 * fail for in-kernel 8259.
3075 if (pic_in_kernel(vcpu->kvm))
3076 return -ENXIO;
3078 if (vcpu->arch.pending_external_vector != -1)
3079 return -EEXIST;
3081 vcpu->arch.pending_external_vector = irq->irq;
3082 kvm_make_request(KVM_REQ_EVENT, vcpu);
3083 return 0;
3086 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3088 kvm_inject_nmi(vcpu);
3090 return 0;
3093 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3095 kvm_make_request(KVM_REQ_SMI, vcpu);
3097 return 0;
3100 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3101 struct kvm_tpr_access_ctl *tac)
3103 if (tac->flags)
3104 return -EINVAL;
3105 vcpu->arch.tpr_access_reporting = !!tac->enabled;
3106 return 0;
3109 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3110 u64 mcg_cap)
3112 int r;
3113 unsigned bank_num = mcg_cap & 0xff, bank;
3115 r = -EINVAL;
3116 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3117 goto out;
3118 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3119 goto out;
3120 r = 0;
3121 vcpu->arch.mcg_cap = mcg_cap;
3122 /* Init IA32_MCG_CTL to all 1s */
3123 if (mcg_cap & MCG_CTL_P)
3124 vcpu->arch.mcg_ctl = ~(u64)0;
3125 /* Init IA32_MCi_CTL to all 1s */
3126 for (bank = 0; bank < bank_num; bank++)
3127 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3129 if (kvm_x86_ops->setup_mce)
3130 kvm_x86_ops->setup_mce(vcpu);
3131 out:
3132 return r;
3135 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3136 struct kvm_x86_mce *mce)
3138 u64 mcg_cap = vcpu->arch.mcg_cap;
3139 unsigned bank_num = mcg_cap & 0xff;
3140 u64 *banks = vcpu->arch.mce_banks;
3142 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3143 return -EINVAL;
3145 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3146 * reporting is disabled
3148 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3149 vcpu->arch.mcg_ctl != ~(u64)0)
3150 return 0;
3151 banks += 4 * mce->bank;
3153 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3154 * reporting is disabled for the bank
3156 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3157 return 0;
3158 if (mce->status & MCI_STATUS_UC) {
3159 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3160 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3161 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3162 return 0;
3164 if (banks[1] & MCI_STATUS_VAL)
3165 mce->status |= MCI_STATUS_OVER;
3166 banks[2] = mce->addr;
3167 banks[3] = mce->misc;
3168 vcpu->arch.mcg_status = mce->mcg_status;
3169 banks[1] = mce->status;
3170 kvm_queue_exception(vcpu, MC_VECTOR);
3171 } else if (!(banks[1] & MCI_STATUS_VAL)
3172 || !(banks[1] & MCI_STATUS_UC)) {
3173 if (banks[1] & MCI_STATUS_VAL)
3174 mce->status |= MCI_STATUS_OVER;
3175 banks[2] = mce->addr;
3176 banks[3] = mce->misc;
3177 banks[1] = mce->status;
3178 } else
3179 banks[1] |= MCI_STATUS_OVER;
3180 return 0;
3183 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3184 struct kvm_vcpu_events *events)
3186 process_nmi(vcpu);
3188 * FIXME: pass injected and pending separately. This is only
3189 * needed for nested virtualization, whose state cannot be
3190 * migrated yet. For now we can combine them.
3192 events->exception.injected =
3193 (vcpu->arch.exception.pending ||
3194 vcpu->arch.exception.injected) &&
3195 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3196 events->exception.nr = vcpu->arch.exception.nr;
3197 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3198 events->exception.pad = 0;
3199 events->exception.error_code = vcpu->arch.exception.error_code;
3201 events->interrupt.injected =
3202 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3203 events->interrupt.nr = vcpu->arch.interrupt.nr;
3204 events->interrupt.soft = 0;
3205 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3207 events->nmi.injected = vcpu->arch.nmi_injected;
3208 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3209 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3210 events->nmi.pad = 0;
3212 events->sipi_vector = 0; /* never valid when reporting to user space */
3214 events->smi.smm = is_smm(vcpu);
3215 events->smi.pending = vcpu->arch.smi_pending;
3216 events->smi.smm_inside_nmi =
3217 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3218 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3220 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3221 | KVM_VCPUEVENT_VALID_SHADOW
3222 | KVM_VCPUEVENT_VALID_SMM);
3223 memset(&events->reserved, 0, sizeof(events->reserved));
3226 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3228 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3229 struct kvm_vcpu_events *events)
3231 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3232 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3233 | KVM_VCPUEVENT_VALID_SHADOW
3234 | KVM_VCPUEVENT_VALID_SMM))
3235 return -EINVAL;
3237 if (events->exception.injected &&
3238 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3239 is_guest_mode(vcpu)))
3240 return -EINVAL;
3242 /* INITs are latched while in SMM */
3243 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3244 (events->smi.smm || events->smi.pending) &&
3245 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3246 return -EINVAL;
3248 process_nmi(vcpu);
3249 vcpu->arch.exception.injected = false;
3250 vcpu->arch.exception.pending = events->exception.injected;
3251 vcpu->arch.exception.nr = events->exception.nr;
3252 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3253 vcpu->arch.exception.error_code = events->exception.error_code;
3255 vcpu->arch.interrupt.pending = events->interrupt.injected;
3256 vcpu->arch.interrupt.nr = events->interrupt.nr;
3257 vcpu->arch.interrupt.soft = events->interrupt.soft;
3258 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3259 kvm_x86_ops->set_interrupt_shadow(vcpu,
3260 events->interrupt.shadow);
3262 vcpu->arch.nmi_injected = events->nmi.injected;
3263 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3264 vcpu->arch.nmi_pending = events->nmi.pending;
3265 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3267 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3268 lapic_in_kernel(vcpu))
3269 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3271 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3272 u32 hflags = vcpu->arch.hflags;
3273 if (events->smi.smm)
3274 hflags |= HF_SMM_MASK;
3275 else
3276 hflags &= ~HF_SMM_MASK;
3277 kvm_set_hflags(vcpu, hflags);
3279 vcpu->arch.smi_pending = events->smi.pending;
3281 if (events->smi.smm) {
3282 if (events->smi.smm_inside_nmi)
3283 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3284 else
3285 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3286 if (lapic_in_kernel(vcpu)) {
3287 if (events->smi.latched_init)
3288 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3289 else
3290 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3295 kvm_make_request(KVM_REQ_EVENT, vcpu);
3297 return 0;
3300 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3301 struct kvm_debugregs *dbgregs)
3303 unsigned long val;
3305 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3306 kvm_get_dr(vcpu, 6, &val);
3307 dbgregs->dr6 = val;
3308 dbgregs->dr7 = vcpu->arch.dr7;
3309 dbgregs->flags = 0;
3310 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3313 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3314 struct kvm_debugregs *dbgregs)
3316 if (dbgregs->flags)
3317 return -EINVAL;
3319 if (dbgregs->dr6 & ~0xffffffffull)
3320 return -EINVAL;
3321 if (dbgregs->dr7 & ~0xffffffffull)
3322 return -EINVAL;
3324 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3325 kvm_update_dr0123(vcpu);
3326 vcpu->arch.dr6 = dbgregs->dr6;
3327 kvm_update_dr6(vcpu);
3328 vcpu->arch.dr7 = dbgregs->dr7;
3329 kvm_update_dr7(vcpu);
3331 return 0;
3334 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3336 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3338 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3339 u64 xstate_bv = xsave->header.xfeatures;
3340 u64 valid;
3343 * Copy legacy XSAVE area, to avoid complications with CPUID
3344 * leaves 0 and 1 in the loop below.
3346 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3348 /* Set XSTATE_BV */
3349 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3350 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3353 * Copy each region from the possibly compacted offset to the
3354 * non-compacted offset.
3356 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3357 while (valid) {
3358 u64 feature = valid & -valid;
3359 int index = fls64(feature) - 1;
3360 void *src = get_xsave_addr(xsave, feature);
3362 if (src) {
3363 u32 size, offset, ecx, edx;
3364 cpuid_count(XSTATE_CPUID, index,
3365 &size, &offset, &ecx, &edx);
3366 if (feature == XFEATURE_MASK_PKRU)
3367 memcpy(dest + offset, &vcpu->arch.pkru,
3368 sizeof(vcpu->arch.pkru));
3369 else
3370 memcpy(dest + offset, src, size);
3374 valid -= feature;
3378 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3380 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3381 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3382 u64 valid;
3385 * Copy legacy XSAVE area, to avoid complications with CPUID
3386 * leaves 0 and 1 in the loop below.
3388 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3390 /* Set XSTATE_BV and possibly XCOMP_BV. */
3391 xsave->header.xfeatures = xstate_bv;
3392 if (boot_cpu_has(X86_FEATURE_XSAVES))
3393 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3396 * Copy each region from the non-compacted offset to the
3397 * possibly compacted offset.
3399 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3400 while (valid) {
3401 u64 feature = valid & -valid;
3402 int index = fls64(feature) - 1;
3403 void *dest = get_xsave_addr(xsave, feature);
3405 if (dest) {
3406 u32 size, offset, ecx, edx;
3407 cpuid_count(XSTATE_CPUID, index,
3408 &size, &offset, &ecx, &edx);
3409 if (feature == XFEATURE_MASK_PKRU)
3410 memcpy(&vcpu->arch.pkru, src + offset,
3411 sizeof(vcpu->arch.pkru));
3412 else
3413 memcpy(dest, src + offset, size);
3416 valid -= feature;
3420 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3421 struct kvm_xsave *guest_xsave)
3423 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3424 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3425 fill_xsave((u8 *) guest_xsave->region, vcpu);
3426 } else {
3427 memcpy(guest_xsave->region,
3428 &vcpu->arch.guest_fpu.state.fxsave,
3429 sizeof(struct fxregs_state));
3430 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3431 XFEATURE_MASK_FPSSE;
3435 #define XSAVE_MXCSR_OFFSET 24
3437 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3438 struct kvm_xsave *guest_xsave)
3440 u64 xstate_bv =
3441 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3442 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3444 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3446 * Here we allow setting states that are not present in
3447 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3448 * with old userspace.
3450 if (xstate_bv & ~kvm_supported_xcr0() ||
3451 mxcsr & ~mxcsr_feature_mask)
3452 return -EINVAL;
3453 load_xsave(vcpu, (u8 *)guest_xsave->region);
3454 } else {
3455 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3456 mxcsr & ~mxcsr_feature_mask)
3457 return -EINVAL;
3458 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3459 guest_xsave->region, sizeof(struct fxregs_state));
3461 return 0;
3464 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3465 struct kvm_xcrs *guest_xcrs)
3467 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3468 guest_xcrs->nr_xcrs = 0;
3469 return;
3472 guest_xcrs->nr_xcrs = 1;
3473 guest_xcrs->flags = 0;
3474 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3475 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3478 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3479 struct kvm_xcrs *guest_xcrs)
3481 int i, r = 0;
3483 if (!boot_cpu_has(X86_FEATURE_XSAVE))
3484 return -EINVAL;
3486 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3487 return -EINVAL;
3489 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3490 /* Only support XCR0 currently */
3491 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3492 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3493 guest_xcrs->xcrs[i].value);
3494 break;
3496 if (r)
3497 r = -EINVAL;
3498 return r;
3502 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3503 * stopped by the hypervisor. This function will be called from the host only.
3504 * EINVAL is returned when the host attempts to set the flag for a guest that
3505 * does not support pv clocks.
3507 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3509 if (!vcpu->arch.pv_time_enabled)
3510 return -EINVAL;
3511 vcpu->arch.pvclock_set_guest_stopped_request = true;
3512 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3513 return 0;
3516 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3517 struct kvm_enable_cap *cap)
3519 if (cap->flags)
3520 return -EINVAL;
3522 switch (cap->cap) {
3523 case KVM_CAP_HYPERV_SYNIC2:
3524 if (cap->args[0])
3525 return -EINVAL;
3526 case KVM_CAP_HYPERV_SYNIC:
3527 if (!irqchip_in_kernel(vcpu->kvm))
3528 return -EINVAL;
3529 return kvm_hv_activate_synic(vcpu, cap->cap ==
3530 KVM_CAP_HYPERV_SYNIC2);
3531 default:
3532 return -EINVAL;
3536 long kvm_arch_vcpu_ioctl(struct file *filp,
3537 unsigned int ioctl, unsigned long arg)
3539 struct kvm_vcpu *vcpu = filp->private_data;
3540 void __user *argp = (void __user *)arg;
3541 int r;
3542 union {
3543 struct kvm_lapic_state *lapic;
3544 struct kvm_xsave *xsave;
3545 struct kvm_xcrs *xcrs;
3546 void *buffer;
3547 } u;
3549 vcpu_load(vcpu);
3551 u.buffer = NULL;
3552 switch (ioctl) {
3553 case KVM_GET_LAPIC: {
3554 r = -EINVAL;
3555 if (!lapic_in_kernel(vcpu))
3556 goto out;
3557 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3559 r = -ENOMEM;
3560 if (!u.lapic)
3561 goto out;
3562 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3563 if (r)
3564 goto out;
3565 r = -EFAULT;
3566 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3567 goto out;
3568 r = 0;
3569 break;
3571 case KVM_SET_LAPIC: {
3572 r = -EINVAL;
3573 if (!lapic_in_kernel(vcpu))
3574 goto out;
3575 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3576 if (IS_ERR(u.lapic)) {
3577 r = PTR_ERR(u.lapic);
3578 goto out_nofree;
3581 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3582 break;
3584 case KVM_INTERRUPT: {
3585 struct kvm_interrupt irq;
3587 r = -EFAULT;
3588 if (copy_from_user(&irq, argp, sizeof irq))
3589 goto out;
3590 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3591 break;
3593 case KVM_NMI: {
3594 r = kvm_vcpu_ioctl_nmi(vcpu);
3595 break;
3597 case KVM_SMI: {
3598 r = kvm_vcpu_ioctl_smi(vcpu);
3599 break;
3601 case KVM_SET_CPUID: {
3602 struct kvm_cpuid __user *cpuid_arg = argp;
3603 struct kvm_cpuid cpuid;
3605 r = -EFAULT;
3606 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3607 goto out;
3608 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3609 break;
3611 case KVM_SET_CPUID2: {
3612 struct kvm_cpuid2 __user *cpuid_arg = argp;
3613 struct kvm_cpuid2 cpuid;
3615 r = -EFAULT;
3616 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3617 goto out;
3618 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3619 cpuid_arg->entries);
3620 break;
3622 case KVM_GET_CPUID2: {
3623 struct kvm_cpuid2 __user *cpuid_arg = argp;
3624 struct kvm_cpuid2 cpuid;
3626 r = -EFAULT;
3627 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3628 goto out;
3629 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3630 cpuid_arg->entries);
3631 if (r)
3632 goto out;
3633 r = -EFAULT;
3634 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3635 goto out;
3636 r = 0;
3637 break;
3639 case KVM_GET_MSRS:
3640 r = msr_io(vcpu, argp, do_get_msr, 1);
3641 break;
3642 case KVM_SET_MSRS:
3643 r = msr_io(vcpu, argp, do_set_msr, 0);
3644 break;
3645 case KVM_TPR_ACCESS_REPORTING: {
3646 struct kvm_tpr_access_ctl tac;
3648 r = -EFAULT;
3649 if (copy_from_user(&tac, argp, sizeof tac))
3650 goto out;
3651 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3652 if (r)
3653 goto out;
3654 r = -EFAULT;
3655 if (copy_to_user(argp, &tac, sizeof tac))
3656 goto out;
3657 r = 0;
3658 break;
3660 case KVM_SET_VAPIC_ADDR: {
3661 struct kvm_vapic_addr va;
3662 int idx;
3664 r = -EINVAL;
3665 if (!lapic_in_kernel(vcpu))
3666 goto out;
3667 r = -EFAULT;
3668 if (copy_from_user(&va, argp, sizeof va))
3669 goto out;
3670 idx = srcu_read_lock(&vcpu->kvm->srcu);
3671 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3672 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3673 break;
3675 case KVM_X86_SETUP_MCE: {
3676 u64 mcg_cap;
3678 r = -EFAULT;
3679 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3680 goto out;
3681 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3682 break;
3684 case KVM_X86_SET_MCE: {
3685 struct kvm_x86_mce mce;
3687 r = -EFAULT;
3688 if (copy_from_user(&mce, argp, sizeof mce))
3689 goto out;
3690 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3691 break;
3693 case KVM_GET_VCPU_EVENTS: {
3694 struct kvm_vcpu_events events;
3696 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3698 r = -EFAULT;
3699 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3700 break;
3701 r = 0;
3702 break;
3704 case KVM_SET_VCPU_EVENTS: {
3705 struct kvm_vcpu_events events;
3707 r = -EFAULT;
3708 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3709 break;
3711 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3712 break;
3714 case KVM_GET_DEBUGREGS: {
3715 struct kvm_debugregs dbgregs;
3717 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3719 r = -EFAULT;
3720 if (copy_to_user(argp, &dbgregs,
3721 sizeof(struct kvm_debugregs)))
3722 break;
3723 r = 0;
3724 break;
3726 case KVM_SET_DEBUGREGS: {
3727 struct kvm_debugregs dbgregs;
3729 r = -EFAULT;
3730 if (copy_from_user(&dbgregs, argp,
3731 sizeof(struct kvm_debugregs)))
3732 break;
3734 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3735 break;
3737 case KVM_GET_XSAVE: {
3738 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3739 r = -ENOMEM;
3740 if (!u.xsave)
3741 break;
3743 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3745 r = -EFAULT;
3746 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3747 break;
3748 r = 0;
3749 break;
3751 case KVM_SET_XSAVE: {
3752 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3753 if (IS_ERR(u.xsave)) {
3754 r = PTR_ERR(u.xsave);
3755 goto out_nofree;
3758 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3759 break;
3761 case KVM_GET_XCRS: {
3762 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3763 r = -ENOMEM;
3764 if (!u.xcrs)
3765 break;
3767 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3769 r = -EFAULT;
3770 if (copy_to_user(argp, u.xcrs,
3771 sizeof(struct kvm_xcrs)))
3772 break;
3773 r = 0;
3774 break;
3776 case KVM_SET_XCRS: {
3777 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3778 if (IS_ERR(u.xcrs)) {
3779 r = PTR_ERR(u.xcrs);
3780 goto out_nofree;
3783 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3784 break;
3786 case KVM_SET_TSC_KHZ: {
3787 u32 user_tsc_khz;
3789 r = -EINVAL;
3790 user_tsc_khz = (u32)arg;
3792 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3793 goto out;
3795 if (user_tsc_khz == 0)
3796 user_tsc_khz = tsc_khz;
3798 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3799 r = 0;
3801 goto out;
3803 case KVM_GET_TSC_KHZ: {
3804 r = vcpu->arch.virtual_tsc_khz;
3805 goto out;
3807 case KVM_KVMCLOCK_CTRL: {
3808 r = kvm_set_guest_paused(vcpu);
3809 goto out;
3811 case KVM_ENABLE_CAP: {
3812 struct kvm_enable_cap cap;
3814 r = -EFAULT;
3815 if (copy_from_user(&cap, argp, sizeof(cap)))
3816 goto out;
3817 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3818 break;
3820 default:
3821 r = -EINVAL;
3823 out:
3824 kfree(u.buffer);
3825 out_nofree:
3826 vcpu_put(vcpu);
3827 return r;
3830 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3832 return VM_FAULT_SIGBUS;
3835 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3837 int ret;
3839 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3840 return -EINVAL;
3841 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3842 return ret;
3845 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3846 u64 ident_addr)
3848 kvm->arch.ept_identity_map_addr = ident_addr;
3849 return 0;
3852 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3853 u32 kvm_nr_mmu_pages)
3855 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3856 return -EINVAL;
3858 mutex_lock(&kvm->slots_lock);
3860 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3861 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3863 mutex_unlock(&kvm->slots_lock);
3864 return 0;
3867 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3869 return kvm->arch.n_max_mmu_pages;
3872 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3874 struct kvm_pic *pic = kvm->arch.vpic;
3875 int r;
3877 r = 0;
3878 switch (chip->chip_id) {
3879 case KVM_IRQCHIP_PIC_MASTER:
3880 memcpy(&chip->chip.pic, &pic->pics[0],
3881 sizeof(struct kvm_pic_state));
3882 break;
3883 case KVM_IRQCHIP_PIC_SLAVE:
3884 memcpy(&chip->chip.pic, &pic->pics[1],
3885 sizeof(struct kvm_pic_state));
3886 break;
3887 case KVM_IRQCHIP_IOAPIC:
3888 kvm_get_ioapic(kvm, &chip->chip.ioapic);
3889 break;
3890 default:
3891 r = -EINVAL;
3892 break;
3894 return r;
3897 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3899 struct kvm_pic *pic = kvm->arch.vpic;
3900 int r;
3902 r = 0;
3903 switch (chip->chip_id) {
3904 case KVM_IRQCHIP_PIC_MASTER:
3905 spin_lock(&pic->lock);
3906 memcpy(&pic->pics[0], &chip->chip.pic,
3907 sizeof(struct kvm_pic_state));
3908 spin_unlock(&pic->lock);
3909 break;
3910 case KVM_IRQCHIP_PIC_SLAVE:
3911 spin_lock(&pic->lock);
3912 memcpy(&pic->pics[1], &chip->chip.pic,
3913 sizeof(struct kvm_pic_state));
3914 spin_unlock(&pic->lock);
3915 break;
3916 case KVM_IRQCHIP_IOAPIC:
3917 kvm_set_ioapic(kvm, &chip->chip.ioapic);
3918 break;
3919 default:
3920 r = -EINVAL;
3921 break;
3923 kvm_pic_update_irq(pic);
3924 return r;
3927 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3929 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3931 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3933 mutex_lock(&kps->lock);
3934 memcpy(ps, &kps->channels, sizeof(*ps));
3935 mutex_unlock(&kps->lock);
3936 return 0;
3939 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3941 int i;
3942 struct kvm_pit *pit = kvm->arch.vpit;
3944 mutex_lock(&pit->pit_state.lock);
3945 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3946 for (i = 0; i < 3; i++)
3947 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3948 mutex_unlock(&pit->pit_state.lock);
3949 return 0;
3952 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3954 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3955 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3956 sizeof(ps->channels));
3957 ps->flags = kvm->arch.vpit->pit_state.flags;
3958 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3959 memset(&ps->reserved, 0, sizeof(ps->reserved));
3960 return 0;
3963 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3965 int start = 0;
3966 int i;
3967 u32 prev_legacy, cur_legacy;
3968 struct kvm_pit *pit = kvm->arch.vpit;
3970 mutex_lock(&pit->pit_state.lock);
3971 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3972 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3973 if (!prev_legacy && cur_legacy)
3974 start = 1;
3975 memcpy(&pit->pit_state.channels, &ps->channels,
3976 sizeof(pit->pit_state.channels));
3977 pit->pit_state.flags = ps->flags;
3978 for (i = 0; i < 3; i++)
3979 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3980 start && i == 0);
3981 mutex_unlock(&pit->pit_state.lock);
3982 return 0;
3985 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3986 struct kvm_reinject_control *control)
3988 struct kvm_pit *pit = kvm->arch.vpit;
3990 if (!pit)
3991 return -ENXIO;
3993 /* pit->pit_state.lock was overloaded to prevent userspace from getting
3994 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3995 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
3997 mutex_lock(&pit->pit_state.lock);
3998 kvm_pit_set_reinject(pit, control->pit_reinject);
3999 mutex_unlock(&pit->pit_state.lock);
4001 return 0;
4005 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4006 * @kvm: kvm instance
4007 * @log: slot id and address to which we copy the log
4009 * Steps 1-4 below provide general overview of dirty page logging. See
4010 * kvm_get_dirty_log_protect() function description for additional details.
