2 * Copyright(c) 2015 - 2017 Intel Corporation.
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
49 * This file contains all of the code that is specific to the HFI chip
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/interrupt.h>
55 #include <linux/module.h>
69 #define NUM_IB_PORTS 1
72 module_param_named(kdeth_qp
, kdeth_qp
, uint
, S_IRUGO
);
73 MODULE_PARM_DESC(kdeth_qp
, "Set the KDETH queue pair prefix");
75 uint num_vls
= HFI1_MAX_VLS_SUPPORTED
;
76 module_param(num_vls
, uint
, S_IRUGO
);
77 MODULE_PARM_DESC(num_vls
, "Set number of Virtual Lanes to use (1-8)");
80 * Default time to aggregate two 10K packets from the idle state
81 * (timer not running). The timer starts at the end of the first packet,
82 * so only the time for one 10K packet and header plus a bit extra is needed.
83 * 10 * 1024 + 64 header byte = 10304 byte
84 * 10304 byte / 12.5 GB/s = 824.32ns
86 uint rcv_intr_timeout
= (824 + 16); /* 16 is for coalescing interrupt */
87 module_param(rcv_intr_timeout
, uint
, S_IRUGO
);
88 MODULE_PARM_DESC(rcv_intr_timeout
, "Receive interrupt mitigation timeout in ns");
90 uint rcv_intr_count
= 16; /* same as qib */
91 module_param(rcv_intr_count
, uint
, S_IRUGO
);
92 MODULE_PARM_DESC(rcv_intr_count
, "Receive interrupt mitigation count");
94 ushort link_crc_mask
= SUPPORTED_CRCS
;
95 module_param(link_crc_mask
, ushort
, S_IRUGO
);
96 MODULE_PARM_DESC(link_crc_mask
, "CRCs to use on the link");
99 module_param_named(loopback
, loopback
, uint
, S_IRUGO
);
100 MODULE_PARM_DESC(loopback
, "Put into loopback mode (1 = serdes, 3 = external cable");
102 /* Other driver tunables */
103 uint rcv_intr_dynamic
= 1; /* enable dynamic mode for rcv int mitigation*/
104 static ushort crc_14b_sideband
= 1;
105 static uint use_flr
= 1;
106 uint quick_linkup
; /* skip LNI */
109 u64 flag
; /* the flag */
110 char *str
; /* description string */
111 u16 extra
; /* extra information */
116 /* str must be a string constant */
117 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
118 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
120 /* Send Error Consequences */
121 #define SEC_WRITE_DROPPED 0x1
122 #define SEC_PACKET_DROPPED 0x2
123 #define SEC_SC_HALTED 0x4 /* per-context only */
124 #define SEC_SPC_FREEZE 0x8 /* per-HFI only */
126 #define DEFAULT_KRCVQS 2
127 #define MIN_KERNEL_KCTXTS 2
128 #define FIRST_KERNEL_KCTXT 1
131 * RSM instance allocation
133 * 1 - User Fecn Handling
136 #define RSM_INS_VERBS 0
137 #define RSM_INS_FECN 1
138 #define RSM_INS_VNIC 2
140 /* Bit offset into the GUID which carries HFI id information */
141 #define GUID_HFI_INDEX_SHIFT 39
143 /* extract the emulation revision */
144 #define emulator_rev(dd) ((dd)->irev >> 8)
145 /* parallel and serial emulation versions are 3 and 4 respectively */
146 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
147 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
149 /* RSM fields for Verbs */
151 #define IB_PACKET_TYPE 2ull
152 #define QW_SHIFT 6ull
154 #define QPN_WIDTH 7ull
156 /* LRH.BTH: QW 0, OFFSET 48 - for match */
157 #define LRH_BTH_QW 0ull
158 #define LRH_BTH_BIT_OFFSET 48ull
159 #define LRH_BTH_OFFSET(off) ((LRH_BTH_QW << QW_SHIFT) | (off))
160 #define LRH_BTH_MATCH_OFFSET LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
161 #define LRH_BTH_SELECT
162 #define LRH_BTH_MASK 3ull
163 #define LRH_BTH_VALUE 2ull
165 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
166 #define LRH_SC_QW 0ull
167 #define LRH_SC_BIT_OFFSET 56ull
168 #define LRH_SC_OFFSET(off) ((LRH_SC_QW << QW_SHIFT) | (off))
169 #define LRH_SC_MATCH_OFFSET LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
170 #define LRH_SC_MASK 128ull
171 #define LRH_SC_VALUE 0ull
173 /* SC[n..0] QW 0, OFFSET 60 - for select */
174 #define LRH_SC_SELECT_OFFSET ((LRH_SC_QW << QW_SHIFT) | (60ull))
176 /* QPN[m+n:1] QW 1, OFFSET 1 */
177 #define QPN_SELECT_OFFSET ((1ull << QW_SHIFT) | (1ull))
179 /* RSM fields for Vnic */
180 /* L2_TYPE: QW 0, OFFSET 61 - for match */
181 #define L2_TYPE_QW 0ull
182 #define L2_TYPE_BIT_OFFSET 61ull
183 #define L2_TYPE_OFFSET(off) ((L2_TYPE_QW << QW_SHIFT) | (off))
184 #define L2_TYPE_MATCH_OFFSET L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
185 #define L2_TYPE_MASK 3ull
186 #define L2_16B_VALUE 2ull
188 /* L4_TYPE QW 1, OFFSET 0 - for match */
189 #define L4_TYPE_QW 1ull
190 #define L4_TYPE_BIT_OFFSET 0ull
191 #define L4_TYPE_OFFSET(off) ((L4_TYPE_QW << QW_SHIFT) | (off))
192 #define L4_TYPE_MATCH_OFFSET L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
193 #define L4_16B_TYPE_MASK 0xFFull
194 #define L4_16B_ETH_VALUE 0x78ull
196 /* 16B VESWID - for select */
197 #define L4_16B_HDR_VESWID_OFFSET ((2 << QW_SHIFT) | (16ull))
198 /* 16B ENTROPY - for select */
199 #define L2_16B_ENTROPY_OFFSET ((1 << QW_SHIFT) | (32ull))
201 /* defines to build power on SC2VL table */
213 ((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
214 ((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
215 ((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
216 ((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
217 ((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
218 ((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
219 ((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
220 ((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT) \
223 #define DC_SC_VL_VAL( \
242 ((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
243 ((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
244 ((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
245 ((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
246 ((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
247 ((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
248 ((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
249 ((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
250 ((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
251 ((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
252 ((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
253 ((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
254 ((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
255 ((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
256 ((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
257 ((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
260 /* all CceStatus sub-block freeze bits */
261 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
262 | CCE_STATUS_RXE_FROZE_SMASK \
263 | CCE_STATUS_TXE_FROZE_SMASK \
264 | CCE_STATUS_TXE_PIO_FROZE_SMASK)
265 /* all CceStatus sub-block TXE pause bits */
266 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
267 | CCE_STATUS_TXE_PAUSED_SMASK \
268 | CCE_STATUS_SDMA_PAUSED_SMASK)
269 /* all CceStatus sub-block RXE pause bits */
270 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
272 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
273 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
278 static struct flag_table cce_err_status_flags
[] = {
279 /* 0*/ FLAG_ENTRY0("CceCsrParityErr",
280 CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK
),
281 /* 1*/ FLAG_ENTRY0("CceCsrReadBadAddrErr",
282 CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK
),
283 /* 2*/ FLAG_ENTRY0("CceCsrWriteBadAddrErr",
284 CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK
),
285 /* 3*/ FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
286 CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK
),
287 /* 4*/ FLAG_ENTRY0("CceTrgtAccessErr",
288 CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK
),
289 /* 5*/ FLAG_ENTRY0("CceRspdDataParityErr",
290 CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK
),
291 /* 6*/ FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
292 CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK
),
293 /* 7*/ FLAG_ENTRY0("CceCsrCfgBusParityErr",
294 CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK
),
295 /* 8*/ FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
296 CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK
),
297 /* 9*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
298 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK
),
299 /*10*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
300 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK
),
301 /*11*/ FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
302 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK
),
303 /*12*/ FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
304 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK
),
305 /*13*/ FLAG_ENTRY0("PcicRetryMemCorErr",
306 CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK
),
307 /*14*/ FLAG_ENTRY0("PcicRetryMemCorErr",
308 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK
),
309 /*15*/ FLAG_ENTRY0("PcicPostHdQCorErr",
310 CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK
),
311 /*16*/ FLAG_ENTRY0("PcicPostHdQCorErr",
312 CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK
),
313 /*17*/ FLAG_ENTRY0("PcicPostHdQCorErr",
314 CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK
),
315 /*18*/ FLAG_ENTRY0("PcicCplDatQCorErr",
316 CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK
),
317 /*19*/ FLAG_ENTRY0("PcicNPostHQParityErr",
318 CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK
),
319 /*20*/ FLAG_ENTRY0("PcicNPostDatQParityErr",
320 CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK
),
321 /*21*/ FLAG_ENTRY0("PcicRetryMemUncErr",
322 CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK
),
323 /*22*/ FLAG_ENTRY0("PcicRetrySotMemUncErr",
324 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK
),
325 /*23*/ FLAG_ENTRY0("PcicPostHdQUncErr",
326 CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK
),
327 /*24*/ FLAG_ENTRY0("PcicPostDatQUncErr",
328 CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK
),
329 /*25*/ FLAG_ENTRY0("PcicCplHdQUncErr",
330 CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK
),
331 /*26*/ FLAG_ENTRY0("PcicCplDatQUncErr",
332 CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK
),
333 /*27*/ FLAG_ENTRY0("PcicTransmitFrontParityErr",
334 CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK
),
335 /*28*/ FLAG_ENTRY0("PcicTransmitBackParityErr",
336 CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK
),
337 /*29*/ FLAG_ENTRY0("PcicReceiveParityErr",
338 CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK
),
339 /*30*/ FLAG_ENTRY0("CceTrgtCplTimeoutErr",
340 CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK
),
341 /*31*/ FLAG_ENTRY0("LATriggered",
342 CCE_ERR_STATUS_LA_TRIGGERED_SMASK
),
343 /*32*/ FLAG_ENTRY0("CceSegReadBadAddrErr",
344 CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK
),
345 /*33*/ FLAG_ENTRY0("CceSegWriteBadAddrErr",
346 CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK
),
347 /*34*/ FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
348 CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK
),
349 /*35*/ FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
350 CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK
),
351 /*36*/ FLAG_ENTRY0("CceMsixTableCorErr",
352 CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK
),
353 /*37*/ FLAG_ENTRY0("CceMsixTableUncErr",
354 CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK
),
355 /*38*/ FLAG_ENTRY0("CceIntMapCorErr",
356 CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK
),
357 /*39*/ FLAG_ENTRY0("CceIntMapUncErr",
358 CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK
),
359 /*40*/ FLAG_ENTRY0("CceMsixCsrParityErr",
360 CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK
),
367 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
368 static struct flag_table misc_err_status_flags
[] = {
369 /* 0*/ FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY
)),
370 /* 1*/ FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR
)),
371 /* 2*/ FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR
)),
372 /* 3*/ FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED
)),
373 /* 4*/ FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH
)),
374 /* 5*/ FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED
)),
375 /* 6*/ FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY
)),
376 /* 7*/ FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR
)),
377 /* 8*/ FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE
)),
378 /* 9*/ FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY
)),
379 /*10*/ FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD
)),
380 /*11*/ FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL
)),
381 /*12*/ FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL
))
385 * TXE PIO Error flags and consequences
387 static struct flag_table pio_err_status_flags
[] = {
388 /* 0*/ FLAG_ENTRY("PioWriteBadCtxt",
390 SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK
),
391 /* 1*/ FLAG_ENTRY("PioWriteAddrParity",
393 SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK
),
394 /* 2*/ FLAG_ENTRY("PioCsrParity",
396 SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK
),
397 /* 3*/ FLAG_ENTRY("PioSbMemFifo0",
399 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK
),
400 /* 4*/ FLAG_ENTRY("PioSbMemFifo1",
402 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK
),
403 /* 5*/ FLAG_ENTRY("PioPccFifoParity",
405 SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK
),
406 /* 6*/ FLAG_ENTRY("PioPecFifoParity",
408 SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK
),
409 /* 7*/ FLAG_ENTRY("PioSbrdctlCrrelParity",
411 SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK
),
412 /* 8*/ FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
414 SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK
),
415 /* 9*/ FLAG_ENTRY("PioPktEvictFifoParityErr",
417 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK
),
418 /*10*/ FLAG_ENTRY("PioSmPktResetParity",
420 SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK
),
421 /*11*/ FLAG_ENTRY("PioVlLenMemBank0Unc",
423 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK
),
424 /*12*/ FLAG_ENTRY("PioVlLenMemBank1Unc",
426 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK
),
427 /*13*/ FLAG_ENTRY("PioVlLenMemBank0Cor",
429 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK
),
430 /*14*/ FLAG_ENTRY("PioVlLenMemBank1Cor",
432 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK
),
433 /*15*/ FLAG_ENTRY("PioCreditRetFifoParity",
435 SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK
),
436 /*16*/ FLAG_ENTRY("PioPpmcPblFifo",
438 SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK
),
439 /*17*/ FLAG_ENTRY("PioInitSmIn",
441 SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK
),
442 /*18*/ FLAG_ENTRY("PioPktEvictSmOrArbSm",
444 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK
),
445 /*19*/ FLAG_ENTRY("PioHostAddrMemUnc",
447 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK
),
448 /*20*/ FLAG_ENTRY("PioHostAddrMemCor",
450 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK
),
451 /*21*/ FLAG_ENTRY("PioWriteDataParity",
453 SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK
),
454 /*22*/ FLAG_ENTRY("PioStateMachine",
456 SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK
),
457 /*23*/ FLAG_ENTRY("PioWriteQwValidParity",
458 SEC_WRITE_DROPPED
| SEC_SPC_FREEZE
,
459 SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK
),
460 /*24*/ FLAG_ENTRY("PioBlockQwCountParity",
461 SEC_WRITE_DROPPED
| SEC_SPC_FREEZE
,
462 SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK
),
463 /*25*/ FLAG_ENTRY("PioVlfVlLenParity",
465 SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK
),
466 /*26*/ FLAG_ENTRY("PioVlfSopParity",
468 SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK
),
469 /*27*/ FLAG_ENTRY("PioVlFifoParity",
471 SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK
),
472 /*28*/ FLAG_ENTRY("PioPpmcBqcMemParity",
474 SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK
),
475 /*29*/ FLAG_ENTRY("PioPpmcSopLen",
477 SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK
),
479 /*32*/ FLAG_ENTRY("PioCurrentFreeCntParity",
481 SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK
),
482 /*33*/ FLAG_ENTRY("PioLastReturnedCntParity",
484 SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK
),
485 /*34*/ FLAG_ENTRY("PioPccSopHeadParity",
487 SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK
),
488 /*35*/ FLAG_ENTRY("PioPecSopHeadParityErr",
490 SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK
),
494 /* TXE PIO errors that cause an SPC freeze */
495 #define ALL_PIO_FREEZE_ERR \
496 (SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
497 | SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
498 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
499 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
500 | SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
501 | SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
502 | SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
503 | SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
504 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
505 | SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
506 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
507 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
508 | SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
509 | SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
510 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
511 | SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
512 | SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
513 | SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
514 | SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
515 | SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
516 | SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
517 | SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
518 | SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
519 | SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
520 | SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
521 | SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
522 | SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
523 | SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
524 | SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
527 * TXE SDMA Error flags
529 static struct flag_table sdma_err_status_flags
[] = {
530 /* 0*/ FLAG_ENTRY0("SDmaRpyTagErr",
531 SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK
),
532 /* 1*/ FLAG_ENTRY0("SDmaCsrParityErr",
533 SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK
),
534 /* 2*/ FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
535 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK
),
536 /* 3*/ FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
537 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK
),
541 /* TXE SDMA errors that cause an SPC freeze */
542 #define ALL_SDMA_FREEZE_ERR \
543 (SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
544 | SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
545 | SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
547 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
548 #define PORT_DISCARD_EGRESS_ERRS \
549 (SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
550 | SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
551 | SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
554 * TXE Egress Error flags
556 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
557 static struct flag_table egress_err_status_flags
[] = {
558 /* 0*/ FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR
)),
559 /* 1*/ FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC
)),
561 /* 3*/ FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
562 SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY
)),
563 /* 4*/ FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN
)),
564 /* 5*/ FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE
)),
566 /* 7*/ FLAG_ENTRY0("TxPioLaunchIntfParityErr",
567 SEES(TX_PIO_LAUNCH_INTF_PARITY
)),
568 /* 8*/ FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
569 SEES(TX_SDMA_LAUNCH_INTF_PARITY
)),
571 /*11*/ FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
572 SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY
)),
573 /*12*/ FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL
)),
574 /*13*/ FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY
)),
575 /*14*/ FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY
)),
576 /*15*/ FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY
)),
577 /*16*/ FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
578 SEES(TX_SDMA0_DISALLOWED_PACKET
)),
579 /*17*/ FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
580 SEES(TX_SDMA1_DISALLOWED_PACKET
)),
581 /*18*/ FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
582 SEES(TX_SDMA2_DISALLOWED_PACKET
)),
583 /*19*/ FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
584 SEES(TX_SDMA3_DISALLOWED_PACKET
)),
585 /*20*/ FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
586 SEES(TX_SDMA4_DISALLOWED_PACKET
)),
587 /*21*/ FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
588 SEES(TX_SDMA5_DISALLOWED_PACKET
)),
589 /*22*/ FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
590 SEES(TX_SDMA6_DISALLOWED_PACKET
)),
591 /*23*/ FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
592 SEES(TX_SDMA7_DISALLOWED_PACKET
)),
593 /*24*/ FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
594 SEES(TX_SDMA8_DISALLOWED_PACKET
)),
595 /*25*/ FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
596 SEES(TX_SDMA9_DISALLOWED_PACKET
)),
597 /*26*/ FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
598 SEES(TX_SDMA10_DISALLOWED_PACKET
)),
599 /*27*/ FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
600 SEES(TX_SDMA11_DISALLOWED_PACKET
)),
601 /*28*/ FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
602 SEES(TX_SDMA12_DISALLOWED_PACKET
)),
603 /*29*/ FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
604 SEES(TX_SDMA13_DISALLOWED_PACKET
)),
605 /*30*/ FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
606 SEES(TX_SDMA14_DISALLOWED_PACKET
)),
607 /*31*/ FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
608 SEES(TX_SDMA15_DISALLOWED_PACKET
)),
609 /*32*/ FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
610 SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY
)),
611 /*33*/ FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
612 SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY
)),
613 /*34*/ FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
614 SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY
)),
615 /*35*/ FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
616 SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY
)),
617 /*36*/ FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
618 SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY
)),
619 /*37*/ FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
620 SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY
)),
621 /*38*/ FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
622 SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY
)),
623 /*39*/ FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
624 SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY
)),
625 /*40*/ FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
626 SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY
)),
627 /*41*/ FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY
)),
628 /*42*/ FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC
)),
629 /*43*/ FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC
)),
630 /*44*/ FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC
)),
631 /*45*/ FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC
)),
632 /*46*/ FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION
)),
633 /*47*/ FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL
)),
634 /*48*/ FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR
)),
635 /*49*/ FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR
)),
636 /*50*/ FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR
)),
637 /*51*/ FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR
)),
638 /*52*/ FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR
)),
639 /*53*/ FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR
)),
640 /*54*/ FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR
)),
641 /*55*/ FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR
)),
642 /*56*/ FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR
)),
643 /*57*/ FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN
)),
644 /*58*/ FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR
)),
645 /*59*/ FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR
)),
646 /*60*/ FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR
)),
647 /*61*/ FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR
)),
648 /*62*/ FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
649 SEES(TX_READ_SDMA_MEMORY_CSR_UNC
)),
650 /*63*/ FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
651 SEES(TX_READ_PIO_MEMORY_CSR_UNC
)),
655 * TXE Egress Error Info flags
657 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
658 static struct flag_table egress_err_info_flags
[] = {
659 /* 0*/ FLAG_ENTRY0("Reserved", 0ull),
660 /* 1*/ FLAG_ENTRY0("VLErr", SEEI(VL
)),
661 /* 2*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY
)),
662 /* 3*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY
)),
663 /* 4*/ FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY
)),
664 /* 5*/ FLAG_ENTRY0("SLIDErr", SEEI(SLID
)),
665 /* 6*/ FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE
)),
666 /* 7*/ FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING
)),
667 /* 8*/ FLAG_ENTRY0("RawErr", SEEI(RAW
)),
668 /* 9*/ FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6
)),
669 /*10*/ FLAG_ENTRY0("GRHErr", SEEI(GRH
)),
670 /*11*/ FLAG_ENTRY0("BypassErr", SEEI(BYPASS
)),
671 /*12*/ FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS
)),
672 /*13*/ FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS
)),
673 /*14*/ FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS
)),
674 /*15*/ FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS
)),
675 /*16*/ FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST
)),
676 /*17*/ FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN
)),
677 /*18*/ FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET
)),
678 /*19*/ FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS
)),
679 /*20*/ FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL
)),
680 /*21*/ FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN
)),
683 /* TXE Egress errors that cause an SPC freeze */
684 #define ALL_TXE_EGRESS_FREEZE_ERR \
685 (SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
686 | SEES(TX_PIO_LAUNCH_INTF_PARITY) \
687 | SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
688 | SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
689 | SEES(TX_LAUNCH_CSR_PARITY) \
690 | SEES(TX_SBRD_CTL_CSR_PARITY) \
691 | SEES(TX_CONFIG_PARITY) \
692 | SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
693 | SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
694 | SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
695 | SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
696 | SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
697 | SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
698 | SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
699 | SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
700 | SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
701 | SEES(TX_CREDIT_RETURN_PARITY))
704 * TXE Send error flags
706 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
707 static struct flag_table send_err_status_flags
[] = {
708 /* 0*/ FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY
)),
709 /* 1*/ FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR
)),
710 /* 2*/ FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR
))
714 * TXE Send Context Error flags and consequences
716 static struct flag_table sc_err_status_flags
[] = {
717 /* 0*/ FLAG_ENTRY("InconsistentSop",
718 SEC_PACKET_DROPPED
| SEC_SC_HALTED
,
719 SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK
),
720 /* 1*/ FLAG_ENTRY("DisallowedPacket",
721 SEC_PACKET_DROPPED
| SEC_SC_HALTED
,
722 SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK
),
723 /* 2*/ FLAG_ENTRY("WriteCrossesBoundary",
724 SEC_WRITE_DROPPED
| SEC_SC_HALTED
,
725 SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK
),
726 /* 3*/ FLAG_ENTRY("WriteOverflow",
727 SEC_WRITE_DROPPED
| SEC_SC_HALTED
,
728 SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK
),
729 /* 4*/ FLAG_ENTRY("WriteOutOfBounds",
730 SEC_WRITE_DROPPED
| SEC_SC_HALTED
,
731 SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK
),
736 * RXE Receive Error flags
738 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
739 static struct flag_table rxe_err_status_flags
[] = {
740 /* 0*/ FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR
)),
741 /* 1*/ FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY
)),
742 /* 2*/ FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC
)),
743 /* 3*/ FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR
)),
744 /* 4*/ FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC
)),
745 /* 5*/ FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR
)),
746 /* 6*/ FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC
)),
747 /* 7*/ FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR
)),
748 /* 8*/ FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY
)),
749 /* 9*/ FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY
)),
750 /*10*/ FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC
)),
751 /*11*/ FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR
)),
752 /*12*/ FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING
)),
753 /*13*/ FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC
)),
754 /*14*/ FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR
)),
755 /*15*/ FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC
)),
756 /*16*/ FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
757 RXES(RBUF_LOOKUP_DES_REG_UNC_COR
)),
758 /*17*/ FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC
)),
759 /*18*/ FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR
)),
760 /*19*/ FLAG_ENTRY0("RxRbufBlockListReadUncErr",
761 RXES(RBUF_BLOCK_LIST_READ_UNC
)),
762 /*20*/ FLAG_ENTRY0("RxRbufBlockListReadCorErr",
763 RXES(RBUF_BLOCK_LIST_READ_COR
)),
764 /*21*/ FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
765 RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY
)),
766 /*22*/ FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
767 RXES(RBUF_CSR_QENT_CNT_PARITY
)),
768 /*23*/ FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
769 RXES(RBUF_CSR_QNEXT_BUF_PARITY
)),
770 /*24*/ FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
771 RXES(RBUF_CSR_QVLD_BIT_PARITY
)),
772 /*25*/ FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY
)),
773 /*26*/ FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY
)),
774 /*27*/ FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
775 RXES(RBUF_CSR_QNUM_OF_PKT_PARITY
)),
776 /*28*/ FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY
)),
777 /*29*/ FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY
)),
778 /*30*/ FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP
)),
779 /*31*/ FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL
)),
780 /*32*/ FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY
)),
781 /*33*/ FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY
)),
782 /*34*/ FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY
)),
783 /*35*/ FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
784 RXES(RBUF_FL_INITDONE_PARITY
)),
785 /*36*/ FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
786 RXES(RBUF_FL_INIT_WR_ADDR_PARITY
)),
787 /*37*/ FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC
)),
788 /*38*/ FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR
)),
789 /*39*/ FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC
)),
790 /*40*/ FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
791 RXES(LOOKUP_DES_PART1_UNC_COR
)),
792 /*41*/ FLAG_ENTRY0("RxLookupDesPart2ParityErr",
793 RXES(LOOKUP_DES_PART2_PARITY
)),
794 /*42*/ FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC
)),
795 /*43*/ FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR
)),
796 /*44*/ FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY
)),
797 /*45*/ FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY
)),
798 /*46*/ FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM
)),
799 /*47*/ FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC
)),
800 /*48*/ FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR
)),
801 /*49*/ FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC
)),
802 /*50*/ FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR
)),
803 /*51*/ FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC
)),
804 /*52*/ FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR
)),
805 /*53*/ FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC
)),
806 /*54*/ FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR
)),
807 /*55*/ FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC
)),
808 /*56*/ FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR
)),
809 /*57*/ FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY
)),
810 /*58*/ FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING
)),
811 /*59*/ FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING
)),
812 /*60*/ FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC
)),
813 /*61*/ FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR
)),
814 /*62*/ FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR
)),
815 /*63*/ FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY
))
818 /* RXE errors that will trigger an SPC freeze */
819 #define ALL_RXE_FREEZE_ERR \
820 (RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
821 | RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
822 | RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
823 | RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
824 | RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
825 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
826 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
827 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
828 | RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
829 | RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
830 | RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
831 | RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
832 | RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
833 | RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
834 | RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
835 | RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
836 | RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
837 | RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
838 | RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
839 | RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
840 | RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
841 | RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
842 | RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
843 | RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
844 | RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
845 | RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
846 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
847 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
848 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
849 | RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
850 | RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
851 | RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
852 | RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
853 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
854 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
855 | RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
856 | RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
857 | RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
858 | RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
859 | RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
860 | RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
861 | RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
862 | RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
863 | RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
865 #define RXE_FREEZE_ABORT_MASK \
866 (RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
867 RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
868 RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
873 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
874 static struct flag_table dcc_err_flags
[] = {
875 FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR
)),
876 FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR
)),
877 FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR
)),
878 FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR
)),
879 FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR
)),
880 FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR
)),
881 FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR
)),
882 FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR
)),
883 FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR
)),
884 FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR
)),
885 FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR
)),
886 FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE
)),
887 FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR
)),
888 FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR
)),
889 FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR
)),
890 FLAG_ENTRY0("link_err", DCCE(LINK_ERR
)),
891 FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR
)),
892 FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR
)),
893 FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR
)),
894 FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR
)),
895 FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR
)),
896 FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR
)),
897 FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR
)),
898 FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR
)),
899 FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR
)),
900 FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR
)),
901 FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR
)),
902 FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR
)),
903 FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR
)),
904 FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR
)),
905 FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR
)),
906 FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR
)),
907 FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR
)),
908 FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR
)),
909 FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST
)),
910 FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC
)),
911 FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR
)),
912 FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR
)),
913 FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR
)),
914 FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR
)),
915 FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR
)),
916 FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR
)),
917 FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR
)),
918 FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR
)),
919 FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR
)),
920 FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR
)),
926 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
927 static struct flag_table lcb_err_flags
[] = {
928 /* 0*/ FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR
)),
929 /* 1*/ FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR
)),
930 /* 2*/ FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW
)),
931 /* 3*/ FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
932 LCBE(ALL_LNS_FAILED_REINIT_TEST
)),
933 /* 4*/ FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS
)),
934 /* 5*/ FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS
)),
935 /* 6*/ FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS
)),
936 /* 7*/ FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR
)),
937 /* 8*/ FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER
)),
938 /* 9*/ FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE
)),
939 /*10*/ FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT
)),
940 /*11*/ FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED
)),
941 /*12*/ FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER
)),
942 /*13*/ FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
943 LCBE(UNEXPECTED_ROUND_TRIP_MARKER
)),
944 /*14*/ FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP
)),
945 /*15*/ FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING
)),
946 /*16*/ FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW
)),
947 /*17*/ FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW
)),
948 /*18*/ FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR
)),
949 /*19*/ FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
950 LCBE(VL_ACK_INPUT_WRONG_CRC_MODE
)),
951 /*20*/ FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE
)),
952 /*21*/ FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE
)),
953 /*22*/ FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE
)),
954 /*23*/ FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE
)),
955 /*24*/ FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE
)),
956 /*25*/ FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT
)),
957 /*26*/ FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
958 LCBE(RST_FOR_INCOMPLT_RND_TRIP
)),
959 /*27*/ FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT
)),
960 /*28*/ FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
961 LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE
)),
962 /*29*/ FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
963 LCBE(REDUNDANT_FLIT_PARITY_ERR
))
969 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
970 static struct flag_table dc8051_err_flags
[] = {
971 FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051
)),
972 FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT
)),
973 FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE
)),
974 FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE
)),
975 FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE
)),
976 FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE
)),
977 FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE
)),
978 FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE
)),
979 FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
980 D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES
)),
981 FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR
)),
985 * DC8051 Information Error flags
987 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
989 static struct flag_table dc8051_info_err_flags
[] = {
990 FLAG_ENTRY0("Spico ROM check failed", SPICO_ROM_FAILED
),
991 FLAG_ENTRY0("Unknown frame received", UNKNOWN_FRAME
),
992 FLAG_ENTRY0("Target BER not met", TARGET_BER_NOT_MET
),
993 FLAG_ENTRY0("Serdes internal loopback failure",
994 FAILED_SERDES_INTERNAL_LOOPBACK
),
995 FLAG_ENTRY0("Failed SerDes init", FAILED_SERDES_INIT
),
996 FLAG_ENTRY0("Failed LNI(Polling)", FAILED_LNI_POLLING
),
997 FLAG_ENTRY0("Failed LNI(Debounce)", FAILED_LNI_DEBOUNCE
),
998 FLAG_ENTRY0("Failed LNI(EstbComm)", FAILED_LNI_ESTBCOMM
),
999 FLAG_ENTRY0("Failed LNI(OptEq)", FAILED_LNI_OPTEQ
),
1000 FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1
),
1001 FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2
),
1002 FLAG_ENTRY0("Failed LNI(ConfigLT)", FAILED_LNI_CONFIGLT
),
1003 FLAG_ENTRY0("Host Handshake Timeout", HOST_HANDSHAKE_TIMEOUT
),
1004 FLAG_ENTRY0("External Device Request Timeout",
1005 EXTERNAL_DEVICE_REQ_TIMEOUT
),
1009 * DC8051 Information Host Information flags
1011 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
1013 static struct flag_table dc8051_info_host_msg_flags
[] = {
1014 FLAG_ENTRY0("Host request done", 0x0001),
1015 FLAG_ENTRY0("BC PWR_MGM message", 0x0002),
1016 FLAG_ENTRY0("BC SMA message", 0x0004),
1017 FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
1018 FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
1019 FLAG_ENTRY0("External device config request", 0x0020),
1020 FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
1021 FLAG_ENTRY0("LinkUp achieved", 0x0080),
1022 FLAG_ENTRY0("Link going down", 0x0100),
1023 FLAG_ENTRY0("Link width downgraded", 0x0200),
1026 static u32
encoded_size(u32 size
);
1027 static u32
chip_to_opa_lstate(struct hfi1_devdata
*dd
, u32 chip_lstate
);
1028 static int set_physical_link_state(struct hfi1_devdata
*dd
, u64 state
);
1029 static void read_vc_remote_phy(struct hfi1_devdata
*dd
, u8
*power_management
,
1031 static void read_vc_remote_fabric(struct hfi1_devdata
*dd
, u8
*vau
, u8
*z
,
1032 u8
*vcu
, u16
*vl15buf
, u8
*crc_sizes
);
1033 static void read_vc_remote_link_width(struct hfi1_devdata
*dd
,
1034 u8
*remote_tx_rate
, u16
*link_widths
);
1035 static void read_vc_local_link_width(struct hfi1_devdata
*dd
, u8
*misc_bits
,
1036 u8
*flag_bits
, u16
*link_widths
);
1037 static void read_remote_device_id(struct hfi1_devdata
*dd
, u16
*device_id
,
1039 static void read_local_lni(struct hfi1_devdata
*dd
, u8
*enable_lane_rx
);
1040 static int read_tx_settings(struct hfi1_devdata
*dd
, u8
*enable_lane_tx
,
1041 u8
*tx_polarity_inversion
,
1042 u8
*rx_polarity_inversion
, u8
*max_rate
);
1043 static void handle_sdma_eng_err(struct hfi1_devdata
*dd
,
1044 unsigned int context
, u64 err_status
);
1045 static void handle_qsfp_int(struct hfi1_devdata
*dd
, u32 source
, u64 reg
);
1046 static void handle_dcc_err(struct hfi1_devdata
*dd
,
1047 unsigned int context
, u64 err_status
);
1048 static void handle_lcb_err(struct hfi1_devdata
*dd
,
1049 unsigned int context
, u64 err_status
);
1050 static void handle_8051_interrupt(struct hfi1_devdata
*dd
, u32 unused
, u64 reg
);
1051 static void handle_cce_err(struct hfi1_devdata
*dd
, u32 unused
, u64 reg
);
1052 static void handle_rxe_err(struct hfi1_devdata
*dd
, u32 unused
, u64 reg
);
1053 static void handle_misc_err(struct hfi1_devdata
*dd
, u32 unused
, u64 reg
);
1054 static void handle_pio_err(struct hfi1_devdata
*dd
, u32 unused
, u64 reg
);
1055 static void handle_sdma_err(struct hfi1_devdata
*dd
, u32 unused
, u64 reg
);
1056 static void handle_egress_err(struct hfi1_devdata
*dd
, u32 unused
, u64 reg
);
1057 static void handle_txe_err(struct hfi1_devdata
*dd
, u32 unused
, u64 reg
);
1058 static void set_partition_keys(struct hfi1_pportdata
*ppd
);
1059 static const char *link_state_name(u32 state
);
1060 static const char *link_state_reason_name(struct hfi1_pportdata
*ppd
,
1062 static int do_8051_command(struct hfi1_devdata
*dd
, u32 type
, u64 in_data
,
1064 static int read_idle_sma(struct hfi1_devdata
*dd
, u64
*data
);
1065 static int thermal_init(struct hfi1_devdata
*dd
);
1067 static void update_statusp(struct hfi1_pportdata
*ppd
, u32 state
);
1068 static int wait_phys_link_offline_substates(struct hfi1_pportdata
*ppd
,
1070 static int wait_logical_linkstate(struct hfi1_pportdata
*ppd
, u32 state
,
1072 static void log_state_transition(struct hfi1_pportdata
*ppd
, u32 state
);
1073 static void log_physical_state(struct hfi1_pportdata
*ppd
, u32 state
);
1074 static int wait_physical_linkstate(struct hfi1_pportdata
*ppd
, u32 state
,
1076 static void read_planned_down_reason_code(struct hfi1_devdata
*dd
, u8
*pdrrc
);
1077 static void read_link_down_reason(struct hfi1_devdata
*dd
, u8
*ldr
);
1078 static void handle_temp_err(struct hfi1_devdata
*dd
);
1079 static void dc_shutdown(struct hfi1_devdata
*dd
);
1080 static void dc_start(struct hfi1_devdata
*dd
);
1081 static int qos_rmt_entries(struct hfi1_devdata
*dd
, unsigned int *mp
,
1083 static void clear_full_mgmt_pkey(struct hfi1_pportdata
*ppd
);
1084 static int wait_link_transfer_active(struct hfi1_devdata
*dd
, int wait_ms
);
1085 static void clear_rsm_rule(struct hfi1_devdata
*dd
, u8 rule_index
);
1086 static void update_xmit_counters(struct hfi1_pportdata
*ppd
, u16 link_width
);
1089 * Error interrupt table entry. This is used as input to the interrupt
1090 * "clear down" routine used for all second tier error interrupt register.
1091 * Second tier interrupt registers have a single bit representing them
1092 * in the top-level CceIntStatus.
1094 struct err_reg_info
{
1095 u32 status
; /* status CSR offset */
1096 u32 clear
; /* clear CSR offset */
1097 u32 mask
; /* mask CSR offset */
1098 void (*handler
)(struct hfi1_devdata
*dd
, u32 source
, u64 reg
);
1102 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
1103 #define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
1104 #define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
1107 * Helpers for building HFI and DC error interrupt table entries. Different
1108 * helpers are needed because of inconsistent register names.
1110 #define EE(reg, handler, desc) \
1111 { reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1113 #define DC_EE1(reg, handler, desc) \
1114 { reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1115 #define DC_EE2(reg, handler, desc) \
1116 { reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1119 * Table of the "misc" grouping of error interrupts. Each entry refers to
1120 * another register containing more information.
1122 static const struct err_reg_info misc_errs
[NUM_MISC_ERRS
] = {
1123 /* 0*/ EE(CCE_ERR
, handle_cce_err
, "CceErr"),
1124 /* 1*/ EE(RCV_ERR
, handle_rxe_err
, "RxeErr"),
1125 /* 2*/ EE(MISC_ERR
, handle_misc_err
, "MiscErr"),
1126 /* 3*/ { 0, 0, 0, NULL
}, /* reserved */
1127 /* 4*/ EE(SEND_PIO_ERR
, handle_pio_err
, "PioErr"),
1128 /* 5*/ EE(SEND_DMA_ERR
, handle_sdma_err
, "SDmaErr"),
1129 /* 6*/ EE(SEND_EGRESS_ERR
, handle_egress_err
, "EgressErr"),
1130 /* 7*/ EE(SEND_ERR
, handle_txe_err
, "TxeErr")
1131 /* the rest are reserved */
1135 * Index into the Various section of the interrupt sources
1136 * corresponding to the Critical Temperature interrupt.
1138 #define TCRIT_INT_SOURCE 4
1141 * SDMA error interrupt entry - refers to another register containing more
1144 static const struct err_reg_info sdma_eng_err
=
1145 EE(SEND_DMA_ENG_ERR
, handle_sdma_eng_err
, "SDmaEngErr");
1147 static const struct err_reg_info various_err
[NUM_VARIOUS
] = {
1148 /* 0*/ { 0, 0, 0, NULL
}, /* PbcInt */
1149 /* 1*/ { 0, 0, 0, NULL
}, /* GpioAssertInt */
1150 /* 2*/ EE(ASIC_QSFP1
, handle_qsfp_int
, "QSFP1"),
1151 /* 3*/ EE(ASIC_QSFP2
, handle_qsfp_int
, "QSFP2"),
1152 /* 4*/ { 0, 0, 0, NULL
}, /* TCritInt */
1153 /* rest are reserved */
1157 * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1158 * register can not be derived from the MTU value because 10K is not
1159 * a power of 2. Therefore, we need a constant. Everything else can
1162 #define DCC_CFG_PORT_MTU_CAP_10240 7
1165 * Table of the DC grouping of error interrupts. Each entry refers to
1166 * another register containing more information.
1168 static const struct err_reg_info dc_errs
[NUM_DC_ERRS
] = {
1169 /* 0*/ DC_EE1(DCC_ERR
, handle_dcc_err
, "DCC Err"),
1170 /* 1*/ DC_EE2(DC_LCB_ERR
, handle_lcb_err
, "LCB Err"),
1171 /* 2*/ DC_EE2(DC_DC8051_ERR
, handle_8051_interrupt
, "DC8051 Interrupt"),
1172 /* 3*/ /* dc_lbm_int - special, see is_dc_int() */
1173 /* the rest are reserved */
1183 * csr to read for name (if applicable)
1188 * offset into dd or ppd to store the counter's value
1198 * accessor for stat element, context either dd or ppd
1200 u64 (*rw_cntr
)(const struct cntr_entry
*, void *context
, int vl
,
1201 int mode
, u64 data
);
1204 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1205 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1207 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1217 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1219 (counter * 8 + RCV_COUNTER_ARRAY32), \
1220 0, flags | CNTR_32BIT, \
1221 port_access_u32_csr)
1223 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1225 (counter * 8 + RCV_COUNTER_ARRAY32), \
1226 0, flags | CNTR_32BIT, \
1230 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1232 (counter * 8 + RCV_COUNTER_ARRAY64), \
1234 port_access_u64_csr)
1236 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1238 (counter * 8 + RCV_COUNTER_ARRAY64), \
1242 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1243 #define OVR_ELM(ctx) \
1244 CNTR_ELEM("RcvHdrOvr" #ctx, \
1245 (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1246 0, CNTR_NORMAL, port_access_u64_csr)
1249 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1251 (counter * 8 + SEND_COUNTER_ARRAY32), \
1252 0, flags | CNTR_32BIT, \
1253 port_access_u32_csr)
1256 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1258 (counter * 8 + SEND_COUNTER_ARRAY64), \
1260 port_access_u64_csr)
1262 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1264 counter * 8 + SEND_COUNTER_ARRAY64, \
1270 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1272 (counter * 8 + CCE_COUNTER_ARRAY32), \
1273 0, flags | CNTR_32BIT, \
1276 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1278 (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1279 0, flags | CNTR_32BIT, \
1283 #define DC_PERF_CNTR(name, counter, flags) \
1290 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1298 #define SW_IBP_CNTR(name, cntr) \
1306 * hfi_addr_from_offset - return addr for readq/writeq
1307 * @dd - the dd device
1308 * @offset - the offset of the CSR within bar0
1310 * This routine selects the appropriate base address
1311 * based on the indicated offset.
1313 static inline void __iomem
*hfi1_addr_from_offset(
1314 const struct hfi1_devdata
*dd
,
1317 if (offset
>= dd
->base2_start
)
1318 return dd
->kregbase2
+ (offset
- dd
->base2_start
);
1319 return dd
->kregbase1
+ offset
;
1323 * read_csr - read CSR at the indicated offset
1324 * @dd - the dd device
1325 * @offset - the offset of the CSR within bar0
1327 * Return: the value read or all FF's if there
1330 u64
read_csr(const struct hfi1_devdata
*dd
, u32 offset
)
1332 if (dd
->flags
& HFI1_PRESENT
)
1333 return readq(hfi1_addr_from_offset(dd
, offset
));
1338 * write_csr - write CSR at the indicated offset
1339 * @dd - the dd device
1340 * @offset - the offset of the CSR within bar0
1341 * @value - value to write
1343 void write_csr(const struct hfi1_devdata
*dd
, u32 offset
, u64 value
)
1345 if (dd
->flags
& HFI1_PRESENT
) {
1346 void __iomem
*base
= hfi1_addr_from_offset(dd
, offset
);
1348 /* avoid write to RcvArray */
1349 if (WARN_ON(offset
>= RCV_ARRAY
&& offset
< dd
->base2_start
))
1351 writeq(value
, base
);
1356 * get_csr_addr - return te iomem address for offset
1357 * @dd - the dd device
1358 * @offset - the offset of the CSR within bar0
1360 * Return: The iomem address to use in subsequent
1361 * writeq/readq operations.
