x86/topology: Update the 'cpu cores' field in /proc/cpuinfo correctly across CPU...
[cris-mirror.git] / arch / x86 / mm / fault.c
blob800de815519cd1061c090e70fab09bd62bbd8ddd
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1995 Linus Torvalds
4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6 */
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */
9 #include <linux/kdebug.h> /* oops_begin/end, ... */
10 #include <linux/extable.h> /* search_exception_tables */
11 #include <linux/bootmem.h> /* max_low_pfn */
12 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
13 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
14 #include <linux/perf_event.h> /* perf_sw_event */
15 #include <linux/hugetlb.h> /* hstate_index_to_shift */
16 #include <linux/prefetch.h> /* prefetchw */
17 #include <linux/context_tracking.h> /* exception_enter(), ... */
18 #include <linux/uaccess.h> /* faulthandler_disabled() */
20 #include <asm/cpufeature.h> /* boot_cpu_has, ... */
21 #include <asm/traps.h> /* dotraplinkage, ... */
22 #include <asm/pgalloc.h> /* pgd_*(), ... */
23 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
24 #include <asm/vsyscall.h> /* emulate_vsyscall */
25 #include <asm/vm86.h> /* struct vm86 */
26 #include <asm/mmu_context.h> /* vma_pkey() */
28 #define CREATE_TRACE_POINTS
29 #include <asm/trace/exceptions.h>
32 * Returns 0 if mmiotrace is disabled, or if the fault is not
33 * handled by mmiotrace:
35 static nokprobe_inline int
36 kmmio_fault(struct pt_regs *regs, unsigned long addr)
38 if (unlikely(is_kmmio_active()))
39 if (kmmio_handler(regs, addr) == 1)
40 return -1;
41 return 0;
44 static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
46 int ret = 0;
48 /* kprobe_running() needs smp_processor_id() */
49 if (kprobes_built_in() && !user_mode(regs)) {
50 preempt_disable();
51 if (kprobe_running() && kprobe_fault_handler(regs, 14))
52 ret = 1;
53 preempt_enable();
56 return ret;
60 * Prefetch quirks:
62 * 32-bit mode:
64 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
65 * Check that here and ignore it.
67 * 64-bit mode:
69 * Sometimes the CPU reports invalid exceptions on prefetch.
70 * Check that here and ignore it.
72 * Opcode checker based on code by Richard Brunner.
74 static inline int
75 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
76 unsigned char opcode, int *prefetch)
78 unsigned char instr_hi = opcode & 0xf0;
79 unsigned char instr_lo = opcode & 0x0f;
81 switch (instr_hi) {
82 case 0x20:
83 case 0x30:
85 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
86 * In X86_64 long mode, the CPU will signal invalid
87 * opcode if some of these prefixes are present so
88 * X86_64 will never get here anyway
90 return ((instr_lo & 7) == 0x6);
91 #ifdef CONFIG_X86_64
92 case 0x40:
94 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
95 * Need to figure out under what instruction mode the
96 * instruction was issued. Could check the LDT for lm,
97 * but for now it's good enough to assume that long
98 * mode only uses well known segments or kernel.
100 return (!user_mode(regs) || user_64bit_mode(regs));
101 #endif
102 case 0x60:
103 /* 0x64 thru 0x67 are valid prefixes in all modes. */
104 return (instr_lo & 0xC) == 0x4;
105 case 0xF0:
106 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
107 return !instr_lo || (instr_lo>>1) == 1;
108 case 0x00:
109 /* Prefetch instruction is 0x0F0D or 0x0F18 */
110 if (probe_kernel_address(instr, opcode))
111 return 0;
113 *prefetch = (instr_lo == 0xF) &&
114 (opcode == 0x0D || opcode == 0x18);
115 return 0;
116 default:
117 return 0;
121 static int
122 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
124 unsigned char *max_instr;
125 unsigned char *instr;
126 int prefetch = 0;
129 * If it was a exec (instruction fetch) fault on NX page, then
130 * do not ignore the fault:
132 if (error_code & X86_PF_INSTR)
133 return 0;
135 instr = (void *)convert_ip_to_linear(current, regs);
136 max_instr = instr + 15;
138 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
139 return 0;
141 while (instr < max_instr) {
142 unsigned char opcode;
144 if (probe_kernel_address(instr, opcode))
145 break;
147 instr++;
149 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
150 break;
152 return prefetch;
156 * A protection key fault means that the PKRU value did not allow
157 * access to some PTE. Userspace can figure out what PKRU was
158 * from the XSAVE state, and this function fills out a field in
159 * siginfo so userspace can discover which protection key was set
160 * on the PTE.
162 * If we get here, we know that the hardware signaled a X86_PF_PK
163 * fault and that there was a VMA once we got in the fault
164 * handler. It does *not* guarantee that the VMA we find here
165 * was the one that we faulted on.
167 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
168 * 2. T1 : set PKRU to deny access to pkey=4, touches page
169 * 3. T1 : faults...
170 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
171 * 5. T1 : enters fault handler, takes mmap_sem, etc...
172 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
173 * faulted on a pte with its pkey=4.