4012 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4013 * always flush the TLB (step 4) even if previous step failed and the dirty
4014 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4015 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4016 * writes will be marked dirty for next log read.
4018 * 1. Take a snapshot of the bit and clear it if needed.
4019 * 2. Write protect the corresponding page.
4020 * 3. Copy the snapshot to the userspace.
4021 * 4. Flush TLB's if needed.
4023 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4025 bool is_dirty = false;
4026 int r;
4028 mutex_lock(&kvm->slots_lock);
4031 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4033 if (kvm_x86_ops->flush_log_dirty)
4034 kvm_x86_ops->flush_log_dirty(kvm);
4036 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
4039 * All the TLBs can be flushed out of mmu lock, see the comments in
4040 * kvm_mmu_slot_remove_write_access().
4042 lockdep_assert_held(&kvm->slots_lock);
4043 if (is_dirty)
4044 kvm_flush_remote_tlbs(kvm);
4046 mutex_unlock(&kvm->slots_lock);
4047 return r;
4050 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4051 bool line_status)
4053 if (!irqchip_in_kernel(kvm))
4054 return -ENXIO;
4056 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4057 irq_event->irq, irq_event->level,
4058 line_status);
4059 return 0;
4062 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4063 struct kvm_enable_cap *cap)
4065 int r;
4067 if (cap->flags)
4068 return -EINVAL;
4070 switch (cap->cap) {
4071 case KVM_CAP_DISABLE_QUIRKS:
4072 kvm->arch.disabled_quirks = cap->args[0];
4073 r = 0;
4074 break;
4075 case KVM_CAP_SPLIT_IRQCHIP: {
4076 mutex_lock(&kvm->lock);
4077 r = -EINVAL;
4078 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4079 goto split_irqchip_unlock;
4080 r = -EEXIST;
4081 if (irqchip_in_kernel(kvm))
4082 goto split_irqchip_unlock;
4083 if (kvm->created_vcpus)
4084 goto split_irqchip_unlock;
4085 r = kvm_setup_empty_irq_routing(kvm);
4086 if (r)
4087 goto split_irqchip_unlock;
4088 /* Pairs with irqchip_in_kernel. */
4089 smp_wmb();
4090 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4091 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4092 r = 0;
4093 split_irqchip_unlock:
4094 mutex_unlock(&kvm->lock);
4095 break;
4097 case KVM_CAP_X2APIC_API:
4098 r = -EINVAL;
4099 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4100 break;
4102 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4103 kvm->arch.x2apic_format = true;
4104 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4105 kvm->arch.x2apic_broadcast_quirk_disabled = true;
4107 r = 0;
4108 break;
4109 default:
4110 r = -EINVAL;
4111 break;
4113 return r;
4116 long kvm_arch_vm_ioctl(struct file *filp,
4117 unsigned int ioctl, unsigned long arg)
4119 struct kvm *kvm = filp->private_data;
4120 void __user *argp = (void __user *)arg;
4121 int r = -ENOTTY;
4123 * This union makes it completely explicit to gcc-3.x
4124 * that these two variables' stack usage should be
4125 * combined, not added together.
4127 union {
4128 struct kvm_pit_state ps;
4129 struct kvm_pit_state2 ps2;
4130 struct kvm_pit_config pit_config;
4131 } u;
4133 switch (ioctl) {
4134 case KVM_SET_TSS_ADDR:
4135 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4136 break;
4137 case KVM_SET_IDENTITY_MAP_ADDR: {
4138 u64 ident_addr;
4140 mutex_lock(&kvm->lock);
4141 r = -EINVAL;
4142 if (kvm->created_vcpus)
4143 goto set_identity_unlock;
4144 r = -EFAULT;
4145 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4146 goto set_identity_unlock;
4147 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4148 set_identity_unlock:
4149 mutex_unlock(&kvm->lock);
4150 break;
4152 case KVM_SET_NR_MMU_PAGES:
4153 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4154 break;
4155 case KVM_GET_NR_MMU_PAGES:
4156 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4157 break;
4158 case KVM_CREATE_IRQCHIP: {
4159 mutex_lock(&kvm->lock);
4161 r = -EEXIST;
4162 if (irqchip_in_kernel(kvm))
4163 goto create_irqchip_unlock;
4165 r = -EINVAL;
4166 if (kvm->created_vcpus)
4167 goto create_irqchip_unlock;
4169 r = kvm_pic_init(kvm);
4170 if (r)
4171 goto create_irqchip_unlock;
4173 r = kvm_ioapic_init(kvm);
4174 if (r) {
4175 kvm_pic_destroy(kvm);
4176 goto create_irqchip_unlock;
4179 r = kvm_setup_default_irq_routing(kvm);
4180 if (r) {
4181 kvm_ioapic_destroy(kvm);
4182 kvm_pic_destroy(kvm);
4183 goto create_irqchip_unlock;
4185 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4186 smp_wmb();
4187 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4188 create_irqchip_unlock:
4189 mutex_unlock(&kvm->lock);
4190 break;
4192 case KVM_CREATE_PIT:
4193 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4194 goto create_pit;
4195 case KVM_CREATE_PIT2:
4196 r = -EFAULT;
4197 if (copy_from_user(&u.pit_config, argp,
4198 sizeof(struct kvm_pit_config)))
4199 goto out;
4200 create_pit:
4201 mutex_lock(&kvm->lock);
4202 r = -EEXIST;
4203 if (kvm->arch.vpit)
4204 goto create_pit_unlock;
4205 r = -ENOMEM;
4206 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4207 if (kvm->arch.vpit)
4208 r = 0;
4209 create_pit_unlock:
4210 mutex_unlock(&kvm->lock);
4211 break;
4212 case KVM_GET_IRQCHIP: {
4213 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4214 struct kvm_irqchip *chip;
4216 chip = memdup_user(argp, sizeof(*chip));
4217 if (IS_ERR(chip)) {
4218 r = PTR_ERR(chip);
4219 goto out;
4222 r = -ENXIO;
4223 if (!irqchip_kernel(kvm))
4224 goto get_irqchip_out;
4225 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4226 if (r)
4227 goto get_irqchip_out;
4228 r = -EFAULT;
4229 if (copy_to_user(argp, chip, sizeof *chip))
4230 goto get_irqchip_out;
4231 r = 0;
4232 get_irqchip_out:
4233 kfree(chip);
4234 break;
4236 case KVM_SET_IRQCHIP: {
4237 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4238 struct kvm_irqchip *chip;
4240 chip = memdup_user(argp, sizeof(*chip));
4241 if (IS_ERR(chip)) {
4242 r = PTR_ERR(chip);
4243 goto out;
4246 r = -ENXIO;
4247 if (!irqchip_kernel(kvm))
4248 goto set_irqchip_out;
4249 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4250 if (r)
4251 goto set_irqchip_out;
4252 r = 0;
4253 set_irqchip_out:
4254 kfree(chip);
4255 break;
4257 case KVM_GET_PIT: {
4258 r = -EFAULT;
4259 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4260 goto out;
4261 r = -ENXIO;
4262 if (!kvm->arch.vpit)
4263 goto out;
4264 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4265 if (r)
4266 goto out;
4267 r = -EFAULT;
4268 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4269 goto out;
4270 r = 0;
4271 break;
4273 case KVM_SET_PIT: {
4274 r = -EFAULT;
4275 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4276 goto out;
4277 r = -ENXIO;
4278 if (!kvm->arch.vpit)
4279 goto out;
4280 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4281 break;
4283 case KVM_GET_PIT2: {
4284 r = -ENXIO;
4285 if (!kvm->arch.vpit)
4286 goto out;
4287 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4288 if (r)
4289 goto out;
4290 r = -EFAULT;
4291 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4292 goto out;
4293 r = 0;
4294 break;
4296 case KVM_SET_PIT2: {
4297 r = -EFAULT;
4298 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4299 goto out;
4300 r = -ENXIO;
4301 if (!kvm->arch.vpit)
4302 goto out;
4303 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4304 break;
4306 case KVM_REINJECT_CONTROL: {
4307 struct kvm_reinject_control control;
4308 r = -EFAULT;
4309 if (copy_from_user(&control, argp, sizeof(control)))
4310 goto out;
4311 r = kvm_vm_ioctl_reinject(kvm, &control);
4312 break;
4314 case KVM_SET_BOOT_CPU_ID:
4315 r = 0;
4316 mutex_lock(&kvm->lock);
4317 if (kvm->created_vcpus)
4318 r = -EBUSY;
4319 else
4320 kvm->arch.bsp_vcpu_id = arg;
4321 mutex_unlock(&kvm->lock);
4322 break;
4323 case KVM_XEN_HVM_CONFIG: {
4324 struct kvm_xen_hvm_config xhc;
4325 r = -EFAULT;
4326 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4327 goto out;
4328 r = -EINVAL;
4329 if (xhc.flags)
4330 goto out;
4331 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4332 r = 0;
4333 break;
4335 case KVM_SET_CLOCK: {
4336 struct kvm_clock_data user_ns;
4337 u64 now_ns;
4339 r = -EFAULT;
4340 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4341 goto out;
4343 r = -EINVAL;
4344 if (user_ns.flags)
4345 goto out;
4347 r = 0;
4349 * TODO: userspace has to take care of races with VCPU_RUN, so
4350 * kvm_gen_update_masterclock() can be cut down to locked
4351 * pvclock_update_vm_gtod_copy().
4353 kvm_gen_update_masterclock(kvm);
4354 now_ns = get_kvmclock_ns(kvm);
4355 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4356 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4357 break;
4359 case KVM_GET_CLOCK: {
4360 struct kvm_clock_data user_ns;
4361 u64 now_ns;
4363 now_ns = get_kvmclock_ns(kvm);
4364 user_ns.clock = now_ns;
4365 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4366 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4368 r = -EFAULT;
4369 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4370 goto out;
4371 r = 0;
4372 break;
4374 case KVM_ENABLE_CAP: {
4375 struct kvm_enable_cap cap;
4377 r = -EFAULT;
4378 if (copy_from_user(&cap, argp, sizeof(cap)))
4379 goto out;
4380 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4381 break;
4383 case KVM_MEMORY_ENCRYPT_OP: {
4384 r = -ENOTTY;
4385 if (kvm_x86_ops->mem_enc_op)
4386 r = kvm_x86_ops->mem_enc_op(kvm, argp);
4387 break;
4389 case KVM_MEMORY_ENCRYPT_REG_REGION: {
4390 struct kvm_enc_region region;
4392 r = -EFAULT;
4393 if (copy_from_user(&region, argp, sizeof(region)))
4394 goto out;
4396 r = -ENOTTY;
4397 if (kvm_x86_ops->mem_enc_reg_region)
4398 r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4399 break;
4401 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4402 struct kvm_enc_region region;
4404 r = -EFAULT;
4405 if (copy_from_user(&region, argp, sizeof(region)))
4406 goto out;
4408 r = -ENOTTY;
4409 if (kvm_x86_ops->mem_enc_unreg_region)
4410 r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4411 break;
4413 default:
4414 r = -ENOTTY;
4416 out:
4417 return r;
4420 static void kvm_init_msr_list(void)
4422 u32 dummy[2];
4423 unsigned i, j;
4425 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4426 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4427 continue;
4430 * Even MSRs that are valid in the host may not be exposed
4431 * to the guests in some cases.
