x86/topology: Update the 'cpu cores' field in /proc/cpuinfo correctly across CPU...
[cris-mirror.git] / arch / x86 / mm / kaslr.c
blobaedebd2ebf1ead0ff2b1b17816ff80d9fce88b8f
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This file implements KASLR memory randomization for x86_64. It randomizes
4 * the virtual address space of kernel memory regions (physical memory
5 * mapping, vmalloc & vmemmap) for x86_64. This security feature mitigates
6 * exploits relying on predictable kernel addresses.
8 * Entropy is generated using the KASLR early boot functions now shared in
9 * the lib directory (originally written by Kees Cook). Randomization is
10 * done on PGD & P4D/PUD page table levels to increase possible addresses.
11 * The physical memory mapping code was adapted to support P4D/PUD level
12 * virtual addresses. This implementation on the best configuration provides
13 * 30,000 possible virtual addresses in average for each memory region.
14 * An additional low memory page is used to ensure each CPU can start with
15 * a PGD aligned virtual address (for realmode).
17 * The order of each memory region is not changed. The feature looks at
18 * the available space for the regions based on different configuration
19 * options and randomizes the base and space between each. The size of the
20 * physical memory mapping is the available physical memory.
23 #include <linux/kernel.h>
24 #include <linux/init.h>
25 #include <linux/random.h>
27 #include <asm/pgalloc.h>
28 #include <asm/pgtable.h>
29 #include <asm/setup.h>
30 #include <asm/kaslr.h>
32 #include "mm_internal.h"
34 #define TB_SHIFT 40
37 * Virtual address start and end range for randomization.
39 * The end address could depend on more configuration options to make the
40 * highest amount of space for randomization available, but that's too hard
41 * to keep straight and caused issues already.
43 static const unsigned long vaddr_start = __PAGE_OFFSET_BASE;
44 static const unsigned long vaddr_end = CPU_ENTRY_AREA_BASE;
46 /* Default values */
47 unsigned long page_offset_base = __PAGE_OFFSET_BASE;
48 EXPORT_SYMBOL(page_offset_base);
49 unsigned long vmalloc_base = __VMALLOC_BASE;
50 EXPORT_SYMBOL(vmalloc_base);
51 unsigned long vmemmap_base = __VMEMMAP_BASE;
52 EXPORT_SYMBOL(vmemmap_base);
55 * Memory regions randomized by KASLR (except modules that use a separate logic
56 * earlier during boot). The list is ordered based on virtual addresses. This
57 * order is kept after randomization.
59 static __initdata struct kaslr_memory_region {
60 unsigned long *base;
61 unsigned long size_tb;
62 } kaslr_regions[] = {
63 { &page_offset_base, 1 << (__PHYSICAL_MASK_SHIFT - TB_SHIFT) /* Maximum */ },
64 { &vmalloc_base, VMALLOC_SIZE_TB },
65 { &vmemmap_base, 1 },
68 /* Get size in bytes used by the memory region */
69 static inline unsigned long get_padding(struct kaslr_memory_region *region)
71 return (region->size_tb << TB_SHIFT);
75 * Apply no randomization if KASLR was disabled at boot or if KASAN
76 * is enabled. KASAN shadow mappings rely on regions being PGD aligned.
78 static inline bool kaslr_memory_enabled(void)
80 return kaslr_enabled() && !IS_ENABLED(CONFIG_KASAN);
83 /* Initialize base and padding for each memory region randomized with KASLR */
84 void __init kernel_randomize_memory(void)
86 size_t i;
87 unsigned long vaddr = vaddr_start;
88 unsigned long rand, memory_tb;
89 struct rnd_state rand_state;
90 unsigned long remain_entropy;
93 * These BUILD_BUG_ON checks ensure the memory layout is consistent
94 * with the vaddr_start/vaddr_end variables. These checks are very
95 * limited....
97 BUILD_BUG_ON(vaddr_start >= vaddr_end);
98 BUILD_BUG_ON(vaddr_end != CPU_ENTRY_AREA_BASE);
99 BUILD_BUG_ON(vaddr_end > __START_KERNEL_map);
101 if (!kaslr_memory_enabled())
102 return;
105 * Update Physical memory mapping to available and
106 * add padding if needed (especially for memory hotplug support).