175 static void fill_sig_info_pkey(int si_signo, int si_code, siginfo_t *info,
176 u32 *pkey)
178 /* This is effectively an #ifdef */
179 if (!boot_cpu_has(X86_FEATURE_OSPKE))
180 return;
182 /* Fault not from Protection Keys: nothing to do */
183 if ((si_code != SEGV_PKUERR) || (si_signo != SIGSEGV))
184 return;
186 * force_sig_info_fault() is called from a number of
187 * contexts, some of which have a VMA and some of which
188 * do not. The X86_PF_PK handing happens after we have a
189 * valid VMA, so we should never reach this without a
190 * valid VMA.
192 if (!pkey) {
193 WARN_ONCE(1, "PKU fault with no VMA passed in");
194 info->si_pkey = 0;
195 return;
198 * si_pkey should be thought of as a strong hint, but not
199 * absolutely guranteed to be 100% accurate because of
200 * the race explained above.
202 info->si_pkey = *pkey;
205 static void
206 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
207 struct task_struct *tsk, u32 *pkey, int fault)
209 unsigned lsb = 0;
210 siginfo_t info;
212 info.si_signo = si_signo;
213 info.si_errno = 0;
214 info.si_code = si_code;
215 info.si_addr = (void __user *)address;
216 if (fault & VM_FAULT_HWPOISON_LARGE)
217 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
218 if (fault & VM_FAULT_HWPOISON)
219 lsb = PAGE_SHIFT;
220 info.si_addr_lsb = lsb;
222 fill_sig_info_pkey(si_signo, si_code, &info, pkey);
224 force_sig_info(si_signo, &info, tsk);
227 DEFINE_SPINLOCK(pgd_lock);
228 LIST_HEAD(pgd_list);
230 #ifdef CONFIG_X86_32
231 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
233 unsigned index = pgd_index(address);
234 pgd_t *pgd_k;
235 p4d_t *p4d, *p4d_k;
236 pud_t *pud, *pud_k;
237 pmd_t *pmd, *pmd_k;
239 pgd += index;
240 pgd_k = init_mm.pgd + index;
242 if (!pgd_present(*pgd_k))
243 return NULL;
246 * set_pgd(pgd, *pgd_k); here would be useless on PAE
247 * and redundant with the set_pmd() on non-PAE. As would
248 * set_p4d/set_pud.
250 p4d = p4d_offset(pgd, address);
251 p4d_k = p4d_offset(pgd_k, address);
252 if (!p4d_present(*p4d_k))
253 return NULL;
255 pud = pud_offset(p4d, address);
256 pud_k = pud_offset(p4d_k, address);
257 if (!pud_present(*pud_k))
258 return NULL;
260 pmd = pmd_offset(pud, address);
261 pmd_k = pmd_offset(pud_k, address);
262 if (!pmd_present(*pmd_k))
263 return NULL;
265 if (!pmd_present(*pmd))
266 set_pmd(pmd, *pmd_k);
267 else
268 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
270 return pmd_k;
273 void vmalloc_sync_all(void)
275 unsigned long address;
277 if (SHARED_KERNEL_PMD)
278 return;
280 for (address = VMALLOC_START & PMD_MASK;
281 address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
282 address += PMD_SIZE) {
283 struct page *page;
285 spin_lock(&pgd_lock);
286 list_for_each_entry(page, &pgd_list, lru) {
287 spinlock_t *pgt_lock;
288 pmd_t *ret;
290 /* the pgt_lock only for Xen */
291 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
293 spin_lock(pgt_lock);
294 ret = vmalloc_sync_one(page_address(page), address);
295 spin_unlock(pgt_lock);
297 if (!ret)
298 break;
300 spin_unlock(&pgd_lock);
305 * 32-bit:
307 * Handle a fault on the vmalloc or module mapping area
309 static noinline int vmalloc_fault(unsigned long address)
311 unsigned long pgd_paddr;
312 pmd_t *pmd_k;
313 pte_t *pte_k;
315 /* Make sure we are in vmalloc area: */
316 if (!(address >= VMALLOC_START && address < VMALLOC_END))
317 return -1;
319 WARN_ON_ONCE(in_nmi());
322 * Synchronize this task's top level page-table
323 * with the 'reference' page table.
325 * Do _not_ use "current" here. We might be inside
326 * an interrupt in the middle of a task switch..
328 pgd_paddr = read_cr3_pa();
329 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
330 if (!pmd_k)
331 return -1;
333 if (pmd_huge(*pmd_k))
334 return 0;
336 pte_k = pte_offset_kernel(pmd_k, address);
337 if (!pte_present(*pte_k))
338 return -1;
340 return 0;
342 NOKPROBE_SYMBOL(vmalloc_fault);
345 * Did it hit the DOS screen memory VA from vm86 mode?