4433 switch (msrs_to_save[i]) {
4434 case MSR_IA32_BNDCFGS:
4435 if (!kvm_x86_ops->mpx_supported())
4436 continue;
4437 break;
4438 case MSR_TSC_AUX:
4439 if (!kvm_x86_ops->rdtscp_supported())
4440 continue;
4441 break;
4442 default:
4443 break;
4446 if (j < i)
4447 msrs_to_save[j] = msrs_to_save[i];
4448 j++;
4450 num_msrs_to_save = j;
4452 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4453 switch (emulated_msrs[i]) {
4454 case MSR_IA32_SMBASE:
4455 if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4456 continue;
4457 break;
4458 default:
4459 break;
4462 if (j < i)
4463 emulated_msrs[j] = emulated_msrs[i];
4464 j++;
4466 num_emulated_msrs = j;
4469 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4470 const void *v)
4472 int handled = 0;
4473 int n;
4475 do {
4476 n = min(len, 8);
4477 if (!(lapic_in_kernel(vcpu) &&
4478 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4479 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4480 break;
4481 handled += n;
4482 addr += n;
4483 len -= n;
4484 v += n;
4485 } while (len);
4487 return handled;
4490 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4492 int handled = 0;
4493 int n;
4495 do {
4496 n = min(len, 8);
4497 if (!(lapic_in_kernel(vcpu) &&
4498 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4499 addr, n, v))
4500 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4501 break;
4502 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4503 handled += n;
4504 addr += n;
4505 len -= n;
4506 v += n;
4507 } while (len);
4509 return handled;
4512 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4513 struct kvm_segment *var, int seg)
4515 kvm_x86_ops->set_segment(vcpu, var, seg);
4518 void kvm_get_segment(struct kvm_vcpu *vcpu,
4519 struct kvm_segment *var, int seg)
4521 kvm_x86_ops->get_segment(vcpu, var, seg);
4524 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4525 struct x86_exception *exception)
4527 gpa_t t_gpa;
4529 BUG_ON(!mmu_is_nested(vcpu));
4531 /* NPT walks are always user-walks */
4532 access |= PFERR_USER_MASK;
4533 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4535 return t_gpa;
4538 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4539 struct x86_exception *exception)
4541 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4542 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4545 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4546 struct x86_exception *exception)
4548 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4549 access |= PFERR_FETCH_MASK;
4550 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4553 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4554 struct x86_exception *exception)
4556 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4557 access |= PFERR_WRITE_MASK;
4558 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4561 /* uses this to access any guest's mapped memory without checking CPL */
4562 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4563 struct x86_exception *exception)
4565 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4568 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4569 struct kvm_vcpu *vcpu, u32 access,
4570 struct x86_exception *exception)
4572 void *data = val;
4573 int r = X86EMUL_CONTINUE;
4575 while (bytes) {
4576 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4577 exception);
4578 unsigned offset = addr & (PAGE_SIZE-1);
4579 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4580 int ret;
4582 if (gpa == UNMAPPED_GVA)
4583 return X86EMUL_PROPAGATE_FAULT;
4584 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4585 offset, toread);
4586 if (ret < 0) {
4587 r = X86EMUL_IO_NEEDED;
4588 goto out;
4591 bytes -= toread;
4592 data += toread;
4593 addr += toread;
4595 out:
4596 return r;
4599 /* used for instruction fetching */
4600 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4601 gva_t addr, void *val, unsigned int bytes,
4602 struct x86_exception *exception)
4604 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4605 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4606 unsigned offset;
4607 int ret;
4609 /* Inline kvm_read_guest_virt_helper for speed. */
4610 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4611 exception);
4612 if (unlikely(gpa == UNMAPPED_GVA))
4613 return X86EMUL_PROPAGATE_FAULT;
4615 offset = addr & (PAGE_SIZE-1);
4616 if (WARN_ON(offset + bytes > PAGE_SIZE))
4617 bytes = (unsigned)PAGE_SIZE - offset;
4618 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4619 offset, bytes);
4620 if (unlikely(ret < 0))
4621 return X86EMUL_IO_NEEDED;
4623 return X86EMUL_CONTINUE;
4626 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4627 gva_t addr, void *val, unsigned int bytes,
4628 struct x86_exception *exception)
4630 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4631 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4633 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4634 exception);
4636 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4638 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4639 gva_t addr, void *val, unsigned int bytes,
4640 struct x86_exception *exception)
4642 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4643 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4646 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4647 unsigned long addr, void *val, unsigned int bytes)
4649 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4650 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4652 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4655 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4656 gva_t addr, void *val,
4657 unsigned int bytes,
4658 struct x86_exception *exception)
4660 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4661 void *data = val;
4662 int r = X86EMUL_CONTINUE;
4664 while (bytes) {
4665 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4666 PFERR_WRITE_MASK,
4667 exception);
4668 unsigned offset = addr & (PAGE_SIZE-1);
4669 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4670 int ret;
4672 if (gpa == UNMAPPED_GVA)
4673 return X86EMUL_PROPAGATE_FAULT;
4674 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4675 if (ret < 0) {
4676 r = X86EMUL_IO_NEEDED;
4677 goto out;
4680 bytes -= towrite;
4681 data += towrite;
4682 addr += towrite;
4684 out:
4685 return r;
4687 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4689 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4690 gpa_t gpa, bool write)
4692 /* For APIC access vmexit */
4693 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4694 return 1;
4696 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4697 trace_vcpu_match_mmio(gva, gpa, write, true);
4698 return 1;
4701 return 0;
4704 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4705 gpa_t *gpa, struct x86_exception *exception,
4706 bool write)
4708 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4709 | (write ? PFERR_WRITE_MASK : 0);
4712 * currently PKRU is only applied to ept enabled guest so
4713 * there is no pkey in EPT page table for L1 guest or EPT
4714 * shadow page table for L2 guest.
4716 if (vcpu_match_mmio_gva(vcpu, gva)
4717 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4718 vcpu->arch.access, 0, access)) {
4719 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4720 (gva & (PAGE_SIZE - 1));
4721 trace_vcpu_match_mmio(gva, *gpa, write, false);
4722 return 1;
4725 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4727 if (*gpa == UNMAPPED_GVA)
4728 return -1;
4730 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4733 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4734 const void *val, int bytes)
4736 int ret;
4738 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4739 if (ret < 0)
4740 return 0;
4741 kvm_page_track_write(vcpu, gpa, val, bytes);
4742 return 1;
4745 struct read_write_emulator_ops {
4746 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4747 int bytes);
4748 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4749 void *val, int bytes);
4750 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4751 int bytes, void *val);
4752 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4753 void *val, int bytes);
4754 bool write;
4757 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4759 if (vcpu->mmio_read_completed) {
4760 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4761 vcpu->mmio_fragments[0].gpa, val);
4762 vcpu->mmio_read_completed = 0;
4763 return 1;
4766 return 0;
4769 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4770 void *val, int bytes)
4772 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4775 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4776 void *val, int bytes)
4778 return emulator_write_phys(vcpu, gpa, val, bytes);
4781 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4783 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
4784 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4787 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4788 void *val, int bytes)
4790 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
4791 return X86EMUL_IO_NEEDED;
4794 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4795 void *val, int bytes)
4797 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4799 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4800 return X86EMUL_CONTINUE;
4803 static const struct read_write_emulator_ops read_emultor = {
4804 .read_write_prepare = read_prepare,
4805 .read_write_emulate = read_emulate,
4806 .read_write_mmio = vcpu_mmio_read,
4807 .read_write_exit_mmio = read_exit_mmio,
4810 static const struct read_write_emulator_ops write_emultor = {
4811 .read_write_emulate = write_emulate,
4812 .read_write_mmio = write_mmio,
4813 .read_write_exit_mmio = write_exit_mmio,
4814 .write = true,
4817 static int emulator_read_write_onepage(unsigned long addr, void *val,
4818 unsigned int bytes,
4819 struct x86_exception *exception,
4820 struct kvm_vcpu *vcpu,
4821 const struct read_write_emulator_ops *ops)
4823 gpa_t gpa;
4824 int handled, ret;
4825 bool write = ops->write;
4826 struct kvm_mmio_fragment *frag;
4827 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4830 * If the exit was due to a NPF we may already have a GPA.
4831 * If the GPA is present, use it to avoid the GVA to GPA table walk.
4832 * Note, this cannot be used on string operations since string
4833 * operation using rep will only have the initial GPA from the NPF
4834 * occurred.
4836 if (vcpu->arch.gpa_available &&
4837 emulator_can_use_gpa(ctxt) &&
4838 (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
4839 gpa = vcpu->arch.gpa_val;
4840 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
4841 } else {
4842 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4843 if (ret < 0)
4844 return X86EMUL_PROPAGATE_FAULT;
4847 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
4848 return X86EMUL_CONTINUE;
4851 * Is this MMIO handled locally?
4853 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4854 if (handled == bytes)
4855 return X86EMUL_CONTINUE;
4857 gpa += handled;
4858 bytes -= handled;
4859 val += handled;
4861 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4862 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4863 frag->gpa = gpa;
4864 frag->data = val;
4865 frag->len = bytes;
4866 return X86EMUL_CONTINUE;
4869 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4870 unsigned long addr,
4871 void *val, unsigned int bytes,
4872 struct x86_exception *exception,
4873 const struct read_write_emulator_ops *ops)
4875 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4876 gpa_t gpa;
4877 int rc;
4879 if (ops->read_write_prepare &&
4880 ops->read_write_prepare(vcpu, val, bytes))
4881 return X86EMUL_CONTINUE;
4883 vcpu->mmio_nr_fragments = 0;
4885 /* Crossing a page boundary? */
4886 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4887 int now;
4889 now = -addr & ~PAGE_MASK;
4890 rc = emulator_read_write_onepage(addr, val, now, exception,
4891 vcpu, ops);
4893 if (rc != X86EMUL_CONTINUE)
4894 return rc;
4895 addr += now;
4896 if (ctxt->mode != X86EMUL_MODE_PROT64)
4897 addr = (u32)addr;
4898 val += now;
4899 bytes -= now;
4902 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4903 vcpu, ops);
4904 if (rc != X86EMUL_CONTINUE)
4905 return rc;
4907 if (!vcpu->mmio_nr_fragments)
4908 return rc;
4910 gpa = vcpu->mmio_fragments[0].gpa;
4912 vcpu->mmio_needed = 1;
4913 vcpu->mmio_cur_fragment = 0;
4915 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4916 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4917 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4918 vcpu->run->mmio.phys_addr = gpa;
4920 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4923 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4924 unsigned long addr,
4925 void *val,
4926 unsigned int bytes,
4927 struct x86_exception *exception)
4929 return emulator_read_write(ctxt, addr, val, bytes,
4930 exception, &read_emultor);
4933 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4934 unsigned long addr,
4935 const void *val,
4936 unsigned int bytes,
4937 struct x86_exception *exception)
4939 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4940 exception, &write_emultor);
4943 #define CMPXCHG_TYPE(t, ptr, old, new) \
4944 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4946 #ifdef CONFIG_X86_64
4947 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4948 #else
4949 # define CMPXCHG64(ptr, old, new) \
4950 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4951 #endif
4953 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4954 unsigned long addr,
4955 const void *old,
4956 const void *new,
4957 unsigned int bytes,
4958 struct x86_exception *exception)
4960 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4961 gpa_t gpa;
4962 struct page *page;
4963 char *kaddr;
4964 bool exchanged;
4966 /* guests cmpxchg8b have to be emulated atomically */
4967 if (bytes > 8 || (bytes & (bytes - 1)))
4968 goto emul_write;
4970 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4972 if (gpa == UNMAPPED_GVA ||
4973 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4974 goto emul_write;
4976 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4977 goto emul_write;
4979 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4980 if (is_error_page(page))
4981 goto emul_write;
4983 kaddr = kmap_atomic(page);
4984 kaddr += offset_in_page(gpa);
4985 switch (bytes) {
4986 case 1:
4987 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4988 break;
4989 case 2:
4990 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4991 break;
4992 case 4:
4993 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4994 break;
4995 case 8:
4996 exchanged = CMPXCHG64(kaddr, old, new);
4997 break;
4998 default:
4999 BUG();
5001 kunmap_atomic(kaddr);
5002 kvm_release_page_dirty(page);
5004 if (!exchanged)
5005 return X86EMUL_CMPXCHG_FAILED;
5007 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5008 kvm_page_track_write(vcpu, gpa, new, bytes);
5010 return X86EMUL_CONTINUE;
5012 emul_write:
5013 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5015 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5018 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5020 int r = 0, i;
5022 for (i = 0; i < vcpu->arch.pio.count; i++) {
5023 if (vcpu->arch.pio.in)
5024 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5025 vcpu->arch.pio.size, pd);
5026 else
5027 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5028 vcpu->arch.pio.port, vcpu->arch.pio.size,
5029 pd);
5030 if (r)
5031 break;
5032 pd += vcpu->arch.pio.size;
5034 return r;
5037 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5038 unsigned short port, void *val,
5039 unsigned int count, bool in)
5041 vcpu->arch.pio.port = port;
5042 vcpu->arch.pio.in = in;
5043 vcpu->arch.pio.count = count;
5044 vcpu->arch.pio.size = size;
5046 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5047 vcpu->arch.pio.count = 0;
5048 return 1;
5051 vcpu->run->exit_reason = KVM_EXIT_IO;
5052 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5053 vcpu->run->io.size = size;
5054 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5055 vcpu->run->io.count = count;
5056 vcpu->run->io.port = port;
5058 return 0;
5061 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5062 int size, unsigned short port, void *val,
5063 unsigned int count)
5065 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5066 int ret;
5068 if (vcpu->arch.pio.count)
5069 goto data_avail;
5071 memset(vcpu->arch.pio_data, 0, size * count);
5073 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5074 if (ret) {
5075 data_avail:
5076 memcpy(val, vcpu->arch.pio_data, size * count);
5077 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5078 vcpu->arch.pio.count = 0;
5079 return 1;
5082 return 0;
5085 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5086 int size, unsigned short port,
5087 const void *val, unsigned int count)
5089 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5091 memcpy(vcpu->arch.pio_data, val, size * count);
5092 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5093 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5096 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5098 return kvm_x86_ops->get_segment_base(vcpu, seg);
5101 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5103 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5106 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5108 if (!need_emulate_wbinvd(vcpu))
5109 return X86EMUL_CONTINUE;
5111 if (kvm_x86_ops->has_wbinvd_exit()) {
5112 int cpu = get_cpu();
5114 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5115 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5116 wbinvd_ipi, NULL, 1);
5117 put_cpu();
5118 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5119 } else
5120 wbinvd();
5121 return X86EMUL_CONTINUE;
5124 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5126 kvm_emulate_wbinvd_noskip(vcpu);
5127 return kvm_skip_emulated_instruction(vcpu);
5129 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5133 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5135 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5138 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5139 unsigned long *dest)
5141 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5144 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5145 unsigned long value)
5148 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5151 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5153 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5156 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5158 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5159 unsigned long value;
5161 switch (cr) {
5162 case 0:
5163 value = kvm_read_cr0(vcpu);
5164 break;
5165 case 2:
5166 value = vcpu->arch.cr2;
5167 break;
5168 case 3:
5169 value = kvm_read_cr3(vcpu);
5170 break;
5171 case 4:
5172 value = kvm_read_cr4(vcpu);
5173 break;
5174 case 8:
5175 value = kvm_get_cr8(vcpu);
5176 break;
5177 default:
5178 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5179 return 0;
5182 return value;
5185 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5187 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5188 int res = 0;
5190 switch (cr) {
5191 case 0:
5192 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5193 break;
5194 case 2:
5195 vcpu->arch.cr2 = val;
5196 break;
5197 case 3:
5198 res = kvm_set_cr3(vcpu, val);
5199 break;
5200 case 4:
5201 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5202 break;
5203 case 8:
5204 res = kvm_set_cr8(vcpu, val);
5205 break;
5206 default:
5207 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5208 res = -1;
5211 return res;
5214 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5216 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5219 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5221 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5224 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5226 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5229 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5231 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5234 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5236 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5239 static unsigned long emulator_get_cached_segment_base(
5240 struct x86_emulate_ctxt *ctxt, int seg)
5242 return get_segment_base(emul_to_vcpu(ctxt), seg);
5245 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5246 struct desc_struct *desc, u32 *base3,
5247 int seg)
5249 struct kvm_segment var;
5251 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5252 *selector = var.selector;
5254 if (var.unusable) {
5255 memset(desc, 0, sizeof(*desc));
5256 if (base3)
5257 *base3 = 0;
5258 return false;
5261 if (var.g)
5262 var.limit >>= 12;
5263 set_desc_limit(desc, var.limit);
5264 set_desc_base(desc, (unsigned long)var.base);
5265 #ifdef CONFIG_X86_64
5266 if (base3)
5267 *base3 = var.base >> 32;
5268 #endif
5269 desc->type = var.type;
5270 desc->s = var.s;
5271 desc->dpl = var.dpl;
5272 desc->p = var.present;
5273 desc->avl = var.avl;
5274 desc->l = var.l;
5275 desc->d = var.db;
5276 desc->g = var.g;
5278 return true;
5281 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5282 struct desc_struct *desc, u32 base3,
5283 int seg)
5285 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5286 struct kvm_segment var;
5288 var.selector = selector;
5289 var.base = get_desc_base(desc);
5290 #ifdef CONFIG_X86_64
5291 var.base |= ((u64)base3) << 32;
5292 #endif
5293 var.limit = get_desc_limit(desc);
5294 if (desc->g)
5295 var.limit = (var.limit << 12) | 0xfff;
5296 var.type = desc->type;
5297 var.dpl = desc->dpl;
5298 var.db = desc->d;
5299 var.s = desc->s;
5300 var.l = desc->l;
5301 var.g = desc->g;
5302 var.avl = desc->avl;
5303 var.present = desc->p;
5304 var.unusable = !var.present;
5305 var.padding = 0;
5307 kvm_set_segment(vcpu, &var, seg);
5308 return;
5311 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5312 u32 msr_index, u64 *pdata)
5314 struct msr_data msr;
5315 int r;
5317 msr.index = msr_index;
5318 msr.host_initiated = false;
5319 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5320 if (r)
5321 return r;
5323 *pdata = msr.data;
5324 return 0;
5327 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5328 u32 msr_index, u64 data)
5330 struct msr_data msr;
5332 msr.data = data;
5333 msr.index = msr_index;
5334 msr.host_initiated = false;
5335 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5338 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5340 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5342 return vcpu->arch.smbase;
5345 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5347 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5349 vcpu->arch.smbase = smbase;
5352 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5353 u32 pmc)
5355 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5358 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5359 u32 pmc, u64 *pdata)
5361 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5364 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5366 emul_to_vcpu(ctxt)->arch.halt_request = 1;
5369 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5370 struct x86_instruction_info *info,
5371 enum x86_intercept_stage stage)
5373 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5376 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5377 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5379 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5382 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5384 return kvm_register_read(emul_to_vcpu(ctxt), reg);
5387 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5389 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5392 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5394 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5397 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5399 return emul_to_vcpu(ctxt)->arch.hflags;
5402 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5404 kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5407 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5409 return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5412 static const struct x86_emulate_ops emulate_ops = {
5413 .read_gpr = emulator_read_gpr,
5414 .write_gpr = emulator_write_gpr,
5415 .read_std = kvm_read_guest_virt_system,
5416 .write_std = kvm_write_guest_virt_system,
5417 .read_phys = kvm_read_guest_phys_system,
5418 .fetch = kvm_fetch_guest_virt,
5419 .read_emulated = emulator_read_emulated,
5420 .write_emulated = emulator_write_emulated,
5421 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5422 .invlpg = emulator_invlpg,
5423 .pio_in_emulated = emulator_pio_in_emulated,
5424 .pio_out_emulated = emulator_pio_out_emulated,
5425 .get_segment = emulator_get_segment,
5426 .set_segment = emulator_set_segment,
5427 .get_cached_segment_base = emulator_get_cached_segment_base,
5428 .get_gdt = emulator_get_gdt,
5429 .get_idt = emulator_get_idt,
5430 .set_gdt = emulator_set_gdt,
5431 .set_idt = emulator_set_idt,
5432 .get_cr = emulator_get_cr,
5433 .set_cr = emulator_set_cr,
5434 .cpl = emulator_get_cpl,
5435 .get_dr = emulator_get_dr,
5436 .set_dr = emulator_set_dr,
5437 .get_smbase = emulator_get_smbase,
5438 .set_smbase = emulator_set_smbase,
5439 .set_msr = emulator_set_msr,
5440 .get_msr = emulator_get_msr,
5441 .check_pmc = emulator_check_pmc,
5442 .read_pmc = emulator_read_pmc,
5443 .halt = emulator_halt,
5444 .wbinvd = emulator_wbinvd,
5445 .fix_hypercall = emulator_fix_hypercall,
5446 .intercept = emulator_intercept,
5447 .get_cpuid = emulator_get_cpuid,
5448 .set_nmi_mask = emulator_set_nmi_mask,
5449 .get_hflags = emulator_get_hflags,
5450 .set_hflags = emulator_set_hflags,
5451 .pre_leave_smm = emulator_pre_leave_smm,
5454 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5456 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5458 * an sti; sti; sequence only disable interrupts for the first
5459 * instruction. So, if the last instruction, be it emulated or
5460 * not, left the system with the INT_STI flag enabled, it
5461 * means that the last instruction is an sti. We should not
5462 * leave the flag on in this case. The same goes for mov ss
5464 if (int_shadow & mask)
5465 mask = 0;
5466 if (unlikely(int_shadow || mask)) {
5467 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5468 if (!mask)
5469 kvm_make_request(KVM_REQ_EVENT, vcpu);
5473 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5475 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5476 if (ctxt->exception.vector == PF_VECTOR)
5477 return kvm_propagate_fault(vcpu, &ctxt->exception);
5479 if (ctxt->exception.error_code_valid)
5480 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5481 ctxt->exception.error_code);
5482 else
5483 kvm_queue_exception(vcpu, ctxt->exception.vector);
5484 return false;
5487 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5489 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5490 int cs_db, cs_l;
5492 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5494 ctxt->eflags = kvm_get_rflags(vcpu);
5495 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5497 ctxt->eip = kvm_rip_read(vcpu);
5498 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5499 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5500 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5501 cs_db ? X86EMUL_MODE_PROT32 :
5502 X86EMUL_MODE_PROT16;
5503 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5504 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5505 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5507 init_decode_cache(ctxt);
5508 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5511 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5513 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5514 int ret;
5516 init_emulate_ctxt(vcpu);
5518 ctxt->op_bytes = 2;
5519 ctxt->ad_bytes = 2;
5520 ctxt->_eip = ctxt->eip + inc_eip;
5521 ret = emulate_int_real(ctxt, irq);
5523 if (ret != X86EMUL_CONTINUE)
5524 return EMULATE_FAIL;
5526 ctxt->eip = ctxt->_eip;
5527 kvm_rip_write(vcpu, ctxt->eip);
5528 kvm_set_rflags(vcpu, ctxt->eflags);
5530 if (irq == NMI_VECTOR)
5531 vcpu->arch.nmi_pending = 0;
5532 else
5533 vcpu->arch.interrupt.pending = false;
5535 return EMULATE_DONE;
5537 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5539 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5541 int r = EMULATE_DONE;
5543 ++vcpu->stat.insn_emulation_fail;
5544 trace_kvm_emulate_insn_failed(vcpu);
5545 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5546 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5547 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5548 vcpu->run->internal.ndata = 0;
5549 r = EMULATE_USER_EXIT;
5551 kvm_queue_exception(vcpu, UD_VECTOR);
5553 return r;
5556 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5557 bool write_fault_to_shadow_pgtable,
5558 int emulation_type)
5560 gpa_t gpa = cr2;
5561 kvm_pfn_t pfn;
5563 if (emulation_type & EMULTYPE_NO_REEXECUTE)
5564 return false;
5566 if (!vcpu->arch.mmu.direct_map) {
5568 * Write permission should be allowed since only
5569 * write access need to be emulated.
