x86/topology: Update the 'cpu cores' field in /proc/cpuinfo correctly across CPU...
[cris-mirror.git] / drivers / hwmon / lm85.c
blob0a325878e8f52c9ed216332a81104cd418aaa26d
1 /*
2 * lm85.c - Part of lm_sensors, Linux kernel modules for hardware
3 * monitoring
4 * Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
5 * Copyright (c) 2002, 2003 Philip Pokorny <ppokorny@penguincomputing.com>
6 * Copyright (c) 2003 Margit Schubert-While <margitsw@t-online.de>
7 * Copyright (c) 2004 Justin Thiessen <jthiessen@penguincomputing.com>
8 * Copyright (C) 2007--2014 Jean Delvare <jdelvare@suse.de>
10 * Chip details at <http://www.national.com/ds/LM/LM85.pdf>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 #include <linux/module.h>
28 #include <linux/of_device.h>
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/jiffies.h>
32 #include <linux/i2c.h>
33 #include <linux/hwmon.h>
34 #include <linux/hwmon-vid.h>
35 #include <linux/hwmon-sysfs.h>
36 #include <linux/err.h>
37 #include <linux/mutex.h>
38 #include <linux/util_macros.h>
40 /* Addresses to scan */
41 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
43 enum chips {
44 lm85,
45 adm1027, adt7463, adt7468,
46 emc6d100, emc6d102, emc6d103, emc6d103s
49 /* The LM85 registers */
51 #define LM85_REG_IN(nr) (0x20 + (nr))
52 #define LM85_REG_IN_MIN(nr) (0x44 + (nr) * 2)
53 #define LM85_REG_IN_MAX(nr) (0x45 + (nr) * 2)
55 #define LM85_REG_TEMP(nr) (0x25 + (nr))
56 #define LM85_REG_TEMP_MIN(nr) (0x4e + (nr) * 2)
57 #define LM85_REG_TEMP_MAX(nr) (0x4f + (nr) * 2)
59 /* Fan speeds are LSB, MSB (2 bytes) */
60 #define LM85_REG_FAN(nr) (0x28 + (nr) * 2)
61 #define LM85_REG_FAN_MIN(nr) (0x54 + (nr) * 2)
63 #define LM85_REG_PWM(nr) (0x30 + (nr))
65 #define LM85_REG_COMPANY 0x3e
66 #define LM85_REG_VERSTEP 0x3f
68 #define ADT7468_REG_CFG5 0x7c
69 #define ADT7468_OFF64 (1 << 0)
70 #define ADT7468_HFPWM (1 << 1)
71 #define IS_ADT7468_OFF64(data) \
72 ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
73 #define IS_ADT7468_HFPWM(data) \
74 ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM))
76 /* These are the recognized values for the above regs */
77 #define LM85_COMPANY_NATIONAL 0x01
78 #define LM85_COMPANY_ANALOG_DEV 0x41
79 #define LM85_COMPANY_SMSC 0x5c
80 #define LM85_VERSTEP_LM85C 0x60
81 #define LM85_VERSTEP_LM85B 0x62
82 #define LM85_VERSTEP_LM96000_1 0x68
83 #define LM85_VERSTEP_LM96000_2 0x69
84 #define LM85_VERSTEP_ADM1027 0x60
85 #define LM85_VERSTEP_ADT7463 0x62
86 #define LM85_VERSTEP_ADT7463C 0x6A
87 #define LM85_VERSTEP_ADT7468_1 0x71
88 #define LM85_VERSTEP_ADT7468_2 0x72
89 #define LM85_VERSTEP_EMC6D100_A0 0x60
90 #define LM85_VERSTEP_EMC6D100_A1 0x61
91 #define LM85_VERSTEP_EMC6D102 0x65
92 #define LM85_VERSTEP_EMC6D103_A0 0x68
93 #define LM85_VERSTEP_EMC6D103_A1 0x69
94 #define LM85_VERSTEP_EMC6D103S 0x6A /* Also known as EMC6D103:A2 */
96 #define LM85_REG_CONFIG 0x40
98 #define LM85_REG_ALARM1 0x41
99 #define LM85_REG_ALARM2 0x42
101 #define LM85_REG_VID 0x43
103 /* Automated FAN control */
104 #define LM85_REG_AFAN_CONFIG(nr) (0x5c + (nr))
105 #define LM85_REG_AFAN_RANGE(nr) (0x5f + (nr))
106 #define LM85_REG_AFAN_SPIKE1 0x62
107 #define LM85_REG_AFAN_MINPWM(nr) (0x64 + (nr))
108 #define LM85_REG_AFAN_LIMIT(nr) (0x67 + (nr))
109 #define LM85_REG_AFAN_CRITICAL(nr) (0x6a + (nr))
110 #define LM85_REG_AFAN_HYST1 0x6d
111 #define LM85_REG_AFAN_HYST2 0x6e
113 #define ADM1027_REG_EXTEND_ADC1 0x76
114 #define ADM1027_REG_EXTEND_ADC2 0x77
116 #define EMC6D100_REG_ALARM3 0x7d
117 /* IN5, IN6 and IN7 */
118 #define EMC6D100_REG_IN(nr) (0x70 + ((nr) - 5))
119 #define EMC6D100_REG_IN_MIN(nr) (0x73 + ((nr) - 5) * 2)
120 #define EMC6D100_REG_IN_MAX(nr) (0x74 + ((nr) - 5) * 2)
121 #define EMC6D102_REG_EXTEND_ADC1 0x85
122 #define EMC6D102_REG_EXTEND_ADC2 0x86
123 #define EMC6D102_REG_EXTEND_ADC3 0x87
124 #define EMC6D102_REG_EXTEND_ADC4 0x88
127 * Conversions. Rounding and limit checking is only done on the TO_REG
128 * variants. Note that you should be a bit careful with which arguments
129 * these macros are called: arguments may be evaluated more than once.
132 /* IN are scaled according to built-in resistors */
133 static const int lm85_scaling[] = { /* .001 Volts */
134 2500, 2250, 3300, 5000, 12000,
135 3300, 1500, 1800 /*EMC6D100*/
137 #define SCALE(val, from, to) (((val) * (to) + ((from) / 2)) / (from))
139 #define INS_TO_REG(n, val) \
140 SCALE(clamp_val(val, 0, 255 * lm85_scaling[n] / 192), \
141 lm85_scaling[n], 192)
143 #define INSEXT_FROM_REG(n, val, ext) \
144 SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
146 #define INS_FROM_REG(n, val) SCALE((val), 192, lm85_scaling[n])
148 /* FAN speed is measured using 90kHz clock */
149 static inline u16 FAN_TO_REG(unsigned long val)
151 if (!val)
152 return 0xffff;
153 return clamp_val(5400000 / val, 1, 0xfffe);
155 #define FAN_FROM_REG(val) ((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
156 5400000 / (val))
158 /* Temperature is reported in .001 degC increments */
159 #define TEMP_TO_REG(val) \
160 DIV_ROUND_CLOSEST(clamp_val((val), -127000, 127000), 1000)
161 #define TEMPEXT_FROM_REG(val, ext) \
162 SCALE(((val) << 4) + (ext), 16, 1000)
163 #define TEMP_FROM_REG(val) ((val) * 1000)
165 #define PWM_TO_REG(val) clamp_val(val, 0, 255)
166 #define PWM_FROM_REG(val) (val)
170 * ZONEs have the following parameters:
171 * Limit (low) temp, 1. degC
172 * Hysteresis (below limit), 1. degC (0-15)
173 * Range of speed control, .1 degC (2-80)
174 * Critical (high) temp, 1. degC
176 * FAN PWMs have the following parameters:
177 * Reference Zone, 1, 2, 3, etc.