347 static inline void
348 check_v8086_mode(struct pt_regs *regs, unsigned long address,
349 struct task_struct *tsk)
351 #ifdef CONFIG_VM86
352 unsigned long bit;
354 if (!v8086_mode(regs) || !tsk->thread.vm86)
355 return;
357 bit = (address - 0xA0000) >> PAGE_SHIFT;
358 if (bit < 32)
359 tsk->thread.vm86->screen_bitmap |= 1 << bit;
360 #endif
363 static bool low_pfn(unsigned long pfn)
365 return pfn < max_low_pfn;
368 static void dump_pagetable(unsigned long address)
370 pgd_t *base = __va(read_cr3_pa());
371 pgd_t *pgd = &base[pgd_index(address)];
372 p4d_t *p4d;
373 pud_t *pud;
374 pmd_t *pmd;
375 pte_t *pte;
377 #ifdef CONFIG_X86_PAE
378 pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
379 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
380 goto out;
381 #define pr_pde pr_cont
382 #else
383 #define pr_pde pr_info
384 #endif
385 p4d = p4d_offset(pgd, address);
386 pud = pud_offset(p4d, address);
387 pmd = pmd_offset(pud, address);
388 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
389 #undef pr_pde
392 * We must not directly access the pte in the highpte
393 * case if the page table is located in highmem.
394 * And let's rather not kmap-atomic the pte, just in case
395 * it's allocated already:
397 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
398 goto out;
400 pte = pte_offset_kernel(pmd, address);
401 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
402 out:
403 pr_cont("\n");
406 #else /* CONFIG_X86_64: */
408 void vmalloc_sync_all(void)
410 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
414 * 64-bit:
416 * Handle a fault on the vmalloc area
418 static noinline int vmalloc_fault(unsigned long address)
420 pgd_t *pgd, *pgd_ref;
421 p4d_t *p4d, *p4d_ref;
422 pud_t *pud, *pud_ref;
423 pmd_t *pmd, *pmd_ref;
424 pte_t *pte, *pte_ref;
426 /* Make sure we are in vmalloc area: */
427 if (!(address >= VMALLOC_START && address < VMALLOC_END))
428 return -1;
430 WARN_ON_ONCE(in_nmi());
433 * Copy kernel mappings over when needed. This can also
434 * happen within a race in page table update. In the later
435 * case just flush:
437 pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
438 pgd_ref = pgd_offset_k(address);
439 if (pgd_none(*pgd_ref))
440 return -1;
442 if (CONFIG_PGTABLE_LEVELS > 4) {
443 if (pgd_none(*pgd)) {
444 set_pgd(pgd, *pgd_ref);
445 arch_flush_lazy_mmu_mode();
446 } else {
447 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
451 /* With 4-level paging, copying happens on the p4d level. */
452 p4d = p4d_offset(pgd, address);
453 p4d_ref = p4d_offset(pgd_ref, address);
454 if (p4d_none(*p4d_ref))
455 return -1;
457 if (p4d_none(*p4d) && CONFIG_PGTABLE_LEVELS == 4) {
458 set_p4d(p4d, *p4d_ref);
459 arch_flush_lazy_mmu_mode();
460 } else {
461 BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_ref));
465 * Below here mismatches are bugs because these lower tables
466 * are shared:
468 BUILD_BUG_ON(CONFIG_PGTABLE_LEVELS < 4);
470 pud = pud_offset(p4d, address);
471 pud_ref = pud_offset(p4d_ref, address);
472 if (pud_none(*pud_ref))
473 return -1;
475 if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref))
476 BUG();
478 if (pud_huge(*pud))
479 return 0;
481 pmd = pmd_offset(pud, address);
482 pmd_ref = pmd_offset(pud_ref, address);
483 if (pmd_none(*pmd_ref))
484 return -1;
486 if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref))
487 BUG();
489 if (pmd_huge(*pmd))
490 return 0;
492 pte_ref = pte_offset_kernel(pmd_ref, address);
493 if (!pte_present(*pte_ref))
494 return -1;
496 pte = pte_offset_kernel(pmd, address);
499 * Don't use pte_page here, because the mappings can point
500 * outside mem_map, and the NUMA hash lookup cannot handle
501 * that:
503 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
504 BUG();
506 return 0;
508 NOKPROBE_SYMBOL(vmalloc_fault);
510 #ifdef CONFIG_CPU_SUP_AMD
511 static const char errata93_warning[] =
512 KERN_ERR
513 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
514 "******* Working around it, but it may cause SEGVs or burn power.\n"
515 "******* Please consider a BIOS update.\n"
516 "******* Disabling USB legacy in the BIOS may also help.\n";
517 #endif
520 * No vm86 mode in 64-bit mode:
522 static inline void
523 check_v8086_mode(struct pt_regs *regs, unsigned long address,
524 struct task_struct *tsk)
528 static int bad_address(void *p)
530 unsigned long dummy;
532 return probe_kernel_address((unsigned long *)p, dummy);
535 static void dump_pagetable(unsigned long address)
537 pgd_t *base = __va(read_cr3_pa());
538 pgd_t *pgd = base + pgd_index(address);
539 p4d_t *p4d;
540 pud_t *pud;
541 pmd_t *pmd;
542 pte_t *pte;
544 if (bad_address(pgd))
545 goto bad;
547 pr_info("PGD %lx ", pgd_val(*pgd));
549 if (!pgd_present(*pgd))
550 goto out;
552 p4d = p4d_offset(pgd, address);
553 if (bad_address(p4d))
554 goto bad;
556 pr_cont("P4D %lx ", p4d_val(*p4d));
557 if (!p4d_present(*p4d) || p4d_large(*p4d))
558 goto out;
560 pud = pud_offset(p4d, address);
561 if (bad_address(pud))
562 goto bad;
564 pr_cont("PUD %lx ", pud_val(*pud));
565 if (!pud_present(*pud) || pud_large(*pud))
566 goto out;
568 pmd = pmd_offset(pud, address);
569 if (bad_address(pmd))
570 goto bad;
572 pr_cont("PMD %lx ", pmd_val(*pmd));
573 if (!pmd_present(*pmd) || pmd_large(*pmd))
574 goto out;
576 pte = pte_offset_kernel(pmd, address);
577 if (bad_address(pte))
578 goto bad;
580 pr_cont("PTE %lx", pte_val(*pte));
581 out:
582 pr_cont("\n");
583 return;
584 bad:
585 pr_info("BAD\n");
588 #endif /* CONFIG_X86_64 */
591 * Workaround for K8 erratum #93 & buggy BIOS.