5571 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5574 * If the mapping is invalid in guest, let cpu retry
5575 * it to generate fault.
5577 if (gpa == UNMAPPED_GVA)
5578 return true;
5582 * Do not retry the unhandleable instruction if it faults on the
5583 * readonly host memory, otherwise it will goto a infinite loop:
5584 * retry instruction -> write #PF -> emulation fail -> retry
5585 * instruction -> ...
5587 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5590 * If the instruction failed on the error pfn, it can not be fixed,
5591 * report the error to userspace.
5593 if (is_error_noslot_pfn(pfn))
5594 return false;
5596 kvm_release_pfn_clean(pfn);
5598 /* The instructions are well-emulated on direct mmu. */
5599 if (vcpu->arch.mmu.direct_map) {
5600 unsigned int indirect_shadow_pages;
5602 spin_lock(&vcpu->kvm->mmu_lock);
5603 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5604 spin_unlock(&vcpu->kvm->mmu_lock);
5606 if (indirect_shadow_pages)
5607 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5609 return true;
5613 * if emulation was due to access to shadowed page table
5614 * and it failed try to unshadow page and re-enter the
5615 * guest to let CPU execute the instruction.
5617 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5620 * If the access faults on its page table, it can not
5621 * be fixed by unprotecting shadow page and it should
5622 * be reported to userspace.
5624 return !write_fault_to_shadow_pgtable;
5627 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5628 unsigned long cr2, int emulation_type)
5630 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5631 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5633 last_retry_eip = vcpu->arch.last_retry_eip;
5634 last_retry_addr = vcpu->arch.last_retry_addr;
5637 * If the emulation is caused by #PF and it is non-page_table
5638 * writing instruction, it means the VM-EXIT is caused by shadow
5639 * page protected, we can zap the shadow page and retry this
5640 * instruction directly.
5642 * Note: if the guest uses a non-page-table modifying instruction
5643 * on the PDE that points to the instruction, then we will unmap
5644 * the instruction and go to an infinite loop. So, we cache the
5645 * last retried eip and the last fault address, if we meet the eip
5646 * and the address again, we can break out of the potential infinite
5647 * loop.
5649 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5651 if (!(emulation_type & EMULTYPE_RETRY))
5652 return false;
5654 if (x86_page_table_writing_insn(ctxt))
5655 return false;
5657 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5658 return false;
5660 vcpu->arch.last_retry_eip = ctxt->eip;
5661 vcpu->arch.last_retry_addr = cr2;
5663 if (!vcpu->arch.mmu.direct_map)
5664 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5666 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5668 return true;
5671 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5672 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5674 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5676 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5677 /* This is a good place to trace that we are exiting SMM. */
5678 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5680 /* Process a latched INIT or SMI, if any. */
5681 kvm_make_request(KVM_REQ_EVENT, vcpu);
5684 kvm_mmu_reset_context(vcpu);
5687 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5689 unsigned changed = vcpu->arch.hflags ^ emul_flags;
5691 vcpu->arch.hflags = emul_flags;
5693 if (changed & HF_SMM_MASK)
5694 kvm_smm_changed(vcpu);
5697 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5698 unsigned long *db)
5700 u32 dr6 = 0;
5701 int i;
5702 u32 enable, rwlen;
5704 enable = dr7;
5705 rwlen = dr7 >> 16;
5706 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5707 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5708 dr6 |= (1 << i);
5709 return dr6;
5712 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5714 struct kvm_run *kvm_run = vcpu->run;
5716 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5717 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5718 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5719 kvm_run->debug.arch.exception = DB_VECTOR;
5720 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5721 *r = EMULATE_USER_EXIT;
5722 } else {
5724 * "Certain debug exceptions may clear bit 0-3. The
5725 * remaining contents of the DR6 register are never
5726 * cleared by the processor".
5728 vcpu->arch.dr6 &= ~15;
5729 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5730 kvm_queue_exception(vcpu, DB_VECTOR);
5734 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5736 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5737 int r = EMULATE_DONE;
5739 kvm_x86_ops->skip_emulated_instruction(vcpu);
5742 * rflags is the old, "raw" value of the flags. The new value has
5743 * not been saved yet.
5745 * This is correct even for TF set by the guest, because "the
5746 * processor will not generate this exception after the instruction
5747 * that sets the TF flag".
5749 if (unlikely(rflags & X86_EFLAGS_TF))
5750 kvm_vcpu_do_singlestep(vcpu, &r);
5751 return r == EMULATE_DONE;
5753 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5755 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5757 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5758 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5759 struct kvm_run *kvm_run = vcpu->run;
5760 unsigned long eip = kvm_get_linear_rip(vcpu);
5761 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5762 vcpu->arch.guest_debug_dr7,
5763 vcpu->arch.eff_db);
5765 if (dr6 != 0) {
5766 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5767 kvm_run->debug.arch.pc = eip;
5768 kvm_run->debug.arch.exception = DB_VECTOR;
5769 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5770 *r = EMULATE_USER_EXIT;
5771 return true;
5775 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5776 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5777 unsigned long eip = kvm_get_linear_rip(vcpu);
5778 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5779 vcpu->arch.dr7,
5780 vcpu->arch.db);
5782 if (dr6 != 0) {
5783 vcpu->arch.dr6 &= ~15;
5784 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5785 kvm_queue_exception(vcpu, DB_VECTOR);
5786 *r = EMULATE_DONE;
5787 return true;
5791 return false;
5794 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5795 unsigned long cr2,
5796 int emulation_type,
5797 void *insn,
5798 int insn_len)
5800 int r;
5801 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5802 bool writeback = true;
5803 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5806 * Clear write_fault_to_shadow_pgtable here to ensure it is
5807 * never reused.
5809 vcpu->arch.write_fault_to_shadow_pgtable = false;
5810 kvm_clear_exception_queue(vcpu);
5812 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5813 init_emulate_ctxt(vcpu);
5816 * We will reenter on the same instruction since
5817 * we do not set complete_userspace_io. This does not
5818 * handle watchpoints yet, those would be handled in
5819 * the emulate_ops.
5821 if (!(emulation_type & EMULTYPE_SKIP) &&
5822 kvm_vcpu_check_breakpoint(vcpu, &r))
5823 return r;
5825 ctxt->interruptibility = 0;
5826 ctxt->have_exception = false;
5827 ctxt->exception.vector = -1;
5828 ctxt->perm_ok = false;
5830 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5832 r = x86_decode_insn(ctxt, insn, insn_len);
5834 trace_kvm_emulate_insn_start(vcpu);
5835 ++vcpu->stat.insn_emulation;
5836 if (r != EMULATION_OK) {
5837 if (emulation_type & EMULTYPE_TRAP_UD)
5838 return EMULATE_FAIL;
5839 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5840 emulation_type))
5841 return EMULATE_DONE;
5842 if (ctxt->have_exception && inject_emulated_exception(vcpu))
5843 return EMULATE_DONE;
5844 if (emulation_type & EMULTYPE_SKIP)
5845 return EMULATE_FAIL;
5846 return handle_emulation_failure(vcpu);
5850 if (emulation_type & EMULTYPE_SKIP) {
5851 kvm_rip_write(vcpu, ctxt->_eip);
5852 if (ctxt->eflags & X86_EFLAGS_RF)
5853 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5854 return EMULATE_DONE;
5857 if (retry_instruction(ctxt, cr2, emulation_type))
5858 return EMULATE_DONE;
5860 /* this is needed for vmware backdoor interface to work since it
5861 changes registers values during IO operation */
5862 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5863 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5864 emulator_invalidate_register_cache(ctxt);
5867 restart:
5868 /* Save the faulting GPA (cr2) in the address field */
5869 ctxt->exception.address = cr2;
5871 r = x86_emulate_insn(ctxt);
5873 if (r == EMULATION_INTERCEPTED)
5874 return EMULATE_DONE;
5876 if (r == EMULATION_FAILED) {
5877 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5878 emulation_type))
5879 return EMULATE_DONE;
5881 return handle_emulation_failure(vcpu);
5884 if (ctxt->have_exception) {
5885 r = EMULATE_DONE;
5886 if (inject_emulated_exception(vcpu))
5887 return r;
5888 } else if (vcpu->arch.pio.count) {
5889 if (!vcpu->arch.pio.in) {
5890 /* FIXME: return into emulator if single-stepping. */
5891 vcpu->arch.pio.count = 0;
5892 } else {
5893 writeback = false;
5894 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5896 r = EMULATE_USER_EXIT;
5897 } else if (vcpu->mmio_needed) {
5898 if (!vcpu->mmio_is_write)
5899 writeback = false;
5900 r = EMULATE_USER_EXIT;
5901 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5902 } else if (r == EMULATION_RESTART)
5903 goto restart;
5904 else
5905 r = EMULATE_DONE;
5907 if (writeback) {
5908 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5909 toggle_interruptibility(vcpu, ctxt->interruptibility);
5910 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5911 kvm_rip_write(vcpu, ctxt->eip);
5912 if (r == EMULATE_DONE &&
5913 (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
5914 kvm_vcpu_do_singlestep(vcpu, &r);
5915 if (!ctxt->have_exception ||
5916 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5917 __kvm_set_rflags(vcpu, ctxt->eflags);
5920 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5921 * do nothing, and it will be requested again as soon as
5922 * the shadow expires. But we still need to check here,
5923 * because POPF has no interrupt shadow.
5925 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5926 kvm_make_request(KVM_REQ_EVENT, vcpu);
5927 } else
5928 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5930 return r;
5932 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5934 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5936 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5937 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5938 size, port, &val, 1);
5939 /* do not return to emulator after return from userspace */
5940 vcpu->arch.pio.count = 0;
5941 return ret;
5943 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5945 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5947 unsigned long val;
5949 /* We should only ever be called with arch.pio.count equal to 1 */
5950 BUG_ON(vcpu->arch.pio.count != 1);
5952 /* For size less than 4 we merge, else we zero extend */
5953 val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5954 : 0;
5957 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5958 * the copy and tracing
5960 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5961 vcpu->arch.pio.port, &val, 1);
5962 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5964 return 1;
5967 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5969 unsigned long val;
5970 int ret;
5972 /* For size less than 4 we merge, else we zero extend */
5973 val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5975 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5976 &val, 1);
5977 if (ret) {
5978 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5979 return ret;
5982 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5984 return 0;
5986 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5988 static int kvmclock_cpu_down_prep(unsigned int cpu)
5990 __this_cpu_write(cpu_tsc_khz, 0);
5991 return 0;
5994 static void tsc_khz_changed(void *data)
5996 struct cpufreq_freqs *freq = data;
5997 unsigned long khz = 0;
5999 if (data)
6000 khz = freq->new;
6001 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6002 khz = cpufreq_quick_get(raw_smp_processor_id());
6003 if (!khz)
6004 khz = tsc_khz;
6005 __this_cpu_write(cpu_tsc_khz, khz);
6008 #ifdef CONFIG_X86_64
6009 static void kvm_hyperv_tsc_notifier(void)
6011 struct kvm *kvm;
6012 struct kvm_vcpu *vcpu;
6013 int cpu;
6015 spin_lock(&kvm_lock);
6016 list_for_each_entry(kvm, &vm_list, vm_list)
6017 kvm_make_mclock_inprogress_request(kvm);
6019 hyperv_stop_tsc_emulation();
6021 /* TSC frequency always matches when on Hyper-V */
6022 for_each_present_cpu(cpu)
6023 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6024 kvm_max_guest_tsc_khz = tsc_khz;
6026 list_for_each_entry(kvm, &vm_list, vm_list) {
6027 struct kvm_arch *ka = &kvm->arch;
6029 spin_lock(&ka->pvclock_gtod_sync_lock);
6031 pvclock_update_vm_gtod_copy(kvm);
6033 kvm_for_each_vcpu(cpu, vcpu, kvm)
6034 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6036 kvm_for_each_vcpu(cpu, vcpu, kvm)
6037 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6039 spin_unlock(&ka->pvclock_gtod_sync_lock);
6041 spin_unlock(&kvm_lock);
6043 #endif
6045 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6046 void *data)
6048 struct cpufreq_freqs *freq = data;
6049 struct kvm *kvm;
6050 struct kvm_vcpu *vcpu;
6051 int i, send_ipi = 0;
6054 * We allow guests to temporarily run on slowing clocks,
6055 * provided we notify them after, or to run on accelerating
6056 * clocks, provided we notify them before. Thus time never
6057 * goes backwards.
6059 * However, we have a problem. We can't atomically update
6060 * the frequency of a given CPU from this function; it is
6061 * merely a notifier, which can be called from any CPU.
6062 * Changing the TSC frequency at arbitrary points in time
6063 * requires a recomputation of local variables related to
6064 * the TSC for each VCPU. We must flag these local variables
6065 * to be updated and be sure the update takes place with the
6066 * new frequency before any guests proceed.
6068 * Unfortunately, the combination of hotplug CPU and frequency
6069 * change creates an intractable locking scenario; the order
6070 * of when these callouts happen is undefined with respect to
6071 * CPU hotplug, and they can race with each other. As such,
6072 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6073 * undefined; you can actually have a CPU frequency change take
6074 * place in between the computation of X and the setting of the
6075 * variable. To protect against this problem, all updates of
6076 * the per_cpu tsc_khz variable are done in an interrupt
6077 * protected IPI, and all callers wishing to update the value
6078 * must wait for a synchronous IPI to complete (which is trivial
6079 * if the caller is on the CPU already). This establishes the
6080 * necessary total order on variable updates.
6082 * Note that because a guest time update may take place
6083 * anytime after the setting of the VCPU's request bit, the
6084 * correct TSC value must be set before the request. However,
6085 * to ensure the update actually makes it to any guest which
6086 * starts running in hardware virtualization between the set
6087 * and the acquisition of the spinlock, we must also ping the
6088 * CPU after setting the request bit.
6092 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6093 return 0;
6094 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6095 return 0;
6097 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6099 spin_lock(&kvm_lock);
6100 list_for_each_entry(kvm, &vm_list, vm_list) {
6101 kvm_for_each_vcpu(i, vcpu, kvm) {
6102 if (vcpu->cpu != freq->cpu)
6103 continue;
6104 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6105 if (vcpu->cpu != smp_processor_id())
6106 send_ipi = 1;
6109 spin_unlock(&kvm_lock);
6111 if (freq->old < freq->new && send_ipi) {
6113 * We upscale the frequency. Must make the guest
6114 * doesn't see old kvmclock values while running with
6115 * the new frequency, otherwise we risk the guest sees
6116 * time go backwards.