178 * Spinup time, .05 sec
179 * PWM value at limit/low temp, 1 count
180 * PWM Frequency, 1. Hz
181 * PWM is Min or OFF below limit, flag
182 * Invert PWM output, flag
184 * Some chips filter the temp, others the fan.
185 * Filter constant (or disabled) .1 seconds
188 /* These are the zone temperature range encodings in .001 degree C */
189 static const int lm85_range_map[] = {
190 2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
191 13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
194 static int RANGE_TO_REG(long range)
196 return find_closest(range, lm85_range_map, ARRAY_SIZE(lm85_range_map));
198 #define RANGE_FROM_REG(val) lm85_range_map[(val) & 0x0f]
200 /* These are the PWM frequency encodings */
201 static const int lm85_freq_map[8] = { /* 1 Hz */
202 10, 15, 23, 30, 38, 47, 61, 94
204 static const int adm1027_freq_map[8] = { /* 1 Hz */
205 11, 15, 22, 29, 35, 44, 59, 88
207 #define FREQ_MAP_LEN 8
209 static int FREQ_TO_REG(const int *map,
210 unsigned int map_size, unsigned long freq)
212 return find_closest(freq, map, map_size);
215 static int FREQ_FROM_REG(const int *map, u8 reg)
217 return map[reg & 0x07];
221 * Since we can't use strings, I'm abusing these numbers
222 * to stand in for the following meanings:
223 * 1 -- PWM responds to Zone 1
224 * 2 -- PWM responds to Zone 2
225 * 3 -- PWM responds to Zone 3
226 * 23 -- PWM responds to the higher temp of Zone 2 or 3
227 * 123 -- PWM responds to highest of Zone 1, 2, or 3
228 * 0 -- PWM is always at 0% (ie, off)
229 * -1 -- PWM is always at 100%
230 * -2 -- PWM responds to manual control
233 static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
234 #define ZONE_FROM_REG(val) lm85_zone_map[(val) >> 5]
236 static int ZONE_TO_REG(int zone)
238 int i;
240 for (i = 0; i <= 7; ++i)
241 if (zone == lm85_zone_map[i])
242 break;
243 if (i > 7) /* Not found. */
244 i = 3; /* Always 100% */
245 return i << 5;
248 #define HYST_TO_REG(val) clamp_val(((val) + 500) / 1000, 0, 15)
249 #define HYST_FROM_REG(val) ((val) * 1000)
252 * Chip sampling rates
254 * Some sensors are not updated more frequently than once per second
255 * so it doesn't make sense to read them more often than that.
256 * We cache the results and return the saved data if the driver
257 * is called again before a second has elapsed.
259 * Also, there is significant configuration data for this chip
260 * given the automatic PWM fan control that is possible. There
261 * are about 47 bytes of config data to only 22 bytes of actual
262 * readings. So, we keep the config data up to date in the cache
263 * when it is written and only sample it once every 1 *minute*
265 #define LM85_DATA_INTERVAL (HZ + HZ / 2)
266 #define LM85_CONFIG_INTERVAL (1 * 60 * HZ)
269 * LM85 can automatically adjust fan speeds based on temperature
270 * This structure encapsulates an entire Zone config. There are
271 * three zones (one for each temperature input) on the lm85
273 struct lm85_zone {
274 s8 limit; /* Low temp limit */
275 u8 hyst; /* Low limit hysteresis. (0-15) */
276 u8 range; /* Temp range, encoded */
277 s8 critical; /* "All fans ON" temp limit */
278 u8 max_desired; /*
279 * Actual "max" temperature specified. Preserved
280 * to prevent "drift" as other autofan control
281 * values change.
285 struct lm85_autofan {
286 u8 config; /* Register value */
287 u8 min_pwm; /* Minimum PWM value, encoded */
288 u8 min_off; /* Min PWM or OFF below "limit", flag */
292 * For each registered chip, we need to keep some data in memory.
293 * The structure is dynamically allocated.
295 struct lm85_data {
296 struct i2c_client *client;
297 const struct attribute_group *groups[6];
298 const int *freq_map;
299 enum chips type;
301 bool has_vid5; /* true if VID5 is configured for ADT7463 or ADT7468 */
303 struct mutex update_lock;
304 int valid; /* !=0 if following fields are valid */
305 unsigned long last_reading; /* In jiffies */
306 unsigned long last_config; /* In jiffies */
308 u8 in[8]; /* Register value */
309 u8 in_max[8]; /* Register value */
310 u8 in_min[8]; /* Register value */
311 s8 temp[3]; /* Register value */
312 s8 temp_min[3]; /* Register value */
313 s8 temp_max[3]; /* Register value */
314 u16 fan[4]; /* Register value */
315 u16 fan_min[4]; /* Register value */
316 u8 pwm[3]; /* Register value */
317 u8 pwm_freq[3]; /* Register encoding */
318 u8 temp_ext[3]; /* Decoded values */
319 u8 in_ext[8]; /* Decoded values */
320 u8 vid; /* Register value */
321 u8 vrm; /* VRM version */
322 u32 alarms; /* Register encoding, combined */
323 u8 cfg5; /* Config Register 5 on ADT7468 */
324 struct lm85_autofan autofan[3];
325 struct lm85_zone zone[3];
328 static int lm85_read_value(struct i2c_client *client, u8 reg)
330 int res;
332 /* What size location is it? */
333 switch (reg) {
334 case LM85_REG_FAN(0): /* Read WORD data */
335 case LM85_REG_FAN(1):
336 case LM85_REG_FAN(2):
337 case LM85_REG_FAN(3):
338 case LM85_REG_FAN_MIN(0):
339 case LM85_REG_FAN_MIN(1):
340 case LM85_REG_FAN_MIN(2):
341 case LM85_REG_FAN_MIN(3):
342 case LM85_REG_ALARM1: /* Read both bytes at once */
343 res = i2c_smbus_read_byte_data(client, reg) & 0xff;
344 res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
345 break;
346 default: /* Read BYTE data */
347 res = i2c_smbus_read_byte_data(client, reg);
348 break;
351 return res;
354 static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
356 switch (reg) {
357 case LM85_REG_FAN(0): /* Write WORD data */
358 case LM85_REG_FAN(1):
359 case LM85_REG_FAN(2):
360 case LM85_REG_FAN(3):
361 case LM85_REG_FAN_MIN(0):
362 case LM85_REG_FAN_MIN(1):
363 case LM85_REG_FAN_MIN(2):
364 case LM85_REG_FAN_MIN(3):
365 /* NOTE: ALARM is read only, so not included here */
366 i2c_smbus_write_byte_data(client, reg, value & 0xff);
367 i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
368 break;
369 default: /* Write BYTE data */
370 i2c_smbus_write_byte_data(client, reg, value);
371 break;
375 static struct lm85_data *lm85_update_device(struct device *dev)
377 struct lm85_data *data = dev_get_drvdata(dev);
378 struct i2c_client *client = data->client;
379 int i;
381 mutex_lock(&data->update_lock);
383 if (!data->valid ||
384 time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
385 /* Things that change quickly */
386 dev_dbg(&client->dev, "Reading sensor values\n");
389 * Have to read extended bits first to "freeze" the
390 * more significant bits that are read later.