1363 void __iomem
*get_csr_addr(
1364 const struct hfi1_devdata
*dd
,
1367 if (dd
->flags
& HFI1_PRESENT
)
1368 return hfi1_addr_from_offset(dd
, offset
);
1372 static inline u64
read_write_csr(const struct hfi1_devdata
*dd
, u32 csr
,
1373 int mode
, u64 value
)
1377 if (mode
== CNTR_MODE_R
) {
1378 ret
= read_csr(dd
, csr
);
1379 } else if (mode
== CNTR_MODE_W
) {
1380 write_csr(dd
, csr
, value
);
1383 dd_dev_err(dd
, "Invalid cntr register access mode");
1387 hfi1_cdbg(CNTR
, "csr 0x%x val 0x%llx mode %d", csr
, ret
, mode
);
1392 static u64
dev_access_u32_csr(const struct cntr_entry
*entry
,
1393 void *context
, int vl
, int mode
, u64 data
)
1395 struct hfi1_devdata
*dd
= context
;
1396 u64 csr
= entry
->csr
;
1398 if (entry
->flags
& CNTR_SDMA
) {
1399 if (vl
== CNTR_INVALID_VL
)
1403 if (vl
!= CNTR_INVALID_VL
)
1406 return read_write_csr(dd
, csr
, mode
, data
);
1409 static u64
access_sde_err_cnt(const struct cntr_entry
*entry
,
1410 void *context
, int idx
, int mode
, u64 data
)
1412 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
1414 if (dd
->per_sdma
&& idx
< dd
->num_sdma
)
1415 return dd
->per_sdma
[idx
].err_cnt
;
1419 static u64
access_sde_int_cnt(const struct cntr_entry
*entry
,
1420 void *context
, int idx
, int mode
, u64 data
)
1422 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
1424 if (dd
->per_sdma
&& idx
< dd
->num_sdma
)
1425 return dd
->per_sdma
[idx
].sdma_int_cnt
;
1429 static u64
access_sde_idle_int_cnt(const struct cntr_entry
*entry
,
1430 void *context
, int idx
, int mode
, u64 data
)
1432 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
1434 if (dd
->per_sdma
&& idx
< dd
->num_sdma
)
1435 return dd
->per_sdma
[idx
].idle_int_cnt
;
1439 static u64
access_sde_progress_int_cnt(const struct cntr_entry
*entry
,
1440 void *context
, int idx
, int mode
,
1443 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
1445 if (dd
->per_sdma
&& idx
< dd
->num_sdma
)
1446 return dd
->per_sdma
[idx
].progress_int_cnt
;
1450 static u64
dev_access_u64_csr(const struct cntr_entry
*entry
, void *context
,
1451 int vl
, int mode
, u64 data
)
1453 struct hfi1_devdata
*dd
= context
;
1456 u64 csr
= entry
->csr
;
1458 if (entry
->flags
& CNTR_VL
) {
1459 if (vl
== CNTR_INVALID_VL
)
1463 if (vl
!= CNTR_INVALID_VL
)
1467 val
= read_write_csr(dd
, csr
, mode
, data
);
1471 static u64
dc_access_lcb_cntr(const struct cntr_entry
*entry
, void *context
,
1472 int vl
, int mode
, u64 data
)
1474 struct hfi1_devdata
*dd
= context
;
1475 u32 csr
= entry
->csr
;
1478 if (vl
!= CNTR_INVALID_VL
)
1480 if (mode
== CNTR_MODE_R
)
1481 ret
= read_lcb_csr(dd
, csr
, &data
);
1482 else if (mode
== CNTR_MODE_W
)
1483 ret
= write_lcb_csr(dd
, csr
, data
);
1486 dd_dev_err(dd
, "Could not acquire LCB for counter 0x%x", csr
);
1490 hfi1_cdbg(CNTR
, "csr 0x%x val 0x%llx mode %d", csr
, data
, mode
);
1495 static u64
port_access_u32_csr(const struct cntr_entry
*entry
, void *context
,
1496 int vl
, int mode
, u64 data
)
1498 struct hfi1_pportdata
*ppd
= context
;
1500 if (vl
!= CNTR_INVALID_VL
)
1502 return read_write_csr(ppd
->dd
, entry
->csr
, mode
, data
);
1505 static u64
port_access_u64_csr(const struct cntr_entry
*entry
,
1506 void *context
, int vl
, int mode
, u64 data
)
1508 struct hfi1_pportdata
*ppd
= context
;
1510 u64 csr
= entry
->csr
;
1512 if (entry
->flags
& CNTR_VL
) {
1513 if (vl
== CNTR_INVALID_VL
)
1517 if (vl
!= CNTR_INVALID_VL
)
1520 val
= read_write_csr(ppd
->dd
, csr
, mode
, data
);
1524 /* Software defined */
1525 static inline u64
read_write_sw(struct hfi1_devdata
*dd
, u64
*cntr
, int mode
,
1530 if (mode
== CNTR_MODE_R
) {
1532 } else if (mode
== CNTR_MODE_W
) {
1536 dd_dev_err(dd
, "Invalid cntr sw access mode");
1540 hfi1_cdbg(CNTR
, "val 0x%llx mode %d", ret
, mode
);
1545 static u64
access_sw_link_dn_cnt(const struct cntr_entry
*entry
, void *context
,
1546 int vl
, int mode
, u64 data
)
1548 struct hfi1_pportdata
*ppd
= context
;
1550 if (vl
!= CNTR_INVALID_VL
)
1552 return read_write_sw(ppd
->dd
, &ppd
->link_downed
, mode
, data
);
1555 static u64
access_sw_link_up_cnt(const struct cntr_entry
*entry
, void *context
,
1556 int vl
, int mode
, u64 data
)
1558 struct hfi1_pportdata
*ppd
= context
;
1560 if (vl
!= CNTR_INVALID_VL
)
1562 return read_write_sw(ppd
->dd
, &ppd
->link_up
, mode
, data
);
1565 static u64
access_sw_unknown_frame_cnt(const struct cntr_entry
*entry
,
1566 void *context
, int vl
, int mode
,
1569 struct hfi1_pportdata
*ppd
= (struct hfi1_pportdata
*)context
;
1571 if (vl
!= CNTR_INVALID_VL
)
1573 return read_write_sw(ppd
->dd
, &ppd
->unknown_frame_count
, mode
, data
);
1576 static u64
access_sw_xmit_discards(const struct cntr_entry
*entry
,
1577 void *context
, int vl
, int mode
, u64 data
)
1579 struct hfi1_pportdata
*ppd
= (struct hfi1_pportdata
*)context
;
1583 if (vl
== CNTR_INVALID_VL
)
1584 counter
= &ppd
->port_xmit_discards
;
1585 else if (vl
>= 0 && vl
< C_VL_COUNT
)
1586 counter
= &ppd
->port_xmit_discards_vl
[vl
];
1590 return read_write_sw(ppd
->dd
, counter
, mode
, data
);
1593 static u64
access_xmit_constraint_errs(const struct cntr_entry
*entry
,
1594 void *context
, int vl
, int mode
,
1597 struct hfi1_pportdata
*ppd
= context
;
1599 if (vl
!= CNTR_INVALID_VL
)
1602 return read_write_sw(ppd
->dd
, &ppd
->port_xmit_constraint_errors
,
1606 static u64
access_rcv_constraint_errs(const struct cntr_entry
*entry
,
1607 void *context
, int vl
, int mode
, u64 data
)
1609 struct hfi1_pportdata
*ppd
= context
;
1611 if (vl
!= CNTR_INVALID_VL
)
1614 return read_write_sw(ppd
->dd
, &ppd
->port_rcv_constraint_errors
,
1618 u64
get_all_cpu_total(u64 __percpu
*cntr
)
1623 for_each_possible_cpu(cpu
)
1624 counter
+= *per_cpu_ptr(cntr
, cpu
);
1628 static u64
read_write_cpu(struct hfi1_devdata
*dd
, u64
*z_val
,
1630 int vl
, int mode
, u64 data
)
1634 if (vl
!= CNTR_INVALID_VL
)
1637 if (mode
== CNTR_MODE_R
) {
1638 ret
= get_all_cpu_total(cntr
) - *z_val
;
1639 } else if (mode
== CNTR_MODE_W
) {
1640 /* A write can only zero the counter */
1642 *z_val
= get_all_cpu_total(cntr
);
1644 dd_dev_err(dd
, "Per CPU cntrs can only be zeroed");
1646 dd_dev_err(dd
, "Invalid cntr sw cpu access mode");
1653 static u64
access_sw_cpu_intr(const struct cntr_entry
*entry
,
1654 void *context
, int vl
, int mode
, u64 data
)
1656 struct hfi1_devdata
*dd
= context
;
1658 return read_write_cpu(dd
, &dd
->z_int_counter
, dd
->int_counter
, vl
,
1662 static u64
access_sw_cpu_rcv_limit(const struct cntr_entry
*entry
,
1663 void *context
, int vl
, int mode
, u64 data
)
1665 struct hfi1_devdata
*dd
= context
;
1667 return read_write_cpu(dd
, &dd
->z_rcv_limit
, dd
->rcv_limit
, vl
,
1671 static u64
access_sw_pio_wait(const struct cntr_entry
*entry
,
1672 void *context
, int vl
, int mode
, u64 data
)
1674 struct hfi1_devdata
*dd
= context
;
1676 return dd
->verbs_dev
.n_piowait
;
1679 static u64
access_sw_pio_drain(const struct cntr_entry
*entry
,
1680 void *context
, int vl
, int mode
, u64 data
)
1682 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
1684 return dd
->verbs_dev
.n_piodrain
;
1687 static u64
access_sw_vtx_wait(const struct cntr_entry
*entry
,
1688 void *context
, int vl
, int mode
, u64 data
)
1690 struct hfi1_devdata
*dd
= context
;
1692 return dd
->verbs_dev
.n_txwait
;
1695 static u64
access_sw_kmem_wait(const struct cntr_entry
*entry
,
1696 void *context
, int vl
, int mode
, u64 data
)
1698 struct hfi1_devdata
*dd
= context
;
1700 return dd
->verbs_dev
.n_kmem_wait
;
1703 static u64
access_sw_send_schedule(const struct cntr_entry
*entry
,
1704 void *context
, int vl
, int mode
, u64 data
)
1706 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
1708 return read_write_cpu(dd
, &dd
->z_send_schedule
, dd
->send_schedule
, vl
,
1712 /* Software counters for the error status bits within MISC_ERR_STATUS */
1713 static u64
access_misc_pll_lock_fail_err_cnt(const struct cntr_entry
*entry
,
1714 void *context
, int vl
, int mode
,
1717 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
1719 return dd
->misc_err_status_cnt
[12];
1722 static u64
access_misc_mbist_fail_err_cnt(const struct cntr_entry
*entry
,
1723 void *context
, int vl
, int mode
,
1726 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
1728 return dd
->misc_err_status_cnt
[11];
1731 static u64
access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry
*entry
,
1732 void *context
, int vl
, int mode
,
1735 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
1737 return dd
->misc_err_status_cnt
[10];
1740 static u64
access_misc_efuse_done_parity_err_cnt(const struct cntr_entry
*entry
,
1741 void *context
, int vl
,
1744 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
1746 return dd
->misc_err_status_cnt
[9];
1749 static u64
access_misc_efuse_write_err_cnt(const struct cntr_entry
*entry
,
1750 void *context
, int vl
, int mode
,
1753 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
1755 return dd
->misc_err_status_cnt
[8];
1758 static u64
access_misc_efuse_read_bad_addr_err_cnt(
1759 const struct cntr_entry
*entry
,
1760 void *context
, int vl
, int mode
, u64 data
)
1762 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
1764 return dd
->misc_err_status_cnt
[7];
1767 static u64
access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry
*entry
,
1768 void *context
, int vl
,
1771 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
1773 return dd
->misc_err_status_cnt
[6];
1776 static u64
access_misc_fw_auth_failed_err_cnt(const struct cntr_entry
*entry
,
1777 void *context
, int vl
, int mode
,
1780 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
1782 return dd
->misc_err_status_cnt
[5];
1785 static u64
access_misc_key_mismatch_err_cnt(const struct cntr_entry
*entry
,
1786 void *context
, int vl
, int mode
,
1789 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
1791 return dd
->misc_err_status_cnt
[4];
1794 static u64
access_misc_sbus_write_failed_err_cnt(const struct cntr_entry
*entry
,
1795 void *context
, int vl
,
1798 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
1800 return dd
->misc_err_status_cnt
[3];
1803 static u64
access_misc_csr_write_bad_addr_err_cnt(
1804 const struct cntr_entry
*entry
,
1805 void *context
, int vl
, int mode
, u64 data
)
1807 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
1809 return dd
->misc_err_status_cnt
[2];
1812 static u64
access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry
*entry
,
1813 void *context
, int vl
,
1816 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
1818 return dd
->misc_err_status_cnt
[1];
1821 static u64
access_misc_csr_parity_err_cnt(const struct cntr_entry
*entry
,
1822 void *context
, int vl
, int mode
,
1825 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
1827 return dd
->misc_err_status_cnt
[0];
1831 * Software counter for the aggregate of
1832 * individual CceErrStatus counters
1834 static u64
access_sw_cce_err_status_aggregated_cnt(
1835 const struct cntr_entry
*entry
,
1836 void *context
, int vl
, int mode
, u64 data
)
1838 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
1840 return dd
->sw_cce_err_status_aggregate
;
1844 * Software counters corresponding to each of the
1845 * error status bits within CceErrStatus
1847 static u64
access_cce_msix_csr_parity_err_cnt(const struct cntr_entry
*entry
,
1848 void *context
, int vl
, int mode
,
1851 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
1853 return dd
->cce_err_status_cnt
[40];
1856 static u64
access_cce_int_map_unc_err_cnt(const struct cntr_entry
*entry
,
1857 void *context
, int vl
, int mode
,
1860 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
1862 return dd
->cce_err_status_cnt
[39];
1865 static u64
access_cce_int_map_cor_err_cnt(const struct cntr_entry
*entry
,
1866 void *context
, int vl
, int mode
,
1869 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
1871 return dd
->cce_err_status_cnt
[38];
1874 static u64
access_cce_msix_table_unc_err_cnt(const struct cntr_entry
*entry
,
1875 void *context
, int vl
, int mode
,
1878 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
1880 return dd
->cce_err_status_cnt
[37];
1883 static u64
access_cce_msix_table_cor_err_cnt(const struct cntr_entry
*entry
,
1884 void *context
, int vl
, int mode
,
1887 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
1889 return dd
->cce_err_status_cnt
[36];
1892 static u64
access_cce_rxdma_conv_fifo_parity_err_cnt(
1893 const struct cntr_entry
*entry
,
1894 void *context
, int vl
, int mode
, u64 data
)
1896 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
1898 return dd
->cce_err_status_cnt
[35];
1901 static u64
access_cce_rcpl_async_fifo_parity_err_cnt(
1902 const struct cntr_entry
*entry
,
1903 void *context
, int vl
, int mode
, u64 data
)
1905 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
1907 return dd
->cce_err_status_cnt
[34];
1910 static u64
access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry
*entry
,
1911 void *context
, int vl
,
1914 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
1916 return dd
->cce_err_status_cnt
[33];
1919 static u64
access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry
*entry
,
1920 void *context
, int vl
, int mode
,
1923 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
1925 return dd
->cce_err_status_cnt
[32];
1928 static u64
access_la_triggered_cnt(const struct cntr_entry
*entry
,
1929 void *context
, int vl
, int mode
, u64 data
)
1931 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
1933 return dd
->cce_err_status_cnt
[31];
1936 static u64
access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry
*entry
,
1937 void *context
, int vl
, int mode
,
1940 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
1942 return dd
->cce_err_status_cnt
[30];
1945 static u64
access_pcic_receive_parity_err_cnt(const struct cntr_entry
*entry
,
1946 void *context
, int vl
, int mode
,
1949 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
1951 return dd
->cce_err_status_cnt
[29];
1954 static u64
access_pcic_transmit_back_parity_err_cnt(
1955 const struct cntr_entry
*entry
,
1956 void *context
, int vl
, int mode
, u64 data
)
1958 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
1960 return dd
->cce_err_status_cnt
[28];
1963 static u64
access_pcic_transmit_front_parity_err_cnt(
1964 const struct cntr_entry
*entry
,
1965 void *context
, int vl
, int mode
, u64 data
)
1967 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
1969 return dd
->cce_err_status_cnt
[27];
1972 static u64
access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry
*entry
,
1973 void *context
, int vl
, int mode
,
1976 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
1978 return dd
->cce_err_status_cnt
[26];
1981 static u64
access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry
*entry
,
1982 void *context
, int vl
, int mode
,
1985 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
1987 return dd
->cce_err_status_cnt
[25];
1990 static u64
access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry
*entry
,
1991 void *context
, int vl
, int mode
,
1994 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
1996 return dd
->cce_err_status_cnt
[24];
1999 static u64
access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry
*entry
,
2000 void *context
, int vl
, int mode
,
2003 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2005 return dd
->cce_err_status_cnt
[23];
2008 static u64
access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry
*entry
,
2009 void *context
, int vl
,
2012 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2014 return dd
->cce_err_status_cnt
[22];
2017 static u64
access_pcic_retry_mem_unc_err(const struct cntr_entry
*entry
,
2018 void *context
, int vl
, int mode
,
2021 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2023 return dd
->cce_err_status_cnt
[21];
2026 static u64
access_pcic_n_post_dat_q_parity_err_cnt(
2027 const struct cntr_entry
*entry
,
2028 void *context
, int vl
, int mode
, u64 data
)
2030 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2032 return dd
->cce_err_status_cnt
[20];
2035 static u64
access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry
*entry
,
2036 void *context
, int vl
,
2039 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2041 return dd
->cce_err_status_cnt
[19];
2044 static u64
access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry
*entry
,
2045 void *context
, int vl
, int mode
,
2048 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2050 return dd
->cce_err_status_cnt
[18];
2053 static u64
access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry
*entry
,
2054 void *context
, int vl
, int mode
,
2057 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2059 return dd
->cce_err_status_cnt
[17];
2062 static u64
access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry
*entry
,
2063 void *context
, int vl
, int mode
,
2066 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2068 return dd
->cce_err_status_cnt
[16];
2071 static u64
access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry
*entry
,
2072 void *context
, int vl
, int mode
,
2075 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2077 return dd
->cce_err_status_cnt
[15];
2080 static u64
access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry
*entry
,
2081 void *context
, int vl
,
2084 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2086 return dd
->cce_err_status_cnt
[14];
2089 static u64
access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry
*entry
,
2090 void *context
, int vl
, int mode
,
2093 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2095 return dd
->cce_err_status_cnt
[13];
2098 static u64
access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2099 const struct cntr_entry
*entry
,
2100 void *context
, int vl
, int mode
, u64 data
)
2102 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2104 return dd
->cce_err_status_cnt
[12];
2107 static u64
access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2108 const struct cntr_entry
*entry
,
2109 void *context
, int vl
, int mode
, u64 data
)
2111 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2113 return dd
->cce_err_status_cnt
[11];
2116 static u64
access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2117 const struct cntr_entry
*entry
,
2118 void *context
, int vl
, int mode
, u64 data
)
2120 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2122 return dd
->cce_err_status_cnt
[10];
2125 static u64
access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2126 const struct cntr_entry
*entry
,
2127 void *context
, int vl
, int mode
, u64 data
)
2129 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2131 return dd
->cce_err_status_cnt
[9];
2134 static u64
access_cce_cli2_async_fifo_parity_err_cnt(
2135 const struct cntr_entry
*entry
,
2136 void *context
, int vl
, int mode
, u64 data
)
2138 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2140 return dd
->cce_err_status_cnt
[8];
2143 static u64
access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry
*entry
,
2144 void *context
, int vl
,
2147 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2149 return dd
->cce_err_status_cnt
[7];
2152 static u64
access_cce_cli0_async_fifo_parity_err_cnt(
2153 const struct cntr_entry
*entry
,
2154 void *context
, int vl
, int mode
, u64 data
)
2156 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2158 return dd
->cce_err_status_cnt
[6];
2161 static u64
access_cce_rspd_data_parity_err_cnt(const struct cntr_entry
*entry
,
2162 void *context
, int vl
, int mode
,
2165 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2167 return dd
->cce_err_status_cnt
[5];
2170 static u64
access_cce_trgt_access_err_cnt(const struct cntr_entry
*entry
,
2171 void *context
, int vl
, int mode
,
2174 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2176 return dd
->cce_err_status_cnt
[4];
2179 static u64
access_cce_trgt_async_fifo_parity_err_cnt(
2180 const struct cntr_entry
*entry
,
2181 void *context
, int vl
, int mode
, u64 data
)
2183 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2185 return dd
->cce_err_status_cnt
[3];
2188 static u64
access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry
*entry
,
2189 void *context
, int vl
,
2192 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2194 return dd
->cce_err_status_cnt
[2];
2197 static u64
access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry
*entry
,
2198 void *context
, int vl
,
2201 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2203 return dd
->cce_err_status_cnt
[1];
2206 static u64
access_ccs_csr_parity_err_cnt(const struct cntr_entry
*entry
,
2207 void *context
, int vl
, int mode
,
2210 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2212 return dd
->cce_err_status_cnt
[0];
2216 * Software counters corresponding to each of the
2217 * error status bits within RcvErrStatus
2219 static u64
access_rx_csr_parity_err_cnt(const struct cntr_entry
*entry
,
2220 void *context
, int vl
, int mode
,
2223 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2225 return dd
->rcv_err_status_cnt
[63];
2228 static u64
access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry
*entry
,
2229 void *context
, int vl
,
2232 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2234 return dd
->rcv_err_status_cnt
[62];
2237 static u64
access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry
*entry
,
2238 void *context
, int vl
, int mode
,
2241 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2243 return dd
->rcv_err_status_cnt
[61];
2246 static u64
access_rx_dma_csr_unc_err_cnt(const struct cntr_entry
*entry
,
2247 void *context
, int vl
, int mode
,
2250 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2252 return dd
->rcv_err_status_cnt
[60];
2255 static u64
access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry
*entry
,
2256 void *context
, int vl
,
2259 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2261 return dd
->rcv_err_status_cnt
[59];
2264 static u64
access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry
*entry
,
2265 void *context
, int vl
,
2268 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2270 return dd
->rcv_err_status_cnt
[58];
2273 static u64
access_rx_dma_csr_parity_err_cnt(const struct cntr_entry
*entry
,
2274 void *context
, int vl
, int mode
,
2277 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2279 return dd
->rcv_err_status_cnt
[57];
2282 static u64
access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry
*entry
,
2283 void *context
, int vl
, int mode
,
2286 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2288 return dd
->rcv_err_status_cnt
[56];
2291 static u64
access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry
*entry
,
2292 void *context
, int vl
, int mode
,
2295 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2297 return dd
->rcv_err_status_cnt
[55];
2300 static u64
access_rx_dma_data_fifo_rd_cor_err_cnt(
2301 const struct cntr_entry
*entry
,
2302 void *context
, int vl
, int mode
, u64 data
)
2304 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2306 return dd
->rcv_err_status_cnt
[54];
2309 static u64
access_rx_dma_data_fifo_rd_unc_err_cnt(
2310 const struct cntr_entry
*entry
,
2311 void *context
, int vl
, int mode
, u64 data
)
2313 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2315 return dd
->rcv_err_status_cnt
[53];
2318 static u64
access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry
*entry
,
2319 void *context
, int vl
,
2322 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2324 return dd
->rcv_err_status_cnt
[52];
2327 static u64
access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry
*entry
,
2328 void *context
, int vl
,
2331 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2333 return dd
->rcv_err_status_cnt
[51];
2336 static u64
access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry
*entry
,
2337 void *context
, int vl
,
2340 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2342 return dd
->rcv_err_status_cnt
[50];
2345 static u64
access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry
*entry
,
2346 void *context
, int vl
,
2349 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2351 return dd
->rcv_err_status_cnt
[49];
2354 static u64
access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry
*entry
,
2355 void *context
, int vl
,
2358 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2360 return dd
->rcv_err_status_cnt
[48];
2363 static u64
access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry
*entry
,
2364 void *context
, int vl
,
2367 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2369 return dd
->rcv_err_status_cnt
[47];
2372 static u64
access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry
*entry
,
2373 void *context
, int vl
, int mode
,
2376 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2378 return dd
->rcv_err_status_cnt
[46];
2381 static u64
access_rx_hq_intr_csr_parity_err_cnt(
2382 const struct cntr_entry
*entry
,
2383 void *context
, int vl
, int mode
, u64 data
)
2385 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2387 return dd
->rcv_err_status_cnt
[45];
2390 static u64
access_rx_lookup_csr_parity_err_cnt(
2391 const struct cntr_entry
*entry
,
2392 void *context
, int vl
, int mode
, u64 data
)
2394 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2396 return dd
->rcv_err_status_cnt
[44];
2399 static u64
access_rx_lookup_rcv_array_cor_err_cnt(
2400 const struct cntr_entry
*entry
,
2401 void *context
, int vl
, int mode
, u64 data
)
2403 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2405 return dd
->rcv_err_status_cnt
[43];
2408 static u64
access_rx_lookup_rcv_array_unc_err_cnt(
2409 const struct cntr_entry
*entry
,
2410 void *context
, int vl
, int mode
, u64 data
)
2412 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2414 return dd
->rcv_err_status_cnt
[42];
2417 static u64
access_rx_lookup_des_part2_parity_err_cnt(
2418 const struct cntr_entry
*entry
,
2419 void *context
, int vl
, int mode
, u64 data
)
2421 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2423 return dd
->rcv_err_status_cnt
[41];
2426 static u64
access_rx_lookup_des_part1_unc_cor_err_cnt(
2427 const struct cntr_entry
*entry
,
2428 void *context
, int vl
, int mode
, u64 data
)
2430 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2432 return dd
->rcv_err_status_cnt
[40];
2435 static u64
access_rx_lookup_des_part1_unc_err_cnt(
2436 const struct cntr_entry
*entry
,
2437 void *context
, int vl
, int mode
, u64 data
)
2439 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2441 return dd
->rcv_err_status_cnt
[39];
2444 static u64
access_rx_rbuf_next_free_buf_cor_err_cnt(
2445 const struct cntr_entry
*entry
,
2446 void *context
, int vl
, int mode
, u64 data
)
2448 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2450 return dd
->rcv_err_status_cnt
[38];
2453 static u64
access_rx_rbuf_next_free_buf_unc_err_cnt(
2454 const struct cntr_entry
*entry
,
2455 void *context
, int vl
, int mode
, u64 data
)
2457 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2459 return dd
->rcv_err_status_cnt
[37];
2462 static u64
access_rbuf_fl_init_wr_addr_parity_err_cnt(
2463 const struct cntr_entry
*entry
,
2464 void *context
, int vl
, int mode
, u64 data
)
2466 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2468 return dd
->rcv_err_status_cnt
[36];
2471 static u64
access_rx_rbuf_fl_initdone_parity_err_cnt(
2472 const struct cntr_entry
*entry
,
2473 void *context
, int vl
, int mode
, u64 data
)
2475 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2477 return dd
->rcv_err_status_cnt
[35];
2480 static u64
access_rx_rbuf_fl_write_addr_parity_err_cnt(
2481 const struct cntr_entry
*entry
,
2482 void *context
, int vl
, int mode
, u64 data
)
2484 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2486 return dd
->rcv_err_status_cnt
[34];
2489 static u64
access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2490 const struct cntr_entry
*entry
,
2491 void *context
, int vl
, int mode
, u64 data
)
2493 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2495 return dd
->rcv_err_status_cnt
[33];
2498 static u64
access_rx_rbuf_empty_err_cnt(const struct cntr_entry
*entry
,
2499 void *context
, int vl
, int mode
,
2502 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2504 return dd
->rcv_err_status_cnt
[32];
2507 static u64
access_rx_rbuf_full_err_cnt(const struct cntr_entry
*entry
,
2508 void *context
, int vl
, int mode
,
2511 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2513 return dd
->rcv_err_status_cnt
[31];
2516 static u64
access_rbuf_bad_lookup_err_cnt(const struct cntr_entry
*entry
,
2517 void *context
, int vl
, int mode
,
2520 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2522 return dd
->rcv_err_status_cnt
[30];
2525 static u64
access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry
*entry
,
2526 void *context
, int vl
, int mode
,
2529 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2531 return dd
->rcv_err_status_cnt
[29];
2534 static u64
access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry
*entry
,
2535 void *context
, int vl
,
2538 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2540 return dd
->rcv_err_status_cnt
[28];
2543 static u64
access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2544 const struct cntr_entry
*entry
,
2545 void *context
, int vl
, int mode
, u64 data
)
2547 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2549 return dd
->rcv_err_status_cnt
[27];
2552 static u64
access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2553 const struct cntr_entry
*entry
,
2554 void *context
, int vl
, int mode
, u64 data
)
2556 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2558 return dd
->rcv_err_status_cnt
[26];
2561 static u64
access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2562 const struct cntr_entry
*entry
,
2563 void *context
, int vl
, int mode
, u64 data
)
2565 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2567 return dd
->rcv_err_status_cnt
[25];
2570 static u64
access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2571 const struct cntr_entry
*entry
,
2572 void *context
, int vl
, int mode
, u64 data
)
2574 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2576 return dd
->rcv_err_status_cnt
[24];
2579 static u64
access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2580 const struct cntr_entry
*entry
,
2581 void *context
, int vl
, int mode
, u64 data
)
2583 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2585 return dd
->rcv_err_status_cnt
[23];
2588 static u64
access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2589 const struct cntr_entry
*entry
,
2590 void *context
, int vl
, int mode
, u64 data
)
2592 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2594 return dd
->rcv_err_status_cnt
[22];
2597 static u64
access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2598 const struct cntr_entry
*entry
,
2599 void *context
, int vl
, int mode
, u64 data
)
2601 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2603 return dd
->rcv_err_status_cnt
[21];
2606 static u64
access_rx_rbuf_block_list_read_cor_err_cnt(
2607 const struct cntr_entry
*entry
,
2608 void *context
, int vl
, int mode
, u64 data
)
2610 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2612 return dd
->rcv_err_status_cnt
[20];
2615 static u64
access_rx_rbuf_block_list_read_unc_err_cnt(
2616 const struct cntr_entry
*entry
,
2617 void *context
, int vl
, int mode
, u64 data
)
2619 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2621 return dd
->rcv_err_status_cnt
[19];
2624 static u64
access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry
*entry
,
2625 void *context
, int vl
,
2628 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2630 return dd
->rcv_err_status_cnt
[18];
2633 static u64
access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry
*entry
,
2634 void *context
, int vl
,
2637 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2639 return dd
->rcv_err_status_cnt
[17];
2642 static u64
access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2643 const struct cntr_entry
*entry
,
2644 void *context
, int vl
, int mode
, u64 data
)
2646 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2648 return dd
->rcv_err_status_cnt
[16];
2651 static u64
access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2652 const struct cntr_entry
*entry
,
2653 void *context
, int vl
, int mode
, u64 data
)
2655 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2657 return dd
->rcv_err_status_cnt
[15];
2660 static u64
access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry
*entry
,
2661 void *context
, int vl
,
2664 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2666 return dd
->rcv_err_status_cnt
[14];
2669 static u64
access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry
*entry
,
2670 void *context
, int vl
,
2673 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2675 return dd
->rcv_err_status_cnt
[13];
2678 static u64
access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry
*entry
,
2679 void *context
, int vl
, int mode
,
2682 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2684 return dd
->rcv_err_status_cnt
[12];
2687 static u64
access_rx_dma_flag_cor_err_cnt(const struct cntr_entry
*entry
,
2688 void *context
, int vl
, int mode
,
2691 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2693 return dd
->rcv_err_status_cnt
[11];
2696 static u64
access_rx_dma_flag_unc_err_cnt(const struct cntr_entry
*entry
,
2697 void *context
, int vl
, int mode
,
2700 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2702 return dd
->rcv_err_status_cnt
[10];
2705 static u64
access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry
*entry
,
2706 void *context
, int vl
, int mode
,
2709 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2711 return dd
->rcv_err_status_cnt
[9];
2714 static u64
access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry
*entry
,
2715 void *context
, int vl
, int mode
,
2718 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2720 return dd
->rcv_err_status_cnt
[8];
2723 static u64
access_rx_rcv_qp_map_table_cor_err_cnt(
2724 const struct cntr_entry
*entry
,
2725 void *context
, int vl
, int mode
, u64 data
)
2727 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2729 return dd
->rcv_err_status_cnt
[7];
2732 static u64
access_rx_rcv_qp_map_table_unc_err_cnt(
2733 const struct cntr_entry
*entry
,
2734 void *context
, int vl
, int mode
, u64 data
)
2736 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2738 return dd
->rcv_err_status_cnt
[6];
2741 static u64
access_rx_rcv_data_cor_err_cnt(const struct cntr_entry
*entry
,
2742 void *context
, int vl
, int mode
,
2745 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2747 return dd
->rcv_err_status_cnt
[5];
2750 static u64
access_rx_rcv_data_unc_err_cnt(const struct cntr_entry
*entry
,
2751 void *context
, int vl
, int mode
,
2754 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2756 return dd
->rcv_err_status_cnt
[4];
2759 static u64
access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry
*entry
,
2760 void *context
, int vl
, int mode
,
2763 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2765 return dd
->rcv_err_status_cnt
[3];
2768 static u64
access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry
*entry
,
2769 void *context
, int vl
, int mode
,
2772 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2774 return dd
->rcv_err_status_cnt
[2];
2777 static u64
access_rx_dc_intf_parity_err_cnt(const struct cntr_entry
*entry
,
2778 void *context
, int vl
, int mode
,
2781 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2783 return dd
->rcv_err_status_cnt
[1];
2786 static u64
access_rx_dma_csr_cor_err_cnt(const struct cntr_entry
*entry
,
2787 void *context
, int vl
, int mode
,
2790 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2792 return dd
->rcv_err_status_cnt
[0];
2796 * Software counters corresponding to each of the
2797 * error status bits within SendPioErrStatus
2799 static u64
access_pio_pec_sop_head_parity_err_cnt(
2800 const struct cntr_entry
*entry
,
2801 void *context
, int vl
, int mode
, u64 data
)
2803 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2805 return dd
->send_pio_err_status_cnt
[35];
2808 static u64
access_pio_pcc_sop_head_parity_err_cnt(
2809 const struct cntr_entry
*entry
,
2810 void *context
, int vl
, int mode
, u64 data
)
2812 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2814 return dd
->send_pio_err_status_cnt
[34];
2817 static u64
access_pio_last_returned_cnt_parity_err_cnt(
2818 const struct cntr_entry
*entry
,
2819 void *context
, int vl
, int mode
, u64 data
)
2821 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2823 return dd
->send_pio_err_status_cnt
[33];
2826 static u64
access_pio_current_free_cnt_parity_err_cnt(
2827 const struct cntr_entry
*entry
,
2828 void *context
, int vl
, int mode
, u64 data
)
2830 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2832 return dd
->send_pio_err_status_cnt
[32];
2835 static u64
access_pio_reserved_31_err_cnt(const struct cntr_entry
*entry
,
2836 void *context
, int vl
, int mode
,
2839 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2841 return dd
->send_pio_err_status_cnt
[31];
2844 static u64
access_pio_reserved_30_err_cnt(const struct cntr_entry
*entry
,
2845 void *context
, int vl
, int mode
,
2848 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2850 return dd
->send_pio_err_status_cnt
[30];
2853 static u64
access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry
*entry
,
2854 void *context
, int vl
, int mode
,
2857 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2859 return dd
->send_pio_err_status_cnt
[29];
2862 static u64
access_pio_ppmc_bqc_mem_parity_err_cnt(
2863 const struct cntr_entry
*entry
,
2864 void *context
, int vl
, int mode
, u64 data
)
2866 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2868 return dd
->send_pio_err_status_cnt
[28];
2871 static u64
access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry
*entry
,
2872 void *context
, int vl
, int mode
,
2875 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2877 return dd
->send_pio_err_status_cnt
[27];
2880 static u64
access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry
*entry
,
2881 void *context
, int vl
, int mode
,
2884 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2886 return dd
->send_pio_err_status_cnt
[26];
2889 static u64
access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry
*entry
,
2890 void *context
, int vl
,
2893 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2895 return dd
->send_pio_err_status_cnt
[25];
2898 static u64
access_pio_block_qw_count_parity_err_cnt(
2899 const struct cntr_entry
*entry
,
2900 void *context
, int vl
, int mode
, u64 data
)
2902 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2904 return dd
->send_pio_err_status_cnt
[24];
2907 static u64
access_pio_write_qw_valid_parity_err_cnt(
2908 const struct cntr_entry
*entry
,
2909 void *context
, int vl
, int mode
, u64 data
)
2911 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2913 return dd
->send_pio_err_status_cnt
[23];
2916 static u64
access_pio_state_machine_err_cnt(const struct cntr_entry
*entry
,
2917 void *context
, int vl
, int mode
,
2920 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2922 return dd
->send_pio_err_status_cnt
[22];
2925 static u64
access_pio_write_data_parity_err_cnt(const struct cntr_entry
*entry
,
2926 void *context
, int vl
,
2929 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2931 return dd
->send_pio_err_status_cnt
[21];
2934 static u64
access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry
*entry
,
2935 void *context
, int vl
,
2938 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2940 return dd
->send_pio_err_status_cnt
[20];
2943 static u64
access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry
*entry
,
2944 void *context
, int vl
,
2947 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2949 return dd
->send_pio_err_status_cnt
[19];
2952 static u64
access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2953 const struct cntr_entry
*entry
,
2954 void *context
, int vl
, int mode
, u64 data
)
2956 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2958 return dd
->send_pio_err_status_cnt
[18];
2961 static u64
access_pio_init_sm_in_err_cnt(const struct cntr_entry
*entry
,
2962 void *context
, int vl
, int mode
,
2965 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2967 return dd
->send_pio_err_status_cnt
[17];
2970 static u64
access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry
*entry
,
2971 void *context
, int vl
, int mode
,
2974 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2976 return dd
->send_pio_err_status_cnt
[16];
2979 static u64
access_pio_credit_ret_fifo_parity_err_cnt(
2980 const struct cntr_entry
*entry
,
2981 void *context
, int vl
, int mode
, u64 data
)
2983 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2985 return dd
->send_pio_err_status_cnt
[15];
2988 static u64
access_pio_v1_len_mem_bank1_cor_err_cnt(
2989 const struct cntr_entry
*entry
,
2990 void *context
, int vl
, int mode
, u64 data
)
2992 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
2994 return dd
->send_pio_err_status_cnt
[14];
2997 static u64
access_pio_v1_len_mem_bank0_cor_err_cnt(
2998 const struct cntr_entry
*entry
,
2999 void *context
, int vl
, int mode
, u64 data
)
3001 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3003 return dd
->send_pio_err_status_cnt
[13];
3006 static u64
access_pio_v1_len_mem_bank1_unc_err_cnt(
3007 const struct cntr_entry
*entry
,
3008 void *context
, int vl
, int mode
, u64 data
)
3010 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3012 return dd
->send_pio_err_status_cnt
[12];
3015 static u64
access_pio_v1_len_mem_bank0_unc_err_cnt(
3016 const struct cntr_entry
*entry
,
3017 void *context
, int vl
, int mode
, u64 data
)
3019 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3021 return dd
->send_pio_err_status_cnt
[11];
3024 static u64
access_pio_sm_pkt_reset_parity_err_cnt(
3025 const struct cntr_entry
*entry
,
3026 void *context
, int vl
, int mode
, u64 data
)
3028 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3030 return dd
->send_pio_err_status_cnt
[10];
3033 static u64
access_pio_pkt_evict_fifo_parity_err_cnt(
3034 const struct cntr_entry
*entry
,
3035 void *context
, int vl
, int mode
, u64 data
)
3037 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3039 return dd
->send_pio_err_status_cnt
[9];
3042 static u64
access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
3043 const struct cntr_entry
*entry
,
3044 void *context
, int vl
, int mode
, u64 data
)
3046 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3048 return dd
->send_pio_err_status_cnt
[8];
3051 static u64
access_pio_sbrdctl_crrel_parity_err_cnt(
3052 const struct cntr_entry
*entry
,
3053 void *context
, int vl
, int mode
, u64 data
)
3055 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3057 return dd
->send_pio_err_status_cnt
[7];
3060 static u64
access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry
*entry
,
3061 void *context
, int vl
, int mode
,
3064 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3066 return dd
->send_pio_err_status_cnt
[6];
3069 static u64
access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry
*entry
,
3070 void *context
, int vl
, int mode
,
3073 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3075 return dd
->send_pio_err_status_cnt
[5];
3078 static u64
access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry
*entry
,
3079 void *context
, int vl
, int mode
,
3082 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3084 return dd
->send_pio_err_status_cnt
[4];
3087 static u64
access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry
*entry
,
3088 void *context
, int vl
, int mode
,
3091 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3093 return dd
->send_pio_err_status_cnt
[3];
3096 static u64
access_pio_csr_parity_err_cnt(const struct cntr_entry
*entry
,
3097 void *context
, int vl
, int mode
,
3100 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3102 return dd
->send_pio_err_status_cnt
[2];
3105 static u64
access_pio_write_addr_parity_err_cnt(const struct cntr_entry
*entry
,
3106 void *context
, int vl
,
3109 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3111 return dd
->send_pio_err_status_cnt
[1];
3114 static u64
access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry
*entry
,
3115 void *context
, int vl
, int mode
,
3118 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3120 return dd
->send_pio_err_status_cnt
[0];
3124 * Software counters corresponding to each of the
3125 * error status bits within SendDmaErrStatus
3127 static u64
access_sdma_pcie_req_tracking_cor_err_cnt(
3128 const struct cntr_entry
*entry
,
3129 void *context
, int vl
, int mode
, u64 data
)
3131 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3133 return dd
->send_dma_err_status_cnt
[3];
3136 static u64
access_sdma_pcie_req_tracking_unc_err_cnt(
3137 const struct cntr_entry
*entry
,
3138 void *context
, int vl
, int mode
, u64 data
)
3140 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3142 return dd
->send_dma_err_status_cnt
[2];
3145 static u64
access_sdma_csr_parity_err_cnt(const struct cntr_entry
*entry
,
3146 void *context
, int vl
, int mode
,
3149 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3151 return dd
->send_dma_err_status_cnt
[1];
3154 static u64
access_sdma_rpy_tag_err_cnt(const struct cntr_entry
*entry
,
3155 void *context
, int vl
, int mode
,
3158 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3160 return dd
->send_dma_err_status_cnt
[0];
3164 * Software counters corresponding to each of the
3165 * error status bits within SendEgressErrStatus
3167 static u64
access_tx_read_pio_memory_csr_unc_err_cnt(
3168 const struct cntr_entry
*entry
,
3169 void *context
, int vl
, int mode
, u64 data
)
3171 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3173 return dd
->send_egress_err_status_cnt
[63];
3176 static u64
access_tx_read_sdma_memory_csr_err_cnt(
3177 const struct cntr_entry
*entry
,
3178 void *context
, int vl
, int mode
, u64 data
)
3180 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3182 return dd
->send_egress_err_status_cnt
[62];
3185 static u64