593 * BIOS SMM functions are required to use a specific workaround
594 * to avoid corruption of the 64bit RIP register on C stepping K8.
596 * A lot of BIOS that didn't get tested properly miss this.
598 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
599 * Try to work around it here.
601 * Note we only handle faults in kernel here.
602 * Does nothing on 32-bit.
604 static int is_errata93(struct pt_regs *regs, unsigned long address)
606 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
607 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
608 || boot_cpu_data.x86 != 0xf)
609 return 0;
611 if (address != regs->ip)
612 return 0;
614 if ((address >> 32) != 0)
615 return 0;
617 address |= 0xffffffffUL << 32;
618 if ((address >= (u64)_stext && address <= (u64)_etext) ||
619 (address >= MODULES_VADDR && address <= MODULES_END)) {
620 printk_once(errata93_warning);
621 regs->ip = address;
622 return 1;
624 #endif
625 return 0;
629 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
630 * to illegal addresses >4GB.
632 * We catch this in the page fault handler because these addresses
633 * are not reachable. Just detect this case and return. Any code
634 * segment in LDT is compatibility mode.
636 static int is_errata100(struct pt_regs *regs, unsigned long address)
638 #ifdef CONFIG_X86_64
639 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
640 return 1;
641 #endif
642 return 0;
645 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
647 #ifdef CONFIG_X86_F00F_BUG
648 unsigned long nr;
651 * Pentium F0 0F C7 C8 bug workaround:
653 if (boot_cpu_has_bug(X86_BUG_F00F)) {
654 nr = (address - idt_descr.address) >> 3;
656 if (nr == 6) {
657 do_invalid_op(regs, 0);
658 return 1;
661 #endif
662 return 0;
665 static const char nx_warning[] = KERN_CRIT
666 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
667 static const char smep_warning[] = KERN_CRIT
668 "unable to execute userspace code (SMEP?) (uid: %d)\n";
670 static void
671 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
672 unsigned long address)
674 if (!oops_may_print())
675 return;
677 if (error_code & X86_PF_INSTR) {
678 unsigned int level;
679 pgd_t *pgd;
680 pte_t *pte;
682 pgd = __va(read_cr3_pa());
683 pgd += pgd_index(address);
685 pte = lookup_address_in_pgd(pgd, address, &level);
687 if (pte && pte_present(*pte) && !pte_exec(*pte))
688 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
689 if (pte && pte_present(*pte) && pte_exec(*pte) &&
690 (pgd_flags(*pgd) & _PAGE_USER) &&
691 (__read_cr4() & X86_CR4_SMEP))
692 printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
695 printk(KERN_ALERT "BUG: unable to handle kernel ");
696 if (address < PAGE_SIZE)
697 printk(KERN_CONT "NULL pointer dereference");
698 else
699 printk(KERN_CONT "paging request");
701 printk(KERN_CONT " at %px\n", (void *) address);
702 printk(KERN_ALERT "IP: %pS\n", (void *)regs->ip);
704 dump_pagetable(address);
707 static noinline void
708 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
709 unsigned long address)
711 struct task_struct *tsk;
712 unsigned long flags;
713 int sig;
715 flags = oops_begin();
716 tsk = current;
717 sig = SIGKILL;
719 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
720 tsk->comm, address);
721 dump_pagetable(address);
723 tsk->thread.cr2 = address;
724 tsk->thread.trap_nr = X86_TRAP_PF;
725 tsk->thread.error_code = error_code;
727 if (__die("Bad pagetable", regs, error_code))
728 sig = 0;
730 oops_end(flags, regs, sig);
733 static noinline void
734 no_context(struct pt_regs *regs, unsigned long error_code,
735 unsigned long address, int signal, int si_code)
737 struct task_struct *tsk = current;
738 unsigned long flags;
739 int sig;
741 /* Are we prepared to handle this kernel fault? */
742 if (fixup_exception(regs, X86_TRAP_PF)) {
744 * Any interrupt that takes a fault gets the fixup. This makes
745 * the below recursive fault logic only apply to a faults from
746 * task context.
748 if (in_interrupt())
749 return;
752 * Per the above we're !in_interrupt(), aka. task context.
754 * In this case we need to make sure we're not recursively
755 * faulting through the emulate_vsyscall() logic.