391 * There are 2 additional resolution bits per channel and we
392 * have room for 4, so we shift them to the left.
394 if (data->type == adm1027 || data->type == adt7463 ||
395 data->type == adt7468) {
396 int ext1 = lm85_read_value(client,
397 ADM1027_REG_EXTEND_ADC1);
398 int ext2 = lm85_read_value(client,
399 ADM1027_REG_EXTEND_ADC2);
400 int val = (ext1 << 8) + ext2;
402 for (i = 0; i <= 4; i++)
403 data->in_ext[i] =
404 ((val >> (i * 2)) & 0x03) << 2;
406 for (i = 0; i <= 2; i++)
407 data->temp_ext[i] =
408 (val >> ((i + 4) * 2)) & 0x0c;
411 data->vid = lm85_read_value(client, LM85_REG_VID);
413 for (i = 0; i <= 3; ++i) {
414 data->in[i] =
415 lm85_read_value(client, LM85_REG_IN(i));
416 data->fan[i] =
417 lm85_read_value(client, LM85_REG_FAN(i));
420 if (!data->has_vid5)
421 data->in[4] = lm85_read_value(client, LM85_REG_IN(4));
423 if (data->type == adt7468)
424 data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
426 for (i = 0; i <= 2; ++i) {
427 data->temp[i] =
428 lm85_read_value(client, LM85_REG_TEMP(i));
429 data->pwm[i] =
430 lm85_read_value(client, LM85_REG_PWM(i));
432 if (IS_ADT7468_OFF64(data))
433 data->temp[i] -= 64;
436 data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
438 if (data->type == emc6d100) {
439 /* Three more voltage sensors */
440 for (i = 5; i <= 7; ++i) {
441 data->in[i] = lm85_read_value(client,
442 EMC6D100_REG_IN(i));
444 /* More alarm bits */
445 data->alarms |= lm85_read_value(client,
446 EMC6D100_REG_ALARM3) << 16;
447 } else if (data->type == emc6d102 || data->type == emc6d103 ||
448 data->type == emc6d103s) {
450 * Have to read LSB bits after the MSB ones because
451 * the reading of the MSB bits has frozen the
452 * LSBs (backward from the ADM1027).
454 int ext1 = lm85_read_value(client,
455 EMC6D102_REG_EXTEND_ADC1);
456 int ext2 = lm85_read_value(client,
457 EMC6D102_REG_EXTEND_ADC2);
458 int ext3 = lm85_read_value(client,
459 EMC6D102_REG_EXTEND_ADC3);
460 int ext4 = lm85_read_value(client,
461 EMC6D102_REG_EXTEND_ADC4);
462 data->in_ext[0] = ext3 & 0x0f;
463 data->in_ext[1] = ext4 & 0x0f;
464 data->in_ext[2] = ext4 >> 4;
465 data->in_ext[3] = ext3 >> 4;
466 data->in_ext[4] = ext2 >> 4;
468 data->temp_ext[0] = ext1 & 0x0f;
469 data->temp_ext[1] = ext2 & 0x0f;
470 data->temp_ext[2] = ext1 >> 4;
473 data->last_reading = jiffies;
474 } /* last_reading */
476 if (!data->valid ||
477 time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
478 /* Things that don't change often */
479 dev_dbg(&client->dev, "Reading config values\n");
481 for (i = 0; i <= 3; ++i) {
482 data->in_min[i] =
483 lm85_read_value(client, LM85_REG_IN_MIN(i));
484 data->in_max[i] =
485 lm85_read_value(client, LM85_REG_IN_MAX(i));
486 data->fan_min[i] =
487 lm85_read_value(client, LM85_REG_FAN_MIN(i));
490 if (!data->has_vid5) {
491 data->in_min[4] = lm85_read_value(client,
492 LM85_REG_IN_MIN(4));
493 data->in_max[4] = lm85_read_value(client,
494 LM85_REG_IN_MAX(4));
497 if (data->type == emc6d100) {
498 for (i = 5; i <= 7; ++i) {
499 data->in_min[i] = lm85_read_value(client,
500 EMC6D100_REG_IN_MIN(i));
501 data->in_max[i] = lm85_read_value(client,
502 EMC6D100_REG_IN_MAX(i));
506 for (i = 0; i <= 2; ++i) {
507 int val;
509 data->temp_min[i] =
510 lm85_read_value(client, LM85_REG_TEMP_MIN(i));
511 data->temp_max[i] =
512 lm85_read_value(client, LM85_REG_TEMP_MAX(i));
514 data->autofan[i].config =
515 lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
516 val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
517 data->pwm_freq[i] = val & 0x07;
518 data->zone[i].range = val >> 4;
519 data->autofan[i].min_pwm =
520 lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
521 data->zone[i].limit =
522 lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
523 data->zone[i].critical =
524 lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
526 if (IS_ADT7468_OFF64(data)) {
527 data->temp_min[i] -= 64;
528 data->temp_max[i] -= 64;
529 data->zone[i].limit -= 64;
530 data->zone[i].critical -= 64;
534 if (data->type != emc6d103s) {
535 i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
536 data->autofan[0].min_off = (i & 0x20) != 0;
537 data->autofan[1].min_off = (i & 0x40) != 0;
538 data->autofan[2].min_off = (i & 0x80) != 0;
540 i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
541 data->zone[0].hyst = i >> 4;
542 data->zone[1].hyst = i & 0x0f;
544 i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
545 data->zone[2].hyst = i >> 4;
548 data->last_config = jiffies;
549 } /* last_config */
551 data->valid = 1;
553 mutex_unlock(&data->update_lock);
555 return data;
558 /* 4 Fans */
559 static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
560 char *buf)
562 int nr = to_sensor_dev_attr(attr)->index;
563 struct lm85_data *data = lm85_update_device(dev);
564 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
567 static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
568 char *buf)
570 int nr = to_sensor_dev_attr(attr)->index;
571 struct lm85_data *data = lm85_update_device(dev);
572 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
575 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
576 const char *buf, size_t count)
578 int nr = to_sensor_dev_attr(attr)->index;
579 struct lm85_data *data = dev_get_drvdata(dev);
580 struct i2c_client *client = data->client;
581 unsigned long val;
582 int err;
584 err = kstrtoul(buf, 10, &val);
585 if (err)
586 return err;
588 mutex_lock(&data->update_lock);
589 data->fan_min[nr] = FAN_TO_REG(val);
590 lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
591 mutex_unlock(&data->update_lock);
592 return count;
595 #define show_fan_offset(offset) \
596 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
597 show_fan, NULL, offset - 1); \
598 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
599 show_fan_min, set_fan_min, offset - 1)
601 show_fan_offset(1);
602 show_fan_offset(2);
603 show_fan_offset(3);
604 show_fan_offset(4);