6118 * In case we update the frequency for another cpu
6119 * (which might be in guest context) send an interrupt
6120 * to kick the cpu out of guest context. Next time
6121 * guest context is entered kvmclock will be updated,
6122 * so the guest will not see stale values.
6124 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6126 return 0;
6129 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6130 .notifier_call = kvmclock_cpufreq_notifier
6133 static int kvmclock_cpu_online(unsigned int cpu)
6135 tsc_khz_changed(NULL);
6136 return 0;
6139 static void kvm_timer_init(void)
6141 max_tsc_khz = tsc_khz;
6143 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6144 #ifdef CONFIG_CPU_FREQ
6145 struct cpufreq_policy policy;
6146 int cpu;
6148 memset(&policy, 0, sizeof(policy));
6149 cpu = get_cpu();
6150 cpufreq_get_policy(&policy, cpu);
6151 if (policy.cpuinfo.max_freq)
6152 max_tsc_khz = policy.cpuinfo.max_freq;
6153 put_cpu();
6154 #endif
6155 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6156 CPUFREQ_TRANSITION_NOTIFIER);
6158 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6160 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6161 kvmclock_cpu_online, kvmclock_cpu_down_prep);
6164 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6166 int kvm_is_in_guest(void)
6168 return __this_cpu_read(current_vcpu) != NULL;
6171 static int kvm_is_user_mode(void)
6173 int user_mode = 3;
6175 if (__this_cpu_read(current_vcpu))
6176 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6178 return user_mode != 0;
6181 static unsigned long kvm_get_guest_ip(void)
6183 unsigned long ip = 0;
6185 if (__this_cpu_read(current_vcpu))
6186 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6188 return ip;
6191 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6192 .is_in_guest = kvm_is_in_guest,
6193 .is_user_mode = kvm_is_user_mode,
6194 .get_guest_ip = kvm_get_guest_ip,
6197 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
6199 __this_cpu_write(current_vcpu, vcpu);
6201 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
6203 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
6205 __this_cpu_write(current_vcpu, NULL);
6207 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
6209 static void kvm_set_mmio_spte_mask(void)
6211 u64 mask;
6212 int maxphyaddr = boot_cpu_data.x86_phys_bits;
6215 * Set the reserved bits and the present bit of an paging-structure
6216 * entry to generate page fault with PFER.RSV = 1.
6218 /* Mask the reserved physical address bits. */
6219 mask = rsvd_bits(maxphyaddr, 51);
6221 /* Set the present bit. */
6222 mask |= 1ull;
6224 #ifdef CONFIG_X86_64
6226 * If reserved bit is not supported, clear the present bit to disable
6227 * mmio page fault.
6229 if (maxphyaddr == 52)
6230 mask &= ~1ull;
6231 #endif
6233 kvm_mmu_set_mmio_spte_mask(mask, mask);
6236 #ifdef CONFIG_X86_64
6237 static void pvclock_gtod_update_fn(struct work_struct *work)
6239 struct kvm *kvm;
6241 struct kvm_vcpu *vcpu;
6242 int i;
6244 spin_lock(&kvm_lock);
6245 list_for_each_entry(kvm, &vm_list, vm_list)
6246 kvm_for_each_vcpu(i, vcpu, kvm)
6247 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6248 atomic_set(&kvm_guest_has_master_clock, 0);
6249 spin_unlock(&kvm_lock);
6252 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6255 * Notification about pvclock gtod data update.
6257 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6258 void *priv)
6260 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6261 struct timekeeper *tk = priv;
6263 update_pvclock_gtod(tk);
6265 /* disable master clock if host does not trust, or does not
6266 * use, TSC based clocksource.
6268 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6269 atomic_read(&kvm_guest_has_master_clock) != 0)
6270 queue_work(system_long_wq, &pvclock_gtod_work);
6272 return 0;
6275 static struct notifier_block pvclock_gtod_notifier = {
6276 .notifier_call = pvclock_gtod_notify,
6278 #endif
6280 int kvm_arch_init(void *opaque)
6282 int r;
6283 struct kvm_x86_ops *ops = opaque;
6285 if (kvm_x86_ops) {
6286 printk(KERN_ERR "kvm: already loaded the other module\n");
6287 r = -EEXIST;
6288 goto out;
6291 if (!ops->cpu_has_kvm_support()) {
6292 printk(KERN_ERR "kvm: no hardware support\n");
6293 r = -EOPNOTSUPP;
6294 goto out;
6296 if (ops->disabled_by_bios()) {
6297 printk(KERN_ERR "kvm: disabled by bios\n");
6298 r = -EOPNOTSUPP;
6299 goto out;
6302 r = -ENOMEM;
6303 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6304 if (!shared_msrs) {
6305 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6306 goto out;
6309 r = kvm_mmu_module_init();
6310 if (r)
6311 goto out_free_percpu;
6313 kvm_set_mmio_spte_mask();
6315 kvm_x86_ops = ops;
6317 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6318 PT_DIRTY_MASK, PT64_NX_MASK, 0,
6319 PT_PRESENT_MASK, 0, sme_me_mask);
6320 kvm_timer_init();
6322 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6324 if (boot_cpu_has(X86_FEATURE_XSAVE))
6325 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6327 kvm_lapic_init();
6328 #ifdef CONFIG_X86_64
6329 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6331 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6332 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
6333 #endif
6335 return 0;
6337 out_free_percpu:
6338 free_percpu(shared_msrs);
6339 out:
6340 return r;
6343 void kvm_arch_exit(void)
6345 #ifdef CONFIG_X86_64
6346 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6347 clear_hv_tscchange_cb();
6348 #endif
6349 kvm_lapic_exit();
6350 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6352 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6353 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6354 CPUFREQ_TRANSITION_NOTIFIER);
6355 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6356 #ifdef CONFIG_X86_64
6357 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6358 #endif
6359 kvm_x86_ops = NULL;
6360 kvm_mmu_module_exit();
6361 free_percpu(shared_msrs);
6364 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6366 ++vcpu->stat.halt_exits;
6367 if (lapic_in_kernel(vcpu)) {
6368 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6369 return 1;
6370 } else {
6371 vcpu->run->exit_reason = KVM_EXIT_HLT;
6372 return 0;
6375 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6377 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6379 int ret = kvm_skip_emulated_instruction(vcpu);
6381 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6382 * KVM_EXIT_DEBUG here.
6384 return kvm_vcpu_halt(vcpu) && ret;
6386 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6388 #ifdef CONFIG_X86_64
6389 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6390 unsigned long clock_type)
6392 struct kvm_clock_pairing clock_pairing;
6393 struct timespec ts;
6394 u64 cycle;
6395 int ret;
6397 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6398 return -KVM_EOPNOTSUPP;
6400 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6401 return -KVM_EOPNOTSUPP;
6403 clock_pairing.sec = ts.tv_sec;
6404 clock_pairing.nsec = ts.tv_nsec;
6405 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6406 clock_pairing.flags = 0;
6408 ret = 0;
6409 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6410 sizeof(struct kvm_clock_pairing)))
6411 ret = -KVM_EFAULT;
6413 return ret;
6415 #endif
6418 * kvm_pv_kick_cpu_op: Kick a vcpu.
6420 * @apicid - apicid of vcpu to be kicked.
6422 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6424 struct kvm_lapic_irq lapic_irq;
6426 lapic_irq.shorthand = 0;
6427 lapic_irq.dest_mode = 0;
6428 lapic_irq.level = 0;
6429 lapic_irq.dest_id = apicid;
6430 lapic_irq.msi_redir_hint = false;
6432 lapic_irq.delivery_mode = APIC_DM_REMRD;
6433 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6436 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6438 vcpu->arch.apicv_active = false;
6439 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6442 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6444 unsigned long nr, a0, a1, a2, a3, ret;
6445 int op_64_bit, r;
6447 r = kvm_skip_emulated_instruction(vcpu);
6449 if (kvm_hv_hypercall_enabled(vcpu->kvm))
6450 return kvm_hv_hypercall(vcpu);
6452 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6453 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6454 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6455 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6456 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6458 trace_kvm_hypercall(nr, a0, a1, a2, a3);
6460 op_64_bit = is_64_bit_mode(vcpu);
6461 if (!op_64_bit) {
6462 nr &= 0xFFFFFFFF;
6463 a0 &= 0xFFFFFFFF;
6464 a1 &= 0xFFFFFFFF;
6465 a2 &= 0xFFFFFFFF;
6466 a3 &= 0xFFFFFFFF;
6469 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6470 ret = -KVM_EPERM;
6471 goto out;
6474 switch (nr) {
6475 case KVM_HC_VAPIC_POLL_IRQ:
6476 ret = 0;
6477 break;
6478 case KVM_HC_KICK_CPU:
6479 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6480 ret = 0;
6481 break;
6482 #ifdef CONFIG_X86_64
6483 case KVM_HC_CLOCK_PAIRING:
6484 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6485 break;
6486 #endif
6487 default:
6488 ret = -KVM_ENOSYS;
6489 break;
6491 out:
6492 if (!op_64_bit)
6493 ret = (u32)ret;
6494 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6495 ++vcpu->stat.hypercalls;
6496 return r;
6498 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6500 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6502 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6503 char instruction[3];
6504 unsigned long rip = kvm_rip_read(vcpu);
6506 kvm_x86_ops->patch_hypercall(vcpu, instruction);
6508 return emulator_write_emulated(ctxt, rip, instruction, 3,
6509 &ctxt->exception);
6512 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6514 return vcpu->run->request_interrupt_window &&
6515 likely(!pic_in_kernel(vcpu->kvm));
6518 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6520 struct kvm_run *kvm_run = vcpu->run;
6522 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6523 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6524 kvm_run->cr8 = kvm_get_cr8(vcpu);
6525 kvm_run->apic_base = kvm_get_apic_base(vcpu);
6526 kvm_run->ready_for_interrupt_injection =
6527 pic_in_kernel(vcpu->kvm) ||
6528 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6531 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6533 int max_irr, tpr;
6535 if (!kvm_x86_ops->update_cr8_intercept)
6536 return;
6538 if (!lapic_in_kernel(vcpu))
6539 return;
6541 if (vcpu->arch.apicv_active)
6542 return;
6544 if (!vcpu->arch.apic->vapic_addr)
6545 max_irr = kvm_lapic_find_highest_irr(vcpu);
6546 else
6547 max_irr = -1;
6549 if (max_irr != -1)
6550 max_irr >>= 4;
6552 tpr = kvm_lapic_get_cr8(vcpu);
6554 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6557 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6559 int r;
6561 /* try to reinject previous events if any */
6562 if (vcpu->arch.exception.injected) {
6563 kvm_x86_ops->queue_exception(vcpu);
6564 return 0;
6568 * Exceptions must be injected immediately, or the exception
6569 * frame will have the address of the NMI or interrupt handler.
6571 if (!vcpu->arch.exception.pending) {
6572 if (vcpu->arch.nmi_injected) {
6573 kvm_x86_ops->set_nmi(vcpu);
6574 return 0;
6577 if (vcpu->arch.interrupt.pending) {
6578 kvm_x86_ops->set_irq(vcpu);
6579 return 0;
6583 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6584 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6585 if (r != 0)
6586 return r;
6589 /* try to inject new event if pending */
6590 if (vcpu->arch.exception.pending) {
6591 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6592 vcpu->arch.exception.has_error_code,
6593 vcpu->arch.exception.error_code);
6595 vcpu->arch.exception.pending = false;
6596 vcpu->arch.exception.injected = true;
6598 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6599 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6600 X86_EFLAGS_RF);
6602 if (vcpu->arch.exception.nr == DB_VECTOR &&
6603 (vcpu->arch.dr7 & DR7_GD)) {
6604 vcpu->arch.dr7 &= ~DR7_GD;
6605 kvm_update_dr7(vcpu);
6608 kvm_x86_ops->queue_exception(vcpu);
6609 } else if (vcpu->arch.smi_pending && !is_smm(vcpu) && kvm_x86_ops->smi_allowed(vcpu)) {
6610 vcpu->arch.smi_pending = false;
6611 ++vcpu->arch.smi_count;
6612 enter_smm(vcpu);
6613 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6614 --vcpu->arch.nmi_pending;
6615 vcpu->arch.nmi_injected = true;
6616 kvm_x86_ops->set_nmi(vcpu);
6617 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6619 * Because interrupts can be injected asynchronously, we are
6620 * calling check_nested_events again here to avoid a race condition.
6621 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6622 * proposal and current concerns. Perhaps we should be setting
6623 * KVM_REQ_EVENT only on certain events and not unconditionally?
6625 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6626 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6627 if (r != 0)
6628 return r;
6630 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6631 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6632 false);
6633 kvm_x86_ops->set_irq(vcpu);
6637 return 0;
6640 static void process_nmi(struct kvm_vcpu *vcpu)
6642 unsigned limit = 2;
6645 * x86 is limited to one NMI running, and one NMI pending after it.
6646 * If an NMI is already in progress, limit further NMIs to just one.
6647 * Otherwise, allow two (and we'll inject the first one immediately).
6649 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6650 limit = 1;
6652 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6653 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6654 kvm_make_request(KVM_REQ_EVENT, vcpu);
6657 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6659 u32 flags = 0;
6660 flags |= seg->g << 23;
6661 flags |= seg->db << 22;
6662 flags |= seg->l << 21;
6663 flags |= seg->avl << 20;
6664 flags |= seg->present << 15;
6665 flags |= seg->dpl << 13;
6666 flags |= seg->s << 12;
6667 flags |= seg->type << 8;
6668 return flags;
6671 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6673 struct kvm_segment seg;
6674 int offset;
6676 kvm_get_segment(vcpu, &seg, n);
6677 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6679 if (n < 3)
6680 offset = 0x7f84 + n * 12;
6681 else
6682 offset = 0x7f2c + (n - 3) * 12;
6684 put_smstate(u32, buf, offset + 8, seg.base);
6685 put_smstate(u32, buf, offset + 4, seg.limit);
6686 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6689 #ifdef CONFIG_X86_64
6690 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6692 struct kvm_segment seg;
6693 int offset;
6694 u16 flags;
6696 kvm_get_segment(vcpu, &seg, n);
6697 offset = 0x7e00 + n * 16;
6699 flags = enter_smm_get_segment_flags(&seg) >> 8;
6700 put_smstate(u16, buf, offset, seg.selector);
6701 put_smstate(u16, buf, offset + 2, flags);
6702 put_smstate(u32, buf, offset + 4, seg.limit);
6703 put_smstate(u64, buf, offset + 8, seg.base);
6705 #endif
6707 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6709 struct desc_ptr dt;
6710 struct kvm_segment seg;
6711 unsigned long val;
6712 int i;
6714 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6715 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6716 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6717 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6719 for (i = 0; i < 8; i++)
6720 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6722 kvm_get_dr(vcpu, 6, &val);
6723 put_smstate(u32, buf, 0x7fcc, (u32)val);
6724 kvm_get_dr(vcpu, 7, &val);
6725 put_smstate(u32, buf, 0x7fc8, (u32)val);
6727 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6728 put_smstate(u32, buf, 0x7fc4, seg.selector);
6729 put_smstate(u32, buf, 0x7f64, seg.base);
6730 put_smstate(u32, buf, 0x7f60, seg.limit);
6731 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6733 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6734 put_smstate(u32, buf, 0x7fc0, seg.selector);
6735 put_smstate(u32, buf, 0x7f80, seg.base);
6736 put_smstate(u32, buf, 0x7f7c, seg.limit);
6737 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6739 kvm_x86_ops->get_gdt(vcpu, &dt);
6740 put_smstate(u32, buf, 0x7f74, dt.address);
6741 put_smstate(u32, buf, 0x7f70, dt.size);
6743 kvm_x86_ops->get_idt(vcpu, &dt);
6744 put_smstate(u32, buf, 0x7f58, dt.address);
6745 put_smstate(u32, buf, 0x7f54, dt.size);
6747 for (i = 0; i < 6; i++)
6748 enter_smm_save_seg_32(vcpu, buf, i);
6750 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6752 /* revision id */
6753 put_smstate(u32, buf, 0x7efc, 0x00020000);
6754 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6757 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6759 #ifdef CONFIG_X86_64
6760 struct desc_ptr dt;
6761 struct kvm_segment seg;
6762 unsigned long val;
6763 int i;
6765 for (i = 0; i < 16; i++)
6766 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6768 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6769 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6771 kvm_get_dr(vcpu, 6, &val);
6772 put_smstate(u64, buf, 0x7f68, val);
6773 kvm_get_dr(vcpu, 7, &val);
6774 put_smstate(u64, buf, 0x7f60, val);
6776 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6777 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6778 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6780 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6782 /* revision id */
6783 put_smstate(u32, buf, 0x7efc, 0x00020064);
6785 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6787 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6788 put_smstate(u16, buf, 0x7e90, seg.selector);
6789 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6790 put_smstate(u32, buf, 0x7e94, seg.limit);
6791 put_smstate(u64, buf, 0x7e98, seg.base);
6793 kvm_x86_ops->get_idt(vcpu, &dt);
6794 put_smstate(u32, buf, 0x7e84, dt.size);
6795 put_smstate(u64, buf, 0x7e88, dt.address);
6797 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6798 put_smstate(u16, buf, 0x7e70, seg.selector);
6799 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6800 put_smstate(u32, buf, 0x7e74, seg.limit);
6801 put_smstate(u64, buf, 0x7e78, seg.base);
6803 kvm_x86_ops->get_gdt(vcpu, &dt);
6804 put_smstate(u32, buf, 0x7e64, dt.size);
6805 put_smstate(u64, buf, 0x7e68, dt.address);
6807 for (i = 0; i < 6; i++)
6808 enter_smm_save_seg_64(vcpu, buf, i);
6809 #else
6810 WARN_ON_ONCE(1);
6811 #endif
6814 static void enter_smm(struct kvm_vcpu *vcpu)
6816 struct kvm_segment cs, ds;
6817 struct desc_ptr dt;
6818 char buf[512];
6819 u32 cr0;
6821 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6822 memset(buf, 0, 512);
6823 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6824 enter_smm_save_state_64(vcpu, buf);
6825 else
6826 enter_smm_save_state_32(vcpu, buf);
6829 * Give pre_enter_smm() a chance to make ISA-specific changes to the
6830 * vCPU state (e.g. leave guest mode) after we've saved the state into
6831 * the SMM state-save area.