access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry
*entry
,
3186 void *context
, int vl
, int mode
,
3189 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3191 return dd
->send_egress_err_status_cnt
[61];
3194 static u64
access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry
*entry
,
3195 void *context
, int vl
,
3198 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3200 return dd
->send_egress_err_status_cnt
[60];
3203 static u64
access_tx_read_sdma_memory_cor_err_cnt(
3204 const struct cntr_entry
*entry
,
3205 void *context
, int vl
, int mode
, u64 data
)
3207 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3209 return dd
->send_egress_err_status_cnt
[59];
3212 static u64
access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry
*entry
,
3213 void *context
, int vl
, int mode
,
3216 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3218 return dd
->send_egress_err_status_cnt
[58];
3221 static u64
access_tx_credit_overrun_err_cnt(const struct cntr_entry
*entry
,
3222 void *context
, int vl
, int mode
,
3225 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3227 return dd
->send_egress_err_status_cnt
[57];
3230 static u64
access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry
*entry
,
3231 void *context
, int vl
, int mode
,
3234 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3236 return dd
->send_egress_err_status_cnt
[56];
3239 static u64
access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry
*entry
,
3240 void *context
, int vl
, int mode
,
3243 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3245 return dd
->send_egress_err_status_cnt
[55];
3248 static u64
access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry
*entry
,
3249 void *context
, int vl
, int mode
,
3252 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3254 return dd
->send_egress_err_status_cnt
[54];
3257 static u64
access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry
*entry
,
3258 void *context
, int vl
, int mode
,
3261 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3263 return dd
->send_egress_err_status_cnt
[53];
3266 static u64
access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry
*entry
,
3267 void *context
, int vl
, int mode
,
3270 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3272 return dd
->send_egress_err_status_cnt
[52];
3275 static u64
access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry
*entry
,
3276 void *context
, int vl
, int mode
,
3279 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3281 return dd
->send_egress_err_status_cnt
[51];
3284 static u64
access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry
*entry
,
3285 void *context
, int vl
, int mode
,
3288 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3290 return dd
->send_egress_err_status_cnt
[50];
3293 static u64
access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry
*entry
,
3294 void *context
, int vl
, int mode
,
3297 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3299 return dd
->send_egress_err_status_cnt
[49];
3302 static u64
access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry
*entry
,
3303 void *context
, int vl
, int mode
,
3306 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3308 return dd
->send_egress_err_status_cnt
[48];
3311 static u64
access_tx_credit_return_vl_err_cnt(const struct cntr_entry
*entry
,
3312 void *context
, int vl
, int mode
,
3315 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3317 return dd
->send_egress_err_status_cnt
[47];
3320 static u64
access_tx_hcrc_insertion_err_cnt(const struct cntr_entry
*entry
,
3321 void *context
, int vl
, int mode
,
3324 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3326 return dd
->send_egress_err_status_cnt
[46];
3329 static u64
access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry
*entry
,
3330 void *context
, int vl
, int mode
,
3333 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3335 return dd
->send_egress_err_status_cnt
[45];
3338 static u64
access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry
*entry
,
3339 void *context
, int vl
,
3342 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3344 return dd
->send_egress_err_status_cnt
[44];
3347 static u64
access_tx_read_sdma_memory_unc_err_cnt(
3348 const struct cntr_entry
*entry
,
3349 void *context
, int vl
, int mode
, u64 data
)
3351 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3353 return dd
->send_egress_err_status_cnt
[43];
3356 static u64
access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry
*entry
,
3357 void *context
, int vl
, int mode
,
3360 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3362 return dd
->send_egress_err_status_cnt
[42];
3365 static u64
access_tx_credit_return_partiy_err_cnt(
3366 const struct cntr_entry
*entry
,
3367 void *context
, int vl
, int mode
, u64 data
)
3369 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3371 return dd
->send_egress_err_status_cnt
[41];
3374 static u64
access_tx_launch_fifo8_unc_or_parity_err_cnt(
3375 const struct cntr_entry
*entry
,
3376 void *context
, int vl
, int mode
, u64 data
)
3378 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3380 return dd
->send_egress_err_status_cnt
[40];
3383 static u64
access_tx_launch_fifo7_unc_or_parity_err_cnt(
3384 const struct cntr_entry
*entry
,
3385 void *context
, int vl
, int mode
, u64 data
)
3387 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3389 return dd
->send_egress_err_status_cnt
[39];
3392 static u64
access_tx_launch_fifo6_unc_or_parity_err_cnt(
3393 const struct cntr_entry
*entry
,
3394 void *context
, int vl
, int mode
, u64 data
)
3396 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3398 return dd
->send_egress_err_status_cnt
[38];
3401 static u64
access_tx_launch_fifo5_unc_or_parity_err_cnt(
3402 const struct cntr_entry
*entry
,
3403 void *context
, int vl
, int mode
, u64 data
)
3405 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3407 return dd
->send_egress_err_status_cnt
[37];
3410 static u64
access_tx_launch_fifo4_unc_or_parity_err_cnt(
3411 const struct cntr_entry
*entry
,
3412 void *context
, int vl
, int mode
, u64 data
)
3414 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3416 return dd
->send_egress_err_status_cnt
[36];
3419 static u64
access_tx_launch_fifo3_unc_or_parity_err_cnt(
3420 const struct cntr_entry
*entry
,
3421 void *context
, int vl
, int mode
, u64 data
)
3423 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3425 return dd
->send_egress_err_status_cnt
[35];
3428 static u64
access_tx_launch_fifo2_unc_or_parity_err_cnt(
3429 const struct cntr_entry
*entry
,
3430 void *context
, int vl
, int mode
, u64 data
)
3432 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3434 return dd
->send_egress_err_status_cnt
[34];
3437 static u64
access_tx_launch_fifo1_unc_or_parity_err_cnt(
3438 const struct cntr_entry
*entry
,
3439 void *context
, int vl
, int mode
, u64 data
)
3441 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3443 return dd
->send_egress_err_status_cnt
[33];
3446 static u64
access_tx_launch_fifo0_unc_or_parity_err_cnt(
3447 const struct cntr_entry
*entry
,
3448 void *context
, int vl
, int mode
, u64 data
)
3450 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3452 return dd
->send_egress_err_status_cnt
[32];
3455 static u64
access_tx_sdma15_disallowed_packet_err_cnt(
3456 const struct cntr_entry
*entry
,
3457 void *context
, int vl
, int mode
, u64 data
)
3459 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3461 return dd
->send_egress_err_status_cnt
[31];
3464 static u64
access_tx_sdma14_disallowed_packet_err_cnt(
3465 const struct cntr_entry
*entry
,
3466 void *context
, int vl
, int mode
, u64 data
)
3468 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3470 return dd
->send_egress_err_status_cnt
[30];
3473 static u64
access_tx_sdma13_disallowed_packet_err_cnt(
3474 const struct cntr_entry
*entry
,
3475 void *context
, int vl
, int mode
, u64 data
)
3477 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3479 return dd
->send_egress_err_status_cnt
[29];
3482 static u64
access_tx_sdma12_disallowed_packet_err_cnt(
3483 const struct cntr_entry
*entry
,
3484 void *context
, int vl
, int mode
, u64 data
)
3486 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3488 return dd
->send_egress_err_status_cnt
[28];
3491 static u64
access_tx_sdma11_disallowed_packet_err_cnt(
3492 const struct cntr_entry
*entry
,
3493 void *context
, int vl
, int mode
, u64 data
)
3495 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3497 return dd
->send_egress_err_status_cnt
[27];
3500 static u64
access_tx_sdma10_disallowed_packet_err_cnt(
3501 const struct cntr_entry
*entry
,
3502 void *context
, int vl
, int mode
, u64 data
)
3504 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3506 return dd
->send_egress_err_status_cnt
[26];
3509 static u64
access_tx_sdma9_disallowed_packet_err_cnt(
3510 const struct cntr_entry
*entry
,
3511 void *context
, int vl
, int mode
, u64 data
)
3513 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3515 return dd
->send_egress_err_status_cnt
[25];
3518 static u64
access_tx_sdma8_disallowed_packet_err_cnt(
3519 const struct cntr_entry
*entry
,
3520 void *context
, int vl
, int mode
, u64 data
)
3522 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3524 return dd
->send_egress_err_status_cnt
[24];
3527 static u64
access_tx_sdma7_disallowed_packet_err_cnt(
3528 const struct cntr_entry
*entry
,
3529 void *context
, int vl
, int mode
, u64 data
)
3531 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3533 return dd
->send_egress_err_status_cnt
[23];
3536 static u64
access_tx_sdma6_disallowed_packet_err_cnt(
3537 const struct cntr_entry
*entry
,
3538 void *context
, int vl
, int mode
, u64 data
)
3540 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3542 return dd
->send_egress_err_status_cnt
[22];
3545 static u64
access_tx_sdma5_disallowed_packet_err_cnt(
3546 const struct cntr_entry
*entry
,
3547 void *context
, int vl
, int mode
, u64 data
)
3549 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3551 return dd
->send_egress_err_status_cnt
[21];
3554 static u64
access_tx_sdma4_disallowed_packet_err_cnt(
3555 const struct cntr_entry
*entry
,
3556 void *context
, int vl
, int mode
, u64 data
)
3558 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3560 return dd
->send_egress_err_status_cnt
[20];
3563 static u64
access_tx_sdma3_disallowed_packet_err_cnt(
3564 const struct cntr_entry
*entry
,
3565 void *context
, int vl
, int mode
, u64 data
)
3567 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3569 return dd
->send_egress_err_status_cnt
[19];
3572 static u64
access_tx_sdma2_disallowed_packet_err_cnt(
3573 const struct cntr_entry
*entry
,
3574 void *context
, int vl
, int mode
, u64 data
)
3576 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3578 return dd
->send_egress_err_status_cnt
[18];
3581 static u64
access_tx_sdma1_disallowed_packet_err_cnt(
3582 const struct cntr_entry
*entry
,
3583 void *context
, int vl
, int mode
, u64 data
)
3585 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3587 return dd
->send_egress_err_status_cnt
[17];
3590 static u64
access_tx_sdma0_disallowed_packet_err_cnt(
3591 const struct cntr_entry
*entry
,
3592 void *context
, int vl
, int mode
, u64 data
)
3594 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3596 return dd
->send_egress_err_status_cnt
[16];
3599 static u64
access_tx_config_parity_err_cnt(const struct cntr_entry
*entry
,
3600 void *context
, int vl
, int mode
,
3603 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3605 return dd
->send_egress_err_status_cnt
[15];
3608 static u64
access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry
*entry
,
3609 void *context
, int vl
,
3612 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3614 return dd
->send_egress_err_status_cnt
[14];
3617 static u64
access_tx_launch_csr_parity_err_cnt(const struct cntr_entry
*entry
,
3618 void *context
, int vl
, int mode
,
3621 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3623 return dd
->send_egress_err_status_cnt
[13];
3626 static u64
access_tx_illegal_vl_err_cnt(const struct cntr_entry
*entry
,
3627 void *context
, int vl
, int mode
,
3630 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3632 return dd
->send_egress_err_status_cnt
[12];
3635 static u64
access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3636 const struct cntr_entry
*entry
,
3637 void *context
, int vl
, int mode
, u64 data
)
3639 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3641 return dd
->send_egress_err_status_cnt
[11];
3644 static u64
access_egress_reserved_10_err_cnt(const struct cntr_entry
*entry
,
3645 void *context
, int vl
, int mode
,
3648 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3650 return dd
->send_egress_err_status_cnt
[10];
3653 static u64
access_egress_reserved_9_err_cnt(const struct cntr_entry
*entry
,
3654 void *context
, int vl
, int mode
,
3657 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3659 return dd
->send_egress_err_status_cnt
[9];
3662 static u64
access_tx_sdma_launch_intf_parity_err_cnt(
3663 const struct cntr_entry
*entry
,
3664 void *context
, int vl
, int mode
, u64 data
)
3666 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3668 return dd
->send_egress_err_status_cnt
[8];
3671 static u64
access_tx_pio_launch_intf_parity_err_cnt(
3672 const struct cntr_entry
*entry
,
3673 void *context
, int vl
, int mode
, u64 data
)
3675 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3677 return dd
->send_egress_err_status_cnt
[7];
3680 static u64
access_egress_reserved_6_err_cnt(const struct cntr_entry
*entry
,
3681 void *context
, int vl
, int mode
,
3684 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3686 return dd
->send_egress_err_status_cnt
[6];
3689 static u64
access_tx_incorrect_link_state_err_cnt(
3690 const struct cntr_entry
*entry
,
3691 void *context
, int vl
, int mode
, u64 data
)
3693 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3695 return dd
->send_egress_err_status_cnt
[5];
3698 static u64
access_tx_linkdown_err_cnt(const struct cntr_entry
*entry
,
3699 void *context
, int vl
, int mode
,
3702 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3704 return dd
->send_egress_err_status_cnt
[4];
3707 static u64
access_tx_egress_fifi_underrun_or_parity_err_cnt(
3708 const struct cntr_entry
*entry
,
3709 void *context
, int vl
, int mode
, u64 data
)
3711 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3713 return dd
->send_egress_err_status_cnt
[3];
3716 static u64
access_egress_reserved_2_err_cnt(const struct cntr_entry
*entry
,
3717 void *context
, int vl
, int mode
,
3720 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3722 return dd
->send_egress_err_status_cnt
[2];
3725 static u64
access_tx_pkt_integrity_mem_unc_err_cnt(
3726 const struct cntr_entry
*entry
,
3727 void *context
, int vl
, int mode
, u64 data
)
3729 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3731 return dd
->send_egress_err_status_cnt
[1];
3734 static u64
access_tx_pkt_integrity_mem_cor_err_cnt(
3735 const struct cntr_entry
*entry
,
3736 void *context
, int vl
, int mode
, u64 data
)
3738 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3740 return dd
->send_egress_err_status_cnt
[0];
3744 * Software counters corresponding to each of the
3745 * error status bits within SendErrStatus
3747 static u64
access_send_csr_write_bad_addr_err_cnt(
3748 const struct cntr_entry
*entry
,
3749 void *context
, int vl
, int mode
, u64 data
)
3751 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3753 return dd
->send_err_status_cnt
[2];
3756 static u64
access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry
*entry
,
3757 void *context
, int vl
,
3760 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3762 return dd
->send_err_status_cnt
[1];
3765 static u64
access_send_csr_parity_cnt(const struct cntr_entry
*entry
,
3766 void *context
, int vl
, int mode
,
3769 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3771 return dd
->send_err_status_cnt
[0];
3775 * Software counters corresponding to each of the
3776 * error status bits within SendCtxtErrStatus
3778 static u64
access_pio_write_out_of_bounds_err_cnt(
3779 const struct cntr_entry
*entry
,
3780 void *context
, int vl
, int mode
, u64 data
)
3782 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3784 return dd
->sw_ctxt_err_status_cnt
[4];
3787 static u64
access_pio_write_overflow_err_cnt(const struct cntr_entry
*entry
,
3788 void *context
, int vl
, int mode
,
3791 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3793 return dd
->sw_ctxt_err_status_cnt
[3];
3796 static u64
access_pio_write_crosses_boundary_err_cnt(
3797 const struct cntr_entry
*entry
,
3798 void *context
, int vl
, int mode
, u64 data
)
3800 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3802 return dd
->sw_ctxt_err_status_cnt
[2];
3805 static u64
access_pio_disallowed_packet_err_cnt(const struct cntr_entry
*entry
,
3806 void *context
, int vl
,
3809 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3811 return dd
->sw_ctxt_err_status_cnt
[1];
3814 static u64
access_pio_inconsistent_sop_err_cnt(const struct cntr_entry
*entry
,
3815 void *context
, int vl
, int mode
,
3818 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3820 return dd
->sw_ctxt_err_status_cnt
[0];
3824 * Software counters corresponding to each of the
3825 * error status bits within SendDmaEngErrStatus
3827 static u64
access_sdma_header_request_fifo_cor_err_cnt(
3828 const struct cntr_entry
*entry
,
3829 void *context
, int vl
, int mode
, u64 data
)
3831 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3833 return dd
->sw_send_dma_eng_err_status_cnt
[23];
3836 static u64
access_sdma_header_storage_cor_err_cnt(
3837 const struct cntr_entry
*entry
,
3838 void *context
, int vl
, int mode
, u64 data
)
3840 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3842 return dd
->sw_send_dma_eng_err_status_cnt
[22];
3845 static u64
access_sdma_packet_tracking_cor_err_cnt(
3846 const struct cntr_entry
*entry
,
3847 void *context
, int vl
, int mode
, u64 data
)
3849 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3851 return dd
->sw_send_dma_eng_err_status_cnt
[21];
3854 static u64
access_sdma_assembly_cor_err_cnt(const struct cntr_entry
*entry
,
3855 void *context
, int vl
, int mode
,
3858 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3860 return dd
->sw_send_dma_eng_err_status_cnt
[20];
3863 static u64
access_sdma_desc_table_cor_err_cnt(const struct cntr_entry
*entry
,
3864 void *context
, int vl
, int mode
,
3867 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3869 return dd
->sw_send_dma_eng_err_status_cnt
[19];
3872 static u64
access_sdma_header_request_fifo_unc_err_cnt(
3873 const struct cntr_entry
*entry
,
3874 void *context
, int vl
, int mode
, u64 data
)
3876 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3878 return dd
->sw_send_dma_eng_err_status_cnt
[18];
3881 static u64
access_sdma_header_storage_unc_err_cnt(
3882 const struct cntr_entry
*entry
,
3883 void *context
, int vl
, int mode
, u64 data
)
3885 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3887 return dd
->sw_send_dma_eng_err_status_cnt
[17];
3890 static u64
access_sdma_packet_tracking_unc_err_cnt(
3891 const struct cntr_entry
*entry
,
3892 void *context
, int vl
, int mode
, u64 data
)
3894 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3896 return dd
->sw_send_dma_eng_err_status_cnt
[16];
3899 static u64
access_sdma_assembly_unc_err_cnt(const struct cntr_entry
*entry
,
3900 void *context
, int vl
, int mode
,
3903 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3905 return dd
->sw_send_dma_eng_err_status_cnt
[15];
3908 static u64
access_sdma_desc_table_unc_err_cnt(const struct cntr_entry
*entry
,
3909 void *context
, int vl
, int mode
,
3912 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3914 return dd
->sw_send_dma_eng_err_status_cnt
[14];
3917 static u64
access_sdma_timeout_err_cnt(const struct cntr_entry
*entry
,
3918 void *context
, int vl
, int mode
,
3921 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3923 return dd
->sw_send_dma_eng_err_status_cnt
[13];
3926 static u64
access_sdma_header_length_err_cnt(const struct cntr_entry
*entry
,
3927 void *context
, int vl
, int mode
,
3930 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3932 return dd
->sw_send_dma_eng_err_status_cnt
[12];
3935 static u64
access_sdma_header_address_err_cnt(const struct cntr_entry
*entry
,
3936 void *context
, int vl
, int mode
,
3939 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3941 return dd
->sw_send_dma_eng_err_status_cnt
[11];
3944 static u64
access_sdma_header_select_err_cnt(const struct cntr_entry
*entry
,
3945 void *context
, int vl
, int mode
,
3948 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3950 return dd
->sw_send_dma_eng_err_status_cnt
[10];
3953 static u64
access_sdma_reserved_9_err_cnt(const struct cntr_entry
*entry
,
3954 void *context
, int vl
, int mode
,
3957 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3959 return dd
->sw_send_dma_eng_err_status_cnt
[9];
3962 static u64
access_sdma_packet_desc_overflow_err_cnt(
3963 const struct cntr_entry
*entry
,
3964 void *context
, int vl
, int mode
, u64 data
)
3966 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3968 return dd
->sw_send_dma_eng_err_status_cnt
[8];
3971 static u64
access_sdma_length_mismatch_err_cnt(const struct cntr_entry
*entry
,
3972 void *context
, int vl
,
3975 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3977 return dd
->sw_send_dma_eng_err_status_cnt
[7];
3980 static u64
access_sdma_halt_err_cnt(const struct cntr_entry
*entry
,
3981 void *context
, int vl
, int mode
, u64 data
)
3983 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3985 return dd
->sw_send_dma_eng_err_status_cnt
[6];
3988 static u64
access_sdma_mem_read_err_cnt(const struct cntr_entry
*entry
,
3989 void *context
, int vl
, int mode
,
3992 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
3994 return dd
->sw_send_dma_eng_err_status_cnt
[5];
3997 static u64
access_sdma_first_desc_err_cnt(const struct cntr_entry
*entry
,
3998 void *context
, int vl
, int mode
,
4001 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
4003 return dd
->sw_send_dma_eng_err_status_cnt
[4];
4006 static u64
access_sdma_tail_out_of_bounds_err_cnt(
4007 const struct cntr_entry
*entry
,
4008 void *context
, int vl
, int mode
, u64 data
)
4010 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
4012 return dd
->sw_send_dma_eng_err_status_cnt
[3];
4015 static u64
access_sdma_too_long_err_cnt(const struct cntr_entry
*entry
,
4016 void *context
, int vl
, int mode
,
4019 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
4021 return dd
->sw_send_dma_eng_err_status_cnt
[2];
4024 static u64
access_sdma_gen_mismatch_err_cnt(const struct cntr_entry
*entry
,
4025 void *context
, int vl
, int mode
,
4028 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
4030 return dd
->sw_send_dma_eng_err_status_cnt
[1];
4033 static u64
access_sdma_wrong_dw_err_cnt(const struct cntr_entry
*entry
,
4034 void *context
, int vl
, int mode
,
4037 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
4039 return dd
->sw_send_dma_eng_err_status_cnt
[0];
4042 static u64
access_dc_rcv_err_cnt(const struct cntr_entry
*entry
,
4043 void *context
, int vl
, int mode
,
4046 struct hfi1_devdata
*dd
= (struct hfi1_devdata
*)context
;
4049 u64 csr
= entry
->csr
;
4051 val
= read_write_csr(dd
, csr
, mode
, data
);
4052 if (mode
== CNTR_MODE_R
) {
4053 val
= val
> CNTR_MAX
- dd
->sw_rcv_bypass_packet_errors
?
4054 CNTR_MAX
: val
+ dd
->sw_rcv_bypass_packet_errors
;
4055 } else if (mode
== CNTR_MODE_W
) {
4056 dd
->sw_rcv_bypass_packet_errors
= 0;
4058 dd_dev_err(dd
, "Invalid cntr register access mode");
4064 #define def_access_sw_cpu(cntr) \
4065 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry, \
4066 void *context, int vl, int mode, u64 data) \
4068 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
4069 return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr, \
4070 ppd->ibport_data.rvp.cntr, vl, \
4074 def_access_sw_cpu(rc_acks
);
4075 def_access_sw_cpu(rc_qacks
);
4076 def_access_sw_cpu(rc_delayed_comp
);
4078 #define def_access_ibp_counter(cntr) \
4079 static u64 access_ibp_##cntr(const struct cntr_entry *entry, \
4080 void *context, int vl, int mode, u64 data) \
4082 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
4084 if (vl != CNTR_INVALID_VL) \
4087 return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr, \
4091 def_access_ibp_counter(loop_pkts
);
4092 def_access_ibp_counter(rc_resends
);
4093 def_access_ibp_counter(rnr_naks
);
4094 def_access_ibp_counter(other_naks
);
4095 def_access_ibp_counter(rc_timeouts
);
4096 def_access_ibp_counter(pkt_drops
);
4097 def_access_ibp_counter(dmawait
);
4098 def_access_ibp_counter(rc_seqnak
);
4099 def_access_ibp_counter(rc_dupreq
);
4100 def_access_ibp_counter(rdma_seq
);
4101 def_access_ibp_counter(unaligned
);
4102 def_access_ibp_counter(seq_naks
);
4104 static struct cntr_entry dev_cntrs
[DEV_CNTR_LAST
] = {
4105 [C_RCV_OVF
] = RXE32_DEV_CNTR_ELEM(RcvOverflow
, RCV_BUF_OVFL_CNT
, CNTR_SYNTH
),
4106 [C_RX_TID_FULL
] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr
, RCV_TID_FULL_ERR_CNT
,
4108 [C_RX_TID_INVALID
] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid
, RCV_TID_VALID_ERR_CNT
,
4110 [C_RX_TID_FLGMS
] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs
,
4111 RCV_TID_FLOW_GEN_MISMATCH_CNT
,
4113 [C_RX_CTX_EGRS
] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS
, RCV_CONTEXT_EGR_STALL
,
4115 [C_RCV_TID_FLSMS
] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs
,
4116 RCV_TID_FLOW_SEQ_MISMATCH_CNT
, CNTR_NORMAL
),
4117 [C_CCE_PCI_CR_ST
] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt
,
4118 CCE_PCIE_POSTED_CRDT_STALL_CNT
, CNTR_NORMAL
),
4119 [C_CCE_PCI_TR_ST
] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt
, CCE_PCIE_TRGT_STALL_CNT
,
4121 [C_CCE_PIO_WR_ST
] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt
, CCE_PIO_WR_STALL_CNT
,
4123 [C_CCE_ERR_INT
] = CCE_INT_DEV_CNTR_ELEM(CceErrInt
, CCE_ERR_INT_CNT
,
4125 [C_CCE_SDMA_INT
] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt
, CCE_SDMA_INT_CNT
,
4127 [C_CCE_MISC_INT
] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt
, CCE_MISC_INT_CNT
,
4129 [C_CCE_RCV_AV_INT
] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt
, CCE_RCV_AVAIL_INT_CNT
,
4131 [C_CCE_RCV_URG_INT
] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt
,
4132 CCE_RCV_URGENT_INT_CNT
, CNTR_NORMAL
),
4133 [C_CCE_SEND_CR_INT
] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt
,
4134 CCE_SEND_CREDIT_INT_CNT
, CNTR_NORMAL
),
4135 [C_DC_UNC_ERR
] = DC_PERF_CNTR(DcUnctblErr
, DCC_ERR_UNCORRECTABLE_CNT
,
4137 [C_DC_RCV_ERR
] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT
, 0, CNTR_SYNTH
,
4138 access_dc_rcv_err_cnt
),
4139 [C_DC_FM_CFG_ERR
] = DC_PERF_CNTR(DcFmCfgErr
, DCC_ERR_FMCONFIG_ERR_CNT
,
4141 [C_DC_RMT_PHY_ERR
] = DC_PERF_CNTR(DcRmtPhyErr
, DCC_ERR_RCVREMOTE_PHY_ERR_CNT
,
4143 [C_DC_DROPPED_PKT
] = DC_PERF_CNTR(DcDroppedPkt
, DCC_ERR_DROPPED_PKT_CNT
,
4145 [C_DC_MC_XMIT_PKTS
] = DC_PERF_CNTR(DcMcXmitPkts
,
4146 DCC_PRF_PORT_XMIT_MULTICAST_CNT
, CNTR_SYNTH
),
4147 [C_DC_MC_RCV_PKTS
] = DC_PERF_CNTR(DcMcRcvPkts
,
4148 DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT
,
4150 [C_DC_XMIT_CERR
] = DC_PERF_CNTR(DcXmitCorr
,
4151 DCC_PRF_PORT_XMIT_CORRECTABLE_CNT
, CNTR_SYNTH
),
4152 [C_DC_RCV_CERR
] = DC_PERF_CNTR(DcRcvCorrCnt
, DCC_PRF_PORT_RCV_CORRECTABLE_CNT
,
4154 [C_DC_RCV_FCC
] = DC_PERF_CNTR(DcRxFCntl
, DCC_PRF_RX_FLOW_CRTL_CNT
,
4156 [C_DC_XMIT_FCC
] = DC_PERF_CNTR(DcXmitFCntl
, DCC_PRF_TX_FLOW_CRTL_CNT
,
4158 [C_DC_XMIT_FLITS
] = DC_PERF_CNTR(DcXmitFlits
, DCC_PRF_PORT_XMIT_DATA_CNT
,
4160 [C_DC_RCV_FLITS
] = DC_PERF_CNTR(DcRcvFlits
, DCC_PRF_PORT_RCV_DATA_CNT
,
4162 [C_DC_XMIT_PKTS
] = DC_PERF_CNTR(DcXmitPkts
, DCC_PRF_PORT_XMIT_PKTS_CNT
,
4164 [C_DC_RCV_PKTS
] = DC_PERF_CNTR(DcRcvPkts
, DCC_PRF_PORT_RCV_PKTS_CNT
,
4166 [C_DC_RX_FLIT_VL
] = DC_PERF_CNTR(DcRxFlitVl
, DCC_PRF_PORT_VL_RCV_DATA_CNT
,
4167 CNTR_SYNTH
| CNTR_VL
),
4168 [C_DC_RX_PKT_VL
] = DC_PERF_CNTR(DcRxPktVl
, DCC_PRF_PORT_VL_RCV_PKTS_CNT
,
4169 CNTR_SYNTH
| CNTR_VL
),
4170 [C_DC_RCV_FCN
] = DC_PERF_CNTR(DcRcvFcn
, DCC_PRF_PORT_RCV_FECN_CNT
, CNTR_SYNTH
),
4171 [C_DC_RCV_FCN_VL
] = DC_PERF_CNTR(DcRcvFcnVl
, DCC_PRF_PORT_VL_RCV_FECN_CNT
,
4172 CNTR_SYNTH
| CNTR_VL
),
4173 [C_DC_RCV_BCN
] = DC_PERF_CNTR(DcRcvBcn
, DCC_PRF_PORT_RCV_BECN_CNT
, CNTR_SYNTH
),
4174 [C_DC_RCV_BCN_VL
] = DC_PERF_CNTR(DcRcvBcnVl
, DCC_PRF_PORT_VL_RCV_BECN_CNT
,
4175 CNTR_SYNTH
| CNTR_VL
),
4176 [C_DC_RCV_BBL
] = DC_PERF_CNTR(DcRcvBbl
, DCC_PRF_PORT_RCV_BUBBLE_CNT
,
4178 [C_DC_RCV_BBL_VL
] = DC_PERF_CNTR(DcRcvBblVl
, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT
,
4179 CNTR_SYNTH
| CNTR_VL
),
4180 [C_DC_MARK_FECN
] = DC_PERF_CNTR(DcMarkFcn
, DCC_PRF_PORT_MARK_FECN_CNT
,
4182 [C_DC_MARK_FECN_VL
] = DC_PERF_CNTR(DcMarkFcnVl
, DCC_PRF_PORT_VL_MARK_FECN_CNT
,
4183 CNTR_SYNTH
| CNTR_VL
),
4185 DC_PERF_CNTR_LCB(DcTotCrc
, DC_LCB_ERR_INFO_TOTAL_CRC_ERR
,
4187 [C_DC_CRC_LN0
] = DC_PERF_CNTR_LCB(DcCrcLn0
, DC_LCB_ERR_INFO_CRC_ERR_LN0
,
4189 [C_DC_CRC_LN1
] = DC_PERF_CNTR_LCB(DcCrcLn1
, DC_LCB_ERR_INFO_CRC_ERR_LN1
,
4191 [C_DC_CRC_LN2
] = DC_PERF_CNTR_LCB(DcCrcLn2
, DC_LCB_ERR_INFO_CRC_ERR_LN2
,
4193 [C_DC_CRC_LN3
] = DC_PERF_CNTR_LCB(DcCrcLn3
, DC_LCB_ERR_INFO_CRC_ERR_LN3
,
4195 [C_DC_CRC_MULT_LN
] =
4196 DC_PERF_CNTR_LCB(DcMultLn
, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN
,
4198 [C_DC_TX_REPLAY
] = DC_PERF_CNTR_LCB(DcTxReplay
, DC_LCB_ERR_INFO_TX_REPLAY_CNT
,
4200 [C_DC_RX_REPLAY
] = DC_PERF_CNTR_LCB(DcRxReplay
, DC_LCB_ERR_INFO_RX_REPLAY_CNT
,
4202 [C_DC_SEQ_CRC_CNT
] =
4203 DC_PERF_CNTR_LCB(DcLinkSeqCrc
, DC_LCB_ERR_INFO_SEQ_CRC_CNT
,
4205 [C_DC_ESC0_ONLY_CNT
] =
4206 DC_PERF_CNTR_LCB(DcEsc0
, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT
,
4208 [C_DC_ESC0_PLUS1_CNT
] =
4209 DC_PERF_CNTR_LCB(DcEsc1
, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT
,
4211 [C_DC_ESC0_PLUS2_CNT
] =
4212 DC_PERF_CNTR_LCB(DcEsc0Plus2
, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT
,
4214 [C_DC_REINIT_FROM_PEER_CNT
] =
4215 DC_PERF_CNTR_LCB(DcReinitPeer
, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT
,
4217 [C_DC_SBE_CNT
] = DC_PERF_CNTR_LCB(DcSbe
, DC_LCB_ERR_INFO_SBE_CNT
,
4219 [C_DC_MISC_FLG_CNT
] =
4220 DC_PERF_CNTR_LCB(DcMiscFlg
, DC_LCB_ERR_INFO_MISC_FLG_CNT
,
4222 [C_DC_PRF_GOOD_LTP_CNT
] =
4223 DC_PERF_CNTR_LCB(DcGoodLTP
, DC_LCB_PRF_GOOD_LTP_CNT
, CNTR_SYNTH
),
4224 [C_DC_PRF_ACCEPTED_LTP_CNT
] =
4225 DC_PERF_CNTR_LCB(DcAccLTP
, DC_LCB_PRF_ACCEPTED_LTP_CNT
,
4227 [C_DC_PRF_RX_FLIT_CNT
] =
4228 DC_PERF_CNTR_LCB(DcPrfRxFlit
, DC_LCB_PRF_RX_FLIT_CNT
, CNTR_SYNTH
),
4229 [C_DC_PRF_TX_FLIT_CNT
] =
4230 DC_PERF_CNTR_LCB(DcPrfTxFlit
, DC_LCB_PRF_TX_FLIT_CNT
, CNTR_SYNTH
),
4231 [C_DC_PRF_CLK_CNTR
] =
4232 DC_PERF_CNTR_LCB(DcPrfClk
, DC_LCB_PRF_CLK_CNTR
, CNTR_SYNTH
),
4233 [C_DC_PG_DBG_FLIT_CRDTS_CNT
] =
4234 DC_PERF_CNTR_LCB(DcFltCrdts
, DC_LCB_PG_DBG_FLIT_CRDTS_CNT
, CNTR_SYNTH
),
4235 [C_DC_PG_STS_PAUSE_COMPLETE_CNT
] =
4236 DC_PERF_CNTR_LCB(DcPauseComp
, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT
,
4238 [C_DC_PG_STS_TX_SBE_CNT
] =
4239 DC_PERF_CNTR_LCB(DcStsTxSbe
, DC_LCB_PG_STS_TX_SBE_CNT
, CNTR_SYNTH
),
4240 [C_DC_PG_STS_TX_MBE_CNT
] =
4241 DC_PERF_CNTR_LCB(DcStsTxMbe
, DC_LCB_PG_STS_TX_MBE_CNT
,
4243 [C_SW_CPU_INTR
] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL
,
4244 access_sw_cpu_intr
),
4245 [C_SW_CPU_RCV_LIM
] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL
,
4246 access_sw_cpu_rcv_limit
),
4247 [C_SW_VTX_WAIT
] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL
,
4248 access_sw_vtx_wait
),
4249 [C_SW_PIO_WAIT
] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL
,
4250 access_sw_pio_wait
),
4251 [C_SW_PIO_DRAIN
] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL
,
4252 access_sw_pio_drain
),
4253 [C_SW_KMEM_WAIT
] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL
,
4254 access_sw_kmem_wait
),
4255 [C_SW_SEND_SCHED
] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL
,
4256 access_sw_send_schedule
),
4257 [C_SDMA_DESC_FETCHED_CNT
] = CNTR_ELEM("SDEDscFdCn",
4258 SEND_DMA_DESC_FETCHED_CNT
, 0,
4259 CNTR_NORMAL
| CNTR_32BIT
| CNTR_SDMA
,
4260 dev_access_u32_csr
),
4261 [C_SDMA_INT_CNT
] = CNTR_ELEM("SDMAInt", 0, 0,
4262 CNTR_NORMAL
| CNTR_32BIT
| CNTR_SDMA
,
4263 access_sde_int_cnt
),
4264 [C_SDMA_ERR_CNT
] = CNTR_ELEM("SDMAErrCt", 0, 0,
4265 CNTR_NORMAL
| CNTR_32BIT
| CNTR_SDMA
,
4266 access_sde_err_cnt
),
4267 [C_SDMA_IDLE_INT_CNT
] = CNTR_ELEM("SDMAIdInt", 0, 0,
4268 CNTR_NORMAL
| CNTR_32BIT
| CNTR_SDMA
,
4269 access_sde_idle_int_cnt
),
4270 [C_SDMA_PROGRESS_INT_CNT
] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4271 CNTR_NORMAL
| CNTR_32BIT
| CNTR_SDMA
,
4272 access_sde_progress_int_cnt
),
4273 /* MISC_ERR_STATUS */
4274 [C_MISC_PLL_LOCK_FAIL_ERR
] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4276 access_misc_pll_lock_fail_err_cnt
),
4277 [C_MISC_MBIST_FAIL_ERR
] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4279 access_misc_mbist_fail_err_cnt
),
4280 [C_MISC_INVALID_EEP_CMD_ERR
] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4282 access_misc_invalid_eep_cmd_err_cnt
),
4283 [C_MISC_EFUSE_DONE_PARITY_ERR
] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4285 access_misc_efuse_done_parity_err_cnt
),
4286 [C_MISC_EFUSE_WRITE_ERR
] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4288 access_misc_efuse_write_err_cnt
),
4289 [C_MISC_EFUSE_READ_BAD_ADDR_ERR
] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4291 access_misc_efuse_read_bad_addr_err_cnt
),
4292 [C_MISC_EFUSE_CSR_PARITY_ERR
] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4294 access_misc_efuse_csr_parity_err_cnt
),
4295 [C_MISC_FW_AUTH_FAILED_ERR
] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4297 access_misc_fw_auth_failed_err_cnt
),
4298 [C_MISC_KEY_MISMATCH_ERR
] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4300 access_misc_key_mismatch_err_cnt
),
4301 [C_MISC_SBUS_WRITE_FAILED_ERR
] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4303 access_misc_sbus_write_failed_err_cnt
),
4304 [C_MISC_CSR_WRITE_BAD_ADDR_ERR
] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4306 access_misc_csr_write_bad_addr_err_cnt
),
4307 [C_MISC_CSR_READ_BAD_ADDR_ERR
] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4309 access_misc_csr_read_bad_addr_err_cnt
),
4310 [C_MISC_CSR_PARITY_ERR
] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4312 access_misc_csr_parity_err_cnt
),
4314 [C_CCE_ERR_STATUS_AGGREGATED_CNT
] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4316 access_sw_cce_err_status_aggregated_cnt
),
4317 [C_CCE_MSIX_CSR_PARITY_ERR
] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4319 access_cce_msix_csr_parity_err_cnt
),
4320 [C_CCE_INT_MAP_UNC_ERR
] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4322 access_cce_int_map_unc_err_cnt
),
4323 [C_CCE_INT_MAP_COR_ERR
] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4325 access_cce_int_map_cor_err_cnt
),
4326 [C_CCE_MSIX_TABLE_UNC_ERR
] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4328 access_cce_msix_table_unc_err_cnt
),
4329 [C_CCE_MSIX_TABLE_COR_ERR
] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4331 access_cce_msix_table_cor_err_cnt
),
4332 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR
] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4334 access_cce_rxdma_conv_fifo_parity_err_cnt
),
4335 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR
] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4337 access_cce_rcpl_async_fifo_parity_err_cnt
),
4338 [C_CCE_SEG_WRITE_BAD_ADDR_ERR
] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4340 access_cce_seg_write_bad_addr_err_cnt
),
4341 [C_CCE_SEG_READ_BAD_ADDR_ERR
] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4343 access_cce_seg_read_bad_addr_err_cnt
),
4344 [C_LA_TRIGGERED
] = CNTR_ELEM("Cce LATriggered", 0, 0,
4346 access_la_triggered_cnt
),
4347 [C_CCE_TRGT_CPL_TIMEOUT_ERR
] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4349 access_cce_trgt_cpl_timeout_err_cnt
),
4350 [C_PCIC_RECEIVE_PARITY_ERR
] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4352 access_pcic_receive_parity_err_cnt
),
4353 [C_PCIC_TRANSMIT_BACK_PARITY_ERR
] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4355 access_pcic_transmit_back_parity_err_cnt
),
4356 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR
] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4358 access_pcic_transmit_front_parity_err_cnt
),
4359 [C_PCIC_CPL_DAT_Q_UNC_ERR
] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4361 access_pcic_cpl_dat_q_unc_err_cnt
),
4362 [C_PCIC_CPL_HD_Q_UNC_ERR
] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4364 access_pcic_cpl_hd_q_unc_err_cnt
),
4365 [C_PCIC_POST_DAT_Q_UNC_ERR
] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4367 access_pcic_post_dat_q_unc_err_cnt
),
4368 [C_PCIC_POST_HD_Q_UNC_ERR
] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4370 access_pcic_post_hd_q_unc_err_cnt
),
4371 [C_PCIC_RETRY_SOT_MEM_UNC_ERR
] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4373 access_pcic_retry_sot_mem_unc_err_cnt
),
4374 [C_PCIC_RETRY_MEM_UNC_ERR
] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4376 access_pcic_retry_mem_unc_err
),
4377 [C_PCIC_N_POST_DAT_Q_PARITY_ERR
] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4379 access_pcic_n_post_dat_q_parity_err_cnt
),
4380 [C_PCIC_N_POST_H_Q_PARITY_ERR
] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4382 access_pcic_n_post_h_q_parity_err_cnt
),
4383 [C_PCIC_CPL_DAT_Q_COR_ERR
] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4385 access_pcic_cpl_dat_q_cor_err_cnt
),
4386 [C_PCIC_CPL_HD_Q_COR_ERR
] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4388 access_pcic_cpl_hd_q_cor_err_cnt
),
4389 [C_PCIC_POST_DAT_Q_COR_ERR
] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4391 access_pcic_post_dat_q_cor_err_cnt
),
4392 [C_PCIC_POST_HD_Q_COR_ERR
] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4394 access_pcic_post_hd_q_cor_err_cnt
),
4395 [C_PCIC_RETRY_SOT_MEM_COR_ERR
] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4397 access_pcic_retry_sot_mem_cor_err_cnt
),
4398 [C_PCIC_RETRY_MEM_COR_ERR
] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4400 access_pcic_retry_mem_cor_err_cnt
),
4401 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR
] = CNTR_ELEM(
4402 "CceCli1AsyncFifoDbgParityError", 0, 0,
4404 access_cce_cli1_async_fifo_dbg_parity_err_cnt
),
4405 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR
] = CNTR_ELEM(
4406 "CceCli1AsyncFifoRxdmaParityError", 0, 0,
4408 access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4410 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR
] = CNTR_ELEM(
4411 "CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4413 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt
),
4414 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR
] = CNTR_ELEM(
4415 "CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4417 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt
),
4418 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR
] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4420 access_cce_cli2_async_fifo_parity_err_cnt
),
4421 [C_CCE_CSR_CFG_BUS_PARITY_ERR
] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4423 access_cce_csr_cfg_bus_parity_err_cnt
),
4424 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR
] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4426 access_cce_cli0_async_fifo_parity_err_cnt
),
4427 [C_CCE_RSPD_DATA_PARITY_ERR
] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4429 access_cce_rspd_data_parity_err_cnt
),
4430 [C_CCE_TRGT_ACCESS_ERR
] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4432 access_cce_trgt_access_err_cnt
),
4433 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR
] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4435 access_cce_trgt_async_fifo_parity_err_cnt
),
4436 [C_CCE_CSR_WRITE_BAD_ADDR_ERR
] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4438 access_cce_csr_write_bad_addr_err_cnt
),
4439 [C_CCE_CSR_READ_BAD_ADDR_ERR
] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4441 access_cce_csr_read_bad_addr_err_cnt
),
4442 [C_CCE_CSR_PARITY_ERR
] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4444 access_ccs_csr_parity_err_cnt
),
4447 [C_RX_CSR_PARITY_ERR
] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4449 access_rx_csr_parity_err_cnt
),
4450 [C_RX_CSR_WRITE_BAD_ADDR_ERR
] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4452 access_rx_csr_write_bad_addr_err_cnt
),
4453 [C_RX_CSR_READ_BAD_ADDR_ERR
] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4455 access_rx_csr_read_bad_addr_err_cnt
),
4456 [C_RX_DMA_CSR_UNC_ERR
] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4458 access_rx_dma_csr_unc_err_cnt
),
4459 [C_RX_DMA_DQ_FSM_ENCODING_ERR
] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4461 access_rx_dma_dq_fsm_encoding_err_cnt
),
4462 [C_RX_DMA_EQ_FSM_ENCODING_ERR
] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4464 access_rx_dma_eq_fsm_encoding_err_cnt
),
4465 [C_RX_DMA_CSR_PARITY_ERR
] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4467 access_rx_dma_csr_parity_err_cnt
),
4468 [C_RX_RBUF_DATA_COR_ERR
] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4470 access_rx_rbuf_data_cor_err_cnt
),
4471 [C_RX_RBUF_DATA_UNC_ERR
] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4473 access_rx_rbuf_data_unc_err_cnt
),
4474 [C_RX_DMA_DATA_FIFO_RD_COR_ERR
] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4476 access_rx_dma_data_fifo_rd_cor_err_cnt
),
4477 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR
] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4479 access_rx_dma_data_fifo_rd_unc_err_cnt
),
4480 [C_RX_DMA_HDR_FIFO_RD_COR_ERR
] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4482 access_rx_dma_hdr_fifo_rd_cor_err_cnt
),
4483 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR
] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4485 access_rx_dma_hdr_fifo_rd_unc_err_cnt
),
4486 [C_RX_RBUF_DESC_PART2_COR_ERR
] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4488 access_rx_rbuf_desc_part2_cor_err_cnt
),
4489 [C_RX_RBUF_DESC_PART2_UNC_ERR
] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4491 access_rx_rbuf_desc_part2_unc_err_cnt
),
4492 [C_RX_RBUF_DESC_PART1_COR_ERR
] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4494 access_rx_rbuf_desc_part1_cor_err_cnt
),
4495 [C_RX_RBUF_DESC_PART1_UNC_ERR
] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4497 access_rx_rbuf_desc_part1_unc_err_cnt
),
4498 [C_RX_HQ_INTR_FSM_ERR
] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4500 access_rx_hq_intr_fsm_err_cnt
),
4501 [C_RX_HQ_INTR_CSR_PARITY_ERR
] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4503 access_rx_hq_intr_csr_parity_err_cnt
),
4504 [C_RX_LOOKUP_CSR_PARITY_ERR
] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4506 access_rx_lookup_csr_parity_err_cnt
),
4507 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR
] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4509 access_rx_lookup_rcv_array_cor_err_cnt
),
4510 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR
] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4512 access_rx_lookup_rcv_array_unc_err_cnt
),
4513 [C_RX_LOOKUP_DES_PART2_PARITY_ERR
] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4515 access_rx_lookup_des_part2_parity_err_cnt
),
4516 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR
] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4518 access_rx_lookup_des_part1_unc_cor_err_cnt
),
4519 [C_RX_LOOKUP_DES_PART1_UNC_ERR
] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4521 access_rx_lookup_des_part1_unc_err_cnt
),
4522 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR
] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4524 access_rx_rbuf_next_free_buf_cor_err_cnt
),
4525 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR
] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4527 access_rx_rbuf_next_free_buf_unc_err_cnt
),
4528 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR
] = CNTR_ELEM(
4529 "RxRbufFlInitWrAddrParityErr", 0, 0,
4531 access_rbuf_fl_init_wr_addr_parity_err_cnt
),
4532 [C_RX_RBUF_FL_INITDONE_PARITY_ERR
] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4534 access_rx_rbuf_fl_initdone_parity_err_cnt
),
4535 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR
] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4537 access_rx_rbuf_fl_write_addr_parity_err_cnt
),
4538 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR
] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4540 access_rx_rbuf_fl_rd_addr_parity_err_cnt
),
4541 [C_RX_RBUF_EMPTY_ERR
] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4543 access_rx_rbuf_empty_err_cnt
),
4544 [C_RX_RBUF_FULL_ERR
] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4546 access_rx_rbuf_full_err_cnt
),
4547 [C_RX_RBUF_BAD_LOOKUP_ERR
] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4549 access_rbuf_bad_lookup_err_cnt
),
4550 [C_RX_RBUF_CTX_ID_PARITY_ERR
] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4552 access_rbuf_ctx_id_parity_err_cnt
),
4553 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR
] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4555 access_rbuf_csr_qeopdw_parity_err_cnt
),
4556 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR
] = CNTR_ELEM(
4557 "RxRbufCsrQNumOfPktParityErr", 0, 0,
4559 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt
),
4560 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR
] = CNTR_ELEM(
4561 "RxRbufCsrQTlPtrParityErr", 0, 0,
4563 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt
),
4564 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR
] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4566 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt
),
4567 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR
] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4569 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt
),
4570 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR
] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4572 access_rx_rbuf_csr_q_next_buf_parity_err_cnt
),
4573 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR
] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4575 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt
),
4576 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR
] = CNTR_ELEM(
4577 "RxRbufCsrQHeadBufNumParityErr", 0, 0,
4579 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt
),
4580 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR
] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4582 access_rx_rbuf_block_list_read_cor_err_cnt
),
4583 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR
] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4585 access_rx_rbuf_block_list_read_unc_err_cnt
),
4586 [C_RX_RBUF_LOOKUP_DES_COR_ERR
] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4588 access_rx_rbuf_lookup_des_cor_err_cnt
),
4589 [C_RX_RBUF_LOOKUP_DES_UNC_ERR
] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4591 access_rx_rbuf_lookup_des_unc_err_cnt
),
4592 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR
] = CNTR_ELEM(
4593 "RxRbufLookupDesRegUncCorErr", 0, 0,
4595 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt
),
4596 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR
] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4598 access_rx_rbuf_lookup_des_reg_unc_err_cnt
),
4599 [C_RX_RBUF_FREE_LIST_COR_ERR
] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4601 access_rx_rbuf_free_list_cor_err_cnt
),
4602 [C_RX_RBUF_FREE_LIST_UNC_ERR
] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4604 access_rx_rbuf_free_list_unc_err_cnt
),
4605 [C_RX_RCV_FSM_ENCODING_ERR
] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4607 access_rx_rcv_fsm_encoding_err_cnt
),
4608 [C_RX_DMA_FLAG_COR_ERR
] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4610 access_rx_dma_flag_cor_err_cnt
),
4611 [C_RX_DMA_FLAG_UNC_ERR
] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4613 access_rx_dma_flag_unc_err_cnt
),
4614 [C_RX_DC_SOP_EOP_PARITY_ERR
] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4616 access_rx_dc_sop_eop_parity_err_cnt
),
4617 [C_RX_RCV_CSR_PARITY_ERR
] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4619 access_rx_rcv_csr_parity_err_cnt
),
4620 [C_RX_RCV_QP_MAP_TABLE_COR_ERR
] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4622 access_rx_rcv_qp_map_table_cor_err_cnt
),
4623 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR
] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4625 access_rx_rcv_qp_map_table_unc_err_cnt
),
4626 [C_RX_RCV_DATA_COR_ERR
] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4628 access_rx_rcv_data_cor_err_cnt
),
4629 [C_RX_RCV_DATA_UNC_ERR
] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4631 access_rx_rcv_data_unc_err_cnt
),
4632 [C_RX_RCV_HDR_COR_ERR
] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4634 access_rx_rcv_hdr_cor_err_cnt
),
4635 [C_RX_RCV_HDR_UNC_ERR
] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4637 access_rx_rcv_hdr_unc_err_cnt
),
4638 [C_RX_DC_INTF_PARITY_ERR
] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4640 access_rx_dc_intf_parity_err_cnt
),
4641 [C_RX_DMA_CSR_COR_ERR
] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4643 access_rx_dma_csr_cor_err_cnt
),
4644 /* SendPioErrStatus */
4645 [C_PIO_PEC_SOP_HEAD_PARITY_ERR
] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4647 access_pio_pec_sop_head_parity_err_cnt
),
4648 [C_PIO_PCC_SOP_HEAD_PARITY_ERR
] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4650 access_pio_pcc_sop_head_parity_err_cnt
),
4651 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR
] = CNTR_ELEM("PioLastReturnedCntParityErr",
4653 access_pio_last_returned_cnt_parity_err_cnt
),
4654 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR
] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4656 access_pio_current_free_cnt_parity_err_cnt
),
4657 [C_PIO_RSVD_31_ERR
] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4659 access_pio_reserved_31_err_cnt
),
4660 [C_PIO_RSVD_30_ERR
] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4662 access_pio_reserved_30_err_cnt
),
4663 [C_PIO_PPMC_SOP_LEN_ERR
] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4665 access_pio_ppmc_sop_len_err_cnt
),
4666 [C_PIO_PPMC_BQC_MEM_PARITY_ERR
] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4668 access_pio_ppmc_bqc_mem_parity_err_cnt
),
4669 [C_PIO_VL_FIFO_PARITY_ERR
] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4671 access_pio_vl_fifo_parity_err_cnt
),
4672 [C_PIO_VLF_SOP_PARITY_ERR
] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4674 access_pio_vlf_sop_parity_err_cnt
),
4675 [C_PIO_VLF_V1_LEN_PARITY_ERR
] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4677 access_pio_vlf_v1_len_parity_err_cnt
),
4678 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR
] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4680 access_pio_block_qw_count_parity_err_cnt
),
4681 [C_PIO_WRITE_QW_VALID_PARITY_ERR
] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4683 access_pio_write_qw_valid_parity_err_cnt
),
4684 [C_PIO_STATE_MACHINE_ERR
] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4686 access_pio_state_machine_err_cnt
),
4687 [C_PIO_WRITE_DATA_PARITY_ERR
] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4689 access_pio_write_data_parity_err_cnt
),
4690 [C_PIO_HOST_ADDR_MEM_COR_ERR
] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4692 access_pio_host_addr_mem_cor_err_cnt
),
4693 [C_PIO_HOST_ADDR_MEM_UNC_ERR
] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4695 access_pio_host_addr_mem_unc_err_cnt
),
4696 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR
] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4698 access_pio_pkt_evict_sm_or_arb_sm_err_cnt
),
4699 [C_PIO_INIT_SM_IN_ERR
] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4701 access_pio_init_sm_in_err_cnt
),
4702 [C_PIO_PPMC_PBL_FIFO_ERR
] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4704 access_pio_ppmc_pbl_fifo_err_cnt
),
4705 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR
] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4707 access_pio_credit_ret_fifo_parity_err_cnt
),
4708 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR
] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4710 access_pio_v1_len_mem_bank1_cor_err_cnt
),
4711 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR
] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4713 access_pio_v1_len_mem_bank0_cor_err_cnt
),
4714 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR
] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4716 access_pio_v1_len_mem_bank1_unc_err_cnt
),
4717 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR
] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4719 access_pio_v1_len_mem_bank0_unc_err_cnt
),
4720 [C_PIO_SM_PKT_RESET_PARITY_ERR
] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4722 access_pio_sm_pkt_reset_parity_err_cnt
),
4723 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR
] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4725 access_pio_pkt_evict_fifo_parity_err_cnt
),
4726 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR
] = CNTR_ELEM(
4727 "PioSbrdctrlCrrelFifoParityErr", 0, 0,
4729 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt
),
4730 [C_PIO_SBRDCTL_CRREL_PARITY_ERR
] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4732 access_pio_sbrdctl_crrel_parity_err_cnt
),
4733 [C_PIO_PEC_FIFO_PARITY_ERR
] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4735 access_pio_pec_fifo_parity_err_cnt
),
4736 [C_PIO_PCC_FIFO_PARITY_ERR
] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4738 access_pio_pcc_fifo_parity_err_cnt
),
4739 [C_PIO_SB_MEM_FIFO1_ERR
] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4741 access_pio_sb_mem_fifo1_err_cnt
),
4742 [C_PIO_SB_MEM_FIFO0_ERR
] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4744 access_pio_sb_mem_fifo0_err_cnt
),
4745 [C_PIO_CSR_PARITY_ERR
] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4747 access_pio_csr_parity_err_cnt
),
4748 [C_PIO_WRITE_ADDR_PARITY_ERR
] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4750 access_pio_write_addr_parity_err_cnt
),
4751 [C_PIO_WRITE_BAD_CTXT_ERR
] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4753 access_pio_write_bad_ctxt_err_cnt
),
4754 /* SendDmaErrStatus */
4755 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR
] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4757 access_sdma_pcie_req_tracking_cor_err_cnt
),
4758 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR
] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4760 access_sdma_pcie_req_tracking_unc_err_cnt
),
4761 [C_SDMA_CSR_PARITY_ERR
] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4763 access_sdma_csr_parity_err_cnt
),
4764 [C_SDMA_RPY_TAG_ERR
] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4766 access_sdma_rpy_tag_err_cnt
),
4767 /* SendEgressErrStatus */
4768 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR
] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4770 access_tx_read_pio_memory_csr_unc_err_cnt
),
4771 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR
] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4773 access_tx_read_sdma_memory_csr_err_cnt
),
4774 [C_TX_EGRESS_FIFO_COR_ERR
] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4776 access_tx_egress_fifo_cor_err_cnt
),
4777 [C_TX_READ_PIO_MEMORY_COR_ERR
] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4779 access_tx_read_pio_memory_cor_err_cnt
),
4780 [C_TX_READ_SDMA_MEMORY_COR_ERR
] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4782 access_tx_read_sdma_memory_cor_err_cnt
),
4783 [C_TX_SB_HDR_COR_ERR
] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4785 access_tx_sb_hdr_cor_err_cnt
),
4786 [C_TX_CREDIT_OVERRUN_ERR
] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4788 access_tx_credit_overrun_err_cnt
),
4789 [C_TX_LAUNCH_FIFO8_COR_ERR
] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4791 access_tx_launch_fifo8_cor_err_cnt
),
4792 [C_TX_LAUNCH_FIFO7_COR_ERR
] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4794 access_tx_launch_fifo7_cor_err_cnt
),
4795 [C_TX_LAUNCH_FIFO6_COR_ERR
] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4797 access_tx_launch_fifo6_cor_err_cnt
),
4798 [C_TX_LAUNCH_FIFO5_COR_ERR
] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4800 access_tx_launch_fifo5_cor_err_cnt
),
4801 [C_TX_LAUNCH_FIFO4_COR_ERR
] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4803 access_tx_launch_fifo4_cor_err_cnt
),
4804 [C_TX_LAUNCH_FIFO3_COR_ERR
] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4806 access_tx_launch_fifo3_cor_err_cnt
),
4807 [C_TX_LAUNCH_FIFO2_COR_ERR
] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4809 access_tx_launch_fifo2_cor_err_cnt
),
4810 [C_TX_LAUNCH_FIFO1_COR_ERR
] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4812 access_tx_launch_fifo1_cor_err_cnt
),
4813 [C_TX_LAUNCH_FIFO0_COR_ERR
] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4815 access_tx_launch_fifo0_cor_err_cnt
),
4816 [C_TX_CREDIT_RETURN_VL_ERR
] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4818 access_tx_credit_return_vl_err_cnt
),
4819 [C_TX_HCRC_INSERTION_ERR
] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4821 access_tx_hcrc_insertion_err_cnt
),
4822 [C_TX_EGRESS_FIFI_UNC_ERR
] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4824 access_tx_egress_fifo_unc_err_cnt
),
4825 [C_TX_READ_PIO_MEMORY_UNC_ERR
] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4827 access_tx_read_pio_memory_unc_err_cnt
),
4828 [C_TX_READ_SDMA_MEMORY_UNC_ERR
] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4830 access_tx_read_sdma_memory_unc_err_cnt
),
4831 [C_TX_SB_HDR_UNC_ERR
] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4833 access_tx_sb_hdr_unc_err_cnt
),
4834 [C_TX_CREDIT_RETURN_PARITY_ERR
] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4836 access_tx_credit_return_partiy_err_cnt
),
4837 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR
] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4839 access_tx_launch_fifo8_unc_or_parity_err_cnt
),
4840 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR
] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4842 access_tx_launch_fifo7_unc_or_parity_err_cnt
),
4843 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR
] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4845 access_tx_launch_fifo6_unc_or_parity_err_cnt
),
4846 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR
] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4848 access_tx_launch_fifo5_unc_or_parity_err_cnt
),
4849 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR
] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4851 access_tx_launch_fifo4_unc_or_parity_err_cnt
),
4852 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR
] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4854 access_tx_launch_fifo3_unc_or_parity_err_cnt
),
4855 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR
] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4857 access_tx_launch_fifo2_unc_or_parity_err_cnt
),
4858 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR
] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4860 access_tx_launch_fifo1_unc_or_parity_err_cnt
),
4861 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR
] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4863 access_tx_launch_fifo0_unc_or_parity_err_cnt
),
4864 [C_TX_SDMA15_DISALLOWED_PACKET_ERR
] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4866 access_tx_sdma15_disallowed_packet_err_cnt
),
4867 [C_TX_SDMA14_DISALLOWED_PACKET_ERR
] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4869 access_tx_sdma14_disallowed_packet_err_cnt
),
4870 [C_TX_SDMA13_DISALLOWED_PACKET_ERR
] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4872 access_tx_sdma13_disallowed_packet_err_cnt
),
4873 [C_TX_SDMA12_DISALLOWED_PACKET_ERR
] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4875 access_tx_sdma12_disallowed_packet_err_cnt
),
4876 [C_TX_SDMA11_DISALLOWED_PACKET_ERR
] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4878 access_tx_sdma11_disallowed_packet_err_cnt
),
4879 [C_TX_SDMA10_DISALLOWED_PACKET_ERR
] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4881 access_tx_sdma10_disallowed_packet_err_cnt
),
4882 [C_TX_SDMA9_DISALLOWED_PACKET_ERR
] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4884 access_tx_sdma9_disallowed_packet_err_cnt
),
4885 [C_TX_SDMA8_DISALLOWED_PACKET_ERR
] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4887 access_tx_sdma8_disallowed_packet_err_cnt
),
4888 [C_TX_SDMA7_DISALLOWED_PACKET_ERR
] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4890 access_tx_sdma7_disallowed_packet_err_cnt
),
4891 [C_TX_SDMA6_DISALLOWED_PACKET_ERR
] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4893 access_tx_sdma6_disallowed_packet_err_cnt
),
4894 [C_TX_SDMA5_DISALLOWED_PACKET_ERR
] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4896 access_tx_sdma5_disallowed_packet_err_cnt
),
4897 [C_TX_SDMA4_DISALLOWED_PACKET_ERR
] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4899 access_tx_sdma4_disallowed_packet_err_cnt
),
4900 [C_TX_SDMA3_DISALLOWED_PACKET_ERR
] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4902 access_tx_sdma3_disallowed_packet_err_cnt
),
4903 [C_TX_SDMA2_DISALLOWED_PACKET_ERR
] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4905 access_tx_sdma2_disallowed_packet_err_cnt
),
4906 [C_TX_SDMA1_DISALLOWED_PACKET_ERR
] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4908 access_tx_sdma1_disallowed_packet_err_cnt
),
4909 [C_TX_SDMA0_DISALLOWED_PACKET_ERR
] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4911 access_tx_sdma0_disallowed_packet_err_cnt
),
4912 [C_TX_CONFIG_PARITY_ERR
] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4914 access_tx_config_parity_err_cnt
),
4915 [C_TX_SBRD_CTL_CSR_PARITY_ERR
] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4917 access_tx_sbrd_ctl_csr_parity_err_cnt
),
4918 [C_TX_LAUNCH_CSR_PARITY_ERR
] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4920 access_tx_launch_csr_parity_err_cnt
),
4921 [C_TX_ILLEGAL_CL_ERR
] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4923 access_tx_illegal_vl_err_cnt
),
4924 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR
] = CNTR_ELEM(
4925 "TxSbrdCtlStateMachineParityErr", 0, 0,
4927 access_tx_sbrd_ctl_state_machine_parity_err_cnt
),
4928 [C_TX_RESERVED_10
] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4930 access_egress_reserved_10_err_cnt
),
4931 [C_TX_RESERVED_9
] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4933 access_egress_reserved_9_err_cnt
),
4934 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR
] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4936 access_tx_sdma_launch_intf_parity_err_cnt
),
4937 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR
] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4939 access_tx_pio_launch_intf_parity_err_cnt
),
4940 [C_TX_RESERVED_6
] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4942 access_egress_reserved_6_err_cnt
),
4943 [C_TX_INCORRECT_LINK_STATE_ERR
] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4945 access_tx_incorrect_link_state_err_cnt
),
4946 [C_TX_LINK_DOWN_ERR
] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4948 access_tx_linkdown_err_cnt
),
4949 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR
] = CNTR_ELEM(
4950 "EgressFifoUnderrunOrParityErr", 0, 0,
4952 access_tx_egress_fifi_underrun_or_parity_err_cnt
),
4953 [C_TX_RESERVED_2
] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4955 access_egress_reserved_2_err_cnt
),
4956 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR
] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4958 access_tx_pkt_integrity_mem_unc_err_cnt
),
4959 [C_TX_PKT_INTEGRITY_MEM_COR_ERR
] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4961 access_tx_pkt_integrity_mem_cor_err_cnt
),
4963 [C_SEND_CSR_WRITE_BAD_ADDR_ERR
] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4965 access_send_csr_write_bad_addr_err_cnt
),
4966 [C_SEND_CSR_READ_BAD_ADD_ERR
] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4968 access_send_csr_read_bad_addr_err_cnt
),
4969 [C_SEND_CSR_PARITY_ERR
] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4971 access_send_csr_parity_cnt
),
4972 /* SendCtxtErrStatus */
4973 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR
] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4975 access_pio_write_out_of_bounds_err_cnt
),
4976 [C_PIO_WRITE_OVERFLOW_ERR
] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4978 access_pio_write_overflow_err_cnt
),
4979 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR
] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4981 access_pio_write_crosses_boundary_err_cnt
),
4982 [C_PIO_DISALLOWED_PACKET_ERR
] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4984 access_pio_disallowed_packet_err_cnt
),
4985 [C_PIO_INCONSISTENT_SOP_ERR
] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4987 access_pio_inconsistent_sop_err_cnt
),
4988 /* SendDmaEngErrStatus */
4989 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR
] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4991 access_sdma_header_request_fifo_cor_err_cnt
),
4992 [C_SDMA_HEADER_STORAGE_COR_ERR
] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4994 access_sdma_header_storage_cor_err_cnt
),
4995 [C_SDMA_PACKET_TRACKING_COR_ERR
] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4997 access_sdma_packet_tracking_cor_err_cnt
),
4998 [C_SDMA_ASSEMBLY_COR_ERR
] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
5000 access_sdma_assembly_cor_err_cnt
),
5001 [C_SDMA_DESC_TABLE_COR_ERR
] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
5003 access_sdma_desc_table_cor_err_cnt
),
5004 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR
] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
5006 access_sdma_header_request_fifo_unc_err_cnt
),
5007 [C_SDMA_HEADER_STORAGE_UNC_ERR
] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
5009 access_sdma_header_storage_unc_err_cnt
),
5010 [C_SDMA_PACKET_TRACKING_UNC_ERR
] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
5012 access_sdma_packet_tracking_unc_err_cnt
),
5013 [C_SDMA_ASSEMBLY_UNC_ERR
] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
5015 access_sdma_assembly_unc_err_cnt
),
5016 [C_SDMA_DESC_TABLE_UNC_ERR
] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
5018 access_sdma_desc_table_unc_err_cnt
),
5019 [C_SDMA_TIMEOUT_ERR
] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
5021 access_sdma_timeout_err_cnt
),
5022 [C_SDMA_HEADER_LENGTH_ERR
] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
5024 access_sdma_header_length_err_cnt
),
5025 [C_SDMA_HEADER_ADDRESS_ERR
] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
5027 access_sdma_header_address_err_cnt
),
5028 [C_SDMA_HEADER_SELECT_ERR
] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
5030 access_sdma_header_select_err_cnt
),
5031 [C_SMDA_RESERVED_9
] = CNTR_ELEM("SDma Reserved 9", 0, 0,
5033 access_sdma_reserved_9_err_cnt
),
5034 [C_SDMA_PACKET_DESC_OVERFLOW_ERR
] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
5036 access_sdma_packet_desc_overflow_err_cnt
),
5037 [C_SDMA_LENGTH_MISMATCH_ERR
] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
5039 access_sdma_length_mismatch_err_cnt
),
5040 [C_SDMA_HALT_ERR
] = CNTR_ELEM("SDmaHaltErr", 0, 0,
5042 access_sdma_halt_err_cnt
),
5043 [C_SDMA_MEM_READ_ERR
] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
5045 access_sdma_mem_read_err_cnt
),
5046 [C_SDMA_FIRST_DESC_ERR
] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
5048 access_sdma_first_desc_err_cnt
),
5049 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR
] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
5051 access_sdma_tail_out_of_bounds_err_cnt
),
5052 [C_SDMA_TOO_LONG_ERR
] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
5054 access_sdma_too_long_err_cnt
),
5055 [C_SDMA_GEN_MISMATCH_ERR
] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
5057 access_sdma_gen_mismatch_err_cnt
),
5058 [C_SDMA_WRONG_DW_ERR
] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
5060 access_sdma_wrong_dw_err_cnt
),
5063 static struct cntr_entry port_cntrs
[PORT_CNTR_LAST
] = {
5064 [C_TX_UNSUP_VL
] = TXE32_PORT_CNTR_ELEM(TxUnVLErr
, SEND_UNSUP_VL_ERR_CNT
,
5066 [C_TX_INVAL_LEN
] = TXE32_PORT_CNTR_ELEM(TxInvalLen
, SEND_LEN_ERR_CNT
,
5068 [C_TX_MM_LEN_ERR
] = TXE32_PORT_CNTR_ELEM(TxMMLenErr
, SEND_MAX_MIN_LEN_ERR_CNT
,
5070 [C_TX_UNDERRUN
] = TXE32_PORT_CNTR_ELEM(TxUnderrun
, SEND_UNDERRUN_CNT
,
5072 [C_TX_FLOW_STALL
] = TXE32_PORT_CNTR_ELEM(TxFlowStall
, SEND_FLOW_STALL_CNT
,
5074 [C_TX_DROPPED
] = TXE32_PORT_CNTR_ELEM(TxDropped
, SEND_DROPPED_PKT_CNT
,
5076 [C_TX_HDR_ERR
] = TXE32_PORT_CNTR_ELEM(TxHdrErr
, SEND_HEADERS_ERR_CNT
,
5078 [C_TX_PKT
] = TXE64_PORT_CNTR_ELEM(TxPkt
, SEND_DATA_PKT_CNT
, CNTR_NORMAL
),
5079 [C_TX_WORDS
] = TXE64_PORT_CNTR_ELEM(TxWords
, SEND_DWORD_CNT
, CNTR_NORMAL
),
5080 [C_TX_WAIT
] = TXE64_PORT_CNTR_ELEM(TxWait
, SEND_WAIT_CNT
, CNTR_SYNTH
),
5081 [C_TX_FLIT_VL
] = TXE64_PORT_CNTR_ELEM(TxFlitVL
, SEND_DATA_VL0_CNT
,
5082 CNTR_SYNTH
| CNTR_VL
),
5083 [C_TX_PKT_VL
] = TXE64_PORT_CNTR_ELEM(TxPktVL
, SEND_DATA_PKT_VL0_CNT
,
5084 CNTR_SYNTH
| CNTR_VL
),
5085 [C_TX_WAIT_VL
] = TXE64_PORT_CNTR_ELEM(TxWaitVL
, SEND_WAIT_VL0_CNT
,
5086 CNTR_SYNTH
| CNTR_VL
),
5087 [C_RX_PKT
] = RXE64_PORT_CNTR_ELEM(RxPkt
, RCV_DATA_PKT_CNT
, CNTR_NORMAL
),
5088 [C_RX_WORDS
] = RXE64_PORT_CNTR_ELEM(RxWords
, RCV_DWORD_CNT
, CNTR_NORMAL
),
5089 [C_SW_LINK_DOWN
] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH
| CNTR_32BIT
,
5090 access_sw_link_dn_cnt
),
5091 [C_SW_LINK_UP
] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH
| CNTR_32BIT
,
5092 access_sw_link_up_cnt
),
5093 [C_SW_UNKNOWN_FRAME
] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL
,
5094 access_sw_unknown_frame_cnt
),
5095 [C_SW_XMIT_DSCD
] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH
| CNTR_32BIT
,
5096 access_sw_xmit_discards
),
5097 [C_SW_XMIT_DSCD_VL
] = CNTR_ELEM("XmitDscdVl", 0, 0,
5098 CNTR_SYNTH
| CNTR_32BIT
| CNTR_VL
,
5099 access_sw_xmit_discards
),
5100 [C_SW_XMIT_CSTR_ERR
] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH
,
5101 access_xmit_constraint_errs
),
5102 [C_SW_RCV_CSTR_ERR
] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH
,
5103 access_rcv_constraint_errs
),
5104 [C_SW_IBP_LOOP_PKTS
] = SW_IBP_CNTR(LoopPkts
, loop_pkts
),
5105 [C_SW_IBP_RC_RESENDS
] = SW_IBP_CNTR(RcResend
, rc_resends
),
5106 [C_SW_IBP_RNR_NAKS
] = SW_IBP_CNTR(RnrNak
, rnr_naks
),
5107 [C_SW_IBP_OTHER_NAKS
] = SW_IBP_CNTR(OtherNak
, other_naks
),
5108 [C_SW_IBP_RC_TIMEOUTS
] = SW_IBP_CNTR(RcTimeOut
, rc_timeouts
),
5109 [C_SW_IBP_PKT_DROPS
] = SW_IBP_CNTR(PktDrop
, pkt_drops
),
5110 [C_SW_IBP_DMA_WAIT
] = SW_IBP_CNTR(DmaWait
, dmawait
),
5111 [C_SW_IBP_RC_SEQNAK
] = SW_IBP_CNTR(RcSeqNak
, rc_seqnak
),
5112 [C_SW_IBP_RC_DUPREQ
] = SW_IBP_CNTR(RcDupRew
, rc_dupreq
),
5113 [C_SW_IBP_RDMA_SEQ
] = SW_IBP_CNTR(RdmaSeq
, rdma_seq
),
5114 [C_SW_IBP_UNALIGNED
] = SW_IBP_CNTR(Unaligned
, unaligned
),
5115 [C_SW_IBP_SEQ_NAK
] = SW_IBP_CNTR(SeqNak
, seq_naks
),
5116 [C_SW_CPU_RC_ACKS
] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL
,
5117 access_sw_cpu_rc_acks
),
5118 [C_SW_CPU_RC_QACKS
] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL
,
5119 access_sw_cpu_rc_qacks
),
5120 [C_SW_CPU_RC_DELAYED_COMP
] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL
,
5121 access_sw_cpu_rc_delayed_comp
),
5122 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5123 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5124 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5125 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5126 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5127 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5128 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5129 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5130 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5131 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5132 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5133 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5134 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5135 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5136 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5137 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5138 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5139 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5140 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5141 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5142 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5143 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5144 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5145 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5146 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5147 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5148 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5149 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5150 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5151 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5152 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5153 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5154 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5155 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5156 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5157 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5158 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5159 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5160 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5161 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5162 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5163 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5164 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5165 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5166 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5167 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5168 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5169 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5170 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5171 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5172 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5173 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5174 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5175 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5176 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5177 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5178 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5179 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5180 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5181 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5182 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5183 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5184 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5185 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5186 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5187 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5188 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5189 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5190 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5191 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5192 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5193 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5194 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5195 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5196 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5197 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5198 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5199 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5200 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5201 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5204 /* ======================================================================== */
5206 /* return true if this is chip revision revision a */
5207 int is_ax(struct hfi1_devdata
*dd
)
5210 dd
->revision
>> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5211 & CCE_REVISION_CHIP_REV_MINOR_MASK
;
5212 return (chip_rev_minor
& 0xf0) == 0;
5215 /* return true if this is chip revision revision b */
5216 int is_bx(struct hfi1_devdata
*dd
)
5219 dd
->revision
>> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5220 & CCE_REVISION_CHIP_REV_MINOR_MASK
;
5221 return (chip_rev_minor
& 0xF0) == 0x10;
5225 * Append string s to buffer buf. Arguments curp and len are the current
5226 * position and remaining length, respectively.
5228 * return 0 on success, 1 on out of room
5230 static int append_str(char *buf
, char **curp
, int *lenp
, const char *s
)
5234 int result
= 0; /* success */
5237 /* add a comma, if first in the buffer */
5240 result
= 1; /* out of room */
5247 /* copy the string */
5248 while ((c
= *s
++) != 0) {
5250 result
= 1; /* out of room */
5258 /* write return values */
5266 * Using the given flag table, print a comma separated string into
5267 * the buffer. End in '*' if the buffer is too short.
5269 static char *flag_string(char *buf
, int buf_len
, u64 flags
,
5270 struct flag_table
*table
, int table_size
)
5278 /* make sure there is at least 2 so we can form "*" */
5282 len
--; /* leave room for a nul */
5283 for (i
= 0; i
< table_size
; i
++) {
5284 if (flags
& table
[i
].flag
) {
5285 no_room
= append_str(buf
, &p
, &len
, table
[i
].str
);
5288 flags
&= ~table
[i
].flag
;
5292 /* any undocumented bits left? */
5293 if (!no_room
&& flags
) {
5294 snprintf(extra
, sizeof(extra
), "bits 0x%llx", flags
);
5295 no_room
= append_str(buf
, &p
, &len
, extra
);
5298 /* add * if ran out of room */
5300 /* may need to back up to add space for a '*' */
5306 /* add final nul - space already allocated above */
5311 /* first 8 CCE error interrupt source names */
5312 static const char * const cce_misc_names
[] = {
5313 "CceErrInt", /* 0 */
5314 "RxeErrInt", /* 1 */
5315 "MiscErrInt", /* 2 */
5316 "Reserved3", /* 3 */
5317 "PioErrInt", /* 4 */
5318 "SDmaErrInt", /* 5 */
5319 "EgressErrInt", /* 6 */
5324 * Return the miscellaneous error interrupt name.
5326 static char *is_misc_err_name(char *buf
, size_t bsize
, unsigned int source
)
5328 if (source
< ARRAY_SIZE(cce_misc_names
))
5329 strncpy(buf
, cce_misc_names
[source
], bsize
);
5331 snprintf(buf
, bsize
, "Reserved%u",
5332 source
+ IS_GENERAL_ERR_START
);
5338 * Return the SDMA engine error interrupt name.
5340 static char *is_sdma_eng_err_name(char *buf
, size_t bsize
, unsigned int source
)
5342 snprintf(buf
, bsize
, "SDmaEngErrInt%u", source
);
5347 * Return the send context error interrupt name.
5349 static char *is_sendctxt_err_name(char *buf
, size_t bsize
, unsigned int source
)
5351 snprintf(buf
, bsize
, "SendCtxtErrInt%u", source
);
5355 static const char * const various_names
[] = {
5364 * Return the various interrupt name.
5366 static char *is_various_name(char *buf
, size_t bsize
, unsigned int source
)
5368 if (source
< ARRAY_SIZE(various_names
))
5369 strncpy(buf
, various_names
[source
], bsize
);
5371 snprintf(buf
, bsize
, "Reserved%u", source
+ IS_VARIOUS_START
);
5376 * Return the DC interrupt name.
5378 static char *is_dc_name(char *buf
, size_t bsize
, unsigned int source
)
5380 static const char * const dc_int_names
[] = {
5384 "lbm" /* local block merge */
5387 if (source
< ARRAY_SIZE(dc_int_names
))
5388 snprintf(buf
, bsize
, "dc_%s_int", dc_int_names
[source
]);
5390 snprintf(buf
, bsize
, "DCInt%u", source
);
5394 static const char * const sdma_int_names
[] = {
5401 * Return the SDMA engine interrupt name.
5403 static char *is_sdma_eng_name(char *buf
, size_t bsize
, unsigned int source
)
5405 /* what interrupt */
5406 unsigned int what
= source
/ TXE_NUM_SDMA_ENGINES
;
5408 unsigned int which
= source
% TXE_NUM_SDMA_ENGINES
;
5410 if (likely(what
< 3))
5411 snprintf(buf
, bsize
, "%s%u", sdma_int_names
[what
], which
);
5413 snprintf(buf
, bsize
, "Invalid SDMA interrupt %u", source
);
5418 * Return the receive available interrupt name.
5420 static char *is_rcv_avail_name(char *buf
, size_t bsize
, unsigned int source
)
5422 snprintf(buf
, bsize
, "RcvAvailInt%u", source
);
5427 * Return the receive urgent interrupt name.
5429 static char *is_rcv_urgent_name(char *buf
, size_t bsize
, unsigned int source
)
5431 snprintf(buf
, bsize
, "RcvUrgentInt%u", source
);
5436 * Return the send credit interrupt name.
5438 static char *is_send_credit_name(char *buf
, size_t bsize
, unsigned int source
)
5440 snprintf(buf
, bsize
, "SendCreditInt%u", source
);
5445 * Return the reserved interrupt name.
5447 static char *is_reserved_name(char *buf
, size_t bsize
, unsigned int source
)
5449 snprintf(buf
, bsize
, "Reserved%u", source
+ IS_RESERVED_START
);
5453 static char *cce_err_status_string(char *buf
, int buf_len
, u64 flags
)
5455 return flag_string(buf
, buf_len
, flags
,
5456 cce_err_status_flags
,
5457 ARRAY_SIZE(cce_err_status_flags
));
5460 static char *rxe_err_status_string(char *buf
, int buf_len
, u64 flags
)
5462 return flag_string(buf
, buf_len
, flags
,
5463 rxe_err_status_flags
,
5464 ARRAY_SIZE(rxe_err_status_flags
));
5467 static char *misc_err_status_string(char *buf
, int buf_len
, u64 flags
)
5469 return flag_string(buf
, buf_len
, flags
, misc_err_status_flags
,
5470 ARRAY_SIZE(misc_err_status_flags
));
5473 static char *pio_err_status_string(char *buf
, int buf_len
, u64 flags
)
5475 return flag_string(buf
, buf_len
, flags
,
5476 pio_err_status_flags
,
5477 ARRAY_SIZE(pio_err_status_flags
));
5480 static char *sdma_err_status_string(char *buf
, int buf_len
, u64 flags
)
5482 return flag_string(buf
, buf_len
, flags
,
5483 sdma_err_status_flags
,
5484 ARRAY_SIZE(sdma_err_status_flags
));
5487 static char *egress_err_status_string(char *buf
, int buf_len
, u64 flags
)
5489 return flag_string(buf
, buf_len
, flags
,
5490 egress_err_status_flags
,
5491 ARRAY_SIZE(egress_err_status_flags
));
5494 static char *egress_err_info_string(char *buf
, int buf_len
, u64 flags
)
5496 return flag_string(buf
, buf_len
, flags
,
5497 egress_err_info_flags
,
5498 ARRAY_SIZE(egress_err_info_flags
));
5501 static char *send_err_status_string(char *buf
, int buf_len
, u64 flags
)
5503 return flag_string(buf
, buf_len
, flags
,
5504 send_err_status_flags
,
5505 ARRAY_SIZE(send_err_status_flags
));
5508 static void handle_cce_err(struct hfi1_devdata
*dd
, u32 unused
, u64 reg
)
5514 * For most these errors, there is nothing that can be done except
5515 * report or record it.
5517 dd_dev_info(dd
, "CCE Error: %s\n",
5518 cce_err_status_string(buf
, sizeof(buf
), reg
));
5520 if ((reg
& CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK
) &&
5521 is_ax(dd
) && (dd
->icode
!= ICODE_FUNCTIONAL_SIMULATOR
)) {
5522 /* this error requires a manual drop into SPC freeze mode */
5524 start_freeze_handling(dd
->pport
, FREEZE_SELF
);
5527 for (i
= 0; i
< NUM_CCE_ERR_STATUS_COUNTERS
; i
++) {
5528 if (reg
& (1ull << i
)) {
5529 incr_cntr64(&dd
->cce_err_status_cnt
[i
]);
5530 /* maintain a counter over all cce_err_status errors */
5531 incr_cntr64(&dd
->sw_cce_err_status_aggregate
);
5537 * Check counters for receive errors that do not have an interrupt
5538 * associated with them.
5540 #define RCVERR_CHECK_TIME 10
5541 static void update_rcverr_timer(struct timer_list
*t
)
5543 struct hfi1_devdata
*dd
= from_timer(dd
, t
, rcverr_timer
);
5544 struct hfi1_pportdata
*ppd
= dd
->pport
;
5545 u32 cur_ovfl_cnt
= read_dev_cntr(dd
, C_RCV_OVF
, CNTR_INVALID_VL
);
5547 if (dd
->rcv_ovfl_cnt
< cur_ovfl_cnt
&&
5548 ppd
->port_error_action
& OPA_PI_MASK_EX_BUFFER_OVERRUN
) {
5549 dd_dev_info(dd
, "%s: PortErrorAction bounce\n", __func__
);
5550 set_link_down_reason(
5551 ppd
, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN
, 0,
5552 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN
);
5553 queue_work(ppd
->link_wq
, &ppd
->link_bounce_work
);
5555 dd
->rcv_ovfl_cnt
= (u32
)cur_ovfl_cnt
;
5557 mod_timer(&dd
->rcverr_timer
, jiffies
+ HZ
* RCVERR_CHECK_TIME
);
5560 static int init_rcverr(struct hfi1_devdata
*dd
)
5562 timer_setup(&dd
->rcverr_timer
, update_rcverr_timer
, 0);
5563 /* Assume the hardware counter has been reset */
5564 dd
->rcv_ovfl_cnt
= 0;
5565 return mod_timer(&dd
->rcverr_timer
, jiffies
+ HZ
* RCVERR_CHECK_TIME
);
5568 static void free_rcverr(struct hfi1_devdata
*dd
)
5570 if (dd
->rcverr_timer
.function
)
5571 del_timer_sync(&dd
->rcverr_timer
);
5574 static void handle_rxe_err(struct hfi1_devdata
*dd
, u32 unused
, u64 reg
)
5579 dd_dev_info(dd
, "Receive Error: %s\n",
5580 rxe_err_status_string(buf
, sizeof(buf
), reg
));
5582 if (reg
& ALL_RXE_FREEZE_ERR
) {
5586 * Freeze mode recovery is disabled for the errors
5587 * in RXE_FREEZE_ABORT_MASK
5589 if (is_ax(dd
) && (reg
& RXE_FREEZE_ABORT_MASK
))
5590 flags
= FREEZE_ABORT
;
5592 start_freeze_handling(dd
->pport
, flags
);
5595 for (i
= 0; i
< NUM_RCV_ERR_STATUS_COUNTERS
; i
++) {
5596 if (reg
& (1ull << i
))
5597 incr_cntr64(&dd
->rcv_err_status_cnt
[i
]);
5601 static void handle_misc_err(struct hfi1_devdata
*dd
, u32 unused
, u64 reg
)
5606 dd_dev_info(dd
, "Misc Error: %s",
5607 misc_err_status_string(buf
, sizeof(buf
), reg
));
5608 for (i
= 0; i
< NUM_MISC_ERR_STATUS_COUNTERS
; i
++) {
5609 if (reg
& (1ull << i
))
5610 incr_cntr64(&dd
->misc_err_status_cnt
[i
]);
5614 static void handle_pio_err(struct hfi1_devdata
*dd
, u32 unused
, u64 reg
)
5619 dd_dev_info(dd
, "PIO Error: %s\n",
5620 pio_err_status_string(buf
, sizeof(buf
), reg
));
5622 if (reg
& ALL_PIO_FREEZE_ERR
)
5623 start_freeze_handling(dd
->pport
, 0);
5625 for (i
= 0; i
< NUM_SEND_PIO_ERR_STATUS_COUNTERS
; i
++) {
5626 if (reg
& (1ull << i
))
5627 incr_cntr64(&dd
->send_pio_err_status_cnt
[i
]);
5631 static void handle_sdma_err(struct hfi1_devdata
*dd
, u32 unused
, u64 reg
)
5636 dd_dev_info(dd
, "SDMA Error: %s\n",
5637 sdma_err_status_string(buf
, sizeof(buf
), reg
));
5639 if (reg
& ALL_SDMA_FREEZE_ERR
)
5640 start_freeze_handling(dd
->pport
, 0);
5642 for (i
= 0; i
< NUM_SEND_DMA_ERR_STATUS_COUNTERS
; i
++) {
5643 if (reg
& (1ull << i
))
5644 incr_cntr64(&dd
->send_dma_err_status_cnt
[i
]);
5648 static inline void __count_port_discards(struct hfi1_pportdata
*ppd
)
5650 incr_cntr64(&ppd
->port_xmit_discards
);
5653 static void count_port_inactive(struct hfi1_devdata
*dd
)
5655 __count_port_discards(dd
->pport
);
5659 * We have had a "disallowed packet" error during egress. Determine the
5660 * integrity check which failed, and update relevant error counter, etc.
5662 * Note that the SEND_EGRESS_ERR_INFO register has only a single
5663 * bit of state per integrity check, and so we can miss the reason for an
5664 * egress error if more than one packet fails the same integrity check
5665 * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5667 static void handle_send_egress_err_info(struct hfi1_devdata
*dd
,
5670 struct hfi1_pportdata
*ppd
= dd
->pport
;
5671 u64 src
= read_csr(dd
, SEND_EGRESS_ERR_SOURCE
); /* read first */
5672 u64 info
= read_csr(dd
, SEND_EGRESS_ERR_INFO
);
5675 /* clear down all observed info as quickly as possible after read */
5676 write_csr(dd
, SEND_EGRESS_ERR_INFO
, info
);
5679 "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5680 info
, egress_err_info_string(buf
, sizeof(buf
), info
), src
);
5682 /* Eventually add other counters for each bit */
5683 if (info
& PORT_DISCARD_EGRESS_ERRS
) {
5687 * Count all applicable bits as individual errors and
5688 * attribute them to the packet that triggered this handler.
5689 * This may not be completely accurate due to limitations
5690 * on the available hardware error information. There is
5691 * a single information register and any number of error
5692 * packets may have occurred and contributed to it before
5693 * this routine is called. This means that:
5694 * a) If multiple packets with the same error occur before
5695 * this routine is called, earlier packets are missed.
5696 * There is only a single bit for each error type.
5697 * b) Errors may not be attributed to the correct VL.
5698 * The driver is attributing all bits in the info register
5699 * to the packet that triggered this call, but bits
5700 * could be an accumulation of different packets with
5702 * c) A single error packet may have multiple counts attached
5703 * to it. There is no way for the driver to know if
5704 * multiple bits set in the info register are due to a
5705 * single packet or multiple packets. The driver assumes
5708 weight
= hweight64(info
& PORT_DISCARD_EGRESS_ERRS
);
5709 for (i
= 0; i
< weight
; i
++) {
5710 __count_port_discards(ppd
);
5711 if (vl
>= 0 && vl
< TXE_NUM_DATA_VL
)
5712 incr_cntr64(&ppd
->port_xmit_discards_vl
[vl
]);
5714 incr_cntr64(&ppd
->port_xmit_discards_vl
5721 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5722 * register. Does it represent a 'port inactive' error?
5724 static inline int port_inactive_err(u64 posn
)
5726 return (posn
>= SEES(TX_LINKDOWN
) &&
5727 posn
<= SEES(TX_INCORRECT_LINK_STATE
));
5731 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5732 * register. Does it represent a 'disallowed packet' error?
5734 static inline int disallowed_pkt_err(int posn
)
5736 return (posn
>= SEES(TX_SDMA0_DISALLOWED_PACKET
) &&
5737 posn
<= SEES(TX_SDMA15_DISALLOWED_PACKET
));
5741 * Input value is a bit position of one of the SDMA engine disallowed
5742 * packet errors. Return which engine. Use of this must be guarded by
5743 * disallowed_pkt_err().
5745 static inline int disallowed_pkt_engine(int posn
)
5747 return posn
- SEES(TX_SDMA0_DISALLOWED_PACKET
);
5751 * Translate an SDMA engine to a VL. Return -1 if the tranlation cannot
5754 static int engine_to_vl(struct hfi1_devdata
*dd
, int engine
)
5756 struct sdma_vl_map
*m
;
5760 if (engine
< 0 || engine
>= TXE_NUM_SDMA_ENGINES
)
5764 m
= rcu_dereference(dd
->sdma_map
);
5765 vl
= m
->engine_to_vl
[engine
];
5772 * Translate the send context (sofware index) into a VL. Return -1 if the
5773 * translation cannot be done.
5775 static int sc_to_vl(struct hfi1_devdata
*dd
, int sw_index
)
5777 struct send_context_info
*sci
;
5778 struct send_context
*sc
;
5781 sci
= &dd
->send_contexts
[sw_index
];
5783 /* there is no information for user (PSM) and ack contexts */
5784 if ((sci
->type
!= SC_KERNEL
) && (sci
->type
!= SC_VL15
))
5790 if (dd
->vld
[15].sc
== sc
)
5792 for (i
= 0; i
< num_vls
; i
++)
5793 if (dd
->vld
[i
].sc
== sc
)
5799 static void handle_egress_err(struct hfi1_devdata
*dd
, u32 unused
, u64 reg
)
5801 u64 reg_copy
= reg
, handled
= 0;
5805 if (reg
& ALL_TXE_EGRESS_FREEZE_ERR
)
5806 start_freeze_handling(dd
->pport
, 0);
5807 else if (is_ax(dd
) &&
5808 (reg
& SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK
) &&
5809 (dd
->icode
!= ICODE_FUNCTIONAL_SIMULATOR
))
5810 start_freeze_handling(dd
->pport
, 0);
5813 int posn
= fls64(reg_copy
);
5814 /* fls64() returns a 1-based offset, we want it zero based */
5815 int shift
= posn
- 1;
5816 u64 mask
= 1ULL << shift
;
5818 if (port_inactive_err(shift
)) {
5819 count_port_inactive(dd
);
5821 } else if (disallowed_pkt_err(shift
)) {
5822 int vl
= engine_to_vl(dd
, disallowed_pkt_engine(shift
));
5824 handle_send_egress_err_info(dd
, vl
);
5833 dd_dev_info(dd
, "Egress Error: %s\n",
5834 egress_err_status_string(buf
, sizeof(buf
), reg
));
5836 for (i
= 0; i
< NUM_SEND_EGRESS_ERR_STATUS_COUNTERS
; i
++) {
5837 if (reg
& (1ull << i
))
5838 incr_cntr64(&dd
->send_egress_err_status_cnt
[i
]);
5842 static void handle_txe_err(struct hfi1_devdata
*dd
, u32 unused
, u64 reg
)
5847 dd_dev_info(dd
, "Send Error: %s\n",
5848 send_err_status_string(buf
, sizeof(buf
), reg
));
5850 for (i
= 0; i
< NUM_SEND_ERR_STATUS_COUNTERS
; i
++) {
5851 if (reg
& (1ull << i
))
5852 incr_cntr64(&dd
->send_err_status_cnt
[i
]);
5857 * The maximum number of times the error clear down will loop before
5858 * blocking a repeating error. This value is arbitrary.