757 if (current->thread.sig_on_uaccess_err && signal) {
758 tsk->thread.trap_nr = X86_TRAP_PF;
759 tsk->thread.error_code = error_code | X86_PF_USER;
760 tsk->thread.cr2 = address;
762 /* XXX: hwpoison faults will set the wrong code. */
763 force_sig_info_fault(signal, si_code, address,
764 tsk, NULL, 0);
768 * Barring that, we can do the fixup and be happy.
770 return;
773 #ifdef CONFIG_VMAP_STACK
775 * Stack overflow? During boot, we can fault near the initial
776 * stack in the direct map, but that's not an overflow -- check
777 * that we're in vmalloc space to avoid this.
779 if (is_vmalloc_addr((void *)address) &&
780 (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
781 address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
782 unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
784 * We're likely to be running with very little stack space
785 * left. It's plausible that we'd hit this condition but
786 * double-fault even before we get this far, in which case
787 * we're fine: the double-fault handler will deal with it.
789 * We don't want to make it all the way into the oops code
790 * and then double-fault, though, because we're likely to
791 * break the console driver and lose most of the stack dump.
793 asm volatile ("movq %[stack], %%rsp\n\t"
794 "call handle_stack_overflow\n\t"
795 "1: jmp 1b"
796 : ASM_CALL_CONSTRAINT
797 : "D" ("kernel stack overflow (page fault)"),
798 "S" (regs), "d" (address),
799 [stack] "rm" (stack));
800 unreachable();
802 #endif
805 * 32-bit:
807 * Valid to do another page fault here, because if this fault
808 * had been triggered by is_prefetch fixup_exception would have
809 * handled it.
811 * 64-bit:
813 * Hall of shame of CPU/BIOS bugs.
815 if (is_prefetch(regs, error_code, address))
816 return;
818 if (is_errata93(regs, address))
819 return;
822 * Oops. The kernel tried to access some bad page. We'll have to
823 * terminate things with extreme prejudice:
825 flags = oops_begin();
827 show_fault_oops(regs, error_code, address);
829 if (task_stack_end_corrupted(tsk))
830 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
832 tsk->thread.cr2 = address;
833 tsk->thread.trap_nr = X86_TRAP_PF;
834 tsk->thread.error_code = error_code;
836 sig = SIGKILL;
837 if (__die("Oops", regs, error_code))
838 sig = 0;
840 /* Executive summary in case the body of the oops scrolled away */
841 printk(KERN_DEFAULT "CR2: %016lx\n", address);
843 oops_end(flags, regs, sig);
847 * Print out info about fatal segfaults, if the show_unhandled_signals
848 * sysctl is set:
850 static inline void
851 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
852 unsigned long address, struct task_struct *tsk)
854 if (!unhandled_signal(tsk, SIGSEGV))
855 return;
857 if (!printk_ratelimit())
858 return;
860 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
861 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
862 tsk->comm, task_pid_nr(tsk), address,
863 (void *)regs->ip, (void *)regs->sp, error_code);
865 print_vma_addr(KERN_CONT " in ", regs->ip);
867 printk(KERN_CONT "\n");
870 static void
871 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
872 unsigned long address, u32 *pkey, int si_code)
874 struct task_struct *tsk = current;
876 /* User mode accesses just cause a SIGSEGV */
877 if (error_code & X86_PF_USER) {
879 * It's possible to have interrupts off here:
881 local_irq_enable();
884 * Valid to do another page fault here because this one came
885 * from user space:
887 if (is_prefetch(regs, error_code, address))
888 return;
890 if (is_errata100(regs, address))
891 return;
893 #ifdef CONFIG_X86_64
895 * Instruction fetch faults in the vsyscall page might need
896 * emulation.
898 if (unlikely((error_code & X86_PF_INSTR) &&
899 ((address & ~0xfff) == VSYSCALL_ADDR))) {
900 if (emulate_vsyscall(regs, address))
901 return;
903 #endif
906 * To avoid leaking information about the kernel page table
907 * layout, pretend that user-mode accesses to kernel addresses
908 * are always protection faults.
910 if (address >= TASK_SIZE_MAX)
911 error_code |= X86_PF_PROT;
913 if (likely(show_unhandled_signals))
914 show_signal_msg(regs, error_code, address, tsk);
916 tsk->thread.cr2 = address;
917 tsk->thread.error_code = error_code;
918 tsk->thread.trap_nr = X86_TRAP_PF;
920 force_sig_info_fault(SIGSEGV, si_code, address, tsk, pkey, 0);
922 return;
925 if (is_f00f_bug(regs, address))
926 return;
928 no_context(regs, error_code, address, SIGSEGV, si_code);
931 static noinline void
932 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
933 unsigned long address, u32 *pkey)
935 __bad_area_nosemaphore(regs, error_code, address, pkey, SEGV_MAPERR);
938 static void
939 __bad_area(struct pt_regs *regs, unsigned long error_code,
940 unsigned long address, struct vm_area_struct *vma, int si_code)
942 struct mm_struct *mm = current->mm;
943 u32 pkey;
945 if (vma)
946 pkey = vma_pkey(vma);
949 * Something tried to access memory that isn't in our memory map..
950 * Fix it, but check if it's kernel or user first..