606 /* vid, vrm, alarms */
608 static ssize_t cpu0_vid_show(struct device *dev,
609 struct device_attribute *attr, char *buf)
611 struct lm85_data *data = lm85_update_device(dev);
612 int vid;
614 if (data->has_vid5) {
615 /* 6-pin VID (VRM 10) */
616 vid = vid_from_reg(data->vid & 0x3f, data->vrm);
617 } else {
618 /* 5-pin VID (VRM 9) */
619 vid = vid_from_reg(data->vid & 0x1f, data->vrm);
622 return sprintf(buf, "%d\n", vid);
625 static DEVICE_ATTR_RO(cpu0_vid);
627 static ssize_t vrm_show(struct device *dev, struct device_attribute *attr,
628 char *buf)
630 struct lm85_data *data = dev_get_drvdata(dev);
631 return sprintf(buf, "%ld\n", (long) data->vrm);
634 static ssize_t vrm_store(struct device *dev, struct device_attribute *attr,
635 const char *buf, size_t count)
637 struct lm85_data *data = dev_get_drvdata(dev);
638 unsigned long val;
639 int err;
641 err = kstrtoul(buf, 10, &val);
642 if (err)
643 return err;
645 if (val > 255)
646 return -EINVAL;
648 data->vrm = val;
649 return count;
652 static DEVICE_ATTR_RW(vrm);
654 static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
655 char *buf)
657 struct lm85_data *data = lm85_update_device(dev);
658 return sprintf(buf, "%u\n", data->alarms);
661 static DEVICE_ATTR_RO(alarms);
663 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
664 char *buf)
666 int nr = to_sensor_dev_attr(attr)->index;
667 struct lm85_data *data = lm85_update_device(dev);
668 return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
671 static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
672 static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
673 static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
674 static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
675 static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
676 static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 18);
677 static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 16);
678 static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 17);
679 static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
680 static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14);
681 static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
682 static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 6);
683 static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 15);
684 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
685 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
686 static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 12);
687 static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 13);
689 /* pwm */
691 static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
692 char *buf)
694 int nr = to_sensor_dev_attr(attr)->index;
695 struct lm85_data *data = lm85_update_device(dev);
696 return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
699 static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
700 const char *buf, size_t count)
702 int nr = to_sensor_dev_attr(attr)->index;
703 struct lm85_data *data = dev_get_drvdata(dev);
704 struct i2c_client *client = data->client;
705 unsigned long val;
706 int err;
708 err = kstrtoul(buf, 10, &val);
709 if (err)
710 return err;
712 mutex_lock(&data->update_lock);
713 data->pwm[nr] = PWM_TO_REG(val);
714 lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
715 mutex_unlock(&data->update_lock);
716 return count;
719 static ssize_t show_pwm_enable(struct device *dev, struct device_attribute
720 *attr, char *buf)
722 int nr = to_sensor_dev_attr(attr)->index;
723 struct lm85_data *data = lm85_update_device(dev);
724 int pwm_zone, enable;
726 pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
727 switch (pwm_zone) {
728 case -1: /* PWM is always at 100% */
729 enable = 0;
730 break;
731 case 0: /* PWM is always at 0% */
732 case -2: /* PWM responds to manual control */
733 enable = 1;
734 break;
735 default: /* PWM in automatic mode */
736 enable = 2;
738 return sprintf(buf, "%d\n", enable);
741 static ssize_t set_pwm_enable(struct device *dev, struct device_attribute
742 *attr, const char *buf, size_t count)
744 int nr = to_sensor_dev_attr(attr)->index;
745 struct lm85_data *data = dev_get_drvdata(dev);
746 struct i2c_client *client = data->client;
747 u8 config;
748 unsigned long val;
749 int err;
751 err = kstrtoul(buf, 10, &val);
752 if (err)
753 return err;
755 switch (val) {
756 case 0:
757 config = 3;
758 break;
759 case 1:
760 config = 7;
761 break;
762 case 2:
764 * Here we have to choose arbitrarily one of the 5 possible
765 * configurations; I go for the safest
767 config = 6;
768 break;
769 default:
770 return -EINVAL;
773 mutex_lock(&data->update_lock);
774 data->autofan[nr].config = lm85_read_value(client,
775 LM85_REG_AFAN_CONFIG(nr));
776 data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
777 | (config << 5);
778 lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
779 data->autofan[nr].config);
780 mutex_unlock(&data->update_lock);
781 return count;
784 static ssize_t show_pwm_freq(struct device *dev,
785 struct device_attribute *attr, char *buf)
787 int nr = to_sensor_dev_attr(attr)->index;
788 struct lm85_data *data = lm85_update_device(dev);
789 int freq;
791 if (IS_ADT7468_HFPWM(data))
792 freq = 22500;
793 else
794 freq = FREQ_FROM_REG(data->freq_map, data->pwm_freq[nr]);
796 return sprintf(buf, "%d\n", freq);
799 static ssize_t set_pwm_freq(struct device *dev,
800 struct device_attribute *attr, const char *buf, size_t count)
802 int nr = to_sensor_dev_attr(attr)->index;
803 struct lm85_data *data = dev_get_drvdata(dev);
804 struct i2c_client *client = data->client;
805 unsigned long val;
806 int err;
808 err = kstrtoul(buf, 10, &val);
809 if (err)
810 return err;
812 mutex_lock(&data->update_lock);
814 * The ADT7468 has a special high-frequency PWM output mode,
815 * where all PWM outputs are driven by a 22.5 kHz clock.
816 * This might confuse the user, but there's not much we can do.