5860 #define MAX_CLEAR_COUNT 20
5863 * Clear and handle an error register. All error interrupts are funneled
5864 * through here to have a central location to correctly handle single-
5865 * or multi-shot errors.
5867 * For non per-context registers, call this routine with a context value
5868 * of 0 so the per-context offset is zero.
5870 * If the handler loops too many times, assume that something is wrong
5871 * and can't be fixed, so mask the error bits.
5873 static void interrupt_clear_down(struct hfi1_devdata
*dd
,
5875 const struct err_reg_info
*eri
)
5880 /* read in a loop until no more errors are seen */
5883 reg
= read_kctxt_csr(dd
, context
, eri
->status
);
5886 write_kctxt_csr(dd
, context
, eri
->clear
, reg
);
5887 if (likely(eri
->handler
))
5888 eri
->handler(dd
, context
, reg
);
5890 if (count
> MAX_CLEAR_COUNT
) {
5893 dd_dev_err(dd
, "Repeating %s bits 0x%llx - masking\n",
5896 * Read-modify-write so any other masked bits
5899 mask
= read_kctxt_csr(dd
, context
, eri
->mask
);
5901 write_kctxt_csr(dd
, context
, eri
->mask
, mask
);
5908 * CCE block "misc" interrupt. Source is < 16.
5910 static void is_misc_err_int(struct hfi1_devdata
*dd
, unsigned int source
)
5912 const struct err_reg_info
*eri
= &misc_errs
[source
];
5915 interrupt_clear_down(dd
, 0, eri
);
5917 dd_dev_err(dd
, "Unexpected misc interrupt (%u) - reserved\n",
5922 static char *send_context_err_status_string(char *buf
, int buf_len
, u64 flags
)
5924 return flag_string(buf
, buf_len
, flags
,
5925 sc_err_status_flags
,
5926 ARRAY_SIZE(sc_err_status_flags
));
5930 * Send context error interrupt. Source (hw_context) is < 160.
5932 * All send context errors cause the send context to halt. The normal
5933 * clear-down mechanism cannot be used because we cannot clear the
5934 * error bits until several other long-running items are done first.
5935 * This is OK because with the context halted, nothing else is going
5936 * to happen on it anyway.
5938 static void is_sendctxt_err_int(struct hfi1_devdata
*dd
,
5939 unsigned int hw_context
)
5941 struct send_context_info
*sci
;
5942 struct send_context
*sc
;
5948 sw_index
= dd
->hw_to_sw
[hw_context
];
5949 if (sw_index
>= dd
->num_send_contexts
) {
5951 "out of range sw index %u for send context %u\n",
5952 sw_index
, hw_context
);
5955 sci
= &dd
->send_contexts
[sw_index
];
5958 dd_dev_err(dd
, "%s: context %u(%u): no sc?\n", __func__
,
5959 sw_index
, hw_context
);
5963 /* tell the software that a halt has begun */
5964 sc_stop(sc
, SCF_HALTED
);
5966 status
= read_kctxt_csr(dd
, hw_context
, SEND_CTXT_ERR_STATUS
);
5968 dd_dev_info(dd
, "Send Context %u(%u) Error: %s\n", sw_index
, hw_context
,
5969 send_context_err_status_string(flags
, sizeof(flags
),
5972 if (status
& SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK
)
5973 handle_send_egress_err_info(dd
, sc_to_vl(dd
, sw_index
));
5976 * Automatically restart halted kernel contexts out of interrupt
5977 * context. User contexts must ask the driver to restart the context.
5979 if (sc
->type
!= SC_USER
)
5980 queue_work(dd
->pport
->hfi1_wq
, &sc
->halt_work
);
5983 * Update the counters for the corresponding status bits.
5984 * Note that these particular counters are aggregated over all
5987 for (i
= 0; i
< NUM_SEND_CTXT_ERR_STATUS_COUNTERS
; i
++) {
5988 if (status
& (1ull << i
))
5989 incr_cntr64(&dd
->sw_ctxt_err_status_cnt
[i
]);
5993 static void handle_sdma_eng_err(struct hfi1_devdata
*dd
,
5994 unsigned int source
, u64 status
)
5996 struct sdma_engine
*sde
;
5999 sde
= &dd
->per_sdma
[source
];
6000 #ifdef CONFIG_SDMA_VERBOSITY
6001 dd_dev_err(sde
->dd
, "CONFIG SDMA(%u) %s:%d %s()\n", sde
->this_idx
,
6002 slashstrip(__FILE__
), __LINE__
, __func__
);
6003 dd_dev_err(sde
->dd
, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
6004 sde
->this_idx
, source
, (unsigned long long)status
);
6007 sdma_engine_error(sde
, status
);
6010 * Update the counters for the corresponding status bits.
6011 * Note that these particular counters are aggregated over
6012 * all 16 DMA engines.
6014 for (i
= 0; i
< NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS
; i
++) {
6015 if (status
& (1ull << i
))
6016 incr_cntr64(&dd
->sw_send_dma_eng_err_status_cnt
[i
]);
6021 * CCE block SDMA error interrupt. Source is < 16.
6023 static void is_sdma_eng_err_int(struct hfi1_devdata
*dd
, unsigned int source
)
6025 #ifdef CONFIG_SDMA_VERBOSITY
6026 struct sdma_engine
*sde
= &dd
->per_sdma
[source
];
6028 dd_dev_err(dd
, "CONFIG SDMA(%u) %s:%d %s()\n", sde
->this_idx
,
6029 slashstrip(__FILE__
), __LINE__
, __func__
);
6030 dd_dev_err(dd
, "CONFIG SDMA(%u) source: %u\n", sde
->this_idx
,
6032 sdma_dumpstate(sde
);
6034 interrupt_clear_down(dd
, source
, &sdma_eng_err
);
6038 * CCE block "various" interrupt. Source is < 8.
6040 static void is_various_int(struct hfi1_devdata
*dd
, unsigned int source
)
6042 const struct err_reg_info
*eri
= &various_err
[source
];
6045 * TCritInt cannot go through interrupt_clear_down()
6046 * because it is not a second tier interrupt. The handler
6047 * should be called directly.
6049 if (source
== TCRIT_INT_SOURCE
)
6050 handle_temp_err(dd
);
6051 else if (eri
->handler
)
6052 interrupt_clear_down(dd
, 0, eri
);
6055 "%s: Unimplemented/reserved interrupt %d\n",
6059 static void handle_qsfp_int(struct hfi1_devdata
*dd
, u32 src_ctx
, u64 reg
)
6061 /* src_ctx is always zero */
6062 struct hfi1_pportdata
*ppd
= dd
->pport
;
6063 unsigned long flags
;
6064 u64 qsfp_int_mgmt
= (u64
)(QSFP_HFI0_INT_N
| QSFP_HFI0_MODPRST_N
);
6066 if (reg
& QSFP_HFI0_MODPRST_N
) {
6067 if (!qsfp_mod_present(ppd
)) {
6068 dd_dev_info(dd
, "%s: QSFP module removed\n",
6071 ppd
->driver_link_ready
= 0;
6073 * Cable removed, reset all our information about the
6074 * cache and cable capabilities
6077 spin_lock_irqsave(&ppd
->qsfp_info
.qsfp_lock
, flags
);
6079 * We don't set cache_refresh_required here as we expect
6080 * an interrupt when a cable is inserted
6082 ppd
->qsfp_info
.cache_valid
= 0;
6083 ppd
->qsfp_info
.reset_needed
= 0;
6084 ppd
->qsfp_info
.limiting_active
= 0;
6085 spin_unlock_irqrestore(&ppd
->qsfp_info
.qsfp_lock
,
6087 /* Invert the ModPresent pin now to detect plug-in */
6088 write_csr(dd
, dd
->hfi1_id
? ASIC_QSFP2_INVERT
:
6089 ASIC_QSFP1_INVERT
, qsfp_int_mgmt
);
6091 if ((ppd
->offline_disabled_reason
>
6093 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED
)) ||
6094 (ppd
->offline_disabled_reason
==
6095 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE
)))
6096 ppd
->offline_disabled_reason
=
6098 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED
);
6100 if (ppd
->host_link_state
== HLS_DN_POLL
) {
6102 * The link is still in POLL. This means
6103 * that the normal link down processing
6104 * will not happen. We have to do it here
6105 * before turning the DC off.
6107 queue_work(ppd
->link_wq
, &ppd
->link_down_work
);
6110 dd_dev_info(dd
, "%s: QSFP module inserted\n",
6113 spin_lock_irqsave(&ppd
->qsfp_info
.qsfp_lock
, flags
);
6114 ppd
->qsfp_info
.cache_valid
= 0;
6115 ppd
->qsfp_info
.cache_refresh_required
= 1;
6116 spin_unlock_irqrestore(&ppd
->qsfp_info
.qsfp_lock
,
6120 * Stop inversion of ModPresent pin to detect
6121 * removal of the cable
6123 qsfp_int_mgmt
&= ~(u64
)QSFP_HFI0_MODPRST_N
;
6124 write_csr(dd
, dd
->hfi1_id
? ASIC_QSFP2_INVERT
:
6125 ASIC_QSFP1_INVERT
, qsfp_int_mgmt
);
6127 ppd
->offline_disabled_reason
=
6128 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT
);
6132 if (reg
& QSFP_HFI0_INT_N
) {
6133 dd_dev_info(dd
, "%s: Interrupt received from QSFP module\n",
6135 spin_lock_irqsave(&ppd
->qsfp_info
.qsfp_lock
, flags
);
6136 ppd
->qsfp_info
.check_interrupt_flags
= 1;
6137 spin_unlock_irqrestore(&ppd
->qsfp_info
.qsfp_lock
, flags
);
6140 /* Schedule the QSFP work only if there is a cable attached. */
6141 if (qsfp_mod_present(ppd
))
6142 queue_work(ppd
->link_wq
, &ppd
->qsfp_info
.qsfp_work
);
6145 static int request_host_lcb_access(struct hfi1_devdata
*dd
)
6149 ret
= do_8051_command(dd
, HCMD_MISC
,
6150 (u64
)HCMD_MISC_REQUEST_LCB_ACCESS
<<
6151 LOAD_DATA_FIELD_ID_SHIFT
, NULL
);
6152 if (ret
!= HCMD_SUCCESS
) {
6153 dd_dev_err(dd
, "%s: command failed with error %d\n",
6156 return ret
== HCMD_SUCCESS
? 0 : -EBUSY
;
6159 static int request_8051_lcb_access(struct hfi1_devdata
*dd
)
6163 ret
= do_8051_command(dd
, HCMD_MISC
,
6164 (u64
)HCMD_MISC_GRANT_LCB_ACCESS
<<
6165 LOAD_DATA_FIELD_ID_SHIFT
, NULL
);
6166 if (ret
!= HCMD_SUCCESS
) {
6167 dd_dev_err(dd
, "%s: command failed with error %d\n",
6170 return ret
== HCMD_SUCCESS
? 0 : -EBUSY
;
6174 * Set the LCB selector - allow host access. The DCC selector always
6175 * points to the host.
6177 static inline void set_host_lcb_access(struct hfi1_devdata
*dd
)
6179 write_csr(dd
, DC_DC8051_CFG_CSR_ACCESS_SEL
,
6180 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK
|
6181 DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK
);
6185 * Clear the LCB selector - allow 8051 access. The DCC selector always
6186 * points to the host.
6188 static inline void set_8051_lcb_access(struct hfi1_devdata
*dd
)
6190 write_csr(dd
, DC_DC8051_CFG_CSR_ACCESS_SEL
,
6191 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK
);
6195 * Acquire LCB access from the 8051. If the host already has access,
6196 * just increment a counter. Otherwise, inform the 8051 that the
6197 * host is taking access.
6201 * -EBUSY if the 8051 has control and cannot be disturbed
6202 * -errno if unable to acquire access from the 8051
6204 int acquire_lcb_access(struct hfi1_devdata
*dd
, int sleep_ok
)
6206 struct hfi1_pportdata
*ppd
= dd
->pport
;
6210 * Use the host link state lock so the operation of this routine
6211 * { link state check, selector change, count increment } can occur
6212 * as a unit against a link state change. Otherwise there is a
6213 * race between the state change and the count increment.
6216 mutex_lock(&ppd
->hls_lock
);
6218 while (!mutex_trylock(&ppd
->hls_lock
))
6222 /* this access is valid only when the link is up */
6223 if (ppd
->host_link_state
& HLS_DOWN
) {
6224 dd_dev_info(dd
, "%s: link state %s not up\n",
6225 __func__
, link_state_name(ppd
->host_link_state
));
6230 if (dd
->lcb_access_count
== 0) {
6231 ret
= request_host_lcb_access(dd
);
6234 "%s: unable to acquire LCB access, err %d\n",
6238 set_host_lcb_access(dd
);
6240 dd
->lcb_access_count
++;
6242 mutex_unlock(&ppd
->hls_lock
);
6247 * Release LCB access by decrementing the use count. If the count is moving
6248 * from 1 to 0, inform 8051 that it has control back.
6252 * -errno if unable to release access to the 8051
6254 int release_lcb_access(struct hfi1_devdata
*dd
, int sleep_ok
)
6259 * Use the host link state lock because the acquire needed it.
6260 * Here, we only need to keep { selector change, count decrement }
6264 mutex_lock(&dd
->pport
->hls_lock
);
6266 while (!mutex_trylock(&dd
->pport
->hls_lock
))
6270 if (dd
->lcb_access_count
== 0) {
6271 dd_dev_err(dd
, "%s: LCB access count is zero. Skipping.\n",
6276 if (dd
->lcb_access_count
== 1) {
6277 set_8051_lcb_access(dd
);
6278 ret
= request_8051_lcb_access(dd
);
6281 "%s: unable to release LCB access, err %d\n",
6283 /* restore host access if the grant didn't work */
6284 set_host_lcb_access(dd
);
6288 dd
->lcb_access_count
--;
6290 mutex_unlock(&dd
->pport
->hls_lock
);
6295 * Initialize LCB access variables and state. Called during driver load,
6296 * after most of the initialization is finished.
6298 * The DC default is LCB access on for the host. The driver defaults to
6299 * leaving access to the 8051. Assign access now - this constrains the call
6300 * to this routine to be after all LCB set-up is done. In particular, after
6301 * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6303 static void init_lcb_access(struct hfi1_devdata
*dd
)
6305 dd
->lcb_access_count
= 0;
6309 * Write a response back to a 8051 request.
6311 static void hreq_response(struct hfi1_devdata
*dd
, u8 return_code
, u16 rsp_data
)
6313 write_csr(dd
, DC_DC8051_CFG_EXT_DEV_0
,
6314 DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK
|
6316 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT
|
6317 (u64
)rsp_data
<< DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT
);
6321 * Handle host requests from the 8051.
6323 static void handle_8051_request(struct hfi1_pportdata
*ppd
)
6325 struct hfi1_devdata
*dd
= ppd
->dd
;
6330 reg
= read_csr(dd
, DC_DC8051_CFG_EXT_DEV_1
);
6331 if ((reg
& DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK
) == 0)
6332 return; /* no request */
6334 /* zero out COMPLETED so the response is seen */
6335 write_csr(dd
, DC_DC8051_CFG_EXT_DEV_0
, 0);
6337 /* extract request details */
6338 type
= (reg
>> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT
)
6339 & DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK
;
6340 data
= (reg
>> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT
)
6341 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK
;
6344 case HREQ_LOAD_CONFIG
:
6345 case HREQ_SAVE_CONFIG
:
6346 case HREQ_READ_CONFIG
:
6347 case HREQ_SET_TX_EQ_ABS
:
6348 case HREQ_SET_TX_EQ_REL
:
6350 dd_dev_info(dd
, "8051 request: request 0x%x not supported\n",
6352 hreq_response(dd
, HREQ_NOT_SUPPORTED
, 0);
6354 case HREQ_CONFIG_DONE
:
6355 hreq_response(dd
, HREQ_SUCCESS
, 0);
6358 case HREQ_INTERFACE_TEST
:
6359 hreq_response(dd
, HREQ_SUCCESS
, data
);
6362 dd_dev_err(dd
, "8051 request: unknown request 0x%x\n", type
);
6363 hreq_response(dd
, HREQ_NOT_SUPPORTED
, 0);
6369 * Set up allocation unit vaulue.
6371 void set_up_vau(struct hfi1_devdata
*dd
, u8 vau
)
6373 u64 reg
= read_csr(dd
, SEND_CM_GLOBAL_CREDIT
);
6375 /* do not modify other values in the register */
6376 reg
&= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK
;
6377 reg
|= (u64
)vau
<< SEND_CM_GLOBAL_CREDIT_AU_SHIFT
;
6378 write_csr(dd
, SEND_CM_GLOBAL_CREDIT
, reg
);
6382 * Set up initial VL15 credits of the remote. Assumes the rest of
6383 * the CM credit registers are zero from a previous global or credit reset.
6384 * Shared limit for VL15 will always be 0.
6386 void set_up_vl15(struct hfi1_devdata
*dd
, u16 vl15buf
)
6388 u64 reg
= read_csr(dd
, SEND_CM_GLOBAL_CREDIT
);
6390 /* set initial values for total and shared credit limit */
6391 reg
&= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK
|
6392 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK
);
6395 * Set total limit to be equal to VL15 credits.
6396 * Leave shared limit at 0.
6398 reg
|= (u64
)vl15buf
<< SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT
;
6399 write_csr(dd
, SEND_CM_GLOBAL_CREDIT
, reg
);
6401 write_csr(dd
, SEND_CM_CREDIT_VL15
, (u64
)vl15buf
6402 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT
);
6406 * Zero all credit details from the previous connection and
6407 * reset the CM manager's internal counters.
6409 void reset_link_credits(struct hfi1_devdata
*dd
)
6413 /* remove all previous VL credit limits */
6414 for (i
= 0; i
< TXE_NUM_DATA_VL
; i
++)
6415 write_csr(dd
, SEND_CM_CREDIT_VL
+ (8 * i
), 0);
6416 write_csr(dd
, SEND_CM_CREDIT_VL15
, 0);
6417 write_csr(dd
, SEND_CM_GLOBAL_CREDIT
, 0);
6418 /* reset the CM block */
6419 pio_send_control(dd
, PSC_CM_RESET
);
6420 /* reset cached value */
6421 dd
->vl15buf_cached
= 0;
6424 /* convert a vCU to a CU */
6425 static u32
vcu_to_cu(u8 vcu
)
6430 /* convert a CU to a vCU */
6431 static u8
cu_to_vcu(u32 cu
)
6436 /* convert a vAU to an AU */
6437 static u32
vau_to_au(u8 vau
)
6439 return 8 * (1 << vau
);
6442 static void set_linkup_defaults(struct hfi1_pportdata
*ppd
)
6444 ppd
->sm_trap_qp
= 0x0;
6449 * Graceful LCB shutdown. This leaves the LCB FIFOs in reset.
6451 static void lcb_shutdown(struct hfi1_devdata
*dd
, int abort
)
6455 /* clear lcb run: LCB_CFG_RUN.EN = 0 */
6456 write_csr(dd
, DC_LCB_CFG_RUN
, 0);
6457 /* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6458 write_csr(dd
, DC_LCB_CFG_TX_FIFOS_RESET
,
6459 1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT
);
6460 /* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6461 dd
->lcb_err_en
= read_csr(dd
, DC_LCB_ERR_EN
);
6462 reg
= read_csr(dd
, DCC_CFG_RESET
);
6463 write_csr(dd
, DCC_CFG_RESET
, reg
|
6464 (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT
) |
6465 (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT
));
6466 (void)read_csr(dd
, DCC_CFG_RESET
); /* make sure the write completed */
6468 udelay(1); /* must hold for the longer of 16cclks or 20ns */
6469 write_csr(dd
, DCC_CFG_RESET
, reg
);
6470 write_csr(dd
, DC_LCB_ERR_EN
, dd
->lcb_err_en
);
6475 * This routine should be called after the link has been transitioned to
6476 * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6479 * The expectation is that the caller of this routine would have taken
6480 * care of properly transitioning the link into the correct state.
6481 * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6482 * before calling this function.
6484 static void _dc_shutdown(struct hfi1_devdata
*dd
)
6486 lockdep_assert_held(&dd
->dc8051_lock
);
6488 if (dd
->dc_shutdown
)
6491 dd
->dc_shutdown
= 1;
6492 /* Shutdown the LCB */
6493 lcb_shutdown(dd
, 1);
6495 * Going to OFFLINE would have causes the 8051 to put the
6496 * SerDes into reset already. Just need to shut down the 8051,
6499 write_csr(dd
, DC_DC8051_CFG_RST
, 0x1);
6502 static void dc_shutdown(struct hfi1_devdata
*dd
)
6504 mutex_lock(&dd
->dc8051_lock
);
6506 mutex_unlock(&dd
->dc8051_lock
);
6510 * Calling this after the DC has been brought out of reset should not
6512 * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6513 * before calling this function.
6515 static void _dc_start(struct hfi1_devdata
*dd
)
6517 lockdep_assert_held(&dd
->dc8051_lock
);
6519 if (!dd
->dc_shutdown
)
6522 /* Take the 8051 out of reset */
6523 write_csr(dd
, DC_DC8051_CFG_RST
, 0ull);
6524 /* Wait until 8051 is ready */
6525 if (wait_fm_ready(dd
, TIMEOUT_8051_START
))
6526 dd_dev_err(dd
, "%s: timeout starting 8051 firmware\n",
6529 /* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6530 write_csr(dd
, DCC_CFG_RESET
, 0x10);
6531 /* lcb_shutdown() with abort=1 does not restore these */
6532 write_csr(dd
, DC_LCB_ERR_EN
, dd
->lcb_err_en
);
6533 dd
->dc_shutdown
= 0;
6536 static void dc_start(struct hfi1_devdata
*dd
)
6538 mutex_lock(&dd
->dc8051_lock
);
6540 mutex_unlock(&dd
->dc8051_lock
);
6544 * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6546 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata
*dd
)
6548 u64 rx_radr
, tx_radr
;
6551 if (dd
->icode
!= ICODE_FPGA_EMULATION
)
6555 * These LCB defaults on emulator _s are good, nothing to do here:
6556 * LCB_CFG_TX_FIFOS_RADR
6557 * LCB_CFG_RX_FIFOS_RADR
6559 * LCB_CFG_IGNORE_LOST_RCLK
6561 if (is_emulator_s(dd
))
6563 /* else this is _p */
6565 version
= emulator_rev(dd
);
6567 version
= 0x2d; /* all B0 use 0x2d or higher settings */
6569 if (version
<= 0x12) {
6570 /* release 0x12 and below */
6573 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6574 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6575 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6578 0xaull
<< DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6579 | 0x9ull
<< DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6580 | 0x9ull
<< DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT
;
6582 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6583 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6585 tx_radr
= 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT
;
6586 } else if (version
<= 0x18) {
6587 /* release 0x13 up to 0x18 */
6588 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6590 0x9ull
<< DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6591 | 0x8ull
<< DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6592 | 0x8ull
<< DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT
;
6593 tx_radr
= 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT
;
6594 } else if (version
== 0x19) {
6596 /* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6598 0xAull
<< DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6599 | 0x9ull
<< DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6600 | 0x9ull
<< DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT
;
6601 tx_radr
= 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT
;
6602 } else if (version
== 0x1a) {
6604 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6606 0x9ull
<< DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6607 | 0x8ull
<< DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6608 | 0x8ull
<< DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT
;
6609 tx_radr
= 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT
;
6610 write_csr(dd
, DC_LCB_CFG_LN_DCLK
, 1ull);
6612 /* release 0x1b and higher */
6613 /* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6615 0x8ull
<< DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6616 | 0x7ull
<< DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6617 | 0x7ull
<< DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT
;
6618 tx_radr
= 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT
;
6621 write_csr(dd
, DC_LCB_CFG_RX_FIFOS_RADR
, rx_radr
);
6622 /* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6623 write_csr(dd
, DC_LCB_CFG_IGNORE_LOST_RCLK
,
6624 DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK
);
6625 write_csr(dd
, DC_LCB_CFG_TX_FIFOS_RADR
, tx_radr
);
6629 * Handle a SMA idle message
6631 * This is a work-queue function outside of the interrupt.
6633 void handle_sma_message(struct work_struct
*work
)
6635 struct hfi1_pportdata
*ppd
= container_of(work
, struct hfi1_pportdata
,
6637 struct hfi1_devdata
*dd
= ppd
->dd
;
6642 * msg is bytes 1-4 of the 40-bit idle message - the command code
6645 ret
= read_idle_sma(dd
, &msg
);
6648 dd_dev_info(dd
, "%s: SMA message 0x%llx\n", __func__
, msg
);
6650 * React to the SMA message. Byte[1] (0 for us) is the command.
6652 switch (msg
& 0xff) {
6655 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6658 * Only expected in INIT or ARMED, discard otherwise.
6660 if (ppd
->host_link_state
& (HLS_UP_INIT
| HLS_UP_ARMED
))
6661 ppd
->neighbor_normal
= 1;
6663 case SMA_IDLE_ACTIVE
:
6665 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6668 * Can activate the node. Discard otherwise.
6670 if (ppd
->host_link_state
== HLS_UP_ARMED
&&
6671 ppd
->is_active_optimize_enabled
) {
6672 ppd
->neighbor_normal
= 1;
6673 ret
= set_link_state(ppd
, HLS_UP_ACTIVE
);
6677 "%s: received Active SMA idle message, couldn't set link to Active\n",
6683 "%s: received unexpected SMA idle message 0x%llx\n",
6689 static void adjust_rcvctrl(struct hfi1_devdata
*dd
, u64 add
, u64 clear
)
6692 unsigned long flags
;
6694 spin_lock_irqsave(&dd
->rcvctrl_lock
, flags
);
6695 rcvctrl
= read_csr(dd
, RCV_CTRL
);
6698 write_csr(dd
, RCV_CTRL
, rcvctrl
);
6699 spin_unlock_irqrestore(&dd
->rcvctrl_lock
, flags
);
6702 static inline void add_rcvctrl(struct hfi1_devdata
*dd
, u64 add
)
6704 adjust_rcvctrl(dd
, add
, 0);
6707 static inline void clear_rcvctrl(struct hfi1_devdata
*dd
, u64 clear
)
6709 adjust_rcvctrl(dd
, 0, clear
);
6713 * Called from all interrupt handlers to start handling an SPC freeze.
6715 void start_freeze_handling(struct hfi1_pportdata
*ppd
, int flags
)
6717 struct hfi1_devdata
*dd
= ppd
->dd
;
6718 struct send_context
*sc
;
6721 if (flags
& FREEZE_SELF
)
6722 write_csr(dd
, CCE_CTRL
, CCE_CTRL_SPC_FREEZE_SMASK
);
6724 /* enter frozen mode */
6725 dd
->flags
|= HFI1_FROZEN
;
6727 /* notify all SDMA engines that they are going into a freeze */
6728 sdma_freeze_notify(dd
, !!(flags
& FREEZE_LINK_DOWN
));
6730 /* do halt pre-handling on all enabled send contexts */
6731 for (i
= 0; i
< dd
->num_send_contexts
; i
++) {
6732 sc
= dd
->send_contexts
[i
].sc
;
6733 if (sc
&& (sc
->flags
& SCF_ENABLED
))
6734 sc_stop(sc
, SCF_FROZEN
| SCF_HALTED
);
6737 /* Send context are frozen. Notify user space */
6738 hfi1_set_uevent_bits(ppd
, _HFI1_EVENT_FROZEN_BIT
);
6740 if (flags
& FREEZE_ABORT
) {
6742 "Aborted freeze recovery. Please REBOOT system\n");
6745 /* queue non-interrupt handler */
6746 queue_work(ppd
->hfi1_wq
, &ppd
->freeze_work
);
6750 * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6751 * depending on the "freeze" parameter.
6753 * No need to return an error if it times out, our only option
6754 * is to proceed anyway.
6756 static void wait_for_freeze_status(struct hfi1_devdata
*dd
, int freeze
)
6758 unsigned long timeout
;
6761 timeout
= jiffies
+ msecs_to_jiffies(FREEZE_STATUS_TIMEOUT
);
6763 reg
= read_csr(dd
, CCE_STATUS
);
6765 /* waiting until all indicators are set */
6766 if ((reg
& ALL_FROZE
) == ALL_FROZE
)
6767 return; /* all done */
6769 /* waiting until all indicators are clear */
6770 if ((reg
& ALL_FROZE
) == 0)
6771 return; /* all done */
6774 if (time_after(jiffies
, timeout
)) {
6776 "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6777 freeze
? "" : "un", reg
& ALL_FROZE
,
6778 freeze
? ALL_FROZE
: 0ull);
6781 usleep_range(80, 120);
6786 * Do all freeze handling for the RXE block.
6788 static void rxe_freeze(struct hfi1_devdata
*dd
)
6791 struct hfi1_ctxtdata
*rcd
;
6794 clear_rcvctrl(dd
, RCV_CTRL_RCV_PORT_ENABLE_SMASK
);
6796 /* disable all receive contexts */
6797 for (i
= 0; i
< dd
->num_rcv_contexts
; i
++) {
6798 rcd
= hfi1_rcd_get_by_index(dd
, i
);
6799 hfi1_rcvctrl(dd
, HFI1_RCVCTRL_CTXT_DIS
, rcd
);
6805 * Unfreeze handling for the RXE block - kernel contexts only.
6806 * This will also enable the port. User contexts will do unfreeze
6807 * handling on a per-context basis as they call into the driver.
6810 static void rxe_kernel_unfreeze(struct hfi1_devdata
*dd
)
6814 struct hfi1_ctxtdata
*rcd
;
6816 /* enable all kernel contexts */
6817 for (i
= 0; i
< dd
->num_rcv_contexts
; i
++) {
6818 rcd
= hfi1_rcd_get_by_index(dd
, i
);
6820 /* Ensure all non-user contexts(including vnic) are enabled */
6822 (i
>= dd
->first_dyn_alloc_ctxt
&& !rcd
->is_vnic
)) {
6826 rcvmask
= HFI1_RCVCTRL_CTXT_ENB
;
6827 /* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6828 rcvmask
|= HFI1_CAP_KGET_MASK(rcd
->flags
, DMA_RTAIL
) ?
6829 HFI1_RCVCTRL_TAILUPD_ENB
: HFI1_RCVCTRL_TAILUPD_DIS
;
6830 hfi1_rcvctrl(dd
, rcvmask
, rcd
);
6835 add_rcvctrl(dd
, RCV_CTRL_RCV_PORT_ENABLE_SMASK
);
6839 * Non-interrupt SPC freeze handling.
6841 * This is a work-queue function outside of the triggering interrupt.
6843 void handle_freeze(struct work_struct
*work
)
6845 struct hfi1_pportdata
*ppd
= container_of(work
, struct hfi1_pportdata
,
6847 struct hfi1_devdata
*dd
= ppd
->dd
;
6849 /* wait for freeze indicators on all affected blocks */
6850 wait_for_freeze_status(dd
, 1);
6852 /* SPC is now frozen */
6854 /* do send PIO freeze steps */
6857 /* do send DMA freeze steps */
6860 /* do send egress freeze steps - nothing to do */
6862 /* do receive freeze steps */
6866 * Unfreeze the hardware - clear the freeze, wait for each
6867 * block's frozen bit to clear, then clear the frozen flag.
6869 write_csr(dd
, CCE_CTRL
, CCE_CTRL_SPC_UNFREEZE_SMASK
);
6870 wait_for_freeze_status(dd
, 0);
6873 write_csr(dd
, CCE_CTRL
, CCE_CTRL_SPC_FREEZE_SMASK
);
6874 wait_for_freeze_status(dd
, 1);
6875 write_csr(dd
, CCE_CTRL
, CCE_CTRL_SPC_UNFREEZE_SMASK
);
6876 wait_for_freeze_status(dd
, 0);
6879 /* do send PIO unfreeze steps for kernel contexts */
6880 pio_kernel_unfreeze(dd
);
6882 /* do send DMA unfreeze steps */
6885 /* do send egress unfreeze steps - nothing to do */
6887 /* do receive unfreeze steps for kernel contexts */
6888 rxe_kernel_unfreeze(dd
);
6891 * The unfreeze procedure touches global device registers when
6892 * it disables and re-enables RXE. Mark the device unfrozen
6893 * after all that is done so other parts of the driver waiting
6894 * for the device to unfreeze don't do things out of order.
6896 * The above implies that the meaning of HFI1_FROZEN flag is
6897 * "Device has gone into freeze mode and freeze mode handling
6898 * is still in progress."
6900 * The flag will be removed when freeze mode processing has
6903 dd
->flags
&= ~HFI1_FROZEN
;
6904 wake_up(&dd
->event_queue
);
6906 /* no longer frozen */
6910 * update_xmit_counters - update PortXmitWait/PortVlXmitWait
6912 * @ppd: info of physical Hfi port
6913 * @link_width: new link width after link up or downgrade
6915 * Update the PortXmitWait and PortVlXmitWait counters after
6916 * a link up or downgrade event to reflect a link width change.
6918 static void update_xmit_counters(struct hfi1_pportdata
*ppd
, u16 link_width
)
6924 tx_width
= tx_link_width(link_width
);
6925 link_speed
= get_link_speed(ppd
->link_speed_active
);
6928 * There are C_VL_COUNT number of PortVLXmitWait counters.
6929 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
6931 for (i
= 0; i
< C_VL_COUNT
+ 1; i
++)
6932 get_xmit_wait_counters(ppd
, tx_width
, link_speed
, i
);
6936 * Handle a link up interrupt from the 8051.
6938 * This is a work-queue function outside of the interrupt.
6940 void handle_link_up(struct work_struct
*work
)
6942 struct hfi1_pportdata
*ppd
= container_of(work
, struct hfi1_pportdata
,
6944 struct hfi1_devdata
*dd
= ppd
->dd
;
6946 set_link_state(ppd
, HLS_UP_INIT
);
6948 /* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6951 * OPA specifies that certain counters are cleared on a transition
6952 * to link up, so do that.
6954 clear_linkup_counters(dd
);
6956 * And (re)set link up default values.
6958 set_linkup_defaults(ppd
);
6961 * Set VL15 credits. Use cached value from verify cap interrupt.
6962 * In case of quick linkup or simulator, vl15 value will be set by
6963 * handle_linkup_change. VerifyCap interrupt handler will not be
6964 * called in those scenarios.
6966 if (!(quick_linkup
|| dd
->icode
== ICODE_FUNCTIONAL_SIMULATOR
))
6967 set_up_vl15(dd
, dd
->vl15buf_cached
);
6969 /* enforce link speed enabled */
6970 if ((ppd
->link_speed_active
& ppd
->link_speed_enabled
) == 0) {
6971 /* oops - current speed is not enabled, bounce */
6973 "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6974 ppd
->link_speed_active
, ppd
->link_speed_enabled
);
6975 set_link_down_reason(ppd
, OPA_LINKDOWN_REASON_SPEED_POLICY
, 0,
6976 OPA_LINKDOWN_REASON_SPEED_POLICY
);
6977 set_link_state(ppd
, HLS_DN_OFFLINE
);
6983 * Several pieces of LNI information were cached for SMA in ppd.
6984 * Reset these on link down
6986 static void reset_neighbor_info(struct hfi1_pportdata
*ppd
)
6988 ppd
->neighbor_guid
= 0;
6989 ppd
->neighbor_port_number
= 0;
6990 ppd
->neighbor_type
= 0;
6991 ppd
->neighbor_fm_security
= 0;
6994 static const char * const link_down_reason_strs
[] = {
6995 [OPA_LINKDOWN_REASON_NONE
] = "None",
6996 [OPA_LINKDOWN_REASON_RCV_ERROR_0
] = "Receive error 0",
6997 [OPA_LINKDOWN_REASON_BAD_PKT_LEN
] = "Bad packet length",
6998 [OPA_LINKDOWN_REASON_PKT_TOO_LONG
] = "Packet too long",
6999 [OPA_LINKDOWN_REASON_PKT_TOO_SHORT
] = "Packet too short",
7000 [OPA_LINKDOWN_REASON_BAD_SLID
] = "Bad SLID",
7001 [OPA_LINKDOWN_REASON_BAD_DLID
] = "Bad DLID",
7002 [OPA_LINKDOWN_REASON_BAD_L2
] = "Bad L2",
7003 [OPA_LINKDOWN_REASON_BAD_SC
] = "Bad SC",
7004 [OPA_LINKDOWN_REASON_RCV_ERROR_8
] = "Receive error 8",
7005 [OPA_LINKDOWN_REASON_BAD_MID_TAIL
] = "Bad mid tail",
7006 [OPA_LINKDOWN_REASON_RCV_ERROR_10
] = "Receive error 10",
7007 [OPA_LINKDOWN_REASON_PREEMPT_ERROR
] = "Preempt error",
7008 [OPA_LINKDOWN_REASON_PREEMPT_VL15
] = "Preempt vl15",
7009 [OPA_LINKDOWN_REASON_BAD_VL_MARKER
] = "Bad VL marker",
7010 [OPA_LINKDOWN_REASON_RCV_ERROR_14
] = "Receive error 14",
7011 [OPA_LINKDOWN_REASON_RCV_ERROR_15
] = "Receive error 15",
7012 [OPA_LINKDOWN_REASON_BAD_HEAD_DIST
] = "Bad head distance",
7013 [OPA_LINKDOWN_REASON_BAD_TAIL_DIST
] = "Bad tail distance",
7014 [OPA_LINKDOWN_REASON_BAD_CTRL_DIST
] = "Bad control distance",
7015 [OPA_LINKDOWN_REASON_BAD_CREDIT_ACK
] = "Bad credit ack",
7016 [OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER
] = "Unsupported VL marker",
7017 [OPA_LINKDOWN_REASON_BAD_PREEMPT
] = "Bad preempt",
7018 [OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT
] = "Bad control flit",
7019 [OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT
] = "Exceed multicast limit",
7020 [OPA_LINKDOWN_REASON_RCV_ERROR_24
] = "Receive error 24",
7021 [OPA_LINKDOWN_REASON_RCV_ERROR_25
] = "Receive error 25",
7022 [OPA_LINKDOWN_REASON_RCV_ERROR_26
] = "Receive error 26",
7023 [OPA_LINKDOWN_REASON_RCV_ERROR_27
] = "Receive error 27",
7024 [OPA_LINKDOWN_REASON_RCV_ERROR_28
] = "Receive error 28",
7025 [OPA_LINKDOWN_REASON_RCV_ERROR_29
] = "Receive error 29",
7026 [OPA_LINKDOWN_REASON_RCV_ERROR_30
] = "Receive error 30",
7027 [OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN
] =
7028 "Excessive buffer overrun",
7029 [OPA_LINKDOWN_REASON_UNKNOWN
] = "Unknown",
7030 [OPA_LINKDOWN_REASON_REBOOT
] = "Reboot",
7031 [OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN
] = "Neighbor unknown",
7032 [OPA_LINKDOWN_REASON_FM_BOUNCE
] = "FM bounce",
7033 [OPA_LINKDOWN_REASON_SPEED_POLICY
] = "Speed policy",
7034 [OPA_LINKDOWN_REASON_WIDTH_POLICY
] = "Width policy",
7035 [OPA_LINKDOWN_REASON_DISCONNECTED
] = "Disconnected",
7036 [OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED
] =
7037 "Local media not installed",
7038 [OPA_LINKDOWN_REASON_NOT_INSTALLED
] = "Not installed",
7039 [OPA_LINKDOWN_REASON_CHASSIS_CONFIG
] = "Chassis config",
7040 [OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED
] =
7041 "End to end not installed",
7042 [OPA_LINKDOWN_REASON_POWER_POLICY
] = "Power policy",
7043 [OPA_LINKDOWN_REASON_LINKSPEED_POLICY
] = "Link speed policy",
7044 [OPA_LINKDOWN_REASON_LINKWIDTH_POLICY
] = "Link width policy",
7045 [OPA_LINKDOWN_REASON_SWITCH_MGMT
] = "Switch management",
7046 [OPA_LINKDOWN_REASON_SMA_DISABLED
] = "SMA disabled",
7047 [OPA_LINKDOWN_REASON_TRANSIENT
] = "Transient"
7050 /* return the neighbor link down reason string */
7051 static const char *link_down_reason_str(u8 reason
)
7053 const char *str
= NULL
;
7055 if (reason
< ARRAY_SIZE(link_down_reason_strs
))
7056 str
= link_down_reason_strs
[reason
];
7064 * Handle a link down interrupt from the 8051.
7066 * This is a work-queue function outside of the interrupt.
7068 void handle_link_down(struct work_struct
*work
)
7070 u8 lcl_reason
, neigh_reason
= 0;
7071 u8 link_down_reason
;
7072 struct hfi1_pportdata
*ppd
= container_of(work
, struct hfi1_pportdata
,
7075 static const char ldr_str
[] = "Link down reason: ";
7077 if ((ppd
->host_link_state
&
7078 (HLS_DN_POLL
| HLS_VERIFY_CAP
| HLS_GOING_UP
)) &&
7079 ppd
->port_type
== PORT_TYPE_FIXED
)
7080 ppd
->offline_disabled_reason
=
7081 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED
);
7083 /* Go offline first, then deal with reading/writing through 8051 */
7084 was_up
= !!(ppd
->host_link_state
& HLS_UP
);
7085 set_link_state(ppd
, HLS_DN_OFFLINE
);
7086 xchg(&ppd
->is_link_down_queued
, 0);
7090 /* link down reason is only valid if the link was up */
7091 read_link_down_reason(ppd
->dd
, &link_down_reason
);
7092 switch (link_down_reason
) {
7093 case LDR_LINK_TRANSFER_ACTIVE_LOW
:
7094 /* the link went down, no idle message reason */
7095 dd_dev_info(ppd
->dd
, "%sUnexpected link down\n",
7098 case LDR_RECEIVED_LINKDOWN_IDLE_MSG
:
7100 * The neighbor reason is only valid if an idle message
7101 * was received for it.
7103 read_planned_down_reason_code(ppd
->dd
, &neigh_reason
);
7104 dd_dev_info(ppd
->dd
,
7105 "%sNeighbor link down message %d, %s\n",
7106 ldr_str
, neigh_reason
,
7107 link_down_reason_str(neigh_reason
));
7109 case LDR_RECEIVED_HOST_OFFLINE_REQ
:
7110 dd_dev_info(ppd
->dd
,
7111 "%sHost requested link to go offline\n",
7115 dd_dev_info(ppd
->dd
, "%sUnknown reason 0x%x\n",
7116 ldr_str
, link_down_reason
);
7121 * If no reason, assume peer-initiated but missed
7122 * LinkGoingDown idle flits.
7124 if (neigh_reason
== 0)
7125 lcl_reason
= OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN
;
7127 /* went down while polling or going up */
7128 lcl_reason
= OPA_LINKDOWN_REASON_TRANSIENT
;
7131 set_link_down_reason(ppd
, lcl_reason
, neigh_reason
, 0);
7133 /* inform the SMA when the link transitions from up to down */
7134 if (was_up
&& ppd
->local_link_down_reason
.sma
== 0 &&
7135 ppd
->neigh_link_down_reason
.sma
== 0) {
7136 ppd
->local_link_down_reason
.sma
=
7137 ppd
->local_link_down_reason
.latest
;
7138 ppd
->neigh_link_down_reason
.sma
=
7139 ppd
->neigh_link_down_reason
.latest
;
7142 reset_neighbor_info(ppd
);
7144 /* disable the port */
7145 clear_rcvctrl(ppd
->dd
, RCV_CTRL_RCV_PORT_ENABLE_SMASK
);
7148 * If there is no cable attached, turn the DC off. Otherwise,
7149 * start the link bring up.
7151 if (ppd
->port_type
== PORT_TYPE_QSFP
&& !qsfp_mod_present(ppd
))
7152 dc_shutdown(ppd
->dd
);
7157 void handle_link_bounce(struct work_struct
*work
)
7159 struct hfi1_pportdata
*ppd
= container_of(work
, struct hfi1_pportdata
,
7163 * Only do something if the link is currently up.
7165 if (ppd
->host_link_state
& HLS_UP
) {
7166 set_link_state(ppd
, HLS_DN_OFFLINE
);
7169 dd_dev_info(ppd
->dd
, "%s: link not up (%s), nothing to do\n",
7170 __func__
, link_state_name(ppd
->host_link_state
));
7175 * Mask conversion: Capability exchange to Port LTP. The capability
7176 * exchange has an implicit 16b CRC that is mandatory.