952 up_read(&mm->mmap_sem);
954 __bad_area_nosemaphore(regs, error_code, address,
955 (vma) ? &pkey : NULL, si_code);
958 static noinline void
959 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
961 __bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
964 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
965 struct vm_area_struct *vma)
967 /* This code is always called on the current mm */
968 bool foreign = false;
970 if (!boot_cpu_has(X86_FEATURE_OSPKE))
971 return false;
972 if (error_code & X86_PF_PK)
973 return true;
974 /* this checks permission keys on the VMA: */
975 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
976 (error_code & X86_PF_INSTR), foreign))
977 return true;
978 return false;
981 static noinline void
982 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
983 unsigned long address, struct vm_area_struct *vma)
986 * This OSPKE check is not strictly necessary at runtime.
987 * But, doing it this way allows compiler optimizations
988 * if pkeys are compiled out.
990 if (bad_area_access_from_pkeys(error_code, vma))
991 __bad_area(regs, error_code, address, vma, SEGV_PKUERR);
992 else
993 __bad_area(regs, error_code, address, vma, SEGV_ACCERR);
996 static void
997 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
998 u32 *pkey, unsigned int fault)
1000 struct task_struct *tsk = current;
1001 int code = BUS_ADRERR;
1003 /* Kernel mode? Handle exceptions or die: */
1004 if (!(error_code & X86_PF_USER)) {
1005 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1006 return;
1009 /* User-space => ok to do another page fault: */
1010 if (is_prefetch(regs, error_code, address))
1011 return;
1013 tsk->thread.cr2 = address;
1014 tsk->thread.error_code = error_code;
1015 tsk->thread.trap_nr = X86_TRAP_PF;
1017 #ifdef CONFIG_MEMORY_FAILURE
1018 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
1019 printk(KERN_ERR
1020 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
1021 tsk->comm, tsk->pid, address);
1022 code = BUS_MCEERR_AR;
1024 #endif
1025 force_sig_info_fault(SIGBUS, code, address, tsk, pkey, fault);
1028 static noinline void
1029 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1030 unsigned long address, u32 *pkey, unsigned int fault)
1032 if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
1033 no_context(regs, error_code, address, 0, 0);
1034 return;
1037 if (fault & VM_FAULT_OOM) {
1038 /* Kernel mode? Handle exceptions or die: */
1039 if (!(error_code & X86_PF_USER)) {
1040 no_context(regs, error_code, address,
1041 SIGSEGV, SEGV_MAPERR);
1042 return;
1046 * We ran out of memory, call the OOM killer, and return the
1047 * userspace (which will retry the fault, or kill us if we got
1048 * oom-killed):
1050 pagefault_out_of_memory();
1051 } else {
1052 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1053 VM_FAULT_HWPOISON_LARGE))
1054 do_sigbus(regs, error_code, address, pkey, fault);
1055 else if (fault & VM_FAULT_SIGSEGV)
1056 bad_area_nosemaphore(regs, error_code, address, pkey);
1057 else
1058 BUG();
1062 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
1064 if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
1065 return 0;
1067 if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
1068 return 0;
1070 * Note: We do not do lazy flushing on protection key
1071 * changes, so no spurious fault will ever set X86_PF_PK.
1073 if ((error_code & X86_PF_PK))
1074 return 1;
1076 return 1;
1080 * Handle a spurious fault caused by a stale TLB entry.
1082 * This allows us to lazily refresh the TLB when increasing the
1083 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1084 * eagerly is very expensive since that implies doing a full
1085 * cross-processor TLB flush, even if no stale TLB entries exist
1086 * on other processors.
1088 * Spurious faults may only occur if the TLB contains an entry with
1089 * fewer permission than the page table entry. Non-present (P = 0)
1090 * and reserved bit (R = 1) faults are never spurious.
1092 * There are no security implications to leaving a stale TLB when
1093 * increasing the permissions on a page.
1095 * Returns non-zero if a spurious fault was handled, zero otherwise.
1097 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1098 * (Optional Invalidation).
1100 static noinline int
1101 spurious_fault(unsigned long error_code, unsigned long address)
1103 pgd_t *pgd;
1104 p4d_t *p4d;
1105 pud_t *pud;
1106 pmd_t *pmd;
1107 pte_t *pte;
1108 int ret;
1111 * Only writes to RO or instruction fetches from NX may cause
1112 * spurious faults.
1114 * These could be from user or supervisor accesses but the TLB
1115 * is only lazily flushed after a kernel mapping protection
1116 * change, so user accesses are not expected to cause spurious
1117 * faults.
1119 if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1120 error_code != (X86_PF_INSTR | X86_PF_PROT))
1121 return 0;
1123 pgd = init_mm.pgd + pgd_index(address);
1124 if (!pgd_present(*pgd))
1125 return 0;
1127 p4d = p4d_offset(pgd, address);
1128 if (!p4d_present(*p4d))
1129 return 0;
1131 if (p4d_large(*p4d))
1132 return spurious_fault_check(error_code, (pte_t *) p4d);
1134 pud = pud_offset(p4d, address);
1135 if (!pud_present(*pud))
1136 return 0;
1138 if (pud_large(*pud))
1139 return spurious_fault_check(error_code, (pte_t *) pud);
1141 pmd = pmd_offset(pud, address);
1142 if (!pmd_present(*pmd))
1143 return 0;
1145 if (pmd_large(*pmd))
1146 return spurious_fault_check(error_code, (pte_t *) pmd);
1148 pte = pte_offset_kernel(pmd, address);
1149 if (!pte_present(*pte))
1150 return 0;
1152 ret = spurious_fault_check(error_code, pte);
1153 if (!ret)
1154 return 0;
1157 * Make sure we have permissions in PMD.