818 if (data->type == adt7468 && val >= 11300) { /* High freq. mode */
819 data->cfg5 &= ~ADT7468_HFPWM;
820 lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
821 } else { /* Low freq. mode */
822 data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map,
823 FREQ_MAP_LEN, val);
824 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
825 (data->zone[nr].range << 4)
826 | data->pwm_freq[nr]);
827 if (data->type == adt7468) {
828 data->cfg5 |= ADT7468_HFPWM;
829 lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
832 mutex_unlock(&data->update_lock);
833 return count;
836 #define show_pwm_reg(offset) \
837 static SENSOR_DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR, \
838 show_pwm, set_pwm, offset - 1); \
839 static SENSOR_DEVICE_ATTR(pwm##offset##_enable, S_IRUGO | S_IWUSR, \
840 show_pwm_enable, set_pwm_enable, offset - 1); \
841 static SENSOR_DEVICE_ATTR(pwm##offset##_freq, S_IRUGO | S_IWUSR, \
842 show_pwm_freq, set_pwm_freq, offset - 1)
844 show_pwm_reg(1);
845 show_pwm_reg(2);
846 show_pwm_reg(3);
848 /* Voltages */
850 static ssize_t show_in(struct device *dev, struct device_attribute *attr,
851 char *buf)
853 int nr = to_sensor_dev_attr(attr)->index;
854 struct lm85_data *data = lm85_update_device(dev);
855 return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
856 data->in_ext[nr]));
859 static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
860 char *buf)
862 int nr = to_sensor_dev_attr(attr)->index;
863 struct lm85_data *data = lm85_update_device(dev);
864 return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
867 static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
868 const char *buf, size_t count)
870 int nr = to_sensor_dev_attr(attr)->index;
871 struct lm85_data *data = dev_get_drvdata(dev);
872 struct i2c_client *client = data->client;
873 long val;
874 int err;
876 err = kstrtol(buf, 10, &val);
877 if (err)
878 return err;
880 mutex_lock(&data->update_lock);
881 data->in_min[nr] = INS_TO_REG(nr, val);
882 lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
883 mutex_unlock(&data->update_lock);
884 return count;
887 static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
888 char *buf)
890 int nr = to_sensor_dev_attr(attr)->index;
891 struct lm85_data *data = lm85_update_device(dev);
892 return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
895 static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
896 const char *buf, size_t count)
898 int nr = to_sensor_dev_attr(attr)->index;
899 struct lm85_data *data = dev_get_drvdata(dev);
900 struct i2c_client *client = data->client;
901 long val;
902 int err;
904 err = kstrtol(buf, 10, &val);
905 if (err)
906 return err;
908 mutex_lock(&data->update_lock);
909 data->in_max[nr] = INS_TO_REG(nr, val);
910 lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
911 mutex_unlock(&data->update_lock);
912 return count;
915 #define show_in_reg(offset) \
916 static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
917 show_in, NULL, offset); \
918 static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
919 show_in_min, set_in_min, offset); \
920 static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
921 show_in_max, set_in_max, offset)
923 show_in_reg(0);
924 show_in_reg(1);
925 show_in_reg(2);
926 show_in_reg(3);
927 show_in_reg(4);
928 show_in_reg(5);
929 show_in_reg(6);
930 show_in_reg(7);
932 /* Temps */
934 static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
935 char *buf)
937 int nr = to_sensor_dev_attr(attr)->index;
938 struct lm85_data *data = lm85_update_device(dev);
939 return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
940 data->temp_ext[nr]));
943 static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
944 char *buf)
946 int nr = to_sensor_dev_attr(attr)->index;
947 struct lm85_data *data = lm85_update_device(dev);
948 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
951 static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
952 const char *buf, size_t count)
954 int nr = to_sensor_dev_attr(attr)->index;
955 struct lm85_data *data = dev_get_drvdata(dev);
956 struct i2c_client *client = data->client;
957 long val;
958 int err;
960 err = kstrtol(buf, 10, &val);
961 if (err)
962 return err;
964 if (IS_ADT7468_OFF64(data))
965 val += 64;
967 mutex_lock(&data->update_lock);
968 data->temp_min[nr] = TEMP_TO_REG(val);
969 lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
970 mutex_unlock(&data->update_lock);
971 return count;
974 static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
975 char *buf)
977 int nr = to_sensor_dev_attr(attr)->index;
978 struct lm85_data *data = lm85_update_device(dev);
979 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
982 static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
983 const char *buf, size_t count)
985 int nr = to_sensor_dev_attr(attr)->index;
986 struct lm85_data *data = dev_get_drvdata(dev);
987 struct i2c_client *client = data->client;
988 long val;
989 int err;
991 err = kstrtol(buf, 10, &val);
992 if (err)
993 return err;
995 if (IS_ADT7468_OFF64(data))
996 val += 64;
998 mutex_lock(&data->update_lock);
999 data->temp_max[nr] = TEMP_TO_REG(val);
1000 lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
1001 mutex_unlock(&data->update_lock);
1002 return count;
1005 #define show_temp_reg(offset) \
1006 static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \
1007 show_temp, NULL, offset - 1); \
1008 static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR, \
1009 show_temp_min, set_temp_min, offset - 1); \
1010 static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
1011 show_temp_max, set_temp_max, offset - 1);
1013 show_temp_reg(1);
1014 show_temp_reg(2);
1015 show_temp_reg(3);
1018 /* Automatic PWM control */
1020 static ssize_t show_pwm_auto_channels(struct device *dev,
1021 struct device_attribute *attr, char *buf)
1023 int nr = to_sensor_dev_attr(attr)->index;
1024 struct lm85_data *data = lm85_update_device(dev);
1025 return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
1028 static ssize_t set_pwm_auto_channels(struct device *dev,
1029 struct device_attribute *attr, const char *buf, size_t count)
1031 int nr = to_sensor_dev_attr(attr)->index;
1032 struct lm85_data *data = dev_get_drvdata(dev);
1033 struct i2c_client *client = data->client;
1034 long val;
1035 int err;
1037 err = kstrtol(buf, 10, &val);
1038 if (err)
1039 return err;
1041 mutex_lock(&data->update_lock);
1042 data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
1043 | ZONE_TO_REG(val);
1044 lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
1045 data->autofan[nr].config);
1046 mutex_unlock(&data->update_lock);
1047 return count;
1050 static ssize_t show_pwm_auto_pwm_min(struct device *dev,
1051 struct device_attribute *attr, char *buf)