6833 kvm_x86_ops->pre_enter_smm(vcpu, buf);
6835 vcpu->arch.hflags |= HF_SMM_MASK;
6836 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6838 if (kvm_x86_ops->get_nmi_mask(vcpu))
6839 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6840 else
6841 kvm_x86_ops->set_nmi_mask(vcpu, true);
6843 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6844 kvm_rip_write(vcpu, 0x8000);
6846 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6847 kvm_x86_ops->set_cr0(vcpu, cr0);
6848 vcpu->arch.cr0 = cr0;
6850 kvm_x86_ops->set_cr4(vcpu, 0);
6852 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6853 dt.address = dt.size = 0;
6854 kvm_x86_ops->set_idt(vcpu, &dt);
6856 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6858 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6859 cs.base = vcpu->arch.smbase;
6861 ds.selector = 0;
6862 ds.base = 0;
6864 cs.limit = ds.limit = 0xffffffff;
6865 cs.type = ds.type = 0x3;
6866 cs.dpl = ds.dpl = 0;
6867 cs.db = ds.db = 0;
6868 cs.s = ds.s = 1;
6869 cs.l = ds.l = 0;
6870 cs.g = ds.g = 1;
6871 cs.avl = ds.avl = 0;
6872 cs.present = ds.present = 1;
6873 cs.unusable = ds.unusable = 0;
6874 cs.padding = ds.padding = 0;
6876 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6877 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6878 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6879 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6880 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6881 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6883 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6884 kvm_x86_ops->set_efer(vcpu, 0);
6886 kvm_update_cpuid(vcpu);
6887 kvm_mmu_reset_context(vcpu);
6890 static void process_smi(struct kvm_vcpu *vcpu)
6892 vcpu->arch.smi_pending = true;
6893 kvm_make_request(KVM_REQ_EVENT, vcpu);
6896 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6898 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6901 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6903 u64 eoi_exit_bitmap[4];
6905 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6906 return;
6908 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6910 if (irqchip_split(vcpu->kvm))
6911 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6912 else {
6913 if (vcpu->arch.apicv_active)
6914 kvm_x86_ops->sync_pir_to_irr(vcpu);
6915 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6917 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6918 vcpu_to_synic(vcpu)->vec_bitmap, 256);
6919 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6922 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
6923 unsigned long start, unsigned long end)
6925 unsigned long apic_address;
6928 * The physical address of apic access page is stored in the VMCS.
6929 * Update it when it becomes invalid.
6931 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6932 if (start <= apic_address && apic_address < end)
6933 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6936 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6938 struct page *page = NULL;
6940 if (!lapic_in_kernel(vcpu))
6941 return;
6943 if (!kvm_x86_ops->set_apic_access_page_addr)
6944 return;
6946 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6947 if (is_error_page(page))
6948 return;
6949 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6952 * Do not pin apic access page in memory, the MMU notifier
6953 * will call us again if it is migrated or swapped out.
6955 put_page(page);
6957 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6960 * Returns 1 to let vcpu_run() continue the guest execution loop without
6961 * exiting to the userspace. Otherwise, the value will be returned to the
6962 * userspace.
6964 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6966 int r;
6967 bool req_int_win =
6968 dm_request_for_irq_injection(vcpu) &&
6969 kvm_cpu_accept_dm_intr(vcpu);
6971 bool req_immediate_exit = false;
6973 if (kvm_request_pending(vcpu)) {
6974 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6975 kvm_mmu_unload(vcpu);
6976 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6977 __kvm_migrate_timers(vcpu);
6978 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6979 kvm_gen_update_masterclock(vcpu->kvm);
6980 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6981 kvm_gen_kvmclock_update(vcpu);
6982 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6983 r = kvm_guest_time_update(vcpu);
6984 if (unlikely(r))
6985 goto out;
6987 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6988 kvm_mmu_sync_roots(vcpu);
6989 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6990 kvm_vcpu_flush_tlb(vcpu, true);
6991 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6992 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6993 r = 0;
6994 goto out;
6996 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6997 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6998 vcpu->mmio_needed = 0;
6999 r = 0;
7000 goto out;
7002 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7003 /* Page is swapped out. Do synthetic halt */
7004 vcpu->arch.apf.halted = true;
7005 r = 1;
7006 goto out;
7008 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7009 record_steal_time(vcpu);
7010 if (kvm_check_request(KVM_REQ_SMI, vcpu))
7011 process_smi(vcpu);
7012 if (kvm_check_request(KVM_REQ_NMI, vcpu))
7013 process_nmi(vcpu);
7014 if (kvm_check_request(KVM_REQ_PMU, vcpu))
7015 kvm_pmu_handle_event(vcpu);
7016 if (kvm_check_request(KVM_REQ_PMI, vcpu))
7017 kvm_pmu_deliver_pmi(vcpu);
7018 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7019 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7020 if (test_bit(vcpu->arch.pending_ioapic_eoi,
7021 vcpu->arch.ioapic_handled_vectors)) {
7022 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7023 vcpu->run->eoi.vector =
7024 vcpu->arch.pending_ioapic_eoi;
7025 r = 0;
7026 goto out;
7029 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7030 vcpu_scan_ioapic(vcpu);
7031 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7032 kvm_vcpu_reload_apic_access_page(vcpu);
7033 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7034 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7035 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7036 r = 0;
7037 goto out;
7039 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7040 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7041 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7042 r = 0;
7043 goto out;
7045 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7046 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7047 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7048 r = 0;
7049 goto out;
7053 * KVM_REQ_HV_STIMER has to be processed after
7054 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7055 * depend on the guest clock being up-to-date
7057 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7058 kvm_hv_process_stimers(vcpu);
7061 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7062 ++vcpu->stat.req_event;
7063 kvm_apic_accept_events(vcpu);
7064 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7065 r = 1;
7066 goto out;
7069 if (inject_pending_event(vcpu, req_int_win) != 0)
7070 req_immediate_exit = true;
7071 else {
7072 /* Enable SMI/NMI/IRQ window open exits if needed.
7074 * SMIs have three cases:
7075 * 1) They can be nested, and then there is nothing to
7076 * do here because RSM will cause a vmexit anyway.
7077 * 2) There is an ISA-specific reason why SMI cannot be
7078 * injected, and the moment when this changes can be
7079 * intercepted.
7080 * 3) Or the SMI can be pending because
7081 * inject_pending_event has completed the injection
7082 * of an IRQ or NMI from the previous vmexit, and
7083 * then we request an immediate exit to inject the
7084 * SMI.
7086 if (vcpu->arch.smi_pending && !is_smm(vcpu))
7087 if (!kvm_x86_ops->enable_smi_window(vcpu))
7088 req_immediate_exit = true;
7089 if (vcpu->arch.nmi_pending)
7090 kvm_x86_ops->enable_nmi_window(vcpu);
7091 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7092 kvm_x86_ops->enable_irq_window(vcpu);
7093 WARN_ON(vcpu->arch.exception.pending);
7096 if (kvm_lapic_enabled(vcpu)) {
7097 update_cr8_intercept(vcpu);
7098 kvm_lapic_sync_to_vapic(vcpu);
7102 r = kvm_mmu_reload(vcpu);
7103 if (unlikely(r)) {
7104 goto cancel_injection;
7107 preempt_disable();
7109 kvm_x86_ops->prepare_guest_switch(vcpu);
7112 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
7113 * IPI are then delayed after guest entry, which ensures that they
7114 * result in virtual interrupt delivery.
7116 local_irq_disable();
7117 vcpu->mode = IN_GUEST_MODE;
7119 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7122 * 1) We should set ->mode before checking ->requests. Please see
7123 * the comment in kvm_vcpu_exiting_guest_mode().
7125 * 2) For APICv, we should set ->mode before checking PIR.ON. This
7126 * pairs with the memory barrier implicit in pi_test_and_set_on
7127 * (see vmx_deliver_posted_interrupt).
7129 * 3) This also orders the write to mode from any reads to the page
7130 * tables done while the VCPU is running. Please see the comment
7131 * in kvm_flush_remote_tlbs.
7133 smp_mb__after_srcu_read_unlock();
7136 * This handles the case where a posted interrupt was
7137 * notified with kvm_vcpu_kick.
7139 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7140 kvm_x86_ops->sync_pir_to_irr(vcpu);
7142 if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7143 || need_resched() || signal_pending(current)) {
7144 vcpu->mode = OUTSIDE_GUEST_MODE;
7145 smp_wmb();
7146 local_irq_enable();
7147 preempt_enable();
7148 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7149 r = 1;
7150 goto cancel_injection;
7153 kvm_load_guest_xcr0(vcpu);
7155 if (req_immediate_exit) {
7156 kvm_make_request(KVM_REQ_EVENT, vcpu);
7157 smp_send_reschedule(vcpu->cpu);
7160 trace_kvm_entry(vcpu->vcpu_id);
7161 if (lapic_timer_advance_ns)
7162 wait_lapic_expire(vcpu);
7163 guest_enter_irqoff();
7165 if (unlikely(vcpu->arch.switch_db_regs)) {
7166 set_debugreg(0, 7);
7167 set_debugreg(vcpu->arch.eff_db[0], 0);
7168 set_debugreg(vcpu->arch.eff_db[1], 1);
7169 set_debugreg(vcpu->arch.eff_db[2], 2);
7170 set_debugreg(vcpu->arch.eff_db[3], 3);
7171 set_debugreg(vcpu->arch.dr6, 6);
7172 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7175 kvm_x86_ops->run(vcpu);
7178 * Do this here before restoring debug registers on the host. And
7179 * since we do this before handling the vmexit, a DR access vmexit
7180 * can (a) read the correct value of the debug registers, (b) set
7181 * KVM_DEBUGREG_WONT_EXIT again.
7183 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7184 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7185 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7186 kvm_update_dr0123(vcpu);
7187 kvm_update_dr6(vcpu);
7188 kvm_update_dr7(vcpu);
7189 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7193 * If the guest has used debug registers, at least dr7
7194 * will be disabled while returning to the host.
7195 * If we don't have active breakpoints in the host, we don't
7196 * care about the messed up debug address registers. But if
7197 * we have some of them active, restore the old state.
7199 if (hw_breakpoint_active())
7200 hw_breakpoint_restore();
7202 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7204 vcpu->mode = OUTSIDE_GUEST_MODE;
7205 smp_wmb();
7207 kvm_put_guest_xcr0(vcpu);
7209 kvm_x86_ops->handle_external_intr(vcpu);
7211 ++vcpu->stat.exits;
7213 guest_exit_irqoff();
7215 local_irq_enable();
7216 preempt_enable();
7218 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7221 * Profile KVM exit RIPs:
7223 if (unlikely(prof_on == KVM_PROFILING)) {
7224 unsigned long rip = kvm_rip_read(vcpu);
7225 profile_hit(KVM_PROFILING, (void *)rip);
7228 if (unlikely(vcpu->arch.tsc_always_catchup))
7229 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7231 if (vcpu->arch.apic_attention)
7232 kvm_lapic_sync_from_vapic(vcpu);
7234 vcpu->arch.gpa_available = false;
7235 r = kvm_x86_ops->handle_exit(vcpu);
7236 return r;
7238 cancel_injection:
7239 kvm_x86_ops->cancel_injection(vcpu);
7240 if (unlikely(vcpu->arch.apic_attention))
7241 kvm_lapic_sync_from_vapic(vcpu);
7242 out:
7243 return r;
7246 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7248 if (!kvm_arch_vcpu_runnable(vcpu) &&
7249 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7250 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7251 kvm_vcpu_block(vcpu);
7252 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7254 if (kvm_x86_ops->post_block)
7255 kvm_x86_ops->post_block(vcpu);
7257 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7258 return 1;
7261 kvm_apic_accept_events(vcpu);
7262 switch(vcpu->arch.mp_state) {
7263 case KVM_MP_STATE_HALTED:
7264 vcpu->arch.pv.pv_unhalted = false;
7265 vcpu->arch.mp_state =
7266 KVM_MP_STATE_RUNNABLE;
7267 case KVM_MP_STATE_RUNNABLE:
7268 vcpu->arch.apf.halted = false;
7269 break;
7270 case KVM_MP_STATE_INIT_RECEIVED:
7271 break;
7272 default:
7273 return -EINTR;
7274 break;
7276 return 1;
7279 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7281 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7282 kvm_x86_ops->check_nested_events(vcpu, false);
7284 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7285 !vcpu->arch.apf.halted);
7288 static int vcpu_run(struct kvm_vcpu *vcpu)
7290 int r;
7291 struct kvm *kvm = vcpu->kvm;
7293 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7295 for (;;) {
7296 if (kvm_vcpu_running(vcpu)) {
7297 r = vcpu_enter_guest(vcpu);
7298 } else {
7299 r = vcpu_block(kvm, vcpu);
7302 if (r <= 0)
7303 break;
7305 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7306 if (kvm_cpu_has_pending_timer(vcpu))
7307 kvm_inject_pending_timer_irqs(vcpu);
7309 if (dm_request_for_irq_injection(vcpu) &&
7310 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7311 r = 0;
7312 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7313 ++vcpu->stat.request_irq_exits;
7314 break;
7317 kvm_check_async_pf_completion(vcpu);
7319 if (signal_pending(current)) {
7320 r = -EINTR;
7321 vcpu->run->exit_reason = KVM_EXIT_INTR;
7322 ++vcpu->stat.signal_exits;
7323 break;
7325 if (need_resched()) {
7326 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7327 cond_resched();
7328 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7332 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7334 return r;
7337 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7339 int r;
7340 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7341 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7342 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7343 if (r != EMULATE_DONE)
7344 return 0;
7345 return 1;
7348 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7350 BUG_ON(!vcpu->arch.pio.count);
7352 return complete_emulated_io(vcpu);
7356 * Implements the following, as a state machine:
7358 * read:
7359 * for each fragment
7360 * for each mmio piece in the fragment
7361 * write gpa, len
7362 * exit
7363 * copy data
7364 * execute insn
7366 * write:
7367 * for each fragment
7368 * for each mmio piece in the fragment
7369 * write gpa, len
7370 * copy data
7371 * exit
7373 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7375 struct kvm_run *run = vcpu->run;
7376 struct kvm_mmio_fragment *frag;
7377 unsigned len;
7379 BUG_ON(!vcpu->mmio_needed);
7381 /* Complete previous fragment */
7382 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7383 len = min(8u, frag->len);
7384 if (!vcpu->mmio_is_write)
7385 memcpy(frag->data, run->mmio.data, len);
7387 if (frag->len <= 8) {
7388 /* Switch to the next fragment. */
7389 frag++;
7390 vcpu->mmio_cur_fragment++;
7391 } else {
7392 /* Go forward to the next mmio piece. */
7393 frag->data += len;
7394 frag->gpa += len;
7395 frag->len -= len;
7398 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7399 vcpu->mmio_needed = 0;
7401 /* FIXME: return into emulator if single-stepping. */
7402 if (vcpu->mmio_is_write)
7403 return 1;
7404 vcpu->mmio_read_completed = 1;
7405 return complete_emulated_io(vcpu);
7408 run->exit_reason = KVM_EXIT_MMIO;
7409 run->mmio.phys_addr = frag->gpa;
7410 if (vcpu->mmio_is_write)
7411 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7412 run->mmio.len = min(8u, frag->len);
7413 run->mmio.is_write = vcpu->mmio_is_write;
7414 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7415 return 0;
7419 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7421 int r;
7423 vcpu_load(vcpu);
7424 kvm_sigset_activate(vcpu);
7425 kvm_load_guest_fpu(vcpu);
7427 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7428 if (kvm_run->immediate_exit) {
7429 r = -EINTR;
7430 goto out;
7432 kvm_vcpu_block(vcpu);
7433 kvm_apic_accept_events(vcpu);
7434 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7435 r = -EAGAIN;
7436 if (signal_pending(current)) {
7437 r = -EINTR;
7438 vcpu->run->exit_reason = KVM_EXIT_INTR;
7439 ++vcpu->stat.signal_exits;
7441 goto out;
7444 /* re-sync apic's tpr */
7445 if (!lapic_in_kernel(vcpu)) {
7446 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7447 r = -EINVAL;
7448 goto out;
7452 if (unlikely(vcpu->arch.complete_userspace_io)) {
7453 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7454 vcpu->arch.complete_userspace_io = NULL;
7455 r = cui(vcpu);
7456 if (r <= 0)
7457 goto out;
7458 } else
7459 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7461 if (kvm_run->immediate_exit)
7462 r = -EINTR;
7463 else
7464 r = vcpu_run(vcpu);
7466 out:
7467 kvm_put_guest_fpu(vcpu);
7468 post_kvm_run_save(vcpu);
7469 kvm_sigset_deactivate(vcpu);
7471 vcpu_put(vcpu);
7472 return r;
7475 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7477 vcpu_load(vcpu);
7479 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7481 * We are here if userspace calls get_regs() in the middle of
7482 * instruction emulation. Registers state needs to be copied
7483 * back from emulation context to vcpu. Userspace shouldn't do
7484 * that usually, but some bad designed PV devices (vmware
7485 * backdoor interface) need this to work
7487 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7488 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7490 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7491 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7492 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7493 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7494 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7495 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7496 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7497 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7498 #ifdef CONFIG_X86_64
7499 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7500 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7501 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7502 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7503 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7504 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7505 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7506 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7507 #endif
7509 regs->rip = kvm_rip_read(vcpu);
7510 regs->rflags = kvm_get_rflags(vcpu);
7512 vcpu_put(vcpu);
7513 return 0;
7516 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7518 vcpu_load(vcpu);
7520 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7521 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7523 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7524 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7525 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7526 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7527 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7528 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7529 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7530 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7531 #ifdef CONFIG_X86_64
7532 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7533 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7534 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7535 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7536 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7537 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7538 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7539 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7540 #endif
7542 kvm_rip_write(vcpu, regs->rip);
7543 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
7545 vcpu->arch.exception.pending = false;
7547 kvm_make_request(KVM_REQ_EVENT, vcpu);
7549 vcpu_put(vcpu);
7550 return 0;
7553 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7555 struct kvm_segment cs;
7557 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7558 *db = cs.db;
7559 *l = cs.l;
7561 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7563 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7564 struct kvm_sregs *sregs)
7566 struct desc_ptr dt;
7568 vcpu_load(vcpu);
7570 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7571 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7572 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7573 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7574 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7575 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7577 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7578 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7580 kvm_x86_ops->get_idt(vcpu, &dt);
7581 sregs->idt.limit = dt.size;
7582 sregs->idt.base = dt.address;
7583 kvm_x86_ops->get_gdt(vcpu, &dt);
7584 sregs->gdt.limit = dt.size;
7585 sregs->gdt.base = dt.address;
7587 sregs->cr0 = kvm_read_cr0(vcpu);
7588 sregs->cr2 = vcpu->arch.cr2;
7589 sregs->cr3 = kvm_read_cr3(vcpu);
7590 sregs->cr4 = kvm_read_cr4(vcpu);
7591 sregs->cr8 = kvm_get_cr8(vcpu);
7592 sregs->efer = vcpu->arch.efer;
7593 sregs->apic_base = kvm_get_apic_base(vcpu);
7595 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7597 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7598 set_bit(vcpu->arch.interrupt.nr,
7599 (unsigned long *)sregs->interrupt_bitmap);
7601 vcpu_put(vcpu);
7602 return 0;
7605 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7606 struct kvm_mp_state *mp_state)
7608 vcpu_load(vcpu);
7610 kvm_apic_accept_events(vcpu);
7611 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7612 vcpu->arch.pv.pv_unhalted)
7613 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7614 else
7615 mp_state->mp_state = vcpu->arch.mp_state;
7617 vcpu_put(vcpu);
7618 return 0;
7621 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7622 struct kvm_mp_state *mp_state)
7624 int ret = -EINVAL;
7626 vcpu_load(vcpu);
7628 if (!lapic_in_kernel(vcpu) &&
7629 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7630 goto out;
7632 /* INITs are latched while in SMM */
7633 if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7634 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7635 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7636 goto out;
7638 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7639 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7640 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7641 } else
7642 vcpu->arch.mp_state = mp_state->mp_state;
7643 kvm_make_request(KVM_REQ_EVENT, vcpu);
7645 ret = 0;
7646 out:
7647 vcpu_put(vcpu);
7648 return ret;
7651 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7652 int reason, bool has_error_code, u32 error_code)
7654 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7655 int ret;
7657 init_emulate_ctxt(vcpu);
7659 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7660 has_error_code, error_code);
7662 if (ret)
7663 return EMULATE_FAIL;
7665 kvm_rip_write(vcpu, ctxt->eip);
7666 kvm_set_rflags(vcpu, ctxt->eflags);
7667 kvm_make_request(KVM_REQ_EVENT, vcpu);
7668 return EMULATE_DONE;
7670 EXPORT_SYMBOL_GPL(kvm_task_switch);
7672 int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7674 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
7676 * When EFER.LME and CR0.PG are set, the processor is in
7677 * 64-bit mode (though maybe in a 32-bit code segment).