7178 static int cap_to_port_ltp(int cap
)
7180 int port_ltp
= PORT_LTP_CRC_MODE_16
; /* this mode is mandatory */
7182 if (cap
& CAP_CRC_14B
)
7183 port_ltp
|= PORT_LTP_CRC_MODE_14
;
7184 if (cap
& CAP_CRC_48B
)
7185 port_ltp
|= PORT_LTP_CRC_MODE_48
;
7186 if (cap
& CAP_CRC_12B_16B_PER_LANE
)
7187 port_ltp
|= PORT_LTP_CRC_MODE_PER_LANE
;
7193 * Convert an OPA Port LTP mask to capability mask
7195 int port_ltp_to_cap(int port_ltp
)
7199 if (port_ltp
& PORT_LTP_CRC_MODE_14
)
7200 cap_mask
|= CAP_CRC_14B
;
7201 if (port_ltp
& PORT_LTP_CRC_MODE_48
)
7202 cap_mask
|= CAP_CRC_48B
;
7203 if (port_ltp
& PORT_LTP_CRC_MODE_PER_LANE
)
7204 cap_mask
|= CAP_CRC_12B_16B_PER_LANE
;
7210 * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7212 static int lcb_to_port_ltp(int lcb_crc
)
7216 if (lcb_crc
== LCB_CRC_12B_16B_PER_LANE
)
7217 port_ltp
= PORT_LTP_CRC_MODE_PER_LANE
;
7218 else if (lcb_crc
== LCB_CRC_48B
)
7219 port_ltp
= PORT_LTP_CRC_MODE_48
;
7220 else if (lcb_crc
== LCB_CRC_14B
)
7221 port_ltp
= PORT_LTP_CRC_MODE_14
;
7223 port_ltp
= PORT_LTP_CRC_MODE_16
;
7228 static void clear_full_mgmt_pkey(struct hfi1_pportdata
*ppd
)
7230 if (ppd
->pkeys
[2] != 0) {
7232 (void)hfi1_set_ib_cfg(ppd
, HFI1_IB_CFG_PKEYS
, 0);
7233 hfi1_event_pkey_change(ppd
->dd
, ppd
->port
);
7238 * Convert the given link width to the OPA link width bitmask.
7240 static u16
link_width_to_bits(struct hfi1_devdata
*dd
, u16 width
)
7245 * Simulator and quick linkup do not set the width.
7246 * Just set it to 4x without complaint.
7248 if (dd
->icode
== ICODE_FUNCTIONAL_SIMULATOR
|| quick_linkup
)
7249 return OPA_LINK_WIDTH_4X
;
7250 return 0; /* no lanes up */
7251 case 1: return OPA_LINK_WIDTH_1X
;
7252 case 2: return OPA_LINK_WIDTH_2X
;
7253 case 3: return OPA_LINK_WIDTH_3X
;
7255 dd_dev_info(dd
, "%s: invalid width %d, using 4\n",
7258 case 4: return OPA_LINK_WIDTH_4X
;
7263 * Do a population count on the bottom nibble.
7265 static const u8 bit_counts
[16] = {
7266 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7269 static inline u8
nibble_to_count(u8 nibble
)
7271 return bit_counts
[nibble
& 0xf];
7275 * Read the active lane information from the 8051 registers and return
7278 * Active lane information is found in these 8051 registers:
7282 static void get_link_widths(struct hfi1_devdata
*dd
, u16
*tx_width
,
7288 u8 tx_polarity_inversion
;
7289 u8 rx_polarity_inversion
;
7292 /* read the active lanes */
7293 read_tx_settings(dd
, &enable_lane_tx
, &tx_polarity_inversion
,
7294 &rx_polarity_inversion
, &max_rate
);
7295 read_local_lni(dd
, &enable_lane_rx
);
7297 /* convert to counts */
7298 tx
= nibble_to_count(enable_lane_tx
);
7299 rx
= nibble_to_count(enable_lane_rx
);
7302 * Set link_speed_active here, overriding what was set in
7303 * handle_verify_cap(). The ASIC 8051 firmware does not correctly
7304 * set the max_rate field in handle_verify_cap until v0.19.
7306 if ((dd
->icode
== ICODE_RTL_SILICON
) &&
7307 (dd
->dc8051_ver
< dc8051_ver(0, 19, 0))) {
7308 /* max_rate: 0 = 12.5G, 1 = 25G */
7311 dd
->pport
[0].link_speed_active
= OPA_LINK_SPEED_12_5G
;
7315 "%s: unexpected max rate %d, using 25Gb\n",
7316 __func__
, (int)max_rate
);
7319 dd
->pport
[0].link_speed_active
= OPA_LINK_SPEED_25G
;
7325 "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7326 enable_lane_tx
, tx
, enable_lane_rx
, rx
);
7327 *tx_width
= link_width_to_bits(dd
, tx
);
7328 *rx_width
= link_width_to_bits(dd
, rx
);
7332 * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7333 * Valid after the end of VerifyCap and during LinkUp. Does not change
7334 * after link up. I.e. look elsewhere for downgrade information.
7337 * + bits [7:4] contain the number of active transmitters
7338 * + bits [3:0] contain the number of active receivers
7339 * These are numbers 1 through 4 and can be different values if the
7340 * link is asymmetric.
7342 * verify_cap_local_fm_link_width[0] retains its original value.
7344 static void get_linkup_widths(struct hfi1_devdata
*dd
, u16
*tx_width
,
7348 u8 misc_bits
, local_flags
;
7349 u16 active_tx
, active_rx
;
7351 read_vc_local_link_width(dd
, &misc_bits
, &local_flags
, &widths
);
7353 rx
= (widths
>> 8) & 0xf;
7355 *tx_width
= link_width_to_bits(dd
, tx
);
7356 *rx_width
= link_width_to_bits(dd
, rx
);
7358 /* print the active widths */
7359 get_link_widths(dd
, &active_tx
, &active_rx
);
7363 * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7364 * hardware information when the link first comes up.
7366 * The link width is not available until after VerifyCap.AllFramesReceived
7367 * (the trigger for handle_verify_cap), so this is outside that routine
7368 * and should be called when the 8051 signals linkup.
7370 void get_linkup_link_widths(struct hfi1_pportdata
*ppd
)
7372 u16 tx_width
, rx_width
;
7374 /* get end-of-LNI link widths */
7375 get_linkup_widths(ppd
->dd
, &tx_width
, &rx_width
);
7377 /* use tx_width as the link is supposed to be symmetric on link up */
7378 ppd
->link_width_active
= tx_width
;
7379 /* link width downgrade active (LWD.A) starts out matching LW.A */
7380 ppd
->link_width_downgrade_tx_active
= ppd
->link_width_active
;
7381 ppd
->link_width_downgrade_rx_active
= ppd
->link_width_active
;
7382 /* per OPA spec, on link up LWD.E resets to LWD.S */
7383 ppd
->link_width_downgrade_enabled
= ppd
->link_width_downgrade_supported
;
7384 /* cache the active egress rate (units {10^6 bits/sec]) */
7385 ppd
->current_egress_rate
= active_egress_rate(ppd
);
7389 * Handle a verify capabilities interrupt from the 8051.
7391 * This is a work-queue function outside of the interrupt.
7393 void handle_verify_cap(struct work_struct
*work
)
7395 struct hfi1_pportdata
*ppd
= container_of(work
, struct hfi1_pportdata
,
7397 struct hfi1_devdata
*dd
= ppd
->dd
;
7399 u8 power_management
;
7409 u16 active_tx
, active_rx
;
7410 u8 partner_supported_crc
;
7414 set_link_state(ppd
, HLS_VERIFY_CAP
);
7416 lcb_shutdown(dd
, 0);
7417 adjust_lcb_for_fpga_serdes(dd
);
7419 read_vc_remote_phy(dd
, &power_management
, &continuous
);
7420 read_vc_remote_fabric(dd
, &vau
, &z
, &vcu
, &vl15buf
,
7421 &partner_supported_crc
);
7422 read_vc_remote_link_width(dd
, &remote_tx_rate
, &link_widths
);
7423 read_remote_device_id(dd
, &device_id
, &device_rev
);
7425 /* print the active widths */
7426 get_link_widths(dd
, &active_tx
, &active_rx
);
7428 "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7429 (int)power_management
, (int)continuous
);
7431 "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7432 (int)vau
, (int)z
, (int)vcu
, (int)vl15buf
,
7433 (int)partner_supported_crc
);
7434 dd_dev_info(dd
, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7435 (u32
)remote_tx_rate
, (u32
)link_widths
);
7436 dd_dev_info(dd
, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7437 (u32
)device_id
, (u32
)device_rev
);
7439 * The peer vAU value just read is the peer receiver value. HFI does
7440 * not support a transmit vAU of 0 (AU == 8). We advertised that
7441 * with Z=1 in the fabric capabilities sent to the peer. The peer
7442 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7443 * receive to vAU of 1 (AU == 16). Do the same here. We do not care
7444 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7445 * subject to the Z value exception.
7449 set_up_vau(dd
, vau
);
7452 * Set VL15 credits to 0 in global credit register. Cache remote VL15
7453 * credits value and wait for link-up interrupt ot set it.
7456 dd
->vl15buf_cached
= vl15buf
;
7458 /* set up the LCB CRC mode */
7459 crc_mask
= ppd
->port_crc_mode_enabled
& partner_supported_crc
;
7461 /* order is important: use the lowest bit in common */
7462 if (crc_mask
& CAP_CRC_14B
)
7463 crc_val
= LCB_CRC_14B
;
7464 else if (crc_mask
& CAP_CRC_48B
)
7465 crc_val
= LCB_CRC_48B
;
7466 else if (crc_mask
& CAP_CRC_12B_16B_PER_LANE
)
7467 crc_val
= LCB_CRC_12B_16B_PER_LANE
;
7469 crc_val
= LCB_CRC_16B
;
7471 dd_dev_info(dd
, "Final LCB CRC mode: %d\n", (int)crc_val
);
7472 write_csr(dd
, DC_LCB_CFG_CRC_MODE
,
7473 (u64
)crc_val
<< DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT
);
7475 /* set (14b only) or clear sideband credit */
7476 reg
= read_csr(dd
, SEND_CM_CTRL
);
7477 if (crc_val
== LCB_CRC_14B
&& crc_14b_sideband
) {
7478 write_csr(dd
, SEND_CM_CTRL
,
7479 reg
| SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK
);
7481 write_csr(dd
, SEND_CM_CTRL
,
7482 reg
& ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK
);
7485 ppd
->link_speed_active
= 0; /* invalid value */
7486 if (dd
->dc8051_ver
< dc8051_ver(0, 20, 0)) {
7487 /* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7488 switch (remote_tx_rate
) {
7490 ppd
->link_speed_active
= OPA_LINK_SPEED_12_5G
;
7493 ppd
->link_speed_active
= OPA_LINK_SPEED_25G
;
7497 /* actual rate is highest bit of the ANDed rates */
7498 u8 rate
= remote_tx_rate
& ppd
->local_tx_rate
;
7501 ppd
->link_speed_active
= OPA_LINK_SPEED_25G
;
7503 ppd
->link_speed_active
= OPA_LINK_SPEED_12_5G
;
7505 if (ppd
->link_speed_active
== 0) {
7506 dd_dev_err(dd
, "%s: unexpected remote tx rate %d, using 25Gb\n",
7507 __func__
, (int)remote_tx_rate
);
7508 ppd
->link_speed_active
= OPA_LINK_SPEED_25G
;
7512 * Cache the values of the supported, enabled, and active
7513 * LTP CRC modes to return in 'portinfo' queries. But the bit
7514 * flags that are returned in the portinfo query differ from
7515 * what's in the link_crc_mask, crc_sizes, and crc_val
7516 * variables. Convert these here.
7518 ppd
->port_ltp_crc_mode
= cap_to_port_ltp(link_crc_mask
) << 8;
7519 /* supported crc modes */
7520 ppd
->port_ltp_crc_mode
|=
7521 cap_to_port_ltp(ppd
->port_crc_mode_enabled
) << 4;
7522 /* enabled crc modes */
7523 ppd
->port_ltp_crc_mode
|= lcb_to_port_ltp(crc_val
);
7524 /* active crc mode */
7526 /* set up the remote credit return table */
7527 assign_remote_cm_au_table(dd
, vcu
);
7530 * The LCB is reset on entry to handle_verify_cap(), so this must
7531 * be applied on every link up.
7533 * Adjust LCB error kill enable to kill the link if
7534 * these RBUF errors are seen:
7535 * REPLAY_BUF_MBE_SMASK
7536 * FLIT_INPUT_BUF_MBE_SMASK
7538 if (is_ax(dd
)) { /* fixed in B0 */
7539 reg
= read_csr(dd
, DC_LCB_CFG_LINK_KILL_EN
);
7540 reg
|= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7541 | DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK
;
7542 write_csr(dd
, DC_LCB_CFG_LINK_KILL_EN
, reg
);
7545 /* pull LCB fifos out of reset - all fifo clocks must be stable */
7546 write_csr(dd
, DC_LCB_CFG_TX_FIFOS_RESET
, 0);
7548 /* give 8051 access to the LCB CSRs */
7549 write_csr(dd
, DC_LCB_ERR_EN
, 0); /* mask LCB errors */
7550 set_8051_lcb_access(dd
);
7552 /* tell the 8051 to go to LinkUp */
7553 set_link_state(ppd
, HLS_GOING_UP
);
7557 * apply_link_downgrade_policy - Apply the link width downgrade enabled
7558 * policy against the current active link widths.
7559 * @ppd: info of physical Hfi port
7560 * @refresh_widths: True indicates link downgrade event
7561 * @return: True indicates a successful link downgrade. False indicates
7562 * link downgrade event failed and the link will bounce back to
7563 * default link width.
7565 * Called when the enabled policy changes or the active link widths
7567 * Refresh_widths indicates that a link downgrade occurred. The
7568 * link_downgraded variable is set by refresh_widths and
7569 * determines the success/failure of the policy application.
7571 bool apply_link_downgrade_policy(struct hfi1_pportdata
*ppd
,
7572 bool refresh_widths
)
7578 bool link_downgraded
= refresh_widths
;
7580 /* use the hls lock to avoid a race with actual link up */
7583 mutex_lock(&ppd
->hls_lock
);
7584 /* only apply if the link is up */
7585 if (ppd
->host_link_state
& HLS_DOWN
) {
7586 /* still going up..wait and retry */
7587 if (ppd
->host_link_state
& HLS_GOING_UP
) {
7588 if (++tries
< 1000) {
7589 mutex_unlock(&ppd
->hls_lock
);
7590 usleep_range(100, 120); /* arbitrary */
7594 "%s: giving up waiting for link state change\n",
7600 lwde
= ppd
->link_width_downgrade_enabled
;
7602 if (refresh_widths
) {
7603 get_link_widths(ppd
->dd
, &tx
, &rx
);
7604 ppd
->link_width_downgrade_tx_active
= tx
;
7605 ppd
->link_width_downgrade_rx_active
= rx
;
7608 if (ppd
->link_width_downgrade_tx_active
== 0 ||
7609 ppd
->link_width_downgrade_rx_active
== 0) {
7610 /* the 8051 reported a dead link as a downgrade */
7611 dd_dev_err(ppd
->dd
, "Link downgrade is really a link down, ignoring\n");
7612 link_downgraded
= false;
7613 } else if (lwde
== 0) {
7614 /* downgrade is disabled */
7616 /* bounce if not at starting active width */
7617 if ((ppd
->link_width_active
!=
7618 ppd
->link_width_downgrade_tx_active
) ||
7619 (ppd
->link_width_active
!=
7620 ppd
->link_width_downgrade_rx_active
)) {
7622 "Link downgrade is disabled and link has downgraded, downing link\n");
7624 " original 0x%x, tx active 0x%x, rx active 0x%x\n",
7625 ppd
->link_width_active
,
7626 ppd
->link_width_downgrade_tx_active
,
7627 ppd
->link_width_downgrade_rx_active
);
7629 link_downgraded
= false;
7631 } else if ((lwde
& ppd
->link_width_downgrade_tx_active
) == 0 ||
7632 (lwde
& ppd
->link_width_downgrade_rx_active
) == 0) {
7633 /* Tx or Rx is outside the enabled policy */
7635 "Link is outside of downgrade allowed, downing link\n");
7637 " enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7638 lwde
, ppd
->link_width_downgrade_tx_active
,
7639 ppd
->link_width_downgrade_rx_active
);
7641 link_downgraded
= false;
7645 mutex_unlock(&ppd
->hls_lock
);
7648 set_link_down_reason(ppd
, OPA_LINKDOWN_REASON_WIDTH_POLICY
, 0,
7649 OPA_LINKDOWN_REASON_WIDTH_POLICY
);
7650 set_link_state(ppd
, HLS_DN_OFFLINE
);
7654 return link_downgraded
;
7658 * Handle a link downgrade interrupt from the 8051.
7660 * This is a work-queue function outside of the interrupt.
7662 void handle_link_downgrade(struct work_struct
*work
)
7664 struct hfi1_pportdata
*ppd
= container_of(work
, struct hfi1_pportdata
,
7665 link_downgrade_work
);
7667 dd_dev_info(ppd
->dd
, "8051: Link width downgrade\n");
7668 if (apply_link_downgrade_policy(ppd
, true))
7669 update_xmit_counters(ppd
, ppd
->link_width_downgrade_tx_active
);
7672 static char *dcc_err_string(char *buf
, int buf_len
, u64 flags
)
7674 return flag_string(buf
, buf_len
, flags
, dcc_err_flags
,
7675 ARRAY_SIZE(dcc_err_flags
));
7678 static char *lcb_err_string(char *buf
, int buf_len
, u64 flags
)
7680 return flag_string(buf
, buf_len
, flags
, lcb_err_flags
,
7681 ARRAY_SIZE(lcb_err_flags
));
7684 static char *dc8051_err_string(char *buf
, int buf_len
, u64 flags
)
7686 return flag_string(buf
, buf_len
, flags
, dc8051_err_flags
,
7687 ARRAY_SIZE(dc8051_err_flags
));
7690 static char *dc8051_info_err_string(char *buf
, int buf_len
, u64 flags
)
7692 return flag_string(buf
, buf_len
, flags
, dc8051_info_err_flags
,
7693 ARRAY_SIZE(dc8051_info_err_flags
));
7696 static char *dc8051_info_host_msg_string(char *buf
, int buf_len
, u64 flags
)
7698 return flag_string(buf
, buf_len
, flags
, dc8051_info_host_msg_flags
,
7699 ARRAY_SIZE(dc8051_info_host_msg_flags
));
7702 static void handle_8051_interrupt(struct hfi1_devdata
*dd
, u32 unused
, u64 reg
)
7704 struct hfi1_pportdata
*ppd
= dd
->pport
;
7705 u64 info
, err
, host_msg
;
7706 int queue_link_down
= 0;
7709 /* look at the flags */
7710 if (reg
& DC_DC8051_ERR_FLG_SET_BY_8051_SMASK
) {
7711 /* 8051 information set by firmware */
7712 /* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7713 info
= read_csr(dd
, DC_DC8051_DBG_ERR_INFO_SET_BY_8051
);
7714 err
= (info
>> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT
)
7715 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK
;
7717 DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT
)
7718 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK
;
7721 * Handle error flags.
7723 if (err
& FAILED_LNI
) {
7725 * LNI error indications are cleared by the 8051
7726 * only when starting polling. Only pay attention
7727 * to them when in the states that occur during
7730 if (ppd
->host_link_state
7731 & (HLS_DN_POLL
| HLS_VERIFY_CAP
| HLS_GOING_UP
)) {
7732 queue_link_down
= 1;
7733 dd_dev_info(dd
, "Link error: %s\n",
7734 dc8051_info_err_string(buf
,
7739 err
&= ~(u64
)FAILED_LNI
;
7741 /* unknown frames can happen durning LNI, just count */
7742 if (err
& UNKNOWN_FRAME
) {
7743 ppd
->unknown_frame_count
++;
7744 err
&= ~(u64
)UNKNOWN_FRAME
;
7747 /* report remaining errors, but do not do anything */
7748 dd_dev_err(dd
, "8051 info error: %s\n",
7749 dc8051_info_err_string(buf
, sizeof(buf
),
7754 * Handle host message flags.
7756 if (host_msg
& HOST_REQ_DONE
) {
7758 * Presently, the driver does a busy wait for
7759 * host requests to complete. This is only an
7760 * informational message.
7761 * NOTE: The 8051 clears the host message
7762 * information *on the next 8051 command*.
7763 * Therefore, when linkup is achieved,
7764 * this flag will still be set.
7766 host_msg
&= ~(u64
)HOST_REQ_DONE
;
7768 if (host_msg
& BC_SMA_MSG
) {
7769 queue_work(ppd
->link_wq
, &ppd
->sma_message_work
);
7770 host_msg
&= ~(u64
)BC_SMA_MSG
;
7772 if (host_msg
& LINKUP_ACHIEVED
) {
7773 dd_dev_info(dd
, "8051: Link up\n");
7774 queue_work(ppd
->link_wq
, &ppd
->link_up_work
);
7775 host_msg
&= ~(u64
)LINKUP_ACHIEVED
;
7777 if (host_msg
& EXT_DEVICE_CFG_REQ
) {
7778 handle_8051_request(ppd
);
7779 host_msg
&= ~(u64
)EXT_DEVICE_CFG_REQ
;
7781 if (host_msg
& VERIFY_CAP_FRAME
) {
7782 queue_work(ppd
->link_wq
, &ppd
->link_vc_work
);
7783 host_msg
&= ~(u64
)VERIFY_CAP_FRAME
;
7785 if (host_msg
& LINK_GOING_DOWN
) {
7786 const char *extra
= "";
7787 /* no downgrade action needed if going down */
7788 if (host_msg
& LINK_WIDTH_DOWNGRADED
) {
7789 host_msg
&= ~(u64
)LINK_WIDTH_DOWNGRADED
;
7790 extra
= " (ignoring downgrade)";
7792 dd_dev_info(dd
, "8051: Link down%s\n", extra
);
7793 queue_link_down
= 1;
7794 host_msg
&= ~(u64
)LINK_GOING_DOWN
;
7796 if (host_msg
& LINK_WIDTH_DOWNGRADED
) {
7797 queue_work(ppd
->link_wq
, &ppd
->link_downgrade_work
);
7798 host_msg
&= ~(u64
)LINK_WIDTH_DOWNGRADED
;
7801 /* report remaining messages, but do not do anything */
7802 dd_dev_info(dd
, "8051 info host message: %s\n",
7803 dc8051_info_host_msg_string(buf
,
7808 reg
&= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK
;
7810 if (reg
& DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK
) {
7812 * Lost the 8051 heartbeat. If this happens, we
7813 * receive constant interrupts about it. Disable
7814 * the interrupt after the first.
7816 dd_dev_err(dd
, "Lost 8051 heartbeat\n");
7817 write_csr(dd
, DC_DC8051_ERR_EN
,
7818 read_csr(dd
, DC_DC8051_ERR_EN
) &
7819 ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK
);
7821 reg
&= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK
;
7824 /* report the error, but do not do anything */
7825 dd_dev_err(dd
, "8051 error: %s\n",
7826 dc8051_err_string(buf
, sizeof(buf
), reg
));
7829 if (queue_link_down
) {
7831 * if the link is already going down or disabled, do not
7832 * queue another. If there's a link down entry already
7833 * queued, don't queue another one.
7835 if ((ppd
->host_link_state
&
7836 (HLS_GOING_OFFLINE
| HLS_LINK_COOLDOWN
)) ||
7837 ppd
->link_enabled
== 0) {
7838 dd_dev_info(dd
, "%s: not queuing link down. host_link_state %x, link_enabled %x\n",
7839 __func__
, ppd
->host_link_state
,
7842 if (xchg(&ppd
->is_link_down_queued
, 1) == 1)
7844 "%s: link down request already queued\n",
7847 queue_work(ppd
->link_wq
, &ppd
->link_down_work
);
7852 static const char * const fm_config_txt
[] = {
7854 "BadHeadDist: Distance violation between two head flits",
7856 "BadTailDist: Distance violation between two tail flits",
7858 "BadCtrlDist: Distance violation between two credit control flits",
7860 "BadCrdAck: Credits return for unsupported VL",
7862 "UnsupportedVLMarker: Received VL Marker",
7864 "BadPreempt: Exceeded the preemption nesting level",
7866 "BadControlFlit: Received unsupported control flit",
7869 "UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7872 static const char * const port_rcv_txt
[] = {
7874 "BadPktLen: Illegal PktLen",
7876 "PktLenTooLong: Packet longer than PktLen",
7878 "PktLenTooShort: Packet shorter than PktLen",
7880 "BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7882 "BadDLID: Illegal DLID (0, doesn't match HFI)",
7884 "BadL2: Illegal L2 opcode",
7886 "BadSC: Unsupported SC",
7888 "BadRC: Illegal RC",
7890 "PreemptError: Preempting with same VL",
7892 "PreemptVL15: Preempting a VL15 packet",
7895 #define OPA_LDR_FMCONFIG_OFFSET 16
7896 #define OPA_LDR_PORTRCV_OFFSET 0
7897 static void handle_dcc_err(struct hfi1_devdata
*dd
, u32 unused
, u64 reg
)
7899 u64 info
, hdr0
, hdr1
;
7902 struct hfi1_pportdata
*ppd
= dd
->pport
;
7906 if (reg
& DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK
) {
7907 if (!(dd
->err_info_uncorrectable
& OPA_EI_STATUS_SMASK
)) {
7908 info
= read_csr(dd
, DCC_ERR_INFO_UNCORRECTABLE
);
7909 dd
->err_info_uncorrectable
= info
& OPA_EI_CODE_SMASK
;
7910 /* set status bit */
7911 dd
->err_info_uncorrectable
|= OPA_EI_STATUS_SMASK
;
7913 reg
&= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK
;
7916 if (reg
& DCC_ERR_FLG_LINK_ERR_SMASK
) {
7917 struct hfi1_pportdata
*ppd
= dd
->pport
;
7918 /* this counter saturates at (2^32) - 1 */
7919 if (ppd
->link_downed
< (u32
)UINT_MAX
)
7921 reg
&= ~DCC_ERR_FLG_LINK_ERR_SMASK
;
7924 if (reg
& DCC_ERR_FLG_FMCONFIG_ERR_SMASK
) {
7925 u8 reason_valid
= 1;
7927 info
= read_csr(dd
, DCC_ERR_INFO_FMCONFIG
);
7928 if (!(dd
->err_info_fmconfig
& OPA_EI_STATUS_SMASK
)) {
7929 dd
->err_info_fmconfig
= info
& OPA_EI_CODE_SMASK
;
7930 /* set status bit */
7931 dd
->err_info_fmconfig
|= OPA_EI_STATUS_SMASK
;
7941 extra
= fm_config_txt
[info
];
7944 extra
= fm_config_txt
[info
];
7945 if (ppd
->port_error_action
&
7946 OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER
) {
7949 * lcl_reason cannot be derived from info
7953 OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER
;
7958 snprintf(buf
, sizeof(buf
), "reserved%lld", info
);
7963 if (reason_valid
&& !do_bounce
) {
7964 do_bounce
= ppd
->port_error_action
&
7965 (1 << (OPA_LDR_FMCONFIG_OFFSET
+ info
));
7966 lcl_reason
= info
+ OPA_LINKDOWN_REASON_BAD_HEAD_DIST
;
7969 /* just report this */
7970 dd_dev_info_ratelimited(dd
, "DCC Error: fmconfig error: %s\n",
7972 reg
&= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK
;
7975 if (reg
& DCC_ERR_FLG_RCVPORT_ERR_SMASK
) {
7976 u8 reason_valid
= 1;
7978 info
= read_csr(dd
, DCC_ERR_INFO_PORTRCV
);
7979 hdr0
= read_csr(dd
, DCC_ERR_INFO_PORTRCV_HDR0
);
7980 hdr1
= read_csr(dd
, DCC_ERR_INFO_PORTRCV_HDR1
);
7981 if (!(dd
->err_info_rcvport
.status_and_code
&
7982 OPA_EI_STATUS_SMASK
)) {
7983 dd
->err_info_rcvport
.status_and_code
=
7984 info
& OPA_EI_CODE_SMASK
;
7985 /* set status bit */
7986 dd
->err_info_rcvport
.status_and_code
|=
7987 OPA_EI_STATUS_SMASK
;
7989 * save first 2 flits in the packet that caused
7992 dd
->err_info_rcvport
.packet_flit1
= hdr0
;
7993 dd
->err_info_rcvport
.packet_flit2
= hdr1
;
8006 extra
= port_rcv_txt
[info
];
8010 snprintf(buf
, sizeof(buf
), "reserved%lld", info
);
8015 if (reason_valid
&& !do_bounce
) {
8016 do_bounce
= ppd
->port_error_action
&
8017 (1 << (OPA_LDR_PORTRCV_OFFSET
+ info
));
8018 lcl_reason
= info
+ OPA_LINKDOWN_REASON_RCV_ERROR_0
;
8021 /* just report this */
8022 dd_dev_info_ratelimited(dd
, "DCC Error: PortRcv error: %s\n"
8023 " hdr0 0x%llx, hdr1 0x%llx\n",
8026 reg
&= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK
;
8029 if (reg
& DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK
) {
8030 /* informative only */
8031 dd_dev_info_ratelimited(dd
, "8051 access to LCB blocked\n");
8032 reg
&= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK
;
8034 if (reg
& DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK
) {
8035 /* informative only */
8036 dd_dev_info_ratelimited(dd
, "host access to LCB blocked\n");
8037 reg
&= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK
;
8040 if (unlikely(hfi1_dbg_fault_suppress_err(&dd
->verbs_dev
)))
8041 reg
&= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK
;
8043 /* report any remaining errors */
8045 dd_dev_info_ratelimited(dd
, "DCC Error: %s\n",
8046 dcc_err_string(buf
, sizeof(buf
), reg
));
8048 if (lcl_reason
== 0)
8049 lcl_reason
= OPA_LINKDOWN_REASON_UNKNOWN
;
8052 dd_dev_info_ratelimited(dd
, "%s: PortErrorAction bounce\n",
8054 set_link_down_reason(ppd
, lcl_reason
, 0, lcl_reason
);
8055 queue_work(ppd
->link_wq
, &ppd
->link_bounce_work
);
8059 static void handle_lcb_err(struct hfi1_devdata
*dd
, u32 unused
, u64 reg
)
8063 dd_dev_info(dd
, "LCB Error: %s\n",
8064 lcb_err_string(buf
, sizeof(buf
), reg
));
8068 * CCE block DC interrupt. Source is < 8.
8070 static void is_dc_int(struct hfi1_devdata
*dd
, unsigned int source
)
8072 const struct err_reg_info
*eri
= &dc_errs
[source
];
8075 interrupt_clear_down(dd
, 0, eri
);
8076 } else if (source
== 3 /* dc_lbm_int */) {
8078 * This indicates that a parity error has occurred on the
8079 * address/control lines presented to the LBM. The error
8080 * is a single pulse, there is no associated error flag,
8081 * and it is non-maskable. This is because if a parity
8082 * error occurs on the request the request is dropped.
8083 * This should never occur, but it is nice to know if it
8086 dd_dev_err(dd
, "Parity error in DC LBM block\n");
8088 dd_dev_err(dd
, "Invalid DC interrupt %u\n", source
);
8093 * TX block send credit interrupt. Source is < 160.
8095 static void is_send_credit_int(struct hfi1_devdata
*dd
, unsigned int source
)
8097 sc_group_release_update(dd
, source
);
8101 * TX block SDMA interrupt. Source is < 48.
8103 * SDMA interrupts are grouped by type:
8106 * N - 2N-1 = SDmaProgress
8107 * 2N - 3N-1 = SDmaIdle
8109 static void is_sdma_eng_int(struct hfi1_devdata
*dd
, unsigned int source
)
8111 /* what interrupt */
8112 unsigned int what
= source
/ TXE_NUM_SDMA_ENGINES
;
8114 unsigned int which
= source
% TXE_NUM_SDMA_ENGINES
;
8116 #ifdef CONFIG_SDMA_VERBOSITY
8117 dd_dev_err(dd
, "CONFIG SDMA(%u) %s:%d %s()\n", which
,
8118 slashstrip(__FILE__
), __LINE__
, __func__
);
8119 sdma_dumpstate(&dd
->per_sdma
[which
]);
8122 if (likely(what
< 3 && which
< dd
->num_sdma
)) {
8123 sdma_engine_interrupt(&dd
->per_sdma
[which
], 1ull << source
);
8125 /* should not happen */
8126 dd_dev_err(dd
, "Invalid SDMA interrupt 0x%x\n", source
);
8131 * RX block receive available interrupt. Source is < 160.
8133 static void is_rcv_avail_int(struct hfi1_devdata
*dd
, unsigned int source
)
8135 struct hfi1_ctxtdata
*rcd
;
8138 if (likely(source
< dd
->num_rcv_contexts
)) {
8139 rcd
= hfi1_rcd_get_by_index(dd
, source
);
8141 /* Check for non-user contexts, including vnic */
8142 if (source
< dd
->first_dyn_alloc_ctxt
|| rcd
->is_vnic
)
8143 rcd
->do_interrupt(rcd
, 0);
8145 handle_user_interrupt(rcd
);
8150 /* received an interrupt, but no rcd */
8151 err_detail
= "dataless";
8153 /* received an interrupt, but are not using that context */
8154 err_detail
= "out of range";
8156 dd_dev_err(dd
, "unexpected %s receive available context interrupt %u\n",
8157 err_detail
, source
);
8161 * RX block receive urgent interrupt. Source is < 160.
8163 static void is_rcv_urgent_int(struct hfi1_devdata
*dd
, unsigned int source
)
8165 struct hfi1_ctxtdata
*rcd
;
8168 if (likely(source
< dd
->num_rcv_contexts
)) {
8169 rcd
= hfi1_rcd_get_by_index(dd
, source
);
8171 /* only pay attention to user urgent interrupts */
8172 if (source
>= dd
->first_dyn_alloc_ctxt
&&
8174 handle_user_interrupt(rcd
);
8179 /* received an interrupt, but no rcd */
8180 err_detail
= "dataless";
8182 /* received an interrupt, but are not using that context */
8183 err_detail
= "out of range";
8185 dd_dev_err(dd
, "unexpected %s receive urgent context interrupt %u\n",
8186 err_detail
, source
);
8190 * Reserved range interrupt. Should not be called in normal operation.
8192 static void is_reserved_int(struct hfi1_devdata
*dd
, unsigned int source
)
8196 dd_dev_err(dd
, "unexpected %s interrupt\n",
8197 is_reserved_name(name
, sizeof(name
), source
));
8200 static const struct is_table is_table
[] = {
8203 * name func interrupt func
8205 { IS_GENERAL_ERR_START
, IS_GENERAL_ERR_END
,
8206 is_misc_err_name
, is_misc_err_int
},
8207 { IS_SDMAENG_ERR_START
, IS_SDMAENG_ERR_END
,
8208 is_sdma_eng_err_name
, is_sdma_eng_err_int
},
8209 { IS_SENDCTXT_ERR_START
, IS_SENDCTXT_ERR_END
,
8210 is_sendctxt_err_name
, is_sendctxt_err_int
},
8211 { IS_SDMA_START
, IS_SDMA_END
,
8212 is_sdma_eng_name
, is_sdma_eng_int
},
8213 { IS_VARIOUS_START
, IS_VARIOUS_END
,
8214 is_various_name
, is_various_int
},
8215 { IS_DC_START
, IS_DC_END
,
8216 is_dc_name
, is_dc_int
},
8217 { IS_RCVAVAIL_START
, IS_RCVAVAIL_END
,
8218 is_rcv_avail_name
, is_rcv_avail_int
},
8219 { IS_RCVURGENT_START
, IS_RCVURGENT_END
,
8220 is_rcv_urgent_name
, is_rcv_urgent_int
},
8221 { IS_SENDCREDIT_START
, IS_SENDCREDIT_END
,
8222 is_send_credit_name
, is_send_credit_int
},
8223 { IS_RESERVED_START
, IS_RESERVED_END
,
8224 is_reserved_name
, is_reserved_int
},
8228 * Interrupt source interrupt - called when the given source has an interrupt.
8229 * Source is a bit index into an array of 64-bit integers.
8231 static void is_interrupt(struct hfi1_devdata
*dd
, unsigned int source
)
8233 const struct is_table
*entry
;
8235 /* avoids a double compare by walking the table in-order */
8236 for (entry
= &is_table
[0]; entry
->is_name
; entry
++) {
8237 if (source
< entry
->end
) {
8238 trace_hfi1_interrupt(dd
, entry
, source
);
8239 entry
->is_int(dd
, source
- entry
->start
);
8243 /* fell off the end */
8244 dd_dev_err(dd
, "invalid interrupt source %u\n", source
);
8248 * General interrupt handler. This is able to correctly handle
8249 * all interrupts in case INTx is used.
8251 static irqreturn_t
general_interrupt(int irq
, void *data
)
8253 struct hfi1_devdata
*dd
= data
;
8254 u64 regs
[CCE_NUM_INT_CSRS
];
8257 irqreturn_t handled
= IRQ_NONE
;
8259 this_cpu_inc(*dd
->int_counter
);
8261 /* phase 1: scan and clear all handled interrupts */
8262 for (i
= 0; i
< CCE_NUM_INT_CSRS
; i
++) {
8263 if (dd
->gi_mask
[i
] == 0) {
8264 regs
[i
] = 0; /* used later */
8267 regs
[i
] = read_csr(dd
, CCE_INT_STATUS
+ (8 * i
)) &
8269 /* only clear if anything is set */
8271 write_csr(dd
, CCE_INT_CLEAR
+ (8 * i
), regs
[i
]);
8274 /* phase 2: call the appropriate handler */
8275 for_each_set_bit(bit
, (unsigned long *)®s
[0],
8276 CCE_NUM_INT_CSRS
* 64) {
8277 is_interrupt(dd
, bit
);
8278 handled
= IRQ_HANDLED
;
8284 static irqreturn_t
sdma_interrupt(int irq
, void *data
)
8286 struct sdma_engine
*sde
= data
;
8287 struct hfi1_devdata
*dd
= sde
->dd
;
8290 #ifdef CONFIG_SDMA_VERBOSITY
8291 dd_dev_err(dd
, "CONFIG SDMA(%u) %s:%d %s()\n", sde
->this_idx
,
8292 slashstrip(__FILE__
), __LINE__
, __func__
);
8293 sdma_dumpstate(sde
);
8296 this_cpu_inc(*dd
->int_counter
);
8298 /* This read_csr is really bad in the hot path */
8299 status
= read_csr(dd
,
8300 CCE_INT_STATUS
+ (8 * (IS_SDMA_START
/ 64)))
8302 if (likely(status
)) {
8303 /* clear the interrupt(s) */
8305 CCE_INT_CLEAR
+ (8 * (IS_SDMA_START
/ 64)),
8308 /* handle the interrupt(s) */
8309 sdma_engine_interrupt(sde
, status
);
8311 dd_dev_info_ratelimited(dd
, "SDMA engine %u interrupt, but no status bits set\n",
8318 * Clear the receive interrupt. Use a read of the interrupt clear CSR
8319 * to insure that the write completed. This does NOT guarantee that
8320 * queued DMA writes to memory from the chip are pushed.
8322 static inline void clear_recv_intr(struct hfi1_ctxtdata
*rcd
)
8324 struct hfi1_devdata
*dd
= rcd
->dd
;
8325 u32 addr
= CCE_INT_CLEAR
+ (8 * rcd
->ireg
);
8327 mmiowb(); /* make sure everything before is written */
8328 write_csr(dd
, addr
, rcd
->imask
);
8329 /* force the above write on the chip and get a value back */
8330 (void)read_csr(dd
, addr
);
8333 /* force the receive interrupt */
8334 void force_recv_intr(struct hfi1_ctxtdata
*rcd
)
8336 write_csr(rcd
->dd
, CCE_INT_FORCE
+ (8 * rcd
->ireg
), rcd
->imask
);
8340 * Return non-zero if a packet is present.
8342 * This routine is called when rechecking for packets after the RcvAvail
8343 * interrupt has been cleared down. First, do a quick check of memory for
8344 * a packet present. If not found, use an expensive CSR read of the context
8345 * tail to determine the actual tail. The CSR read is necessary because there
8346 * is no method to push pending DMAs to memory other than an interrupt and we
8347 * are trying to determine if we need to force an interrupt.
8349 static inline int check_packet_present(struct hfi1_ctxtdata
*rcd
)
8354 if (!HFI1_CAP_IS_KSET(DMA_RTAIL
))
8355 present
= (rcd
->seq_cnt
==
8356 rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd
))));
8357 else /* is RDMA rtail */
8358 present
= (rcd
->head
!= get_rcvhdrtail(rcd
));
8363 /* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8364 tail
= (u32
)read_uctxt_csr(rcd
->dd
, rcd
->ctxt
, RCV_HDR_TAIL
);
8365 return rcd
->head
!= tail
;
8369 * Receive packet IRQ handler. This routine expects to be on its own IRQ.
8370 * This routine will try to handle packets immediately (latency), but if
8371 * it finds too many, it will invoke the thread handler (bandwitdh). The
8372 * chip receive interrupt is *not* cleared down until this or the thread (if
8373 * invoked) is finished. The intent is to avoid extra interrupts while we
8374 * are processing packets anyway.
8376 static irqreturn_t
receive_context_interrupt(int irq
, void *data
)
8378 struct hfi1_ctxtdata
*rcd
= data
;
8379 struct hfi1_devdata
*dd
= rcd
->dd
;
8383 trace_hfi1_receive_interrupt(dd
, rcd
);
8384 this_cpu_inc(*dd
->int_counter
);
8385 aspm_ctx_disable(rcd
);
8387 /* receive interrupt remains blocked while processing packets */
8388 disposition
= rcd
->do_interrupt(rcd
, 0);
8391 * Too many packets were seen while processing packets in this
8392 * IRQ handler. Invoke the handler thread. The receive interrupt
8395 if (disposition
== RCV_PKT_LIMIT
)
8396 return IRQ_WAKE_THREAD
;
8399 * The packet processor detected no more packets. Clear the receive
8400 * interrupt and recheck for a packet packet that may have arrived
8401 * after the previous check and interrupt clear. If a packet arrived,
8402 * force another interrupt.
8404 clear_recv_intr(rcd
);
8405 present
= check_packet_present(rcd
);
8407 force_recv_intr(rcd
);
8413 * Receive packet thread handler. This expects to be invoked with the
8414 * receive interrupt still blocked.
8416 static irqreturn_t
receive_context_thread(int irq
, void *data
)
8418 struct hfi1_ctxtdata
*rcd
= data
;
8421 /* receive interrupt is still blocked from the IRQ handler */
8422 (void)rcd
->do_interrupt(rcd
, 1);
8425 * The packet processor will only return if it detected no more
8426 * packets. Hold IRQs here so we can safely clear the interrupt and
8427 * recheck for a packet that may have arrived after the previous
8428 * check and the interrupt clear. If a packet arrived, force another
8431 local_irq_disable();
8432 clear_recv_intr(rcd
);
8433 present
= check_packet_present(rcd
);
8435 force_recv_intr(rcd
);
8441 /* ========================================================================= */
8443 u32
read_physical_state(struct hfi1_devdata
*dd
)
8447 reg
= read_csr(dd
, DC_DC8051_STS_CUR_STATE
);
8448 return (reg
>> DC_DC8051_STS_CUR_STATE_PORT_SHIFT
)
8449 & DC_DC8051_STS_CUR_STATE_PORT_MASK
;
8452 u32
read_logical_state(struct hfi1_devdata
*dd
)
8456 reg
= read_csr(dd
, DCC_CFG_PORT_CONFIG
);
8457 return (reg
>> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT
)
8458 & DCC_CFG_PORT_CONFIG_LINK_STATE_MASK
;
8461 static void set_logical_state(struct hfi1_devdata
*dd
, u32 chip_lstate
)
8465 reg
= read_csr(dd
, DCC_CFG_PORT_CONFIG
);
8466 /* clear current state, set new state */
8467 reg
&= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK
;
8468 reg
|= (u64
)chip_lstate
<< DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT
;
8469 write_csr(dd
, DCC_CFG_PORT_CONFIG
, reg
);
8473 * Use the 8051 to read a LCB CSR.
8475 static int read_lcb_via_8051(struct hfi1_devdata
*dd
, u32 addr
, u64
*data
)
8480 if (dd
->icode
== ICODE_FUNCTIONAL_SIMULATOR
) {
8481 if (acquire_lcb_access(dd
, 0) == 0) {
8482 *data
= read_csr(dd
, addr
);
8483 release_lcb_access(dd
, 0);
8489 /* register is an index of LCB registers: (offset - base) / 8 */
8490 regno
= (addr
- DC_LCB_CFG_RUN
) >> 3;
8491 ret
= do_8051_command(dd
, HCMD_READ_LCB_CSR
, regno
, data
);
8492 if (ret
!= HCMD_SUCCESS
)
8498 * Provide a cache for some of the LCB registers in case the LCB is
8500 * (The LCB is unavailable in certain link states, for example.)
8507 static struct lcb_datum lcb_cache
[] = {
8508 { DC_LCB_ERR_INFO_RX_REPLAY_CNT
, 0},
8509 { DC_LCB_ERR_INFO_SEQ_CRC_CNT
, 0 },
8510 { DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT
, 0 },
8513 static void update_lcb_cache(struct hfi1_devdata
*dd
)
8519 for (i
= 0; i
< ARRAY_SIZE(lcb_cache
); i
++) {
8520 ret
= read_lcb_csr(dd
, lcb_cache
[i
].off
, &val
);
8522 /* Update if we get good data */
8523 if (likely(ret
!= -EBUSY
))
8524 lcb_cache
[i
].val
= val
;
8528 static int read_lcb_cache(u32 off
, u64
*val
)
8532 for (i
= 0; i
< ARRAY_SIZE(lcb_cache
); i
++) {
8533 if (lcb_cache
[i
].off
== off
) {
8534 *val
= lcb_cache
[i
].val
;
8539 pr_warn("%s bad offset 0x%x\n", __func__
, off
);
8544 * Read an LCB CSR. Access may not be in host control, so check.
8545 * Return 0 on success, -EBUSY on failure.