1053 int nr = to_sensor_dev_attr(attr)->index;
1054 struct lm85_data *data = lm85_update_device(dev);
1055 return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
1058 static ssize_t set_pwm_auto_pwm_min(struct device *dev,
1059 struct device_attribute *attr, const char *buf, size_t count)
1061 int nr = to_sensor_dev_attr(attr)->index;
1062 struct lm85_data *data = dev_get_drvdata(dev);
1063 struct i2c_client *client = data->client;
1064 unsigned long val;
1065 int err;
1067 err = kstrtoul(buf, 10, &val);
1068 if (err)
1069 return err;
1071 mutex_lock(&data->update_lock);
1072 data->autofan[nr].min_pwm = PWM_TO_REG(val);
1073 lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
1074 data->autofan[nr].min_pwm);
1075 mutex_unlock(&data->update_lock);
1076 return count;
1079 static ssize_t show_pwm_auto_pwm_minctl(struct device *dev,
1080 struct device_attribute *attr, char *buf)
1082 int nr = to_sensor_dev_attr(attr)->index;
1083 struct lm85_data *data = lm85_update_device(dev);
1084 return sprintf(buf, "%d\n", data->autofan[nr].min_off);
1087 static ssize_t set_pwm_auto_pwm_minctl(struct device *dev,
1088 struct device_attribute *attr, const char *buf, size_t count)
1090 int nr = to_sensor_dev_attr(attr)->index;
1091 struct lm85_data *data = dev_get_drvdata(dev);
1092 struct i2c_client *client = data->client;
1093 u8 tmp;
1094 long val;
1095 int err;
1097 err = kstrtol(buf, 10, &val);
1098 if (err)
1099 return err;
1101 mutex_lock(&data->update_lock);
1102 data->autofan[nr].min_off = val;
1103 tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
1104 tmp &= ~(0x20 << nr);
1105 if (data->autofan[nr].min_off)
1106 tmp |= 0x20 << nr;
1107 lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
1108 mutex_unlock(&data->update_lock);
1109 return count;
1112 #define pwm_auto(offset) \
1113 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_channels, \
1114 S_IRUGO | S_IWUSR, show_pwm_auto_channels, \
1115 set_pwm_auto_channels, offset - 1); \
1116 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_min, \
1117 S_IRUGO | S_IWUSR, show_pwm_auto_pwm_min, \
1118 set_pwm_auto_pwm_min, offset - 1); \
1119 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_minctl, \
1120 S_IRUGO | S_IWUSR, show_pwm_auto_pwm_minctl, \
1121 set_pwm_auto_pwm_minctl, offset - 1)
1123 pwm_auto(1);
1124 pwm_auto(2);
1125 pwm_auto(3);
1127 /* Temperature settings for automatic PWM control */
1129 static ssize_t show_temp_auto_temp_off(struct device *dev,
1130 struct device_attribute *attr, char *buf)
1132 int nr = to_sensor_dev_attr(attr)->index;
1133 struct lm85_data *data = lm85_update_device(dev);
1134 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
1135 HYST_FROM_REG(data->zone[nr].hyst));
1138 static ssize_t set_temp_auto_temp_off(struct device *dev,
1139 struct device_attribute *attr, const char *buf, size_t count)
1141 int nr = to_sensor_dev_attr(attr)->index;
1142 struct lm85_data *data = dev_get_drvdata(dev);
1143 struct i2c_client *client = data->client;
1144 int min;
1145 long val;
1146 int err;
1148 err = kstrtol(buf, 10, &val);
1149 if (err)
1150 return err;
1152 mutex_lock(&data->update_lock);
1153 min = TEMP_FROM_REG(data->zone[nr].limit);
1154 data->zone[nr].hyst = HYST_TO_REG(min - val);
1155 if (nr == 0 || nr == 1) {
1156 lm85_write_value(client, LM85_REG_AFAN_HYST1,
1157 (data->zone[0].hyst << 4)
1158 | data->zone[1].hyst);
1159 } else {
1160 lm85_write_value(client, LM85_REG_AFAN_HYST2,
1161 (data->zone[2].hyst << 4));
1163 mutex_unlock(&data->update_lock);
1164 return count;
1167 static ssize_t show_temp_auto_temp_min(struct device *dev,
1168 struct device_attribute *attr, char *buf)
1170 int nr = to_sensor_dev_attr(attr)->index;
1171 struct lm85_data *data = lm85_update_device(dev);
1172 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
1175 static ssize_t set_temp_auto_temp_min(struct device *dev,
1176 struct device_attribute *attr, const char *buf, size_t count)
1178 int nr = to_sensor_dev_attr(attr)->index;
1179 struct lm85_data *data = dev_get_drvdata(dev);
1180 struct i2c_client *client = data->client;
1181 long val;
1182 int err;
1184 err = kstrtol(buf, 10, &val);
1185 if (err)
1186 return err;
1188 mutex_lock(&data->update_lock);
1189 data->zone[nr].limit = TEMP_TO_REG(val);
1190 lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
1191 data->zone[nr].limit);
1193 /* Update temp_auto_max and temp_auto_range */
1194 data->zone[nr].range = RANGE_TO_REG(
1195 TEMP_FROM_REG(data->zone[nr].max_desired) -
1196 TEMP_FROM_REG(data->zone[nr].limit));
1197 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1198 ((data->zone[nr].range & 0x0f) << 4)
1199 | (data->pwm_freq[nr] & 0x07));
1201 mutex_unlock(&data->update_lock);
1202 return count;
1205 static ssize_t show_temp_auto_temp_max(struct device *dev,
1206 struct device_attribute *attr, char *buf)
1208 int nr = to_sensor_dev_attr(attr)->index;
1209 struct lm85_data *data = lm85_update_device(dev);
1210 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
1211 RANGE_FROM_REG(data->zone[nr].range));
1214 static ssize_t set_temp_auto_temp_max(struct device *dev,
1215 struct device_attribute *attr, const char *buf, size_t count)
1217 int nr = to_sensor_dev_attr(attr)->index;
1218 struct lm85_data *data = dev_get_drvdata(dev);
1219 struct i2c_client *client = data->client;
1220 int min;
1221 long val;
1222 int err;
1224 err = kstrtol(buf, 10, &val);
1225 if (err)
1226 return err;
1228 mutex_lock(&data->update_lock);
1229 min = TEMP_FROM_REG(data->zone[nr].limit);
1230 data->zone[nr].max_desired = TEMP_TO_REG(val);
1231 data->zone[nr].range = RANGE_TO_REG(
1232 val - min);
1233 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1234 ((data->zone[nr].range & 0x0f) << 4)
1235 | (data->pwm_freq[nr] & 0x07));
1236 mutex_unlock(&data->update_lock);
1237 return count;
1240 static ssize_t show_temp_auto_temp_crit(struct device *dev,
1241 struct device_attribute *attr, char *buf)
1243 int nr = to_sensor_dev_attr(attr)->index;
1244 struct lm85_data *data = lm85_update_device(dev);
1245 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
1248 static ssize_t set_temp_auto_temp_crit(struct device *dev,
1249 struct device_attribute *attr, const char *buf, size_t count)
1251 int nr = to_sensor_dev_attr(attr)->index;
1252 struct lm85_data *data = dev_get_drvdata(dev);
1253 struct i2c_client *client = data->client;
1254 long val;
1255 int err;
1257 err = kstrtol(buf, 10, &val);
1258 if (err)
1259 return err;
1261 mutex_lock(&data->update_lock);
1262 data->zone[nr].critical = TEMP_TO_REG(val);
1263 lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
1264 data->zone[nr].critical);
1265 mutex_unlock(&data->update_lock);
1266 return count;
1269 #define temp_auto(offset) \