1158 * If not, then there's a bug in the page tables:
1160 ret = spurious_fault_check(error_code, (pte_t *) pmd);
1161 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1163 return ret;
1165 NOKPROBE_SYMBOL(spurious_fault);
1167 int show_unhandled_signals = 1;
1169 static inline int
1170 access_error(unsigned long error_code, struct vm_area_struct *vma)
1172 /* This is only called for the current mm, so: */
1173 bool foreign = false;
1176 * Read or write was blocked by protection keys. This is
1177 * always an unconditional error and can never result in
1178 * a follow-up action to resolve the fault, like a COW.
1180 if (error_code & X86_PF_PK)
1181 return 1;
1184 * Make sure to check the VMA so that we do not perform
1185 * faults just to hit a X86_PF_PK as soon as we fill in a
1186 * page.
1188 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1189 (error_code & X86_PF_INSTR), foreign))
1190 return 1;
1192 if (error_code & X86_PF_WRITE) {
1193 /* write, present and write, not present: */
1194 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1195 return 1;
1196 return 0;
1199 /* read, present: */
1200 if (unlikely(error_code & X86_PF_PROT))
1201 return 1;
1203 /* read, not present: */
1204 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1205 return 1;
1207 return 0;
1210 static int fault_in_kernel_space(unsigned long address)
1212 return address >= TASK_SIZE_MAX;
1215 static inline bool smap_violation(int error_code, struct pt_regs *regs)
1217 if (!IS_ENABLED(CONFIG_X86_SMAP))
1218 return false;
1220 if (!static_cpu_has(X86_FEATURE_SMAP))
1221 return false;
1223 if (error_code & X86_PF_USER)
1224 return false;
1226 if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1227 return false;
1229 return true;
1233 * This routine handles page faults. It determines the address,
1234 * and the problem, and then passes it off to one of the appropriate
1235 * routines.
1237 static noinline void
1238 __do_page_fault(struct pt_regs *regs, unsigned long error_code,
1239 unsigned long address)
1241 struct vm_area_struct *vma;
1242 struct task_struct *tsk;
1243 struct mm_struct *mm;
1244 int fault, major = 0;
1245 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1246 u32 pkey;
1248 tsk = current;
1249 mm = tsk->mm;
1252 * Detect and handle instructions that would cause a page fault for
1253 * both a tracked kernel page and a userspace page.
1255 prefetchw(&mm->mmap_sem);
1257 if (unlikely(kmmio_fault(regs, address)))
1258 return;
1261 * We fault-in kernel-space virtual memory on-demand. The
1262 * 'reference' page table is init_mm.pgd.
1264 * NOTE! We MUST NOT take any locks for this case. We may
1265 * be in an interrupt or a critical region, and should
1266 * only copy the information from the master page table,
1267 * nothing more.
1269 * This verifies that the fault happens in kernel space
1270 * (error_code & 4) == 0, and that the fault was not a
1271 * protection error (error_code & 9) == 0.
1273 if (unlikely(fault_in_kernel_space(address))) {
1274 if (!(error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1275 if (vmalloc_fault(address) >= 0)
1276 return;
1279 /* Can handle a stale RO->RW TLB: */
1280 if (spurious_fault(error_code, address))
1281 return;
1283 /* kprobes don't want to hook the spurious faults: */
1284 if (kprobes_fault(regs))
1285 return;
1287 * Don't take the mm semaphore here. If we fixup a prefetch
1288 * fault we could otherwise deadlock:
1290 bad_area_nosemaphore(regs, error_code, address, NULL);
1292 return;
1295 /* kprobes don't want to hook the spurious faults: */
1296 if (unlikely(kprobes_fault(regs)))
1297 return;
1299 if (unlikely(error_code & X86_PF_RSVD))
1300 pgtable_bad(regs, error_code, address);
1302 if (unlikely(smap_violation(error_code, regs))) {
1303 bad_area_nosemaphore(regs, error_code, address, NULL);
1304 return;
1308 * If we're in an interrupt, have no user context or are running
1309 * in a region with pagefaults disabled then we must not take the fault
1311 if (unlikely(faulthandler_disabled() || !mm)) {
1312 bad_area_nosemaphore(regs, error_code, address, NULL);
1313 return;
1317 * It's safe to allow irq's after cr2 has been saved and the
1318 * vmalloc fault has been handled.