8547 int read_lcb_csr(struct hfi1_devdata
*dd
, u32 addr
, u64
*data
)
8549 struct hfi1_pportdata
*ppd
= dd
->pport
;
8551 /* if up, go through the 8051 for the value */
8552 if (ppd
->host_link_state
& HLS_UP
)
8553 return read_lcb_via_8051(dd
, addr
, data
);
8554 /* if going up or down, check the cache, otherwise, no access */
8555 if (ppd
->host_link_state
& (HLS_GOING_UP
| HLS_GOING_OFFLINE
)) {
8556 if (read_lcb_cache(addr
, data
))
8561 /* otherwise, host has access */
8562 *data
= read_csr(dd
, addr
);
8567 * Use the 8051 to write a LCB CSR.
8569 static int write_lcb_via_8051(struct hfi1_devdata
*dd
, u32 addr
, u64 data
)
8574 if (dd
->icode
== ICODE_FUNCTIONAL_SIMULATOR
||
8575 (dd
->dc8051_ver
< dc8051_ver(0, 20, 0))) {
8576 if (acquire_lcb_access(dd
, 0) == 0) {
8577 write_csr(dd
, addr
, data
);
8578 release_lcb_access(dd
, 0);
8584 /* register is an index of LCB registers: (offset - base) / 8 */
8585 regno
= (addr
- DC_LCB_CFG_RUN
) >> 3;
8586 ret
= do_8051_command(dd
, HCMD_WRITE_LCB_CSR
, regno
, &data
);
8587 if (ret
!= HCMD_SUCCESS
)
8593 * Write an LCB CSR. Access may not be in host control, so check.
8594 * Return 0 on success, -EBUSY on failure.
8596 int write_lcb_csr(struct hfi1_devdata
*dd
, u32 addr
, u64 data
)
8598 struct hfi1_pportdata
*ppd
= dd
->pport
;
8600 /* if up, go through the 8051 for the value */
8601 if (ppd
->host_link_state
& HLS_UP
)
8602 return write_lcb_via_8051(dd
, addr
, data
);
8603 /* if going up or down, no access */
8604 if (ppd
->host_link_state
& (HLS_GOING_UP
| HLS_GOING_OFFLINE
))
8606 /* otherwise, host has access */
8607 write_csr(dd
, addr
, data
);
8613 * < 0 = Linux error, not able to get access
8614 * > 0 = 8051 command RETURN_CODE
8616 static int do_8051_command(struct hfi1_devdata
*dd
, u32 type
, u64 in_data
,
8621 unsigned long timeout
;
8623 hfi1_cdbg(DC8051
, "type %d, data 0x%012llx", type
, in_data
);
8625 mutex_lock(&dd
->dc8051_lock
);
8627 /* We can't send any commands to the 8051 if it's in reset */
8628 if (dd
->dc_shutdown
) {
8629 return_code
= -ENODEV
;
8634 * If an 8051 host command timed out previously, then the 8051 is
8637 * On first timeout, attempt to reset and restart the entire DC
8638 * block (including 8051). (Is this too big of a hammer?)
8640 * If the 8051 times out a second time, the reset did not bring it
8641 * back to healthy life. In that case, fail any subsequent commands.
8643 if (dd
->dc8051_timed_out
) {
8644 if (dd
->dc8051_timed_out
> 1) {
8646 "Previous 8051 host command timed out, skipping command %u\n",
8648 return_code
= -ENXIO
;
8656 * If there is no timeout, then the 8051 command interface is
8657 * waiting for a command.
8661 * When writing a LCB CSR, out_data contains the full value to
8662 * to be written, while in_data contains the relative LCB
8663 * address in 7:0. Do the work here, rather than the caller,
8664 * of distrubting the write data to where it needs to go:
8667 * 39:00 -> in_data[47:8]
8668 * 47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8669 * 63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8671 if (type
== HCMD_WRITE_LCB_CSR
) {
8672 in_data
|= ((*out_data
) & 0xffffffffffull
) << 8;
8673 /* must preserve COMPLETED - it is tied to hardware */
8674 reg
= read_csr(dd
, DC_DC8051_CFG_EXT_DEV_0
);
8675 reg
&= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK
;
8676 reg
|= ((((*out_data
) >> 40) & 0xff) <<
8677 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT
)
8678 | ((((*out_data
) >> 48) & 0xffff) <<
8679 DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT
);
8680 write_csr(dd
, DC_DC8051_CFG_EXT_DEV_0
, reg
);
8684 * Do two writes: the first to stabilize the type and req_data, the
8685 * second to activate.
8687 reg
= ((u64
)type
& DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK
)
8688 << DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8689 | (in_data
& DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK
)
8690 << DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT
;
8691 write_csr(dd
, DC_DC8051_CFG_HOST_CMD_0
, reg
);
8692 reg
|= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK
;
8693 write_csr(dd
, DC_DC8051_CFG_HOST_CMD_0
, reg
);
8695 /* wait for completion, alternate: interrupt */
8696 timeout
= jiffies
+ msecs_to_jiffies(DC8051_COMMAND_TIMEOUT
);
8698 reg
= read_csr(dd
, DC_DC8051_CFG_HOST_CMD_1
);
8699 completed
= reg
& DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK
;
8702 if (time_after(jiffies
, timeout
)) {
8703 dd
->dc8051_timed_out
++;
8704 dd_dev_err(dd
, "8051 host command %u timeout\n", type
);
8707 return_code
= -ETIMEDOUT
;
8714 *out_data
= (reg
>> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT
)
8715 & DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK
;
8716 if (type
== HCMD_READ_LCB_CSR
) {
8717 /* top 16 bits are in a different register */
8718 *out_data
|= (read_csr(dd
, DC_DC8051_CFG_EXT_DEV_1
)
8719 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK
)
8721 - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT
);
8724 return_code
= (reg
>> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT
)
8725 & DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK
;
8726 dd
->dc8051_timed_out
= 0;
8728 * Clear command for next user.
8730 write_csr(dd
, DC_DC8051_CFG_HOST_CMD_0
, 0);
8733 mutex_unlock(&dd
->dc8051_lock
);
8737 static int set_physical_link_state(struct hfi1_devdata
*dd
, u64 state
)
8739 return do_8051_command(dd
, HCMD_CHANGE_PHY_STATE
, state
, NULL
);
8742 int load_8051_config(struct hfi1_devdata
*dd
, u8 field_id
,
8743 u8 lane_id
, u32 config_data
)
8748 data
= (u64
)field_id
<< LOAD_DATA_FIELD_ID_SHIFT
8749 | (u64
)lane_id
<< LOAD_DATA_LANE_ID_SHIFT
8750 | (u64
)config_data
<< LOAD_DATA_DATA_SHIFT
;
8751 ret
= do_8051_command(dd
, HCMD_LOAD_CONFIG_DATA
, data
, NULL
);
8752 if (ret
!= HCMD_SUCCESS
) {
8754 "load 8051 config: field id %d, lane %d, err %d\n",
8755 (int)field_id
, (int)lane_id
, ret
);
8761 * Read the 8051 firmware "registers". Use the RAM directly. Always
8762 * set the result, even on error.
8763 * Return 0 on success, -errno on failure
8765 int read_8051_config(struct hfi1_devdata
*dd
, u8 field_id
, u8 lane_id
,
8772 /* address start depends on the lane_id */
8774 addr
= (4 * NUM_GENERAL_FIELDS
)
8775 + (lane_id
* 4 * NUM_LANE_FIELDS
);
8778 addr
+= field_id
* 4;
8780 /* read is in 8-byte chunks, hardware will truncate the address down */
8781 ret
= read_8051_data(dd
, addr
, 8, &big_data
);
8784 /* extract the 4 bytes we want */
8786 *result
= (u32
)(big_data
>> 32);
8788 *result
= (u32
)big_data
;
8791 dd_dev_err(dd
, "%s: direct read failed, lane %d, field %d!\n",
8792 __func__
, lane_id
, field_id
);
8798 static int write_vc_local_phy(struct hfi1_devdata
*dd
, u8 power_management
,
8803 frame
= continuous
<< CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8804 | power_management
<< POWER_MANAGEMENT_SHIFT
;
8805 return load_8051_config(dd
, VERIFY_CAP_LOCAL_PHY
,
8806 GENERAL_CONFIG
, frame
);
8809 static int write_vc_local_fabric(struct hfi1_devdata
*dd
, u8 vau
, u8 z
, u8 vcu
,
8810 u16 vl15buf
, u8 crc_sizes
)
8814 frame
= (u32
)vau
<< VAU_SHIFT
8816 | (u32
)vcu
<< VCU_SHIFT
8817 | (u32
)vl15buf
<< VL15BUF_SHIFT
8818 | (u32
)crc_sizes
<< CRC_SIZES_SHIFT
;
8819 return load_8051_config(dd
, VERIFY_CAP_LOCAL_FABRIC
,
8820 GENERAL_CONFIG
, frame
);
8823 static void read_vc_local_link_width(struct hfi1_devdata
*dd
, u8
*misc_bits
,
8824 u8
*flag_bits
, u16
*link_widths
)
8828 read_8051_config(dd
, VERIFY_CAP_LOCAL_LINK_WIDTH
, GENERAL_CONFIG
,
8830 *misc_bits
= (frame
>> MISC_CONFIG_BITS_SHIFT
) & MISC_CONFIG_BITS_MASK
;
8831 *flag_bits
= (frame
>> LOCAL_FLAG_BITS_SHIFT
) & LOCAL_FLAG_BITS_MASK
;
8832 *link_widths
= (frame
>> LINK_WIDTH_SHIFT
) & LINK_WIDTH_MASK
;
8835 static int write_vc_local_link_width(struct hfi1_devdata
*dd
,
8842 frame
= (u32
)misc_bits
<< MISC_CONFIG_BITS_SHIFT
8843 | (u32
)flag_bits
<< LOCAL_FLAG_BITS_SHIFT
8844 | (u32
)link_widths
<< LINK_WIDTH_SHIFT
;
8845 return load_8051_config(dd
, VERIFY_CAP_LOCAL_LINK_WIDTH
, GENERAL_CONFIG
,
8849 static int write_local_device_id(struct hfi1_devdata
*dd
, u16 device_id
,
8854 frame
= ((u32
)device_id
<< LOCAL_DEVICE_ID_SHIFT
)
8855 | ((u32
)device_rev
<< LOCAL_DEVICE_REV_SHIFT
);
8856 return load_8051_config(dd
, LOCAL_DEVICE_ID
, GENERAL_CONFIG
, frame
);
8859 static void read_remote_device_id(struct hfi1_devdata
*dd
, u16
*device_id
,
8864 read_8051_config(dd
, REMOTE_DEVICE_ID
, GENERAL_CONFIG
, &frame
);
8865 *device_id
= (frame
>> REMOTE_DEVICE_ID_SHIFT
) & REMOTE_DEVICE_ID_MASK
;
8866 *device_rev
= (frame
>> REMOTE_DEVICE_REV_SHIFT
)
8867 & REMOTE_DEVICE_REV_MASK
;
8870 int write_host_interface_version(struct hfi1_devdata
*dd
, u8 version
)
8875 mask
= (HOST_INTERFACE_VERSION_MASK
<< HOST_INTERFACE_VERSION_SHIFT
);
8876 read_8051_config(dd
, RESERVED_REGISTERS
, GENERAL_CONFIG
, &frame
);
8877 /* Clear, then set field */
8879 frame
|= ((u32
)version
<< HOST_INTERFACE_VERSION_SHIFT
);
8880 return load_8051_config(dd
, RESERVED_REGISTERS
, GENERAL_CONFIG
,
8884 void read_misc_status(struct hfi1_devdata
*dd
, u8
*ver_major
, u8
*ver_minor
,
8889 read_8051_config(dd
, MISC_STATUS
, GENERAL_CONFIG
, &frame
);
8890 *ver_major
= (frame
>> STS_FM_VERSION_MAJOR_SHIFT
) &
8891 STS_FM_VERSION_MAJOR_MASK
;
8892 *ver_minor
= (frame
>> STS_FM_VERSION_MINOR_SHIFT
) &
8893 STS_FM_VERSION_MINOR_MASK
;
8895 read_8051_config(dd
, VERSION_PATCH
, GENERAL_CONFIG
, &frame
);
8896 *ver_patch
= (frame
>> STS_FM_VERSION_PATCH_SHIFT
) &
8897 STS_FM_VERSION_PATCH_MASK
;
8900 static void read_vc_remote_phy(struct hfi1_devdata
*dd
, u8
*power_management
,
8905 read_8051_config(dd
, VERIFY_CAP_REMOTE_PHY
, GENERAL_CONFIG
, &frame
);
8906 *power_management
= (frame
>> POWER_MANAGEMENT_SHIFT
)
8907 & POWER_MANAGEMENT_MASK
;
8908 *continuous
= (frame
>> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
)
8909 & CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK
;
8912 static void read_vc_remote_fabric(struct hfi1_devdata
*dd
, u8
*vau
, u8
*z
,
8913 u8
*vcu
, u16
*vl15buf
, u8
*crc_sizes
)
8917 read_8051_config(dd
, VERIFY_CAP_REMOTE_FABRIC
, GENERAL_CONFIG
, &frame
);
8918 *vau
= (frame
>> VAU_SHIFT
) & VAU_MASK
;
8919 *z
= (frame
>> Z_SHIFT
) & Z_MASK
;
8920 *vcu
= (frame
>> VCU_SHIFT
) & VCU_MASK
;
8921 *vl15buf
= (frame
>> VL15BUF_SHIFT
) & VL15BUF_MASK
;
8922 *crc_sizes
= (frame
>> CRC_SIZES_SHIFT
) & CRC_SIZES_MASK
;
8925 static void read_vc_remote_link_width(struct hfi1_devdata
*dd
,
8931 read_8051_config(dd
, VERIFY_CAP_REMOTE_LINK_WIDTH
, GENERAL_CONFIG
,
8933 *remote_tx_rate
= (frame
>> REMOTE_TX_RATE_SHIFT
)
8934 & REMOTE_TX_RATE_MASK
;
8935 *link_widths
= (frame
>> LINK_WIDTH_SHIFT
) & LINK_WIDTH_MASK
;
8938 static void read_local_lni(struct hfi1_devdata
*dd
, u8
*enable_lane_rx
)
8942 read_8051_config(dd
, LOCAL_LNI_INFO
, GENERAL_CONFIG
, &frame
);
8943 *enable_lane_rx
= (frame
>> ENABLE_LANE_RX_SHIFT
) & ENABLE_LANE_RX_MASK
;
8946 static void read_last_local_state(struct hfi1_devdata
*dd
, u32
*lls
)
8948 read_8051_config(dd
, LAST_LOCAL_STATE_COMPLETE
, GENERAL_CONFIG
, lls
);
8951 static void read_last_remote_state(struct hfi1_devdata
*dd
, u32
*lrs
)
8953 read_8051_config(dd
, LAST_REMOTE_STATE_COMPLETE
, GENERAL_CONFIG
, lrs
);
8956 void hfi1_read_link_quality(struct hfi1_devdata
*dd
, u8
*link_quality
)
8962 if (dd
->pport
->host_link_state
& HLS_UP
) {
8963 ret
= read_8051_config(dd
, LINK_QUALITY_INFO
, GENERAL_CONFIG
,
8966 *link_quality
= (frame
>> LINK_QUALITY_SHIFT
)
8967 & LINK_QUALITY_MASK
;
8971 static void read_planned_down_reason_code(struct hfi1_devdata
*dd
, u8
*pdrrc
)
8975 read_8051_config(dd
, LINK_QUALITY_INFO
, GENERAL_CONFIG
, &frame
);
8976 *pdrrc
= (frame
>> DOWN_REMOTE_REASON_SHIFT
) & DOWN_REMOTE_REASON_MASK
;
8979 static void read_link_down_reason(struct hfi1_devdata
*dd
, u8
*ldr
)
8983 read_8051_config(dd
, LINK_DOWN_REASON
, GENERAL_CONFIG
, &frame
);
8984 *ldr
= (frame
& 0xff);
8987 static int read_tx_settings(struct hfi1_devdata
*dd
,
8989 u8
*tx_polarity_inversion
,
8990 u8
*rx_polarity_inversion
,
8996 ret
= read_8051_config(dd
, TX_SETTINGS
, GENERAL_CONFIG
, &frame
);
8997 *enable_lane_tx
= (frame
>> ENABLE_LANE_TX_SHIFT
)
8998 & ENABLE_LANE_TX_MASK
;
8999 *tx_polarity_inversion
= (frame
>> TX_POLARITY_INVERSION_SHIFT
)
9000 & TX_POLARITY_INVERSION_MASK
;
9001 *rx_polarity_inversion
= (frame
>> RX_POLARITY_INVERSION_SHIFT
)
9002 & RX_POLARITY_INVERSION_MASK
;
9003 *max_rate
= (frame
>> MAX_RATE_SHIFT
) & MAX_RATE_MASK
;
9007 static int write_tx_settings(struct hfi1_devdata
*dd
,
9009 u8 tx_polarity_inversion
,
9010 u8 rx_polarity_inversion
,
9015 /* no need to mask, all variable sizes match field widths */
9016 frame
= enable_lane_tx
<< ENABLE_LANE_TX_SHIFT
9017 | tx_polarity_inversion
<< TX_POLARITY_INVERSION_SHIFT
9018 | rx_polarity_inversion
<< RX_POLARITY_INVERSION_SHIFT
9019 | max_rate
<< MAX_RATE_SHIFT
;
9020 return load_8051_config(dd
, TX_SETTINGS
, GENERAL_CONFIG
, frame
);
9024 * Read an idle LCB message.
9026 * Returns 0 on success, -EINVAL on error
9028 static int read_idle_message(struct hfi1_devdata
*dd
, u64 type
, u64
*data_out
)
9032 ret
= do_8051_command(dd
, HCMD_READ_LCB_IDLE_MSG
, type
, data_out
);
9033 if (ret
!= HCMD_SUCCESS
) {
9034 dd_dev_err(dd
, "read idle message: type %d, err %d\n",
9038 dd_dev_info(dd
, "%s: read idle message 0x%llx\n", __func__
, *data_out
);
9039 /* return only the payload as we already know the type */
9040 *data_out
>>= IDLE_PAYLOAD_SHIFT
;
9045 * Read an idle SMA message. To be done in response to a notification from
9048 * Returns 0 on success, -EINVAL on error
9050 static int read_idle_sma(struct hfi1_devdata
*dd
, u64
*data
)
9052 return read_idle_message(dd
, (u64
)IDLE_SMA
<< IDLE_MSG_TYPE_SHIFT
,
9057 * Send an idle LCB message.
9059 * Returns 0 on success, -EINVAL on error
9061 static int send_idle_message(struct hfi1_devdata
*dd
, u64 data
)
9065 dd_dev_info(dd
, "%s: sending idle message 0x%llx\n", __func__
, data
);
9066 ret
= do_8051_command(dd
, HCMD_SEND_LCB_IDLE_MSG
, data
, NULL
);
9067 if (ret
!= HCMD_SUCCESS
) {
9068 dd_dev_err(dd
, "send idle message: data 0x%llx, err %d\n",
9076 * Send an idle SMA message.
9078 * Returns 0 on success, -EINVAL on error
9080 int send_idle_sma(struct hfi1_devdata
*dd
, u64 message
)
9084 data
= ((message
& IDLE_PAYLOAD_MASK
) << IDLE_PAYLOAD_SHIFT
) |
9085 ((u64
)IDLE_SMA
<< IDLE_MSG_TYPE_SHIFT
);
9086 return send_idle_message(dd
, data
);
9090 * Initialize the LCB then do a quick link up. This may or may not be
9093 * return 0 on success, -errno on error
9095 static int do_quick_linkup(struct hfi1_devdata
*dd
)
9099 lcb_shutdown(dd
, 0);
9102 /* LCB_CFG_LOOPBACK.VAL = 2 */
9103 /* LCB_CFG_LANE_WIDTH.VAL = 0 */
9104 write_csr(dd
, DC_LCB_CFG_LOOPBACK
,
9105 IB_PACKET_TYPE
<< DC_LCB_CFG_LOOPBACK_VAL_SHIFT
);
9106 write_csr(dd
, DC_LCB_CFG_LANE_WIDTH
, 0);
9109 /* start the LCBs */
9110 /* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
9111 write_csr(dd
, DC_LCB_CFG_TX_FIFOS_RESET
, 0);
9113 /* simulator only loopback steps */
9114 if (loopback
&& dd
->icode
== ICODE_FUNCTIONAL_SIMULATOR
) {
9115 /* LCB_CFG_RUN.EN = 1 */
9116 write_csr(dd
, DC_LCB_CFG_RUN
,
9117 1ull << DC_LCB_CFG_RUN_EN_SHIFT
);
9119 ret
= wait_link_transfer_active(dd
, 10);
9123 write_csr(dd
, DC_LCB_CFG_ALLOW_LINK_UP
,
9124 1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT
);
9129 * When doing quick linkup and not in loopback, both
9130 * sides must be done with LCB set-up before either
9131 * starts the quick linkup. Put a delay here so that
9132 * both sides can be started and have a chance to be
9133 * done with LCB set up before resuming.
9136 "Pausing for peer to be finished with LCB set up\n");
9138 dd_dev_err(dd
, "Continuing with quick linkup\n");
9141 write_csr(dd
, DC_LCB_ERR_EN
, 0); /* mask LCB errors */
9142 set_8051_lcb_access(dd
);
9145 * State "quick" LinkUp request sets the physical link state to
9146 * LinkUp without a verify capability sequence.
9147 * This state is in simulator v37 and later.
9149 ret
= set_physical_link_state(dd
, PLS_QUICK_LINKUP
);
9150 if (ret
!= HCMD_SUCCESS
) {
9152 "%s: set physical link state to quick LinkUp failed with return %d\n",
9155 set_host_lcb_access(dd
);
9156 write_csr(dd
, DC_LCB_ERR_EN
, ~0ull); /* watch LCB errors */
9163 return 0; /* success */
9167 * Do all special steps to set up loopback.
9169 static int init_loopback(struct hfi1_devdata
*dd
)
9171 dd_dev_info(dd
, "Entering loopback mode\n");
9173 /* all loopbacks should disable self GUID check */
9174 write_csr(dd
, DC_DC8051_CFG_MODE
,
9175 (read_csr(dd
, DC_DC8051_CFG_MODE
) | DISABLE_SELF_GUID_CHECK
));
9178 * The simulator has only one loopback option - LCB. Switch
9179 * to that option, which includes quick link up.
9181 * Accept all valid loopback values.
9183 if ((dd
->icode
== ICODE_FUNCTIONAL_SIMULATOR
) &&
9184 (loopback
== LOOPBACK_SERDES
|| loopback
== LOOPBACK_LCB
||
9185 loopback
== LOOPBACK_CABLE
)) {
9186 loopback
= LOOPBACK_LCB
;
9192 * SerDes loopback init sequence is handled in set_local_link_attributes
9194 if (loopback
== LOOPBACK_SERDES
)
9197 /* LCB loopback - handled at poll time */
9198 if (loopback
== LOOPBACK_LCB
) {
9199 quick_linkup
= 1; /* LCB is always quick linkup */
9201 /* not supported in emulation due to emulation RTL changes */
9202 if (dd
->icode
== ICODE_FPGA_EMULATION
) {
9204 "LCB loopback not supported in emulation\n");
9210 /* external cable loopback requires no extra steps */
9211 if (loopback
== LOOPBACK_CABLE
)
9214 dd_dev_err(dd
, "Invalid loopback mode %d\n", loopback
);
9219 * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9220 * used in the Verify Capability link width attribute.
9222 static u16
opa_to_vc_link_widths(u16 opa_widths
)
9227 static const struct link_bits
{
9230 } opa_link_xlate
[] = {
9231 { OPA_LINK_WIDTH_1X
, 1 << (1 - 1) },
9232 { OPA_LINK_WIDTH_2X
, 1 << (2 - 1) },
9233 { OPA_LINK_WIDTH_3X
, 1 << (3 - 1) },
9234 { OPA_LINK_WIDTH_4X
, 1 << (4 - 1) },
9237 for (i
= 0; i
< ARRAY_SIZE(opa_link_xlate
); i
++) {
9238 if (opa_widths
& opa_link_xlate
[i
].from
)
9239 result
|= opa_link_xlate
[i
].to
;
9245 * Set link attributes before moving to polling.
9247 static int set_local_link_attributes(struct hfi1_pportdata
*ppd
)
9249 struct hfi1_devdata
*dd
= ppd
->dd
;
9251 u8 tx_polarity_inversion
;
9252 u8 rx_polarity_inversion
;
9255 /* reset our fabric serdes to clear any lingering problems */
9256 fabric_serdes_reset(dd
);
9258 /* set the local tx rate - need to read-modify-write */
9259 ret
= read_tx_settings(dd
, &enable_lane_tx
, &tx_polarity_inversion
,
9260 &rx_polarity_inversion
, &ppd
->local_tx_rate
);
9262 goto set_local_link_attributes_fail
;
9264 if (dd
->dc8051_ver
< dc8051_ver(0, 20, 0)) {
9265 /* set the tx rate to the fastest enabled */
9266 if (ppd
->link_speed_enabled
& OPA_LINK_SPEED_25G
)
9267 ppd
->local_tx_rate
= 1;
9269 ppd
->local_tx_rate
= 0;
9271 /* set the tx rate to all enabled */
9272 ppd
->local_tx_rate
= 0;
9273 if (ppd
->link_speed_enabled
& OPA_LINK_SPEED_25G
)
9274 ppd
->local_tx_rate
|= 2;
9275 if (ppd
->link_speed_enabled
& OPA_LINK_SPEED_12_5G
)
9276 ppd
->local_tx_rate
|= 1;
9279 enable_lane_tx
= 0xF; /* enable all four lanes */
9280 ret
= write_tx_settings(dd
, enable_lane_tx
, tx_polarity_inversion
,
9281 rx_polarity_inversion
, ppd
->local_tx_rate
);
9282 if (ret
!= HCMD_SUCCESS
)
9283 goto set_local_link_attributes_fail
;
9285 ret
= write_host_interface_version(dd
, HOST_INTERFACE_VERSION
);
9286 if (ret
!= HCMD_SUCCESS
) {
9288 "Failed to set host interface version, return 0x%x\n",
9290 goto set_local_link_attributes_fail
;
9294 * DC supports continuous updates.
9296 ret
= write_vc_local_phy(dd
,
9297 0 /* no power management */,
9298 1 /* continuous updates */);
9299 if (ret
!= HCMD_SUCCESS
)
9300 goto set_local_link_attributes_fail
;
9302 /* z=1 in the next call: AU of 0 is not supported by the hardware */
9303 ret
= write_vc_local_fabric(dd
, dd
->vau
, 1, dd
->vcu
, dd
->vl15_init
,
9304 ppd
->port_crc_mode_enabled
);
9305 if (ret
!= HCMD_SUCCESS
)
9306 goto set_local_link_attributes_fail
;
9309 * SerDes loopback init sequence requires
9310 * setting bit 0 of MISC_CONFIG_BITS
9312 if (loopback
== LOOPBACK_SERDES
)
9313 misc_bits
|= 1 << LOOPBACK_SERDES_CONFIG_BIT_MASK_SHIFT
;
9315 ret
= write_vc_local_link_width(dd
, misc_bits
, 0,
9316 opa_to_vc_link_widths(
9317 ppd
->link_width_enabled
));
9318 if (ret
!= HCMD_SUCCESS
)
9319 goto set_local_link_attributes_fail
;
9321 /* let peer know who we are */
9322 ret
= write_local_device_id(dd
, dd
->pcidev
->device
, dd
->minrev
);
9323 if (ret
== HCMD_SUCCESS
)
9326 set_local_link_attributes_fail
:
9328 "Failed to set local link attributes, return 0x%x\n",
9334 * Call this to start the link.
9335 * Do not do anything if the link is disabled.
9336 * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9338 int start_link(struct hfi1_pportdata
*ppd
)
9341 * Tune the SerDes to a ballpark setting for optimal signal and bit
9342 * error rate. Needs to be done before starting the link.
9346 if (!ppd
->driver_link_ready
) {
9347 dd_dev_info(ppd
->dd
,
9348 "%s: stopping link start because driver is not ready\n",
9354 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9355 * pkey table can be configured properly if the HFI unit is connected
9356 * to switch port with MgmtAllowed=NO
9358 clear_full_mgmt_pkey(ppd
);
9360 return set_link_state(ppd
, HLS_DN_POLL
);
9363 static void wait_for_qsfp_init(struct hfi1_pportdata
*ppd
)
9365 struct hfi1_devdata
*dd
= ppd
->dd
;
9367 unsigned long timeout
;
9370 * Some QSFP cables have a quirk that asserts the IntN line as a side
9371 * effect of power up on plug-in. We ignore this false positive
9372 * interrupt until the module has finished powering up by waiting for
9373 * a minimum timeout of the module inrush initialization time of
9374 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9375 * module have stabilized.
9380 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9382 timeout
= jiffies
+ msecs_to_jiffies(2000);
9384 mask
= read_csr(dd
, dd
->hfi1_id
?
9385 ASIC_QSFP2_IN
: ASIC_QSFP1_IN
);
9386 if (!(mask
& QSFP_HFI0_INT_N
))
9388 if (time_after(jiffies
, timeout
)) {
9389 dd_dev_info(dd
, "%s: No IntN detected, reset complete\n",
9397 static void set_qsfp_int_n(struct hfi1_pportdata
*ppd
, u8 enable
)
9399 struct hfi1_devdata
*dd
= ppd
->dd
;
9402 mask
= read_csr(dd
, dd
->hfi1_id
? ASIC_QSFP2_MASK
: ASIC_QSFP1_MASK
);
9405 * Clear the status register to avoid an immediate interrupt
9406 * when we re-enable the IntN pin
9408 write_csr(dd
, dd
->hfi1_id
? ASIC_QSFP2_CLEAR
: ASIC_QSFP1_CLEAR
,
9410 mask
|= (u64
)QSFP_HFI0_INT_N
;
9412 mask
&= ~(u64
)QSFP_HFI0_INT_N
;
9414 write_csr(dd
, dd
->hfi1_id
? ASIC_QSFP2_MASK
: ASIC_QSFP1_MASK
, mask
);
9417 int reset_qsfp(struct hfi1_pportdata
*ppd
)
9419 struct hfi1_devdata
*dd
= ppd
->dd
;
9420 u64 mask
, qsfp_mask
;
9422 /* Disable INT_N from triggering QSFP interrupts */
9423 set_qsfp_int_n(ppd
, 0);
9425 /* Reset the QSFP */
9426 mask
= (u64
)QSFP_HFI0_RESET_N
;
9428 qsfp_mask
= read_csr(dd
,
9429 dd
->hfi1_id
? ASIC_QSFP2_OUT
: ASIC_QSFP1_OUT
);
9432 dd
->hfi1_id
? ASIC_QSFP2_OUT
: ASIC_QSFP1_OUT
, qsfp_mask
);
9438 dd
->hfi1_id
? ASIC_QSFP2_OUT
: ASIC_QSFP1_OUT
, qsfp_mask
);
9440 wait_for_qsfp_init(ppd
);
9443 * Allow INT_N to trigger the QSFP interrupt to watch
9444 * for alarms and warnings
9446 set_qsfp_int_n(ppd
, 1);
9449 * After the reset, AOC transmitters are enabled by default. They need
9450 * to be turned off to complete the QSFP setup before they can be
9453 return set_qsfp_tx(ppd
, 0);
9456 static int handle_qsfp_error_conditions(struct hfi1_pportdata
*ppd
,
9457 u8
*qsfp_interrupt_status
)
9459 struct hfi1_devdata
*dd
= ppd
->dd
;
9461 if ((qsfp_interrupt_status
[0] & QSFP_HIGH_TEMP_ALARM
) ||
9462 (qsfp_interrupt_status
[0] & QSFP_HIGH_TEMP_WARNING
))
9463 dd_dev_err(dd
, "%s: QSFP cable temperature too high\n",
9466 if ((qsfp_interrupt_status
[0] & QSFP_LOW_TEMP_ALARM
) ||
9467 (qsfp_interrupt_status
[0] & QSFP_LOW_TEMP_WARNING
))
9468 dd_dev_err(dd
, "%s: QSFP cable temperature too low\n",
9472 * The remaining alarms/warnings don't matter if the link is down.
9474 if (ppd
->host_link_state
& HLS_DOWN
)
9477 if ((qsfp_interrupt_status
[1] & QSFP_HIGH_VCC_ALARM
) ||
9478 (qsfp_interrupt_status
[1] & QSFP_HIGH_VCC_WARNING
))
9479 dd_dev_err(dd
, "%s: QSFP supply voltage too high\n",
9482 if ((qsfp_interrupt_status
[1] & QSFP_LOW_VCC_ALARM
) ||
9483 (qsfp_interrupt_status
[1] & QSFP_LOW_VCC_WARNING
))
9484 dd_dev_err(dd
, "%s: QSFP supply voltage too low\n",
9487 /* Byte 2 is vendor specific */
9489 if ((qsfp_interrupt_status
[3] & QSFP_HIGH_POWER_ALARM
) ||
9490 (qsfp_interrupt_status
[3] & QSFP_HIGH_POWER_WARNING
))
9491 dd_dev_err(dd
, "%s: Cable RX channel 1/2 power too high\n",
9494 if ((qsfp_interrupt_status
[3] & QSFP_LOW_POWER_ALARM
) ||
9495 (qsfp_interrupt_status
[3] & QSFP_LOW_POWER_WARNING
))
9496 dd_dev_err(dd
, "%s: Cable RX channel 1/2 power too low\n",
9499 if ((qsfp_interrupt_status
[4] & QSFP_HIGH_POWER_ALARM
) ||
9500 (qsfp_interrupt_status
[4] & QSFP_HIGH_POWER_WARNING
))
9501 dd_dev_err(dd
, "%s: Cable RX channel 3/4 power too high\n",
9504 if ((qsfp_interrupt_status
[4] & QSFP_LOW_POWER_ALARM
) ||
9505 (qsfp_interrupt_status
[4] & QSFP_LOW_POWER_WARNING
))
9506 dd_dev_err(dd
, "%s: Cable RX channel 3/4 power too low\n",
9509 if ((qsfp_interrupt_status
[5] & QSFP_HIGH_BIAS_ALARM
) ||
9510 (qsfp_interrupt_status
[5] & QSFP_HIGH_BIAS_WARNING
))
9511 dd_dev_err(dd
, "%s: Cable TX channel 1/2 bias too high\n",
9514 if ((qsfp_interrupt_status
[5] & QSFP_LOW_BIAS_ALARM
) ||
9515 (qsfp_interrupt_status
[5] & QSFP_LOW_BIAS_WARNING
))
9516 dd_dev_err(dd
, "%s: Cable TX channel 1/2 bias too low\n",
9519 if ((qsfp_interrupt_status
[6] & QSFP_HIGH_BIAS_ALARM
) ||
9520 (qsfp_interrupt_status
[6] & QSFP_HIGH_BIAS_WARNING
))
9521 dd_dev_err(dd
, "%s: Cable TX channel 3/4 bias too high\n",
9524 if ((qsfp_interrupt_status
[6] & QSFP_LOW_BIAS_ALARM
) ||
9525 (qsfp_interrupt_status
[6] & QSFP_LOW_BIAS_WARNING
))
9526 dd_dev_err(dd
, "%s: Cable TX channel 3/4 bias too low\n",
9529 if ((qsfp_interrupt_status
[7] & QSFP_HIGH_POWER_ALARM
) ||
9530 (qsfp_interrupt_status
[7] & QSFP_HIGH_POWER_WARNING
))
9531 dd_dev_err(dd
, "%s: Cable TX channel 1/2 power too high\n",
9534 if ((qsfp_interrupt_status
[7] & QSFP_LOW_POWER_ALARM
) ||
9535 (qsfp_interrupt_status
[7] & QSFP_LOW_POWER_WARNING
))
9536 dd_dev_err(dd
, "%s: Cable TX channel 1/2 power too low\n",
9539 if ((qsfp_interrupt_status
[8] & QSFP_HIGH_POWER_ALARM
) ||
9540 (qsfp_interrupt_status
[8] & QSFP_HIGH_POWER_WARNING
))
9541 dd_dev_err(dd
, "%s: Cable TX channel 3/4 power too high\n",
9544 if ((qsfp_interrupt_status
[8] & QSFP_LOW_POWER_ALARM
) ||
9545 (qsfp_interrupt_status
[8] & QSFP_LOW_POWER_WARNING
))
9546 dd_dev_err(dd
, "%s: Cable TX channel 3/4 power too low\n",
9549 /* Bytes 9-10 and 11-12 are reserved */
9550 /* Bytes 13-15 are vendor specific */
9555 /* This routine will only be scheduled if the QSFP module present is asserted */
9556 void qsfp_event(struct work_struct
*work
)
9558 struct qsfp_data
*qd
;
9559 struct hfi1_pportdata
*ppd
;
9560 struct hfi1_devdata
*dd
;
9562 qd
= container_of(work
, struct qsfp_data
, qsfp_work
);
9567 if (!qsfp_mod_present(ppd
))
9570 if (ppd
->host_link_state
== HLS_DN_DISABLE
) {
9571 dd_dev_info(ppd
->dd
,
9572 "%s: stopping link start because link is disabled\n",
9578 * Turn DC back on after cable has been re-inserted. Up until
9579 * now, the DC has been in reset to save power.
9583 if (qd
->cache_refresh_required
) {
9584 set_qsfp_int_n(ppd
, 0);
9586 wait_for_qsfp_init(ppd
);
9589 * Allow INT_N to trigger the QSFP interrupt to watch
9590 * for alarms and warnings
9592 set_qsfp_int_n(ppd
, 1);
9597 if (qd
->check_interrupt_flags
) {
9598 u8 qsfp_interrupt_status
[16] = {0,};
9600 if (one_qsfp_read(ppd
, dd
->hfi1_id
, 6,
9601 &qsfp_interrupt_status
[0], 16) != 16) {
9603 "%s: Failed to read status of QSFP module\n",
9606 unsigned long flags
;
9608 handle_qsfp_error_conditions(
9609 ppd
, qsfp_interrupt_status
);
9610 spin_lock_irqsave(&ppd
->qsfp_info
.qsfp_lock
, flags
);
9611 ppd
->qsfp_info
.check_interrupt_flags
= 0;
9612 spin_unlock_irqrestore(&ppd
->qsfp_info
.qsfp_lock
,
9618 static void init_qsfp_int(struct hfi1_devdata
*dd
)
9620 struct hfi1_pportdata
*ppd
= dd
->pport
;
9621 u64 qsfp_mask
, cce_int_mask
;
9622 const int qsfp1_int_smask
= QSFP1_INT
% 64;
9623 const int qsfp2_int_smask
= QSFP2_INT
% 64;
9626 * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
9627 * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
9628 * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
9629 * the index of the appropriate CSR in the CCEIntMask CSR array
9631 cce_int_mask
= read_csr(dd
, CCE_INT_MASK
+
9632 (8 * (QSFP1_INT
/ 64)));
9634 cce_int_mask
&= ~((u64
)1 << qsfp1_int_smask
);
9635 write_csr(dd
, CCE_INT_MASK
+ (8 * (QSFP1_INT
/ 64)),
9638 cce_int_mask
&= ~((u64
)1 << qsfp2_int_smask
);
9639 write_csr(dd
, CCE_INT_MASK
+ (8 * (QSFP2_INT
/ 64)),
9643 qsfp_mask
= (u64
)(QSFP_HFI0_INT_N
| QSFP_HFI0_MODPRST_N
);
9644 /* Clear current status to avoid spurious interrupts */
9645 write_csr(dd
, dd
->hfi1_id
? ASIC_QSFP2_CLEAR
: ASIC_QSFP1_CLEAR
,
9647 write_csr(dd
, dd
->hfi1_id
? ASIC_QSFP2_MASK
: ASIC_QSFP1_MASK
,
9650 set_qsfp_int_n(ppd
, 0);
9652 /* Handle active low nature of INT_N and MODPRST_N pins */
9653 if (qsfp_mod_present(ppd
))
9654 qsfp_mask
&= ~(u64
)QSFP_HFI0_MODPRST_N
;
9656 dd
->hfi1_id
? ASIC_QSFP2_INVERT
: ASIC_QSFP1_INVERT
,
9661 * Do a one-time initialize of the LCB block.
9663 static void init_lcb(struct hfi1_devdata
*dd
)
9665 /* simulator does not correctly handle LCB cclk loopback, skip */
9666 if (dd
->icode
== ICODE_FUNCTIONAL_SIMULATOR
)
9669 /* the DC has been reset earlier in the driver load */
9671 /* set LCB for cclk loopback on the port */
9672 write_csr(dd
, DC_LCB_CFG_TX_FIFOS_RESET
, 0x01);
9673 write_csr(dd
, DC_LCB_CFG_LANE_WIDTH
, 0x00);
9674 write_csr(dd
, DC_LCB_CFG_REINIT_AS_SLAVE
, 0x00);
9675 write_csr(dd
, DC_LCB_CFG_CNT_FOR_SKIP_STALL
, 0x110);
9676 write_csr(dd
, DC_LCB_CFG_CLK_CNTR
, 0x08);
9677 write_csr(dd
, DC_LCB_CFG_LOOPBACK
, 0x02);
9678 write_csr(dd
, DC_LCB_CFG_TX_FIFOS_RESET
, 0x00);
9682 * Perform a test read on the QSFP. Return 0 on success, -ERRNO
9685 static int test_qsfp_read(struct hfi1_pportdata
*ppd
)
9691 * Report success if not a QSFP or, if it is a QSFP, but the cable is
9694 if (ppd
->port_type
!= PORT_TYPE_QSFP
|| !qsfp_mod_present(ppd
))
9697 /* read byte 2, the status byte */
9698 ret
= one_qsfp_read(ppd
, ppd
->dd
->hfi1_id
, 2, &status
, 1);
9704 return 0; /* success */
9708 * Values for QSFP retry.
9710 * Give up after 10s (20 x 500ms). The overall timeout was empirically
9711 * arrived at from experience on a large cluster.
9713 #define MAX_QSFP_RETRIES 20
9714 #define QSFP_RETRY_WAIT 500 /* msec */
9717 * Try a QSFP read. If it fails, schedule a retry for later.
9718 * Called on first link activation after driver load.
9720 static void try_start_link(struct hfi1_pportdata
*ppd
)
9722 if (test_qsfp_read(ppd
)) {
9724 if (ppd
->qsfp_retry_count
>= MAX_QSFP_RETRIES
) {
9725 dd_dev_err(ppd
->dd
, "QSFP not responding, giving up\n");
9728 dd_dev_info(ppd
->dd
,
9729 "QSFP not responding, waiting and retrying %d\n",
9730 (int)ppd
->qsfp_retry_count
);
9731 ppd
->qsfp_retry_count
++;
9732 queue_delayed_work(ppd
->link_wq
, &ppd
->start_link_work
,
9733 msecs_to_jiffies(QSFP_RETRY_WAIT
));
9736 ppd
->qsfp_retry_count
= 0;
9742 * Workqueue function to start the link after a delay.
9744 void handle_start_link(struct work_struct
*work
)
9746 struct hfi1_pportdata
*ppd
= container_of(work
, struct hfi1_pportdata
,
9747 start_link_work
.work
);
9748 try_start_link(ppd
);
9751 int bringup_serdes(struct hfi1_pportdata
*ppd
)
9753 struct hfi1_devdata
*dd
= ppd
->dd
;
9757 if (HFI1_CAP_IS_KSET(EXTENDED_PSN
))
9758 add_rcvctrl(dd
, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK
);
9760 guid
= ppd
->guids
[HFI1_PORT_GUID_INDEX
];
9763 guid
= dd
->base_guid
+ ppd
->port
- 1;
9764 ppd
->guids
[HFI1_PORT_GUID_INDEX
] = guid
;
9767 /* Set linkinit_reason on power up per OPA spec */
9768 ppd
->linkinit_reason
= OPA_LINKINIT_REASON_LINKUP
;
9770 /* one-time init of the LCB */
9774 ret
= init_loopback(dd
);
9780 if (ppd
->port_type
== PORT_TYPE_QSFP
) {
9781 set_qsfp_int_n(ppd
, 0);
9782 wait_for_qsfp_init(ppd
);
9783 set_qsfp_int_n(ppd
, 1);
9786 try_start_link(ppd
);
9790 void hfi1_quiet_serdes(struct hfi1_pportdata
*ppd
)
9792 struct hfi1_devdata
*dd
= ppd
->dd
;
9795 * Shut down the link and keep it down. First turn off that the
9796 * driver wants to allow the link to be up (driver_link_ready).