1270 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_off, \
1271 S_IRUGO | S_IWUSR, show_temp_auto_temp_off, \
1272 set_temp_auto_temp_off, offset - 1); \
1273 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_min, \
1274 S_IRUGO | S_IWUSR, show_temp_auto_temp_min, \
1275 set_temp_auto_temp_min, offset - 1); \
1276 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_max, \
1277 S_IRUGO | S_IWUSR, show_temp_auto_temp_max, \
1278 set_temp_auto_temp_max, offset - 1); \
1279 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_crit, \
1280 S_IRUGO | S_IWUSR, show_temp_auto_temp_crit, \
1281 set_temp_auto_temp_crit, offset - 1);
1283 temp_auto(1);
1284 temp_auto(2);
1285 temp_auto(3);
1287 static struct attribute *lm85_attributes[] = {
1288 &sensor_dev_attr_fan1_input.dev_attr.attr,
1289 &sensor_dev_attr_fan2_input.dev_attr.attr,
1290 &sensor_dev_attr_fan3_input.dev_attr.attr,
1291 &sensor_dev_attr_fan4_input.dev_attr.attr,
1292 &sensor_dev_attr_fan1_min.dev_attr.attr,
1293 &sensor_dev_attr_fan2_min.dev_attr.attr,
1294 &sensor_dev_attr_fan3_min.dev_attr.attr,
1295 &sensor_dev_attr_fan4_min.dev_attr.attr,
1296 &sensor_dev_attr_fan1_alarm.dev_attr.attr,
1297 &sensor_dev_attr_fan2_alarm.dev_attr.attr,
1298 &sensor_dev_attr_fan3_alarm.dev_attr.attr,
1299 &sensor_dev_attr_fan4_alarm.dev_attr.attr,
1301 &sensor_dev_attr_pwm1.dev_attr.attr,
1302 &sensor_dev_attr_pwm2.dev_attr.attr,
1303 &sensor_dev_attr_pwm3.dev_attr.attr,
1304 &sensor_dev_attr_pwm1_enable.dev_attr.attr,
1305 &sensor_dev_attr_pwm2_enable.dev_attr.attr,
1306 &sensor_dev_attr_pwm3_enable.dev_attr.attr,
1307 &sensor_dev_attr_pwm1_freq.dev_attr.attr,
1308 &sensor_dev_attr_pwm2_freq.dev_attr.attr,
1309 &sensor_dev_attr_pwm3_freq.dev_attr.attr,
1311 &sensor_dev_attr_in0_input.dev_attr.attr,
1312 &sensor_dev_attr_in1_input.dev_attr.attr,
1313 &sensor_dev_attr_in2_input.dev_attr.attr,
1314 &sensor_dev_attr_in3_input.dev_attr.attr,
1315 &sensor_dev_attr_in0_min.dev_attr.attr,
1316 &sensor_dev_attr_in1_min.dev_attr.attr,
1317 &sensor_dev_attr_in2_min.dev_attr.attr,
1318 &sensor_dev_attr_in3_min.dev_attr.attr,
1319 &sensor_dev_attr_in0_max.dev_attr.attr,
1320 &sensor_dev_attr_in1_max.dev_attr.attr,
1321 &sensor_dev_attr_in2_max.dev_attr.attr,
1322 &sensor_dev_attr_in3_max.dev_attr.attr,
1323 &sensor_dev_attr_in0_alarm.dev_attr.attr,
1324 &sensor_dev_attr_in1_alarm.dev_attr.attr,
1325 &sensor_dev_attr_in2_alarm.dev_attr.attr,
1326 &sensor_dev_attr_in3_alarm.dev_attr.attr,
1328 &sensor_dev_attr_temp1_input.dev_attr.attr,
1329 &sensor_dev_attr_temp2_input.dev_attr.attr,
1330 &sensor_dev_attr_temp3_input.dev_attr.attr,
1331 &sensor_dev_attr_temp1_min.dev_attr.attr,
1332 &sensor_dev_attr_temp2_min.dev_attr.attr,
1333 &sensor_dev_attr_temp3_min.dev_attr.attr,
1334 &sensor_dev_attr_temp1_max.dev_attr.attr,
1335 &sensor_dev_attr_temp2_max.dev_attr.attr,
1336 &sensor_dev_attr_temp3_max.dev_attr.attr,
1337 &sensor_dev_attr_temp1_alarm.dev_attr.attr,
1338 &sensor_dev_attr_temp2_alarm.dev_attr.attr,
1339 &sensor_dev_attr_temp3_alarm.dev_attr.attr,
1340 &sensor_dev_attr_temp1_fault.dev_attr.attr,
1341 &sensor_dev_attr_temp3_fault.dev_attr.attr,
1343 &sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
1344 &sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
1345 &sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
1346 &sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
1347 &sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
1348 &sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
1350 &sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
1351 &sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
1352 &sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
1353 &sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
1354 &sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
1355 &sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
1356 &sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
1357 &sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
1358 &sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
1360 &dev_attr_vrm.attr,
1361 &dev_attr_cpu0_vid.attr,
1362 &dev_attr_alarms.attr,
1363 NULL
1366 static const struct attribute_group lm85_group = {
1367 .attrs = lm85_attributes,
1370 static struct attribute *lm85_attributes_minctl[] = {
1371 &sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
1372 &sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
1373 &sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
1374 NULL
1377 static const struct attribute_group lm85_group_minctl = {
1378 .attrs = lm85_attributes_minctl,
1381 static struct attribute *lm85_attributes_temp_off[] = {
1382 &sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
1383 &sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
1384 &sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
1385 NULL
1388 static const struct attribute_group lm85_group_temp_off = {
1389 .attrs = lm85_attributes_temp_off,
1392 static struct attribute *lm85_attributes_in4[] = {
1393 &sensor_dev_attr_in4_input.dev_attr.attr,
1394 &sensor_dev_attr_in4_min.dev_attr.attr,
1395 &sensor_dev_attr_in4_max.dev_attr.attr,
1396 &sensor_dev_attr_in4_alarm.dev_attr.attr,
1397 NULL
1400 static const struct attribute_group lm85_group_in4 = {
1401 .attrs = lm85_attributes_in4,
1404 static struct attribute *lm85_attributes_in567[] = {
1405 &sensor_dev_attr_in5_input.dev_attr.attr,
1406 &sensor_dev_attr_in6_input.dev_attr.attr,
1407 &sensor_dev_attr_in7_input.dev_attr.attr,
1408 &sensor_dev_attr_in5_min.dev_attr.attr,
1409 &sensor_dev_attr_in6_min.dev_attr.attr,
1410 &sensor_dev_attr_in7_min.dev_attr.attr,
1411 &sensor_dev_attr_in5_max.dev_attr.attr,
1412 &sensor_dev_attr_in6_max.dev_attr.attr,
1413 &sensor_dev_attr_in7_max.dev_attr.attr,
1414 &sensor_dev_attr_in5_alarm.dev_attr.attr,
1415 &sensor_dev_attr_in6_alarm.dev_attr.attr,
1416 &sensor_dev_attr_in7_alarm.dev_attr.attr,
1417 NULL
1420 static const struct attribute_group lm85_group_in567 = {
1421 .attrs = lm85_attributes_in567,
1424 static void lm85_init_client(struct i2c_client *client)
1426 int value;
1428 /* Start monitoring if needed */
1429 value = lm85_read_value(client, LM85_REG_CONFIG);
1430 if (!(value & 0x01)) {
1431 dev_info(&client->dev, "Starting monitoring\n");
1432 lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
1435 /* Warn about unusual configuration bits */
1436 if (value & 0x02)
1437 dev_warn(&client->dev, "Device configuration is locked\n");
1438 if (!(value & 0x04))
1439 dev_warn(&client->dev, "Device is not ready\n");
1442 static int lm85_is_fake(struct i2c_client *client)
1445 * Differenciate between real LM96000 and Winbond WPCD377I. The latter
1446 * emulate the former except that it has no hardware monitoring function
1447 * so the readings are always 0.