7678 * CR4.PAE and EFER.LMA must be set.
7680 if (!(sregs->cr4 & X86_CR4_PAE)
7681 || !(sregs->efer & EFER_LMA))
7682 return -EINVAL;
7683 } else {
7685 * Not in 64-bit mode: EFER.LMA is clear and the code
7686 * segment cannot be 64-bit.
7688 if (sregs->efer & EFER_LMA || sregs->cs.l)
7689 return -EINVAL;
7692 return 0;
7695 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7696 struct kvm_sregs *sregs)
7698 struct msr_data apic_base_msr;
7699 int mmu_reset_needed = 0;
7700 int pending_vec, max_bits, idx;
7701 struct desc_ptr dt;
7702 int ret = -EINVAL;
7704 vcpu_load(vcpu);
7706 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
7707 (sregs->cr4 & X86_CR4_OSXSAVE))
7708 goto out;
7710 if (kvm_valid_sregs(vcpu, sregs))
7711 goto out;
7713 apic_base_msr.data = sregs->apic_base;
7714 apic_base_msr.host_initiated = true;
7715 if (kvm_set_apic_base(vcpu, &apic_base_msr))
7716 goto out;
7718 dt.size = sregs->idt.limit;
7719 dt.address = sregs->idt.base;
7720 kvm_x86_ops->set_idt(vcpu, &dt);
7721 dt.size = sregs->gdt.limit;
7722 dt.address = sregs->gdt.base;
7723 kvm_x86_ops->set_gdt(vcpu, &dt);
7725 vcpu->arch.cr2 = sregs->cr2;
7726 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7727 vcpu->arch.cr3 = sregs->cr3;
7728 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7730 kvm_set_cr8(vcpu, sregs->cr8);
7732 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7733 kvm_x86_ops->set_efer(vcpu, sregs->efer);
7735 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7736 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7737 vcpu->arch.cr0 = sregs->cr0;
7739 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7740 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7741 if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7742 kvm_update_cpuid(vcpu);
7744 idx = srcu_read_lock(&vcpu->kvm->srcu);
7745 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7746 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7747 mmu_reset_needed = 1;
7749 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7751 if (mmu_reset_needed)
7752 kvm_mmu_reset_context(vcpu);
7754 max_bits = KVM_NR_INTERRUPTS;
7755 pending_vec = find_first_bit(
7756 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7757 if (pending_vec < max_bits) {
7758 kvm_queue_interrupt(vcpu, pending_vec, false);
7759 pr_debug("Set back pending irq %d\n", pending_vec);
7762 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7763 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7764 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7765 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7766 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7767 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7769 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7770 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7772 update_cr8_intercept(vcpu);
7774 /* Older userspace won't unhalt the vcpu on reset. */
7775 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7776 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7777 !is_protmode(vcpu))
7778 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7780 kvm_make_request(KVM_REQ_EVENT, vcpu);
7782 ret = 0;
7783 out:
7784 vcpu_put(vcpu);
7785 return ret;
7788 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7789 struct kvm_guest_debug *dbg)
7791 unsigned long rflags;
7792 int i, r;
7794 vcpu_load(vcpu);
7796 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7797 r = -EBUSY;
7798 if (vcpu->arch.exception.pending)
7799 goto out;
7800 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7801 kvm_queue_exception(vcpu, DB_VECTOR);
7802 else
7803 kvm_queue_exception(vcpu, BP_VECTOR);
7807 * Read rflags as long as potentially injected trace flags are still
7808 * filtered out.
7810 rflags = kvm_get_rflags(vcpu);
7812 vcpu->guest_debug = dbg->control;
7813 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7814 vcpu->guest_debug = 0;
7816 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7817 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7818 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7819 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7820 } else {
7821 for (i = 0; i < KVM_NR_DB_REGS; i++)
7822 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7824 kvm_update_dr7(vcpu);
7826 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7827 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7828 get_segment_base(vcpu, VCPU_SREG_CS);
7831 * Trigger an rflags update that will inject or remove the trace
7832 * flags.
7834 kvm_set_rflags(vcpu, rflags);
7836 kvm_x86_ops->update_bp_intercept(vcpu);
7838 r = 0;
7840 out:
7841 vcpu_put(vcpu);
7842 return r;
7846 * Translate a guest virtual address to a guest physical address.
7848 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7849 struct kvm_translation *tr)
7851 unsigned long vaddr = tr->linear_address;
7852 gpa_t gpa;
7853 int idx;
7855 vcpu_load(vcpu);
7857 idx = srcu_read_lock(&vcpu->kvm->srcu);
7858 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7859 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7860 tr->physical_address = gpa;
7861 tr->valid = gpa != UNMAPPED_GVA;
7862 tr->writeable = 1;
7863 tr->usermode = 0;
7865 vcpu_put(vcpu);
7866 return 0;
7869 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7871 struct fxregs_state *fxsave;
7873 vcpu_load(vcpu);
7875 fxsave = &vcpu->arch.guest_fpu.state.fxsave;
7876 memcpy(fpu->fpr, fxsave->st_space, 128);
7877 fpu->fcw = fxsave->cwd;
7878 fpu->fsw = fxsave->swd;
7879 fpu->ftwx = fxsave->twd;
7880 fpu->last_opcode = fxsave->fop;
7881 fpu->last_ip = fxsave->rip;
7882 fpu->last_dp = fxsave->rdp;
7883 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7885 vcpu_put(vcpu);
7886 return 0;
7889 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7891 struct fxregs_state *fxsave;
7893 vcpu_load(vcpu);
7895 fxsave = &vcpu->arch.guest_fpu.state.fxsave;
7897 memcpy(fxsave->st_space, fpu->fpr, 128);
7898 fxsave->cwd = fpu->fcw;
7899 fxsave->swd = fpu->fsw;
7900 fxsave->twd = fpu->ftwx;
7901 fxsave->fop = fpu->last_opcode;
7902 fxsave->rip = fpu->last_ip;
7903 fxsave->rdp = fpu->last_dp;
7904 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7906 vcpu_put(vcpu);
7907 return 0;
7910 static void fx_init(struct kvm_vcpu *vcpu)
7912 fpstate_init(&vcpu->arch.guest_fpu.state);
7913 if (boot_cpu_has(X86_FEATURE_XSAVES))
7914 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7915 host_xcr0 | XSTATE_COMPACTION_ENABLED;
7918 * Ensure guest xcr0 is valid for loading
7920 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7922 vcpu->arch.cr0 |= X86_CR0_ET;
7925 /* Swap (qemu) user FPU context for the guest FPU context. */
7926 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7928 preempt_disable();
7929 copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
7930 /* PKRU is separately restored in kvm_x86_ops->run. */
7931 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
7932 ~XFEATURE_MASK_PKRU);
7933 preempt_enable();
7934 trace_kvm_fpu(1);
7937 /* When vcpu_run ends, restore user space FPU context. */
7938 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7940 preempt_disable();
7941 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7942 copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
7943 preempt_enable();
7944 ++vcpu->stat.fpu_reload;
7945 trace_kvm_fpu(0);
7948 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7950 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7952 kvmclock_reset(vcpu);
7954 kvm_x86_ops->vcpu_free(vcpu);
7955 free_cpumask_var(wbinvd_dirty_mask);
7958 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7959 unsigned int id)
7961 struct kvm_vcpu *vcpu;
7963 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7964 printk_once(KERN_WARNING
7965 "kvm: SMP vm created on host with unstable TSC; "
7966 "guest TSC will not be reliable\n");
7968 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7970 return vcpu;
7973 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7975 kvm_vcpu_mtrr_init(vcpu);
7976 vcpu_load(vcpu);
7977 kvm_vcpu_reset(vcpu, false);
7978 kvm_mmu_setup(vcpu);
7979 vcpu_put(vcpu);
7980 return 0;
7983 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7985 struct msr_data msr;
7986 struct kvm *kvm = vcpu->kvm;
7988 kvm_hv_vcpu_postcreate(vcpu);
7990 if (mutex_lock_killable(&vcpu->mutex))
7991 return;
7992 vcpu_load(vcpu);
7993 msr.data = 0x0;
7994 msr.index = MSR_IA32_TSC;
7995 msr.host_initiated = true;
7996 kvm_write_tsc(vcpu, &msr);
7997 vcpu_put(vcpu);
7998 mutex_unlock(&vcpu->mutex);
8000 if (!kvmclock_periodic_sync)
8001 return;
8003 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8004 KVMCLOCK_SYNC_PERIOD);
8007 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8009 vcpu->arch.apf.msr_val = 0;
8011 vcpu_load(vcpu);
8012 kvm_mmu_unload(vcpu);
8013 vcpu_put(vcpu);
8015 kvm_x86_ops->vcpu_free(vcpu);
8018 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8020 vcpu->arch.hflags = 0;
8022 vcpu->arch.smi_pending = 0;
8023 vcpu->arch.smi_count = 0;
8024 atomic_set(&vcpu->arch.nmi_queued, 0);
8025 vcpu->arch.nmi_pending = 0;
8026 vcpu->arch.nmi_injected = false;
8027 kvm_clear_interrupt_queue(vcpu);
8028 kvm_clear_exception_queue(vcpu);
8029 vcpu->arch.exception.pending = false;
8031 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8032 kvm_update_dr0123(vcpu);
8033 vcpu->arch.dr6 = DR6_INIT;
8034 kvm_update_dr6(vcpu);
8035 vcpu->arch.dr7 = DR7_FIXED_1;
8036 kvm_update_dr7(vcpu);
8038 vcpu->arch.cr2 = 0;
8040 kvm_make_request(KVM_REQ_EVENT, vcpu);
8041 vcpu->arch.apf.msr_val = 0;
8042 vcpu->arch.st.msr_val = 0;
8044 kvmclock_reset(vcpu);
8046 kvm_clear_async_pf_completion_queue(vcpu);
8047 kvm_async_pf_hash_reset(vcpu);
8048 vcpu->arch.apf.halted = false;
8050 if (kvm_mpx_supported()) {
8051 void *mpx_state_buffer;
8054 * To avoid have the INIT path from kvm_apic_has_events() that be
8055 * called with loaded FPU and does not let userspace fix the state.
8057 if (init_event)
8058 kvm_put_guest_fpu(vcpu);
8059 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8060 XFEATURE_MASK_BNDREGS);
8061 if (mpx_state_buffer)
8062 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8063 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8064 XFEATURE_MASK_BNDCSR);
8065 if (mpx_state_buffer)
8066 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8067 if (init_event)
8068 kvm_load_guest_fpu(vcpu);
8071 if (!init_event) {
8072 kvm_pmu_reset(vcpu);
8073 vcpu->arch.smbase = 0x30000;
8075 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8076 vcpu->arch.msr_misc_features_enables = 0;
8078 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8081 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8082 vcpu->arch.regs_avail = ~0;
8083 vcpu->arch.regs_dirty = ~0;
8085 vcpu->arch.ia32_xss = 0;
8087 kvm_x86_ops->vcpu_reset(vcpu, init_event);
8090 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8092 struct kvm_segment cs;
8094 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8095 cs.selector = vector << 8;
8096 cs.base = vector << 12;
8097 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8098 kvm_rip_write(vcpu, 0);
8101 int kvm_arch_hardware_enable(void)
8103 struct kvm *kvm;
8104 struct kvm_vcpu *vcpu;
8105 int i;
8106 int ret;
8107 u64 local_tsc;
8108 u64 max_tsc = 0;
8109 bool stable, backwards_tsc = false;
8111 kvm_shared_msr_cpu_online();
8112 ret = kvm_x86_ops->hardware_enable();
8113 if (ret != 0)
8114 return ret;
8116 local_tsc = rdtsc();
8117 stable = !kvm_check_tsc_unstable();
8118 list_for_each_entry(kvm, &vm_list, vm_list) {
8119 kvm_for_each_vcpu(i, vcpu, kvm) {
8120 if (!stable && vcpu->cpu == smp_processor_id())
8121 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8122 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8123 backwards_tsc = true;
8124 if (vcpu->arch.last_host_tsc > max_tsc)
8125 max_tsc = vcpu->arch.last_host_tsc;
8131 * Sometimes, even reliable TSCs go backwards. This happens on
8132 * platforms that reset TSC during suspend or hibernate actions, but
8133 * maintain synchronization. We must compensate. Fortunately, we can
8134 * detect that condition here, which happens early in CPU bringup,
8135 * before any KVM threads can be running. Unfortunately, we can't
8136 * bring the TSCs fully up to date with real time, as we aren't yet far
8137 * enough into CPU bringup that we know how much real time has actually
8138 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8139 * variables that haven't been updated yet.
8141 * So we simply find the maximum observed TSC above, then record the
8142 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
8143 * the adjustment will be applied. Note that we accumulate
8144 * adjustments, in case multiple suspend cycles happen before some VCPU
8145 * gets a chance to run again. In the event that no KVM threads get a
8146 * chance to run, we will miss the entire elapsed period, as we'll have
8147 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8148 * loose cycle time. This isn't too big a deal, since the loss will be
8149 * uniform across all VCPUs (not to mention the scenario is extremely
8150 * unlikely). It is possible that a second hibernate recovery happens
8151 * much faster than a first, causing the observed TSC here to be
8152 * smaller; this would require additional padding adjustment, which is
8153 * why we set last_host_tsc to the local tsc observed here.
8155 * N.B. - this code below runs only on platforms with reliable TSC,
8156 * as that is the only way backwards_tsc is set above. Also note
8157 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8158 * have the same delta_cyc adjustment applied if backwards_tsc
8159 * is detected. Note further, this adjustment is only done once,
8160 * as we reset last_host_tsc on all VCPUs to stop this from being
8161 * called multiple times (one for each physical CPU bringup).
8163 * Platforms with unreliable TSCs don't have to deal with this, they
8164 * will be compensated by the logic in vcpu_load, which sets the TSC to
8165 * catchup mode. This will catchup all VCPUs to real time, but cannot
8166 * guarantee that they stay in perfect synchronization.
8168 if (backwards_tsc) {
8169 u64 delta_cyc = max_tsc - local_tsc;
8170 list_for_each_entry(kvm, &vm_list, vm_list) {
8171 kvm->arch.backwards_tsc_observed = true;
8172 kvm_for_each_vcpu(i, vcpu, kvm) {
8173 vcpu->arch.tsc_offset_adjustment += delta_cyc;
8174 vcpu->arch.last_host_tsc = local_tsc;
8175 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8179 * We have to disable TSC offset matching.. if you were
8180 * booting a VM while issuing an S4 host suspend....
8181 * you may have some problem. Solving this issue is
8182 * left as an exercise to the reader.
8184 kvm->arch.last_tsc_nsec = 0;
8185 kvm->arch.last_tsc_write = 0;
8189 return 0;
8192 void kvm_arch_hardware_disable(void)
8194 kvm_x86_ops->hardware_disable();
8195 drop_user_return_notifiers();
8198 int kvm_arch_hardware_setup(void)
8200 int r;
8202 r = kvm_x86_ops->hardware_setup();
8203 if (r != 0)
8204 return r;
8206 if (kvm_has_tsc_control) {
8208 * Make sure the user can only configure tsc_khz values that
8209 * fit into a signed integer.
8210 * A min value is not calculated needed because it will always
8211 * be 1 on all machines.