108 BUG_ON(kaslr_regions[0].base != &page_offset_base);
109 memory_tb = DIV_ROUND_UP(max_pfn << PAGE_SHIFT, 1UL << TB_SHIFT) +
110 CONFIG_RANDOMIZE_MEMORY_PHYSICAL_PADDING;
112 /* Adapt phyiscal memory region size based on available memory */
113 if (memory_tb < kaslr_regions[0].size_tb)
114 kaslr_regions[0].size_tb = memory_tb;
116 /* Calculate entropy available between regions */
117 remain_entropy = vaddr_end - vaddr_start;
118 for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++)
119 remain_entropy -= get_padding(&kaslr_regions[i]);
121 prandom_seed_state(&rand_state, kaslr_get_random_long("Memory"));
123 for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++) {
124 unsigned long entropy;
127 * Select a random virtual address using the extra entropy
128 * available.
130 entropy = remain_entropy / (ARRAY_SIZE(kaslr_regions) - i);
131 prandom_bytes_state(&rand_state, &rand, sizeof(rand));
132 if (IS_ENABLED(CONFIG_X86_5LEVEL))
133 entropy = (rand % (entropy + 1)) & P4D_MASK;
134 else
135 entropy = (rand % (entropy + 1)) & PUD_MASK;
136 vaddr += entropy;
137 *kaslr_regions[i].base = vaddr;
140 * Jump the region and add a minimum padding based on
141 * randomization alignment.
143 vaddr += get_padding(&kaslr_regions[i]);
144 if (IS_ENABLED(CONFIG_X86_5LEVEL))
145 vaddr = round_up(vaddr + 1, P4D_SIZE);
146 else
147 vaddr = round_up(vaddr + 1, PUD_SIZE);
148 remain_entropy -= entropy;
152 static void __meminit init_trampoline_pud(void)
154 unsigned long paddr, paddr_next;
155 pgd_t *pgd;
156 pud_t *pud_page, *pud_page_tramp;
157 int i;
159 pud_page_tramp = alloc_low_page();
161 paddr = 0;
162 pgd = pgd_offset_k((unsigned long)__va(paddr));
163 pud_page = (pud_t *) pgd_page_vaddr(*pgd);
165 for (i = pud_index(paddr); i < PTRS_PER_PUD; i++, paddr = paddr_next) {
166 pud_t *pud, *pud_tramp;
167 unsigned long vaddr = (unsigned long)__va(paddr);
169 pud_tramp = pud_page_tramp + pud_index(paddr);
170 pud = pud_page + pud_index(vaddr);
171 paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
173 *pud_tramp = *pud;
176 set_pgd(&trampoline_pgd_entry,
177 __pgd(_KERNPG_TABLE | __pa(pud_page_tramp)));
180 static void __meminit init_trampoline_p4d(void)
182 unsigned long paddr, paddr_next;
183 pgd_t *pgd;
184 p4d_t *p4d_page, *p4d_page_tramp;
185 int i;
187 p4d_page_tramp = alloc_low_page();
189 paddr = 0;
190 pgd = pgd_offset_k((unsigned long)__va(paddr));
191 p4d_page = (p4d_t *) pgd_page_vaddr(*pgd);
193 for (i = p4d_index(paddr); i < PTRS_PER_P4D; i++, paddr = paddr_next) {
194 p4d_t *p4d, *p4d_tramp;
195 unsigned long vaddr = (unsigned long)__va(paddr);
197 p4d_tramp = p4d_page_tramp + p4d_index(paddr);
198 p4d = p4d_page + p4d_index(vaddr);
199 paddr_next = (paddr & P4D_MASK) + P4D_SIZE;
201 *p4d_tramp = *p4d;
204 set_pgd(&trampoline_pgd_entry,
205 __pgd(_KERNPG_TABLE | __pa(p4d_page_tramp)));
209 * Create PGD aligned trampoline table to allow real mode initialization
210 * of additional CPUs. Consume only 1 low memory page.
212 void __meminit init_trampoline(void)
215 if (!kaslr_memory_enabled()) {
216 init_trampoline_default();
217 return;
220 if (IS_ENABLED(CONFIG_X86_5LEVEL))
221 init_trampoline_p4d();
222 else
223 init_trampoline_pud();