1449 int i;
1450 u8 in_temp, fan;
1452 for (i = 0; i < 8; i++) {
1453 in_temp = i2c_smbus_read_byte_data(client, 0x20 + i);
1454 fan = i2c_smbus_read_byte_data(client, 0x28 + i);
1455 if (in_temp != 0x00 || fan != 0xff)
1456 return 0;
1459 return 1;
1462 /* Return 0 if detection is successful, -ENODEV otherwise */
1463 static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info)
1465 struct i2c_adapter *adapter = client->adapter;
1466 int address = client->addr;
1467 const char *type_name = NULL;
1468 int company, verstep;
1470 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
1471 /* We need to be able to do byte I/O */
1472 return -ENODEV;
1475 /* Determine the chip type */
1476 company = lm85_read_value(client, LM85_REG_COMPANY);
1477 verstep = lm85_read_value(client, LM85_REG_VERSTEP);
1479 dev_dbg(&adapter->dev,
1480 "Detecting device at 0x%02x with COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
1481 address, company, verstep);
1483 if (company == LM85_COMPANY_NATIONAL) {
1484 switch (verstep) {
1485 case LM85_VERSTEP_LM85C:
1486 type_name = "lm85c";
1487 break;
1488 case LM85_VERSTEP_LM85B:
1489 type_name = "lm85b";
1490 break;
1491 case LM85_VERSTEP_LM96000_1:
1492 case LM85_VERSTEP_LM96000_2:
1493 /* Check for Winbond WPCD377I */
1494 if (lm85_is_fake(client)) {
1495 dev_dbg(&adapter->dev,
1496 "Found Winbond WPCD377I, ignoring\n");
1497 return -ENODEV;
1499 type_name = "lm85";
1500 break;
1502 } else if (company == LM85_COMPANY_ANALOG_DEV) {
1503 switch (verstep) {
1504 case LM85_VERSTEP_ADM1027:
1505 type_name = "adm1027";
1506 break;
1507 case LM85_VERSTEP_ADT7463:
1508 case LM85_VERSTEP_ADT7463C:
1509 type_name = "adt7463";
1510 break;
1511 case LM85_VERSTEP_ADT7468_1:
1512 case LM85_VERSTEP_ADT7468_2:
1513 type_name = "adt7468";
1514 break;
1516 } else if (company == LM85_COMPANY_SMSC) {
1517 switch (verstep) {
1518 case LM85_VERSTEP_EMC6D100_A0:
1519 case LM85_VERSTEP_EMC6D100_A1:
1520 /* Note: we can't tell a '100 from a '101 */
1521 type_name = "emc6d100";
1522 break;
1523 case LM85_VERSTEP_EMC6D102:
1524 type_name = "emc6d102";
1525 break;
1526 case LM85_VERSTEP_EMC6D103_A0:
1527 case LM85_VERSTEP_EMC6D103_A1:
1528 type_name = "emc6d103";
1529 break;
1530 case LM85_VERSTEP_EMC6D103S:
1531 type_name = "emc6d103s";
1532 break;
1536 if (!type_name)
1537 return -ENODEV;
1539 strlcpy(info->type, type_name, I2C_NAME_SIZE);
1541 return 0;
1544 static int lm85_probe(struct i2c_client *client, const struct i2c_device_id *id)
1546 struct device *dev = &client->dev;
1547 struct device *hwmon_dev;
1548 struct lm85_data *data;
1549 int idx = 0;
1551 data = devm_kzalloc(dev, sizeof(struct lm85_data), GFP_KERNEL);
1552 if (!data)
1553 return -ENOMEM;
1555 data->client = client;
1556 if (client->dev.of_node)
1557 data->type = (enum chips)of_device_get_match_data(&client->dev);
1558 else
1559 data->type = id->driver_data;
1560 mutex_init(&data->update_lock);
1562 /* Fill in the chip specific driver values */
1563 switch (data->type) {
1564 case adm1027:
1565 case adt7463:
1566 case adt7468:
1567 case emc6d100:
1568 case emc6d102:
1569 case emc6d103:
1570 case emc6d103s:
1571 data->freq_map = adm1027_freq_map;
1572 break;
1573 default:
1574 data->freq_map = lm85_freq_map;
1577 /* Set the VRM version */
1578 data->vrm = vid_which_vrm();
1580 /* Initialize the LM85 chip */
1581 lm85_init_client(client);
1583 /* sysfs hooks */
1584 data->groups[idx++] = &lm85_group;
1586 /* minctl and temp_off exist on all chips except emc6d103s */
1587 if (data->type != emc6d103s) {
1588 data->groups[idx++] = &lm85_group_minctl;
1589 data->groups[idx++] = &lm85_group_temp_off;
1593 * The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
1594 * as a sixth digital VID input rather than an analog input.
1596 if (data->type == adt7463 || data->type == adt7468) {
1597 u8 vid = lm85_read_value(client, LM85_REG_VID);
1598 if (vid & 0x80)
1599 data->has_vid5 = true;
1602 if (!data->has_vid5)
1603 data->groups[idx++] = &lm85_group_in4;
1605 /* The EMC6D100 has 3 additional voltage inputs */
1606 if (data->type == emc6d100)
1607 data->groups[idx++] = &lm85_group_in567;
1609 hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1610 data, data->groups);
1611 return PTR_ERR_OR_ZERO(hwmon_dev);
1614 static const struct i2c_device_id lm85_id[] = {
1615 { "adm1027", adm1027 },
1616 { "adt7463", adt7463 },
1617 { "adt7468", adt7468 },
1618 { "lm85", lm85 },
1619 { "lm85b", lm85 },
1620 { "lm85c", lm85 },
1621 { "emc6d100", emc6d100 },
1622 { "emc6d101", emc6d100 },
1623 { "emc6d102", emc6d102 },
1624 { "emc6d103", emc6d103 },
1625 { "emc6d103s", emc6d103s },
1628 MODULE_DEVICE_TABLE(i2c, lm85_id);
1630 static const struct of_device_id lm85_of_match[] = {
1632 .compatible = "adi,adm1027",
1633 .data = (void *)adm1027
1636 .compatible = "adi,adt7463",
1637 .data = (void *)adt7463
1640 .compatible = "adi,adt7468",
1641 .data = (void *)adt7468
1644 .compatible = "national,lm85",
1645 .data = (void *)lm85
1648 .compatible = "national,lm85b",
1649 .data = (void *)lm85
1652 .compatible = "national,lm85c",
1653 .data = (void *)lm85
1656 .compatible = "smsc,emc6d100",
1657 .data = (void *)emc6d100
1660 .compatible = "smsc,emc6d101",
1661 .data = (void *)emc6d100
1664 .compatible = "smsc,emc6d102",
1665 .data = (void *)emc6d102
1668 .compatible = "smsc,emc6d103",
1669 .data = (void *)emc6d103
1672 .compatible = "smsc,emc6d103s",
1673 .data = (void *)emc6d103s
1675 { },
1677 MODULE_DEVICE_TABLE(of, lm85_of_match);
1679 static struct i2c_driver lm85_driver = {
1680 .class = I2C_CLASS_HWMON,
1681 .driver = {
1682 .name = "lm85",
1683 .of_match_table = of_match_ptr(lm85_of_match),
1685 .probe = lm85_probe,
1686 .id_table = lm85_id,
1687 .detect = lm85_detect,
1688 .address_list = normal_i2c,
1691 module_i2c_driver(lm85_driver);
1693 MODULE_LICENSE("GPL");
1694 MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
1695 "Margit Schubert-While <margitsw@t-online.de>, "
1696 "Justin Thiessen <jthiessen@penguincomputing.com>");
1697 MODULE_DESCRIPTION("LM85-B, LM85-C driver");