8213 u64 max = min(0x7fffffffULL,
8214 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8215 kvm_max_guest_tsc_khz = max;
8217 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8220 kvm_init_msr_list();
8221 return 0;
8224 void kvm_arch_hardware_unsetup(void)
8226 kvm_x86_ops->hardware_unsetup();
8229 void kvm_arch_check_processor_compat(void *rtn)
8231 kvm_x86_ops->check_processor_compatibility(rtn);
8234 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8236 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8238 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8240 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8242 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8245 struct static_key kvm_no_apic_vcpu __read_mostly;
8246 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8248 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8250 struct page *page;
8251 int r;
8253 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8254 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8255 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8256 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8257 else
8258 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8260 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8261 if (!page) {
8262 r = -ENOMEM;
8263 goto fail;
8265 vcpu->arch.pio_data = page_address(page);
8267 kvm_set_tsc_khz(vcpu, max_tsc_khz);
8269 r = kvm_mmu_create(vcpu);
8270 if (r < 0)
8271 goto fail_free_pio_data;
8273 if (irqchip_in_kernel(vcpu->kvm)) {
8274 r = kvm_create_lapic(vcpu);
8275 if (r < 0)
8276 goto fail_mmu_destroy;
8277 } else
8278 static_key_slow_inc(&kvm_no_apic_vcpu);
8280 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8281 GFP_KERNEL);
8282 if (!vcpu->arch.mce_banks) {
8283 r = -ENOMEM;
8284 goto fail_free_lapic;
8286 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8288 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8289 r = -ENOMEM;
8290 goto fail_free_mce_banks;
8293 fx_init(vcpu);
8295 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8297 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8299 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8301 kvm_async_pf_hash_reset(vcpu);
8302 kvm_pmu_init(vcpu);
8304 vcpu->arch.pending_external_vector = -1;
8305 vcpu->arch.preempted_in_kernel = false;
8307 kvm_hv_vcpu_init(vcpu);
8309 return 0;
8311 fail_free_mce_banks:
8312 kfree(vcpu->arch.mce_banks);
8313 fail_free_lapic:
8314 kvm_free_lapic(vcpu);
8315 fail_mmu_destroy:
8316 kvm_mmu_destroy(vcpu);
8317 fail_free_pio_data:
8318 free_page((unsigned long)vcpu->arch.pio_data);
8319 fail:
8320 return r;
8323 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8325 int idx;
8327 kvm_hv_vcpu_uninit(vcpu);
8328 kvm_pmu_destroy(vcpu);
8329 kfree(vcpu->arch.mce_banks);
8330 kvm_free_lapic(vcpu);
8331 idx = srcu_read_lock(&vcpu->kvm->srcu);
8332 kvm_mmu_destroy(vcpu);
8333 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8334 free_page((unsigned long)vcpu->arch.pio_data);
8335 if (!lapic_in_kernel(vcpu))
8336 static_key_slow_dec(&kvm_no_apic_vcpu);
8339 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8341 kvm_x86_ops->sched_in(vcpu, cpu);
8344 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8346 if (type)
8347 return -EINVAL;
8349 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8350 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8351 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8352 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8353 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8355 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8356 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8357 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8358 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8359 &kvm->arch.irq_sources_bitmap);
8361 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8362 mutex_init(&kvm->arch.apic_map_lock);
8363 mutex_init(&kvm->arch.hyperv.hv_lock);
8364 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8366 kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8367 pvclock_update_vm_gtod_copy(kvm);
8369 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8370 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8372 kvm_page_track_init(kvm);
8373 kvm_mmu_init_vm(kvm);
8375 if (kvm_x86_ops->vm_init)
8376 return kvm_x86_ops->vm_init(kvm);
8378 return 0;
8381 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8383 vcpu_load(vcpu);
8384 kvm_mmu_unload(vcpu);
8385 vcpu_put(vcpu);
8388 static void kvm_free_vcpus(struct kvm *kvm)
8390 unsigned int i;
8391 struct kvm_vcpu *vcpu;
8394 * Unpin any mmu pages first.
8396 kvm_for_each_vcpu(i, vcpu, kvm) {
8397 kvm_clear_async_pf_completion_queue(vcpu);
8398 kvm_unload_vcpu_mmu(vcpu);
8400 kvm_for_each_vcpu(i, vcpu, kvm)
8401 kvm_arch_vcpu_free(vcpu);
8403 mutex_lock(&kvm->lock);
8404 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8405 kvm->vcpus[i] = NULL;
8407 atomic_set(&kvm->online_vcpus, 0);
8408 mutex_unlock(&kvm->lock);
8411 void kvm_arch_sync_events(struct kvm *kvm)
8413 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8414 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8415 kvm_free_pit(kvm);
8418 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8420 int i, r;
8421 unsigned long hva;
8422 struct kvm_memslots *slots = kvm_memslots(kvm);
8423 struct kvm_memory_slot *slot, old;
8425 /* Called with kvm->slots_lock held. */
8426 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8427 return -EINVAL;
8429 slot = id_to_memslot(slots, id);
8430 if (size) {
8431 if (slot->npages)
8432 return -EEXIST;
8435 * MAP_SHARED to prevent internal slot pages from being moved
8436 * by fork()/COW.
8438 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8439 MAP_SHARED | MAP_ANONYMOUS, 0);
8440 if (IS_ERR((void *)hva))
8441 return PTR_ERR((void *)hva);
8442 } else {
8443 if (!slot->npages)
8444 return 0;
8446 hva = 0;
8449 old = *slot;
8450 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8451 struct kvm_userspace_memory_region m;
8453 m.slot = id | (i << 16);
8454 m.flags = 0;
8455 m.guest_phys_addr = gpa;
8456 m.userspace_addr = hva;
8457 m.memory_size = size;
8458 r = __kvm_set_memory_region(kvm, &m);
8459 if (r < 0)
8460 return r;
8463 if (!size) {
8464 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8465 WARN_ON(r < 0);
8468 return 0;
8470 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8472 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8474 int r;
8476 mutex_lock(&kvm->slots_lock);
8477 r = __x86_set_memory_region(kvm, id, gpa, size);
8478 mutex_unlock(&kvm->slots_lock);
8480 return r;
8482 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8484 void kvm_arch_destroy_vm(struct kvm *kvm)
8486 if (current->mm == kvm->mm) {
8488 * Free memory regions allocated on behalf of userspace,
8489 * unless the the memory map has changed due to process exit
8490 * or fd copying.
8492 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8493 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8494 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8496 if (kvm_x86_ops->vm_destroy)
8497 kvm_x86_ops->vm_destroy(kvm);
8498 kvm_pic_destroy(kvm);
8499 kvm_ioapic_destroy(kvm);
8500 kvm_free_vcpus(kvm);
8501 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8502 kvm_mmu_uninit_vm(kvm);
8503 kvm_page_track_cleanup(kvm);
8506 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8507 struct kvm_memory_slot *dont)
8509 int i;
8511 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8512 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8513 kvfree(free->arch.rmap[i]);
8514 free->arch.rmap[i] = NULL;
8516 if (i == 0)
8517 continue;
8519 if (!dont || free->arch.lpage_info[i - 1] !=
8520 dont->arch.lpage_info[i - 1]) {
8521 kvfree(free->arch.lpage_info[i - 1]);
8522 free->arch.lpage_info[i - 1] = NULL;
8526 kvm_page_track_free_memslot(free, dont);
8529 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8530 unsigned long npages)
8532 int i;
8534 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8535 struct kvm_lpage_info *linfo;
8536 unsigned long ugfn;
8537 int lpages;
8538 int level = i + 1;
8540 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8541 slot->base_gfn, level) + 1;
8543 slot->arch.rmap[i] =
8544 kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8545 if (!slot->arch.rmap[i])
8546 goto out_free;
8547 if (i == 0)
8548 continue;
8550 linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8551 if (!linfo)
8552 goto out_free;
8554 slot->arch.lpage_info[i - 1] = linfo;
8556 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8557 linfo[0].disallow_lpage = 1;
8558 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8559 linfo[lpages - 1].disallow_lpage = 1;
8560 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8562 * If the gfn and userspace address are not aligned wrt each
8563 * other, or if explicitly asked to, disable large page
8564 * support for this slot
8566 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8567 !kvm_largepages_enabled()) {
8568 unsigned long j;
8570 for (j = 0; j < lpages; ++j)
8571 linfo[j].disallow_lpage = 1;
8575 if (kvm_page_track_create_memslot(slot, npages))
8576 goto out_free;
8578 return 0;
8580 out_free:
8581 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8582 kvfree(slot->arch.rmap[i]);
8583 slot->arch.rmap[i] = NULL;
8584 if (i == 0)
8585 continue;
8587 kvfree(slot->arch.lpage_info[i - 1]);
8588 slot->arch.lpage_info[i - 1] = NULL;
8590 return -ENOMEM;
8593 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8596 * memslots->generation has been incremented.
8597 * mmio generation may have reached its maximum value.
8599 kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8602 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8603 struct kvm_memory_slot *memslot,
8604 const struct kvm_userspace_memory_region *mem,
8605 enum kvm_mr_change change)
8607 return 0;
8610 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8611 struct kvm_memory_slot *new)
8613 /* Still write protect RO slot */
8614 if (new->flags & KVM_MEM_READONLY) {
8615 kvm_mmu_slot_remove_write_access(kvm, new);
8616 return;
8620 * Call kvm_x86_ops dirty logging hooks when they are valid.
8622 * kvm_x86_ops->slot_disable_log_dirty is called when:
8624 * - KVM_MR_CREATE with dirty logging is disabled
8625 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8627 * The reason is, in case of PML, we need to set D-bit for any slots
8628 * with dirty logging disabled in order to eliminate unnecessary GPA
8629 * logging in PML buffer (and potential PML buffer full VMEXT). This
8630 * guarantees leaving PML enabled during guest's lifetime won't have
8631 * any additonal overhead from PML when guest is running with dirty
8632 * logging disabled for memory slots.
8634 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8635 * to dirty logging mode.
8637 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8639 * In case of write protect:
8641 * Write protect all pages for dirty logging.
8643 * All the sptes including the large sptes which point to this
8644 * slot are set to readonly. We can not create any new large
8645 * spte on this slot until the end of the logging.
8647 * See the comments in fast_page_fault().
8649 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8650 if (kvm_x86_ops->slot_enable_log_dirty)
8651 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8652 else
8653 kvm_mmu_slot_remove_write_access(kvm, new);
8654 } else {
8655 if (kvm_x86_ops->slot_disable_log_dirty)
8656 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8660 void kvm_arch_commit_memory_region(struct kvm *kvm,
8661 const struct kvm_userspace_memory_region *mem,
8662 const struct kvm_memory_slot *old,
8663 const struct kvm_memory_slot *new,
8664 enum kvm_mr_change change)
8666 int nr_mmu_pages = 0;
8668 if (!kvm->arch.n_requested_mmu_pages)
8669 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8671 if (nr_mmu_pages)
8672 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8675 * Dirty logging tracks sptes in 4k granularity, meaning that large
8676 * sptes have to be split. If live migration is successful, the guest
8677 * in the source machine will be destroyed and large sptes will be
8678 * created in the destination. However, if the guest continues to run
8679 * in the source machine (for example if live migration fails), small
8680 * sptes will remain around and cause bad performance.
8682 * Scan sptes if dirty logging has been stopped, dropping those
8683 * which can be collapsed into a single large-page spte. Later
8684 * page faults will create the large-page sptes.
8686 if ((change != KVM_MR_DELETE) &&
8687 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8688 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8689 kvm_mmu_zap_collapsible_sptes(kvm, new);
8692 * Set up write protection and/or dirty logging for the new slot.
8694 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8695 * been zapped so no dirty logging staff is needed for old slot. For
8696 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8697 * new and it's also covered when dealing with the new slot.
8699 * FIXME: const-ify all uses of struct kvm_memory_slot.
8701 if (change != KVM_MR_DELETE)
8702 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8705 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8707 kvm_mmu_invalidate_zap_all_pages(kvm);
8710 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8711 struct kvm_memory_slot *slot)
8713 kvm_page_track_flush_slot(kvm, slot);
8716 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8718 if (!list_empty_careful(&vcpu->async_pf.done))
8719 return true;
8721 if (kvm_apic_has_events(vcpu))
8722 return true;
8724 if (vcpu->arch.pv.pv_unhalted)
8725 return true;
8727 if (vcpu->arch.exception.pending)
8728 return true;
8730 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
8731 (vcpu->arch.nmi_pending &&
8732 kvm_x86_ops->nmi_allowed(vcpu)))
8733 return true;
8735 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
8736 (vcpu->arch.smi_pending && !is_smm(vcpu)))
8737 return true;
8739 if (kvm_arch_interrupt_allowed(vcpu) &&
8740 kvm_cpu_has_interrupt(vcpu))
8741 return true;
8743 if (kvm_hv_has_stimer_pending(vcpu))
8744 return true;
8746 return false;
8749 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8751 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8754 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
8756 return vcpu->arch.preempted_in_kernel;
8759 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8761 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8764 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8766 return kvm_x86_ops->interrupt_allowed(vcpu);
8769 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8771 if (is_64_bit_mode(vcpu))
8772 return kvm_rip_read(vcpu);
8773 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8774 kvm_rip_read(vcpu));
8776 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8778 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8780 return kvm_get_linear_rip(vcpu) == linear_rip;
8782 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8784 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8786 unsigned long rflags;
8788 rflags = kvm_x86_ops->get_rflags(vcpu);
8789 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8790 rflags &= ~X86_EFLAGS_TF;
8791 return rflags;
8793 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8795 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8797 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8798 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8799 rflags |= X86_EFLAGS_TF;
8800 kvm_x86_ops->set_rflags(vcpu, rflags);
8803 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8805 __kvm_set_rflags(vcpu, rflags);
8806 kvm_make_request(KVM_REQ_EVENT, vcpu);
8808 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8810 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8812 int r;
8814 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8815 work->wakeup_all)
8816 return;
8818 r = kvm_mmu_reload(vcpu);
8819 if (unlikely(r))
8820 return;
8822 if (!vcpu->arch.mmu.direct_map &&
8823 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8824 return;
8826 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8829 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8831 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8834 static inline u32 kvm_async_pf_next_probe(u32 key)
8836 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8839 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8841 u32 key = kvm_async_pf_hash_fn(gfn);
8843 while (vcpu->arch.apf.gfns[key] != ~0)
8844 key = kvm_async_pf_next_probe(key);
8846 vcpu->arch.apf.gfns[key] = gfn;
8849 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8851 int i;
8852 u32 key = kvm_async_pf_hash_fn(gfn);
8854 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8855 (vcpu->arch.apf.gfns[key] != gfn &&
8856 vcpu->arch.apf.gfns[key] != ~0); i++)
8857 key = kvm_async_pf_next_probe(key);
8859 return key;
8862 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8864 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8867 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8869 u32 i, j, k;
8871 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8872 while (true) {
8873 vcpu->arch.apf.gfns[i] = ~0;
8874 do {
8875 j = kvm_async_pf_next_probe(j);
8876 if (vcpu->arch.apf.gfns[j] == ~0)
8877 return;
8878 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8880 * k lies cyclically in ]i,j]
8881 * | i.k.j |
8882 * |....j i.k.| or |.k..j i...|
8884 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8885 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8886 i = j;
8890 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8893 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8894 sizeof(val));
8897 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
8900 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
8901 sizeof(u32));
8904 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8905 struct kvm_async_pf *work)
8907 struct x86_exception fault;
8909 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8910 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8912 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8913 (vcpu->arch.apf.send_user_only &&
8914 kvm_x86_ops->get_cpl(vcpu) == 0))
8915 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8916 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8917 fault.vector = PF_VECTOR;
8918 fault.error_code_valid = true;
8919 fault.error_code = 0;
8920 fault.nested_page_fault = false;
8921 fault.address = work->arch.token;
8922 fault.async_page_fault = true;
8923 kvm_inject_page_fault(vcpu, &fault);
8927 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8928 struct kvm_async_pf *work)
8930 struct x86_exception fault;
8931 u32 val;
8933 if (work->wakeup_all)
8934 work->arch.token = ~0; /* broadcast wakeup */
8935 else
8936 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8937 trace_kvm_async_pf_ready(work->arch.token, work->gva);
8939 if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
8940 !apf_get_user(vcpu, &val)) {
8941 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
8942 vcpu->arch.exception.pending &&
8943 vcpu->arch.exception.nr == PF_VECTOR &&
8944 !apf_put_user(vcpu, 0)) {
8945 vcpu->arch.exception.injected = false;
8946 vcpu->arch.exception.pending = false;
8947 vcpu->arch.exception.nr = 0;
8948 vcpu->arch.exception.has_error_code = false;
8949 vcpu->arch.exception.error_code = 0;
8950 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8951 fault.vector = PF_VECTOR;
8952 fault.error_code_valid = true;
8953 fault.error_code = 0;
8954 fault.nested_page_fault = false;
8955 fault.address = work->arch.token;
8956 fault.async_page_fault = true;
8957 kvm_inject_page_fault(vcpu, &fault);
8960 vcpu->arch.apf.halted = false;
8961 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8964 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8966 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8967 return true;
8968 else
8969 return kvm_can_do_async_pf(vcpu);
8972 void kvm_arch_start_assignment(struct kvm *kvm)
8974 atomic_inc(&kvm->arch.assigned_device_count);
8976 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8978 void kvm_arch_end_assignment(struct kvm *kvm)
8980 atomic_dec(&kvm->arch.assigned_device_count);
8982 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8984 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8986 return atomic_read(&kvm->arch.assigned_device_count);
8988 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8990 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8992 atomic_inc(&kvm->arch.noncoherent_dma_count);
8994 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8996 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8998 atomic_dec(&kvm->arch.noncoherent_dma_count);
9000 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9002 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9004 return atomic_read(&kvm->arch.noncoherent_dma_count);
9006 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9008 bool kvm_arch_has_irq_bypass(void)
9010 return kvm_x86_ops->update_pi_irte != NULL;
9013 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9014 struct irq_bypass_producer *prod)
9016 struct kvm_kernel_irqfd *irqfd =
9017 container_of(cons, struct kvm_kernel_irqfd, consumer);
9019 irqfd->producer = prod;
9021 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9022 prod->irq, irqfd->gsi, 1);
9025 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9026 struct irq_bypass_producer *prod)
9028 int ret;
9029 struct kvm_kernel_irqfd *irqfd =
9030 container_of(cons, struct kvm_kernel_irqfd, consumer);
9032 WARN_ON(irqfd->producer != prod);
9033 irqfd->producer = NULL;
9036 * When producer of consumer is unregistered, we change back to
9037 * remapped mode, so we can re-use the current implementation
9038 * when the irq is masked/disabled or the consumer side (KVM
9039 * int this case doesn't want to receive the interrupts.
9041 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9042 if (ret)
9043 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9044 " fails: %d\n", irqfd->consumer.token, ret);
9047 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9048 uint32_t guest_irq, bool set)
9050 if (!kvm_x86_ops->update_pi_irte)
9051 return -EINVAL;
9053 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9056 bool kvm_vector_hashing_enabled(void)
9058 return vector_hashing;
9060 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9062 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9063 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9064 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9065 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9066 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9067 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9068 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9069 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9070 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9071 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9072 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9073 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9074 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9075 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9076 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9077 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9078 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9079 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9080 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);