1320 * User-mode registers count as a user access even for any
1321 * potential system fault or CPU buglet:
1323 if (user_mode(regs)) {
1324 local_irq_enable();
1325 error_code |= X86_PF_USER;
1326 flags |= FAULT_FLAG_USER;
1327 } else {
1328 if (regs->flags & X86_EFLAGS_IF)
1329 local_irq_enable();
1332 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1334 if (error_code & X86_PF_WRITE)
1335 flags |= FAULT_FLAG_WRITE;
1336 if (error_code & X86_PF_INSTR)
1337 flags |= FAULT_FLAG_INSTRUCTION;
1340 * When running in the kernel we expect faults to occur only to
1341 * addresses in user space. All other faults represent errors in
1342 * the kernel and should generate an OOPS. Unfortunately, in the
1343 * case of an erroneous fault occurring in a code path which already
1344 * holds mmap_sem we will deadlock attempting to validate the fault
1345 * against the address space. Luckily the kernel only validly
1346 * references user space from well defined areas of code, which are
1347 * listed in the exceptions table.
1349 * As the vast majority of faults will be valid we will only perform
1350 * the source reference check when there is a possibility of a
1351 * deadlock. Attempt to lock the address space, if we cannot we then
1352 * validate the source. If this is invalid we can skip the address
1353 * space check, thus avoiding the deadlock:
1355 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1356 if (!(error_code & X86_PF_USER) &&
1357 !search_exception_tables(regs->ip)) {
1358 bad_area_nosemaphore(regs, error_code, address, NULL);
1359 return;
1361 retry:
1362 down_read(&mm->mmap_sem);
1363 } else {
1365 * The above down_read_trylock() might have succeeded in
1366 * which case we'll have missed the might_sleep() from
1367 * down_read():
1369 might_sleep();
1372 vma = find_vma(mm, address);
1373 if (unlikely(!vma)) {
1374 bad_area(regs, error_code, address);
1375 return;
1377 if (likely(vma->vm_start <= address))
1378 goto good_area;
1379 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1380 bad_area(regs, error_code, address);
1381 return;
1383 if (error_code & X86_PF_USER) {
1385 * Accessing the stack below %sp is always a bug.
1386 * The large cushion allows instructions like enter
1387 * and pusha to work. ("enter $65535, $31" pushes
1388 * 32 pointers and then decrements %sp by 65535.)
1390 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1391 bad_area(regs, error_code, address);
1392 return;
1395 if (unlikely(expand_stack(vma, address))) {
1396 bad_area(regs, error_code, address);
1397 return;
1401 * Ok, we have a good vm_area for this memory access, so
1402 * we can handle it..
1404 good_area:
1405 if (unlikely(access_error(error_code, vma))) {
1406 bad_area_access_error(regs, error_code, address, vma);
1407 return;
1411 * If for any reason at all we couldn't handle the fault,
1412 * make sure we exit gracefully rather than endlessly redo
1413 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1414 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1416 * Note that handle_userfault() may also release and reacquire mmap_sem
1417 * (and not return with VM_FAULT_RETRY), when returning to userland to
1418 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1419 * (potentially after handling any pending signal during the return to
1420 * userland). The return to userland is identified whenever
1421 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1422 * Thus we have to be careful about not touching vma after handling the
1423 * fault, so we read the pkey beforehand.
1425 pkey = vma_pkey(vma);
1426 fault = handle_mm_fault(vma, address, flags);
1427 major |= fault & VM_FAULT_MAJOR;
1430 * If we need to retry the mmap_sem has already been released,
1431 * and if there is a fatal signal pending there is no guarantee
1432 * that we made any progress. Handle this case first.
1434 if (unlikely(fault & VM_FAULT_RETRY)) {
1435 /* Retry at most once */
1436 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1437 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1438 flags |= FAULT_FLAG_TRIED;
1439 if (!fatal_signal_pending(tsk))
1440 goto retry;
1443 /* User mode? Just return to handle the fatal exception */
1444 if (flags & FAULT_FLAG_USER)
1445 return;
1447 /* Not returning to user mode? Handle exceptions or die: */
1448 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1449 return;
1452 up_read(&mm->mmap_sem);
1453 if (unlikely(fault & VM_FAULT_ERROR)) {
1454 mm_fault_error(regs, error_code, address, &pkey, fault);
1455 return;
1459 * Major/minor page fault accounting. If any of the events
1460 * returned VM_FAULT_MAJOR, we account it as a major fault.
1462 if (major) {
1463 tsk->maj_flt++;
1464 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1465 } else {
1466 tsk->min_flt++;
1467 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1470 check_v8086_mode(regs, address, tsk);
1472 NOKPROBE_SYMBOL(__do_page_fault);
1474 static nokprobe_inline void
1475 trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1476 unsigned long error_code)
1478 if (user_mode(regs))
1479 trace_page_fault_user(address, regs, error_code);
1480 else
1481 trace_page_fault_kernel(address, regs, error_code);
1485 * We must have this function blacklisted from kprobes, tagged with notrace
1486 * and call read_cr2() before calling anything else. To avoid calling any
1487 * kind of tracing machinery before we've observed the CR2 value.
1489 * exception_{enter,exit}() contains all sorts of tracepoints.
1491 dotraplinkage void notrace
1492 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1494 unsigned long address = read_cr2(); /* Get the faulting address */
1495 enum ctx_state prev_state;
1497 prev_state = exception_enter();
1498 if (trace_pagefault_enabled())
1499 trace_page_fault_entries(address, regs, error_code);
1501 __do_page_fault(regs, error_code, address);
1502 exception_exit(prev_state);
1504 NOKPROBE_SYMBOL(do_page_fault);