9797 * Then make sure the link is not automatically restarted
9798 * (link_enabled). Cancel any pending restart. And finally
9801 ppd
->driver_link_ready
= 0;
9802 ppd
->link_enabled
= 0;
9804 ppd
->qsfp_retry_count
= MAX_QSFP_RETRIES
; /* prevent more retries */
9805 flush_delayed_work(&ppd
->start_link_work
);
9806 cancel_delayed_work_sync(&ppd
->start_link_work
);
9808 ppd
->offline_disabled_reason
=
9809 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_REBOOT
);
9810 set_link_down_reason(ppd
, OPA_LINKDOWN_REASON_REBOOT
, 0,
9811 OPA_LINKDOWN_REASON_REBOOT
);
9812 set_link_state(ppd
, HLS_DN_OFFLINE
);
9814 /* disable the port */
9815 clear_rcvctrl(dd
, RCV_CTRL_RCV_PORT_ENABLE_SMASK
);
9818 static inline int init_cpu_counters(struct hfi1_devdata
*dd
)
9820 struct hfi1_pportdata
*ppd
;
9823 ppd
= (struct hfi1_pportdata
*)(dd
+ 1);
9824 for (i
= 0; i
< dd
->num_pports
; i
++, ppd
++) {
9825 ppd
->ibport_data
.rvp
.rc_acks
= NULL
;
9826 ppd
->ibport_data
.rvp
.rc_qacks
= NULL
;
9827 ppd
->ibport_data
.rvp
.rc_acks
= alloc_percpu(u64
);
9828 ppd
->ibport_data
.rvp
.rc_qacks
= alloc_percpu(u64
);
9829 ppd
->ibport_data
.rvp
.rc_delayed_comp
= alloc_percpu(u64
);
9830 if (!ppd
->ibport_data
.rvp
.rc_acks
||
9831 !ppd
->ibport_data
.rvp
.rc_delayed_comp
||
9832 !ppd
->ibport_data
.rvp
.rc_qacks
)
9840 * index is the index into the receive array
9842 void hfi1_put_tid(struct hfi1_devdata
*dd
, u32 index
,
9843 u32 type
, unsigned long pa
, u16 order
)
9847 if (!(dd
->flags
& HFI1_PRESENT
))
9850 if (type
== PT_INVALID
|| type
== PT_INVALID_FLUSH
) {
9853 } else if (type
> PT_INVALID
) {
9855 "unexpected receive array type %u for index %u, not handled\n",
9859 trace_hfi1_put_tid(dd
, index
, type
, pa
, order
);
9861 #define RT_ADDR_SHIFT 12 /* 4KB kernel address boundary */
9862 reg
= RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9863 | (u64
)order
<< RCV_ARRAY_RT_BUF_SIZE_SHIFT
9864 | ((pa
>> RT_ADDR_SHIFT
) & RCV_ARRAY_RT_ADDR_MASK
)
9865 << RCV_ARRAY_RT_ADDR_SHIFT
;
9866 trace_hfi1_write_rcvarray(dd
->rcvarray_wc
+ (index
* 8), reg
);
9867 writeq(reg
, dd
->rcvarray_wc
+ (index
* 8));
9869 if (type
== PT_EAGER
|| type
== PT_INVALID_FLUSH
|| (index
& 3) == 3)
9871 * Eager entries are written and flushed
9873 * Expected entries are flushed every 4 writes
9880 void hfi1_clear_tids(struct hfi1_ctxtdata
*rcd
)
9882 struct hfi1_devdata
*dd
= rcd
->dd
;
9885 /* this could be optimized */
9886 for (i
= rcd
->eager_base
; i
< rcd
->eager_base
+
9887 rcd
->egrbufs
.alloced
; i
++)
9888 hfi1_put_tid(dd
, i
, PT_INVALID
, 0, 0);
9890 for (i
= rcd
->expected_base
;
9891 i
< rcd
->expected_base
+ rcd
->expected_count
; i
++)
9892 hfi1_put_tid(dd
, i
, PT_INVALID
, 0, 0);
9895 static const char * const ib_cfg_name_strings
[] = {
9896 "HFI1_IB_CFG_LIDLMC",
9897 "HFI1_IB_CFG_LWID_DG_ENB",
9898 "HFI1_IB_CFG_LWID_ENB",
9900 "HFI1_IB_CFG_SPD_ENB",
9902 "HFI1_IB_CFG_RXPOL_ENB",
9903 "HFI1_IB_CFG_LREV_ENB",
9904 "HFI1_IB_CFG_LINKLATENCY",
9905 "HFI1_IB_CFG_HRTBT",
9906 "HFI1_IB_CFG_OP_VLS",
9907 "HFI1_IB_CFG_VL_HIGH_CAP",
9908 "HFI1_IB_CFG_VL_LOW_CAP",
9909 "HFI1_IB_CFG_OVERRUN_THRESH",
9910 "HFI1_IB_CFG_PHYERR_THRESH",
9911 "HFI1_IB_CFG_LINKDEFAULT",
9912 "HFI1_IB_CFG_PKEYS",
9914 "HFI1_IB_CFG_LSTATE",
9915 "HFI1_IB_CFG_VL_HIGH_LIMIT",
9916 "HFI1_IB_CFG_PMA_TICKS",
9920 static const char *ib_cfg_name(int which
)
9922 if (which
< 0 || which
>= ARRAY_SIZE(ib_cfg_name_strings
))
9924 return ib_cfg_name_strings
[which
];
9927 int hfi1_get_ib_cfg(struct hfi1_pportdata
*ppd
, int which
)
9929 struct hfi1_devdata
*dd
= ppd
->dd
;
9933 case HFI1_IB_CFG_LWID_ENB
: /* allowed Link-width */
9934 val
= ppd
->link_width_enabled
;
9936 case HFI1_IB_CFG_LWID
: /* currently active Link-width */
9937 val
= ppd
->link_width_active
;
9939 case HFI1_IB_CFG_SPD_ENB
: /* allowed Link speeds */
9940 val
= ppd
->link_speed_enabled
;
9942 case HFI1_IB_CFG_SPD
: /* current Link speed */
9943 val
= ppd
->link_speed_active
;
9946 case HFI1_IB_CFG_RXPOL_ENB
: /* Auto-RX-polarity enable */
9947 case HFI1_IB_CFG_LREV_ENB
: /* Auto-Lane-reversal enable */
9948 case HFI1_IB_CFG_LINKLATENCY
:
9951 case HFI1_IB_CFG_OP_VLS
:
9952 val
= ppd
->actual_vls_operational
;
9954 case HFI1_IB_CFG_VL_HIGH_CAP
: /* VL arb high priority table size */
9955 val
= VL_ARB_HIGH_PRIO_TABLE_SIZE
;
9957 case HFI1_IB_CFG_VL_LOW_CAP
: /* VL arb low priority table size */
9958 val
= VL_ARB_LOW_PRIO_TABLE_SIZE
;
9960 case HFI1_IB_CFG_OVERRUN_THRESH
: /* IB overrun threshold */
9961 val
= ppd
->overrun_threshold
;
9963 case HFI1_IB_CFG_PHYERR_THRESH
: /* IB PHY error threshold */
9964 val
= ppd
->phy_error_threshold
;
9966 case HFI1_IB_CFG_LINKDEFAULT
: /* IB link default (sleep/poll) */
9970 case HFI1_IB_CFG_HRTBT
: /* Heartbeat off/enable/auto */
9971 case HFI1_IB_CFG_PMA_TICKS
:
9974 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL
))
9977 "%s: which %s: not implemented\n",
9979 ib_cfg_name(which
));
9987 * The largest MAD packet size.
9989 #define MAX_MAD_PACKET 2048
9992 * Return the maximum header bytes that can go on the _wire_
9993 * for this device. This count includes the ICRC which is
9994 * not part of the packet held in memory but it is appended
9996 * This is dependent on the device's receive header entry size.
9997 * HFI allows this to be set per-receive context, but the
9998 * driver presently enforces a global value.
10000 u32
lrh_max_header_bytes(struct hfi1_devdata
*dd
)
10003 * The maximum non-payload (MTU) bytes in LRH.PktLen are
10004 * the Receive Header Entry Size minus the PBC (or RHF) size
10005 * plus one DW for the ICRC appended by HW.
10007 * dd->rcd[0].rcvhdrqentsize is in DW.
10008 * We use rcd[0] as all context will have the same value. Also,
10009 * the first kernel context would have been allocated by now so
10010 * we are guaranteed a valid value.
10012 return (dd
->rcd
[0]->rcvhdrqentsize
- 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
10017 * @ppd - per port data
10019 * Set the MTU by limiting how many DWs may be sent. The SendLenCheck*
10020 * registers compare against LRH.PktLen, so use the max bytes included
10023 * This routine changes all VL values except VL15, which it maintains at
10026 static void set_send_length(struct hfi1_pportdata
*ppd
)
10028 struct hfi1_devdata
*dd
= ppd
->dd
;
10029 u32 max_hb
= lrh_max_header_bytes(dd
), dcmtu
;
10030 u32 maxvlmtu
= dd
->vld
[15].mtu
;
10031 u64 len1
= 0, len2
= (((dd
->vld
[15].mtu
+ max_hb
) >> 2)
10032 & SEND_LEN_CHECK1_LEN_VL15_MASK
) <<
10033 SEND_LEN_CHECK1_LEN_VL15_SHIFT
;
10037 for (i
= 0; i
< ppd
->vls_supported
; i
++) {
10038 if (dd
->vld
[i
].mtu
> maxvlmtu
)
10039 maxvlmtu
= dd
->vld
[i
].mtu
;
10041 len1
|= (((dd
->vld
[i
].mtu
+ max_hb
) >> 2)
10042 & SEND_LEN_CHECK0_LEN_VL0_MASK
) <<
10043 ((i
% 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT
);
10045 len2
|= (((dd
->vld
[i
].mtu
+ max_hb
) >> 2)
10046 & SEND_LEN_CHECK1_LEN_VL4_MASK
) <<
10047 ((i
% 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT
);
10049 write_csr(dd
, SEND_LEN_CHECK0
, len1
);
10050 write_csr(dd
, SEND_LEN_CHECK1
, len2
);
10051 /* adjust kernel credit return thresholds based on new MTUs */
10052 /* all kernel receive contexts have the same hdrqentsize */
10053 for (i
= 0; i
< ppd
->vls_supported
; i
++) {
10054 thres
= min(sc_percent_to_threshold(dd
->vld
[i
].sc
, 50),
10055 sc_mtu_to_threshold(dd
->vld
[i
].sc
,
10057 dd
->rcd
[0]->rcvhdrqentsize
));
10058 for (j
= 0; j
< INIT_SC_PER_VL
; j
++)
10059 sc_set_cr_threshold(
10060 pio_select_send_context_vl(dd
, j
, i
),
10063 thres
= min(sc_percent_to_threshold(dd
->vld
[15].sc
, 50),
10064 sc_mtu_to_threshold(dd
->vld
[15].sc
,
10066 dd
->rcd
[0]->rcvhdrqentsize
));
10067 sc_set_cr_threshold(dd
->vld
[15].sc
, thres
);
10069 /* Adjust maximum MTU for the port in DC */
10070 dcmtu
= maxvlmtu
== 10240 ? DCC_CFG_PORT_MTU_CAP_10240
:
10071 (ilog2(maxvlmtu
>> 8) + 1);
10072 len1
= read_csr(ppd
->dd
, DCC_CFG_PORT_CONFIG
);
10073 len1
&= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK
;
10074 len1
|= ((u64
)dcmtu
& DCC_CFG_PORT_CONFIG_MTU_CAP_MASK
) <<
10075 DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT
;
10076 write_csr(ppd
->dd
, DCC_CFG_PORT_CONFIG
, len1
);
10079 static void set_lidlmc(struct hfi1_pportdata
*ppd
)
10083 struct hfi1_devdata
*dd
= ppd
->dd
;
10084 u32 mask
= ~((1U << ppd
->lmc
) - 1);
10085 u64 c1
= read_csr(ppd
->dd
, DCC_CFG_PORT_CONFIG1
);
10089 * Program 0 in CSR if port lid is extended. This prevents
10090 * 9B packets being sent out for large lids.
10092 lid
= (ppd
->lid
>= be16_to_cpu(IB_MULTICAST_LID_BASE
)) ? 0 : ppd
->lid
;
10093 c1
&= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
10094 | DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK
);
10095 c1
|= ((lid
& DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK
)
10096 << DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT
) |
10097 ((mask
& DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK
)
10098 << DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT
);
10099 write_csr(ppd
->dd
, DCC_CFG_PORT_CONFIG1
, c1
);
10102 * Iterate over all the send contexts and set their SLID check
10104 sreg
= ((mask
& SEND_CTXT_CHECK_SLID_MASK_MASK
) <<
10105 SEND_CTXT_CHECK_SLID_MASK_SHIFT
) |
10106 (((lid
& mask
) & SEND_CTXT_CHECK_SLID_VALUE_MASK
) <<
10107 SEND_CTXT_CHECK_SLID_VALUE_SHIFT
);
10109 for (i
= 0; i
< dd
->chip_send_contexts
; i
++) {
10110 hfi1_cdbg(LINKVERB
, "SendContext[%d].SLID_CHECK = 0x%x",
10112 write_kctxt_csr(dd
, i
, SEND_CTXT_CHECK_SLID
, sreg
);
10115 /* Now we have to do the same thing for the sdma engines */
10116 sdma_update_lmc(dd
, mask
, lid
);
10119 static const char *state_completed_string(u32 completed
)
10121 static const char * const state_completed
[] = {
10127 if (completed
< ARRAY_SIZE(state_completed
))
10128 return state_completed
[completed
];
10133 static const char all_lanes_dead_timeout_expired
[] =
10134 "All lanes were inactive – was the interconnect media removed?";
10135 static const char tx_out_of_policy
[] =
10136 "Passing lanes on local port do not meet the local link width policy";
10137 static const char no_state_complete
[] =
10138 "State timeout occurred before link partner completed the state";
10139 static const char * const state_complete_reasons
[] = {
10140 [0x00] = "Reason unknown",
10141 [0x01] = "Link was halted by driver, refer to LinkDownReason",
10142 [0x02] = "Link partner reported failure",
10143 [0x10] = "Unable to achieve frame sync on any lane",
10145 "Unable to find a common bit rate with the link partner",
10147 "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10149 "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10150 [0x14] = no_state_complete
,
10152 "State timeout occurred before link partner identified equalization presets",
10154 "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10155 [0x17] = tx_out_of_policy
,
10156 [0x20] = all_lanes_dead_timeout_expired
,
10158 "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10159 [0x22] = no_state_complete
,
10161 "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10162 [0x24] = tx_out_of_policy
,
10163 [0x30] = all_lanes_dead_timeout_expired
,
10165 "State timeout occurred waiting for host to process received frames",
10166 [0x32] = no_state_complete
,
10168 "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10169 [0x34] = tx_out_of_policy
,
10170 [0x35] = "Negotiated link width is mutually exclusive",
10172 "Timed out before receiving verifycap frames in VerifyCap.Exchange",
10173 [0x37] = "Unable to resolve secure data exchange",
10176 static const char *state_complete_reason_code_string(struct hfi1_pportdata
*ppd
,
10179 const char *str
= NULL
;
10181 if (code
< ARRAY_SIZE(state_complete_reasons
))
10182 str
= state_complete_reasons
[code
];
10189 /* describe the given last state complete frame */
10190 static void decode_state_complete(struct hfi1_pportdata
*ppd
, u32 frame
,
10191 const char *prefix
)
10193 struct hfi1_devdata
*dd
= ppd
->dd
;
10201 * [ 0: 0] - success
10203 * [ 7: 4] - next state timeout
10204 * [15: 8] - reason code
10207 success
= frame
& 0x1;
10208 state
= (frame
>> 1) & 0x7;
10209 reason
= (frame
>> 8) & 0xff;
10210 lanes
= (frame
>> 16) & 0xffff;
10212 dd_dev_err(dd
, "Last %s LNI state complete frame 0x%08x:\n",
10214 dd_dev_err(dd
, " last reported state state: %s (0x%x)\n",
10215 state_completed_string(state
), state
);
10216 dd_dev_err(dd
, " state successfully completed: %s\n",
10217 success
? "yes" : "no");
10218 dd_dev_err(dd
, " fail reason 0x%x: %s\n",
10219 reason
, state_complete_reason_code_string(ppd
, reason
));
10220 dd_dev_err(dd
, " passing lane mask: 0x%x", lanes
);
10224 * Read the last state complete frames and explain them. This routine
10225 * expects to be called if the link went down during link negotiation
10226 * and initialization (LNI). That is, anywhere between polling and link up.
10228 static void check_lni_states(struct hfi1_pportdata
*ppd
)
10230 u32 last_local_state
;
10231 u32 last_remote_state
;
10233 read_last_local_state(ppd
->dd
, &last_local_state
);
10234 read_last_remote_state(ppd
->dd
, &last_remote_state
);
10237 * Don't report anything if there is nothing to report. A value of
10238 * 0 means the link was taken down while polling and there was no
10239 * training in-process.
10241 if (last_local_state
== 0 && last_remote_state
== 0)
10244 decode_state_complete(ppd
, last_local_state
, "transmitted");
10245 decode_state_complete(ppd
, last_remote_state
, "received");
10248 /* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
10249 static int wait_link_transfer_active(struct hfi1_devdata
*dd
, int wait_ms
)
10252 unsigned long timeout
;
10254 /* watch LCB_STS_LINK_TRANSFER_ACTIVE */
10255 timeout
= jiffies
+ msecs_to_jiffies(wait_ms
);
10257 reg
= read_csr(dd
, DC_LCB_STS_LINK_TRANSFER_ACTIVE
);
10260 if (time_after(jiffies
, timeout
)) {
10262 "timeout waiting for LINK_TRANSFER_ACTIVE\n");
10270 /* called when the logical link state is not down as it should be */
10271 static void force_logical_link_state_down(struct hfi1_pportdata
*ppd
)
10273 struct hfi1_devdata
*dd
= ppd
->dd
;
10276 * Bring link up in LCB loopback
10278 write_csr(dd
, DC_LCB_CFG_TX_FIFOS_RESET
, 1);
10279 write_csr(dd
, DC_LCB_CFG_IGNORE_LOST_RCLK
,
10280 DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK
);
10282 write_csr(dd
, DC_LCB_CFG_LANE_WIDTH
, 0);
10283 write_csr(dd
, DC_LCB_CFG_REINIT_AS_SLAVE
, 0);
10284 write_csr(dd
, DC_LCB_CFG_CNT_FOR_SKIP_STALL
, 0x110);
10285 write_csr(dd
, DC_LCB_CFG_LOOPBACK
, 0x2);
10287 write_csr(dd
, DC_LCB_CFG_TX_FIFOS_RESET
, 0);
10288 (void)read_csr(dd
, DC_LCB_CFG_TX_FIFOS_RESET
);
10290 write_csr(dd
, DC_LCB_CFG_ALLOW_LINK_UP
, 1);
10291 write_csr(dd
, DC_LCB_CFG_RUN
, 1ull << DC_LCB_CFG_RUN_EN_SHIFT
);
10293 wait_link_transfer_active(dd
, 100);
10296 * Bring the link down again.
10298 write_csr(dd
, DC_LCB_CFG_TX_FIFOS_RESET
, 1);
10299 write_csr(dd
, DC_LCB_CFG_ALLOW_LINK_UP
, 0);
10300 write_csr(dd
, DC_LCB_CFG_IGNORE_LOST_RCLK
, 0);
10302 dd_dev_info(ppd
->dd
, "logical state forced to LINK_DOWN\n");
10306 * Helper for set_link_state(). Do not call except from that routine.
10307 * Expects ppd->hls_mutex to be held.
10309 * @rem_reason value to be sent to the neighbor
10311 * LinkDownReasons only set if transition succeeds.
10313 static int goto_offline(struct hfi1_pportdata
*ppd
, u8 rem_reason
)
10315 struct hfi1_devdata
*dd
= ppd
->dd
;
10316 u32 previous_state
;
10317 int offline_state_ret
;
10320 update_lcb_cache(dd
);
10322 previous_state
= ppd
->host_link_state
;
10323 ppd
->host_link_state
= HLS_GOING_OFFLINE
;
10325 /* start offline transition */
10326 ret
= set_physical_link_state(dd
, (rem_reason
<< 8) | PLS_OFFLINE
);
10328 if (ret
!= HCMD_SUCCESS
) {
10330 "Failed to transition to Offline link state, return %d\n",
10334 if (ppd
->offline_disabled_reason
==
10335 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE
))
10336 ppd
->offline_disabled_reason
=
10337 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT
);
10339 offline_state_ret
= wait_phys_link_offline_substates(ppd
, 10000);
10340 if (offline_state_ret
< 0)
10341 return offline_state_ret
;
10343 /* Disabling AOC transmitters */
10344 if (ppd
->port_type
== PORT_TYPE_QSFP
&&
10345 ppd
->qsfp_info
.limiting_active
&&
10346 qsfp_mod_present(ppd
)) {
10349 ret
= acquire_chip_resource(dd
, qsfp_resource(dd
), QSFP_WAIT
);
10351 set_qsfp_tx(ppd
, 0);
10352 release_chip_resource(dd
, qsfp_resource(dd
));
10354 /* not fatal, but should warn */
10356 "Unable to acquire lock to turn off QSFP TX\n");
10361 * Wait for the offline.Quiet transition if it hasn't happened yet. It
10362 * can take a while for the link to go down.
10364 if (offline_state_ret
!= PLS_OFFLINE_QUIET
) {
10365 ret
= wait_physical_linkstate(ppd
, PLS_OFFLINE
, 30000);
10371 * Now in charge of LCB - must be after the physical state is
10372 * offline.quiet and before host_link_state is changed.
10374 set_host_lcb_access(dd
);
10375 write_csr(dd
, DC_LCB_ERR_EN
, ~0ull); /* watch LCB errors */
10377 /* make sure the logical state is also down */
10378 ret
= wait_logical_linkstate(ppd
, IB_PORT_DOWN
, 1000);
10380 force_logical_link_state_down(ppd
);
10382 ppd
->host_link_state
= HLS_LINK_COOLDOWN
; /* LCB access allowed */
10383 update_statusp(ppd
, IB_PORT_DOWN
);
10386 * The LNI has a mandatory wait time after the physical state
10387 * moves to Offline.Quiet. The wait time may be different
10388 * depending on how the link went down. The 8051 firmware
10389 * will observe the needed wait time and only move to ready
10390 * when that is completed. The largest of the quiet timeouts
10391 * is 6s, so wait that long and then at least 0.5s more for
10392 * other transitions, and another 0.5s for a buffer.
10394 ret
= wait_fm_ready(dd
, 7000);
10397 "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10398 /* state is really offline, so make it so */
10399 ppd
->host_link_state
= HLS_DN_OFFLINE
;
10404 * The state is now offline and the 8051 is ready to accept host
10406 * - change our state
10407 * - notify others if we were previously in a linkup state
10409 ppd
->host_link_state
= HLS_DN_OFFLINE
;
10410 if (previous_state
& HLS_UP
) {
10411 /* went down while link was up */
10412 handle_linkup_change(dd
, 0);
10413 } else if (previous_state
10414 & (HLS_DN_POLL
| HLS_VERIFY_CAP
| HLS_GOING_UP
)) {
10415 /* went down while attempting link up */
10416 check_lni_states(ppd
);
10418 /* The QSFP doesn't need to be reset on LNI failure */
10419 ppd
->qsfp_info
.reset_needed
= 0;
10422 /* the active link width (downgrade) is 0 on link down */
10423 ppd
->link_width_active
= 0;
10424 ppd
->link_width_downgrade_tx_active
= 0;
10425 ppd
->link_width_downgrade_rx_active
= 0;
10426 ppd
->current_egress_rate
= 0;
10430 /* return the link state name */
10431 static const char *link_state_name(u32 state
)
10434 int n
= ilog2(state
);
10435 static const char * const names
[] = {
10436 [__HLS_UP_INIT_BP
] = "INIT",
10437 [__HLS_UP_ARMED_BP
] = "ARMED",
10438 [__HLS_UP_ACTIVE_BP
] = "ACTIVE",
10439 [__HLS_DN_DOWNDEF_BP
] = "DOWNDEF",
10440 [__HLS_DN_POLL_BP
] = "POLL",
10441 [__HLS_DN_DISABLE_BP
] = "DISABLE",
10442 [__HLS_DN_OFFLINE_BP
] = "OFFLINE",
10443 [__HLS_VERIFY_CAP_BP
] = "VERIFY_CAP",
10444 [__HLS_GOING_UP_BP
] = "GOING_UP",
10445 [__HLS_GOING_OFFLINE_BP
] = "GOING_OFFLINE",
10446 [__HLS_LINK_COOLDOWN_BP
] = "LINK_COOLDOWN"
10449 name
= n
< ARRAY_SIZE(names
) ? names
[n
] : NULL
;
10450 return name
? name
: "unknown";
10453 /* return the link state reason name */
10454 static const char *link_state_reason_name(struct hfi1_pportdata
*ppd
, u32 state
)
10456 if (state
== HLS_UP_INIT
) {
10457 switch (ppd
->linkinit_reason
) {
10458 case OPA_LINKINIT_REASON_LINKUP
:
10460 case OPA_LINKINIT_REASON_FLAPPING
:
10461 return "(FLAPPING)";
10462 case OPA_LINKINIT_OUTSIDE_POLICY
:
10463 return "(OUTSIDE_POLICY)";
10464 case OPA_LINKINIT_QUARANTINED
:
10465 return "(QUARANTINED)";
10466 case OPA_LINKINIT_INSUFIC_CAPABILITY
:
10467 return "(INSUFIC_CAPABILITY)";
10476 * driver_pstate - convert the driver's notion of a port's
10477 * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10478 * Return -1 (converted to a u32) to indicate error.
10480 u32
driver_pstate(struct hfi1_pportdata
*ppd
)
10482 switch (ppd
->host_link_state
) {
10485 case HLS_UP_ACTIVE
:
10486 return IB_PORTPHYSSTATE_LINKUP
;
10488 return IB_PORTPHYSSTATE_POLLING
;
10489 case HLS_DN_DISABLE
:
10490 return IB_PORTPHYSSTATE_DISABLED
;
10491 case HLS_DN_OFFLINE
:
10492 return OPA_PORTPHYSSTATE_OFFLINE
;
10493 case HLS_VERIFY_CAP
:
10494 return IB_PORTPHYSSTATE_POLLING
;
10496 return IB_PORTPHYSSTATE_POLLING
;
10497 case HLS_GOING_OFFLINE
:
10498 return OPA_PORTPHYSSTATE_OFFLINE
;
10499 case HLS_LINK_COOLDOWN
:
10500 return OPA_PORTPHYSSTATE_OFFLINE
;
10501 case HLS_DN_DOWNDEF
:
10503 dd_dev_err(ppd
->dd
, "invalid host_link_state 0x%x\n",
10504 ppd
->host_link_state
);
10510 * driver_lstate - convert the driver's notion of a port's
10511 * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10512 * (converted to a u32) to indicate error.
10514 u32
driver_lstate(struct hfi1_pportdata
*ppd
)
10516 if (ppd
->host_link_state
&& (ppd
->host_link_state
& HLS_DOWN
))
10517 return IB_PORT_DOWN
;
10519 switch (ppd
->host_link_state
& HLS_UP
) {
10521 return IB_PORT_INIT
;
10523 return IB_PORT_ARMED
;
10524 case HLS_UP_ACTIVE
:
10525 return IB_PORT_ACTIVE
;
10527 dd_dev_err(ppd
->dd
, "invalid host_link_state 0x%x\n",
10528 ppd
->host_link_state
);
10533 void set_link_down_reason(struct hfi1_pportdata
*ppd
, u8 lcl_reason
,
10534 u8 neigh_reason
, u8 rem_reason
)
10536 if (ppd
->local_link_down_reason
.latest
== 0 &&
10537 ppd
->neigh_link_down_reason
.latest
== 0) {
10538 ppd
->local_link_down_reason
.latest
= lcl_reason
;
10539 ppd
->neigh_link_down_reason
.latest
= neigh_reason
;
10540 ppd
->remote_link_down_reason
= rem_reason
;
10545 * Verify if BCT for data VLs is non-zero.
10547 static inline bool data_vls_operational(struct hfi1_pportdata
*ppd
)
10549 return !!ppd
->actual_vls_operational
;
10553 * Change the physical and/or logical link state.
10555 * Do not call this routine while inside an interrupt. It contains
10556 * calls to routines that can take multiple seconds to finish.
10558 * Returns 0 on success, -errno on failure.
10560 int set_link_state(struct hfi1_pportdata
*ppd
, u32 state
)
10562 struct hfi1_devdata
*dd
= ppd
->dd
;
10563 struct ib_event event
= {.device
= NULL
};
10565 int orig_new_state
, poll_bounce
;
10567 mutex_lock(&ppd
->hls_lock
);
10569 orig_new_state
= state
;
10570 if (state
== HLS_DN_DOWNDEF
)
10571 state
= HLS_DEFAULT
;
10573 /* interpret poll -> poll as a link bounce */
10574 poll_bounce
= ppd
->host_link_state
== HLS_DN_POLL
&&
10575 state
== HLS_DN_POLL
;
10577 dd_dev_info(dd
, "%s: current %s, new %s %s%s\n", __func__
,
10578 link_state_name(ppd
->host_link_state
),
10579 link_state_name(orig_new_state
),
10580 poll_bounce
? "(bounce) " : "",
10581 link_state_reason_name(ppd
, state
));
10584 * If we're going to a (HLS_*) link state that implies the logical
10585 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10586 * reset is_sm_config_started to 0.
10588 if (!(state
& (HLS_UP_ARMED
| HLS_UP_ACTIVE
)))
10589 ppd
->is_sm_config_started
= 0;
10592 * Do nothing if the states match. Let a poll to poll link bounce
10595 if (ppd
->host_link_state
== state
&& !poll_bounce
)
10600 if (ppd
->host_link_state
== HLS_DN_POLL
&&
10601 (quick_linkup
|| dd
->icode
== ICODE_FUNCTIONAL_SIMULATOR
)) {
10603 * Quick link up jumps from polling to here.
10605 * Whether in normal or loopback mode, the
10606 * simulator jumps from polling to link up.
10607 * Accept that here.
10610 } else if (ppd
->host_link_state
!= HLS_GOING_UP
) {
10615 * Wait for Link_Up physical state.
10616 * Physical and Logical states should already be
10617 * be transitioned to LinkUp and LinkInit respectively.
10619 ret
= wait_physical_linkstate(ppd
, PLS_LINKUP
, 1000);
10622 "%s: physical state did not change to LINK-UP\n",
10627 ret
= wait_logical_linkstate(ppd
, IB_PORT_INIT
, 1000);
10630 "%s: logical state did not change to INIT\n",
10635 /* clear old transient LINKINIT_REASON code */
10636 if (ppd
->linkinit_reason
>= OPA_LINKINIT_REASON_CLEAR
)
10637 ppd
->linkinit_reason
=
10638 OPA_LINKINIT_REASON_LINKUP
;
10640 /* enable the port */
10641 add_rcvctrl(dd
, RCV_CTRL_RCV_PORT_ENABLE_SMASK
);
10643 handle_linkup_change(dd
, 1);
10646 * After link up, a new link width will have been set.
10647 * Update the xmit counters with regards to the new
10650 update_xmit_counters(ppd
, ppd
->link_width_active
);
10652 ppd
->host_link_state
= HLS_UP_INIT
;
10653 update_statusp(ppd
, IB_PORT_INIT
);
10656 if (ppd
->host_link_state
!= HLS_UP_INIT
)
10659 if (!data_vls_operational(ppd
)) {
10661 "%s: data VLs not operational\n", __func__
);
10666 set_logical_state(dd
, LSTATE_ARMED
);
10667 ret
= wait_logical_linkstate(ppd
, IB_PORT_ARMED
, 1000);
10670 "%s: logical state did not change to ARMED\n",
10674 ppd
->host_link_state
= HLS_UP_ARMED
;
10675 update_statusp(ppd
, IB_PORT_ARMED
);
10677 * The simulator does not currently implement SMA messages,
10678 * so neighbor_normal is not set. Set it here when we first
10681 if (dd
->icode
== ICODE_FUNCTIONAL_SIMULATOR
)
10682 ppd
->neighbor_normal
= 1;
10684 case HLS_UP_ACTIVE
:
10685 if (ppd
->host_link_state
!= HLS_UP_ARMED
)
10688 set_logical_state(dd
, LSTATE_ACTIVE
);
10689 ret
= wait_logical_linkstate(ppd
, IB_PORT_ACTIVE
, 1000);
10692 "%s: logical state did not change to ACTIVE\n",
10695 /* tell all engines to go running */
10696 sdma_all_running(dd
);
10697 ppd
->host_link_state
= HLS_UP_ACTIVE
;
10698 update_statusp(ppd
, IB_PORT_ACTIVE
);
10700 /* Signal the IB layer that the port has went active */
10701 event
.device
= &dd
->verbs_dev
.rdi
.ibdev
;
10702 event
.element
.port_num
= ppd
->port
;
10703 event
.event
= IB_EVENT_PORT_ACTIVE
;
10707 if ((ppd
->host_link_state
== HLS_DN_DISABLE
||
10708 ppd
->host_link_state
== HLS_DN_OFFLINE
) &&
10711 /* Hand LED control to the DC */
10712 write_csr(dd
, DCC_CFG_LED_CNTRL
, 0);
10714 if (ppd
->host_link_state
!= HLS_DN_OFFLINE
) {
10715 u8 tmp
= ppd
->link_enabled
;
10717 ret
= goto_offline(ppd
, ppd
->remote_link_down_reason
);
10719 ppd
->link_enabled
= tmp
;
10722 ppd
->remote_link_down_reason
= 0;
10724 if (ppd
->driver_link_ready
)
10725 ppd
->link_enabled
= 1;
10728 set_all_slowpath(ppd
->dd
);
10729 ret
= set_local_link_attributes(ppd
);
10733 ppd
->port_error_action
= 0;
10734 ppd
->host_link_state
= HLS_DN_POLL
;
10736 if (quick_linkup
) {
10737 /* quick linkup does not go into polling */
10738 ret
= do_quick_linkup(dd
);
10740 ret1
= set_physical_link_state(dd
, PLS_POLLING
);
10741 if (ret1
!= HCMD_SUCCESS
) {
10743 "Failed to transition to Polling link state, return 0x%x\n",
10748 ppd
->offline_disabled_reason
=
10749 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE
);
10751 * If an error occurred above, go back to offline. The
10752 * caller may reschedule another attempt.
10755 goto_offline(ppd
, 0);
10757 log_physical_state(ppd
, PLS_POLLING
);
10759 case HLS_DN_DISABLE
:
10760 /* link is disabled */
10761 ppd
->link_enabled
= 0;
10763 /* allow any state to transition to disabled */
10765 /* must transition to offline first */
10766 if (ppd
->host_link_state
!= HLS_DN_OFFLINE
) {
10767 ret
= goto_offline(ppd
, ppd
->remote_link_down_reason
);
10770 ppd
->remote_link_down_reason
= 0;
10773 if (!dd
->dc_shutdown
) {
10774 ret1
= set_physical_link_state(dd
, PLS_DISABLED
);
10775 if (ret1
!= HCMD_SUCCESS
) {
10777 "Failed to transition to Disabled link state, return 0x%x\n",
10782 ret
= wait_physical_linkstate(ppd
, PLS_DISABLED
, 10000);
10785 "%s: physical state did not change to DISABLED\n",
10791 ppd
->host_link_state
= HLS_DN_DISABLE
;
10793 case HLS_DN_OFFLINE
:
10794 if (ppd
->host_link_state
== HLS_DN_DISABLE
)
10797 /* allow any state to transition to offline */
10798 ret
= goto_offline(ppd
, ppd
->remote_link_down_reason
);
10800 ppd
->remote_link_down_reason
= 0;
10802 case HLS_VERIFY_CAP
:
10803 if (ppd
->host_link_state
!= HLS_DN_POLL
)
10805 ppd
->host_link_state
= HLS_VERIFY_CAP
;
10806 log_physical_state(ppd
, PLS_CONFIGPHY_VERIFYCAP
);
10809 if (ppd
->host_link_state
!= HLS_VERIFY_CAP
)
10812 ret1
= set_physical_link_state(dd
, PLS_LINKUP
);
10813 if (ret1
!= HCMD_SUCCESS
) {
10815 "Failed to transition to link up state, return 0x%x\n",
10820 ppd
->host_link_state
= HLS_GOING_UP
;
10823 case HLS_GOING_OFFLINE
: /* transient within goto_offline() */
10824 case HLS_LINK_COOLDOWN
: /* transient within goto_offline() */
10826 dd_dev_info(dd
, "%s: state 0x%x: not supported\n",
10835 dd_dev_err(dd
, "%s: unexpected state transition from %s to %s\n",
10836 __func__
, link_state_name(ppd
->host_link_state
),
10837 link_state_name(state
));
10841 mutex_unlock(&ppd
->hls_lock
);
10844 ib_dispatch_event(&event
);
10849 int hfi1_set_ib_cfg(struct hfi1_pportdata
*ppd
, int which
, u32 val
)
10855 case HFI1_IB_CFG_LIDLMC
:
10858 case HFI1_IB_CFG_VL_HIGH_LIMIT
:
10860 * The VL Arbitrator high limit is sent in units of 4k
10861 * bytes, while HFI stores it in units of 64 bytes.
10864 reg
= ((u64
)val
& SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK
)
10865 << SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT
;
10866 write_csr(ppd
->dd
, SEND_HIGH_PRIORITY_LIMIT
, reg
);
10868 case HFI1_IB_CFG_LINKDEFAULT
: /* IB link default (sleep/poll) */
10869 /* HFI only supports POLL as the default link down state */
10870 if (val
!= HLS_DN_POLL
)
10873 case HFI1_IB_CFG_OP_VLS
:
10874 if (ppd
->vls_operational
!= val
) {
10875 ppd
->vls_operational
= val
;
10881 * For link width, link width downgrade, and speed enable, always AND
10882 * the setting with what is actually supported. This has two benefits.
10883 * First, enabled can't have unsupported values, no matter what the
10884 * SM or FM might want. Second, the ALL_SUPPORTED wildcards that mean
10885 * "fill in with your supported value" have all the bits in the
10886 * field set, so simply ANDing with supported has the desired result.
10888 case HFI1_IB_CFG_LWID_ENB
: /* set allowed Link-width */
10889 ppd
->link_width_enabled
= val
& ppd
->link_width_supported
;
10891 case HFI1_IB_CFG_LWID_DG_ENB
: /* set allowed link width downgrade */
10892 ppd
->link_width_downgrade_enabled
=
10893 val
& ppd
->link_width_downgrade_supported
;
10895 case HFI1_IB_CFG_SPD_ENB
: /* allowed Link speeds */
10896 ppd
->link_speed_enabled
= val
& ppd
->link_speed_supported
;
10898 case HFI1_IB_CFG_OVERRUN_THRESH
: /* IB overrun threshold */
10900 * HFI does not follow IB specs, save this value
10901 * so we can report it, if asked.
10903 ppd
->overrun_threshold
= val
;
10905 case HFI1_IB_CFG_PHYERR_THRESH
: /* IB PHY error threshold */
10907 * HFI does not follow IB specs, save this value
10908 * so we can report it, if asked.
10910 ppd
->phy_error_threshold
= val
;
10913 case HFI1_IB_CFG_MTU
:
10914 set_send_length(ppd
);
10917 case HFI1_IB_CFG_PKEYS
:
10918 if (HFI1_CAP_IS_KSET(PKEY_CHECK
))
10919 set_partition_keys(ppd
);
10923 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL
))
10924 dd_dev_info(ppd
->dd
,
10925 "%s: which %s, val 0x%x: not implemented\n",
10926 __func__
, ib_cfg_name(which
), val
);
10932 /* begin functions related to vl arbitration table caching */
10933 static void init_vl_arb_caches(struct hfi1_pportdata
*ppd
)
10937 BUILD_BUG_ON(VL_ARB_TABLE_SIZE
!=
10938 VL_ARB_LOW_PRIO_TABLE_SIZE
);
10939 BUILD_BUG_ON(VL_ARB_TABLE_SIZE
!=
10940 VL_ARB_HIGH_PRIO_TABLE_SIZE
);
10943 * Note that we always return values directly from the
10944 * 'vl_arb_cache' (and do no CSR reads) in response to a
10945 * 'Get(VLArbTable)'. This is obviously correct after a
10946 * 'Set(VLArbTable)', since the cache will then be up to
10947 * date. But it's also correct prior to any 'Set(VLArbTable)'
10948 * since then both the cache, and the relevant h/w registers
10952 for (i
= 0; i
< MAX_PRIO_TABLE
; i
++)
10953 spin_lock_init(&ppd
->vl_arb_cache
[i
].lock
);
10957 * vl_arb_lock_cache
10959 * All other vl_arb_* functions should be called only after locking
10962 static inline struct vl_arb_cache
*
10963 vl_arb_lock_cache(struct hfi1_pportdata
*ppd
, int idx
)
10965 if (idx
!= LO_PRIO_TABLE
&& idx
!= HI_PRIO_TABLE
)
10967 spin_lock(&ppd
->vl_arb_cache
[idx
].lock
);
10968 return &ppd
->vl_arb_cache
[idx
];
10971 static inline void vl_arb_unlock_cache(struct hfi1_pportdata
*ppd
, int idx
)
10973 spin_unlock(&ppd
->vl_arb_cache
[idx
].lock
);
10976 static void vl_arb_get_cache(struct vl_arb_cache
*cache
,
10977 struct ib_vl_weight_elem
*vl
)
10979 memcpy(vl
, cache
->table
, VL_ARB_TABLE_SIZE
* sizeof(*vl
));
10982 static void vl_arb_set_cache(struct vl_arb_cache
*cache
,
10983 struct ib_vl_weight_elem
*vl
)
10985 memcpy(cache
->table
, vl
, VL_ARB_TABLE_SIZE
* sizeof(*vl
));
10988 static int vl_arb_match_cache(struct vl_arb_cache
*cache
,
10989 struct ib_vl_weight_elem
*vl
)
10991 return !memcmp(cache
->table
, vl
, VL_ARB_TABLE_SIZE
* sizeof(*vl
));
10994 /* end functions related to vl arbitration table caching */
10996 static int set_vl_weights(struct hfi1_pportdata
*ppd
, u32 target
,
10997 u32 size
, struct ib_vl_weight_elem
*vl
)
10999 struct hfi1_devdata
*dd
= ppd
->dd
;
11001 unsigned int i
, is_up
= 0;
11002 int drain
, ret
= 0;
11004 mutex_lock(&ppd
->hls_lock
);
11006 if (ppd
->host_link_state
& HLS_UP
)
11009 drain
= !is_ax(dd
) && is_up
;
11013 * Before adjusting VL arbitration weights, empty per-VL
11014 * FIFOs, otherwise a packet whose VL weight is being
11015 * set to 0 could get stuck in a FIFO with no chance to
11018 ret
= stop_drain_data_vls(dd
);
11023 "%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
11028 for (i
= 0; i
< size
; i
++, vl
++) {
11030 * NOTE: The low priority shift and mask are used here, but
11031 * they are the same for both the low and high registers.
11033 reg
= (((u64
)vl
->vl
& SEND_LOW_PRIORITY_LIST_VL_MASK
)
11034 << SEND_LOW_PRIORITY_LIST_VL_SHIFT
)
11035 | (((u64
)vl
->weight
11036 & SEND_LOW_PRIORITY_LIST_WEIGHT_MASK
)
11037 << SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT
);
11038 write_csr(dd
, target
+ (i
* 8), reg
);
11040 pio_send_control(dd
, PSC_GLOBAL_VLARB_ENABLE
);
11043 open_fill_data_vls(dd
); /* reopen all VLs */
11046 mutex_unlock(&ppd
->hls_lock
);
11052 * Read one credit merge VL register.
11054 static void read_one_cm_vl(struct hfi1_devdata
*dd
, u32 csr
,
11055 struct vl_limit
*vll
)
11057 u64 reg
= read_csr(dd
, csr
);
11059 vll
->dedicated
= cpu_to_be16(
11060 (reg
>> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT
)
11061 & SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK
);
11062 vll
->shared
= cpu_to_be16(
11063 (reg
>> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT
)
11064 & SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK
);
11068 * Read the current credit merge limits.
11070 static int get_buffer_control(struct hfi1_devdata
*dd
,
11071 struct buffer_control
*bc
, u16
*overall_limit
)
11076 /* not all entries are filled in */
11077 memset(bc
, 0, sizeof(*bc
));
11079 /* OPA and HFI have a 1-1 mapping */
11080 for (i
= 0; i
< TXE_NUM_DATA_VL
; i
++)
11081 read_one_cm_vl(dd
, SEND_CM_CREDIT_VL
+ (8 * i
), &bc
->vl
[i
]);
11083 /* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
11084 read_one_cm_vl(dd
, SEND_CM_CREDIT_VL15
, &bc
->vl
[15]);
11086 reg
= read_csr(dd
, SEND_CM_GLOBAL_CREDIT
);
11087 bc
->overall_shared_limit
= cpu_to_be16(
11088 (reg
>> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT
)
11089 & SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK
);
11091 *overall_limit
= (reg
11092 >> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT
)
11093 & SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK
;
11094 return sizeof(struct buffer_control
);
11097 static int get_sc2vlnt(struct hfi1_devdata
*dd
, struct sc2vlnt
*dp
)
11102 /* each register contains 16 SC->VLnt mappings, 4 bits each */
11103 reg
= read_csr(dd
, DCC_CFG_SC_VL_TABLE_15_0
);
11104 for (i
= 0; i
< sizeof(u64
); i
++) {
11105 u8 byte
= *(((u8
*)®
) + i
);
11107 dp
->vlnt
[2 * i
] = byte
& 0xf;
11108 dp
->vlnt
[(2 * i
) + 1] = (byte
& 0xf0) >> 4;
11111 reg
= read_csr(dd
, DCC_CFG_SC_VL_TABLE_31_16
);
11112 for (i
= 0; i
< sizeof(u64
); i
++) {
11113 u8 byte
= *(((u8
*)®
) + i
);
11115 dp
->vlnt
[16 + (2 * i
)] = byte
& 0xf;
11116 dp
->vlnt
[16 + (2 * i
) + 1] = (byte
& 0xf0) >> 4;
11118 return sizeof(struct sc2vlnt
);
11121 static void get_vlarb_preempt(struct hfi1_devdata
*dd
, u32 nelems
,
11122 struct ib_vl_weight_elem
*vl
)
11126 for (i
= 0; i
< nelems
; i
++, vl
++) {
11132 static void set_sc2vlnt(struct hfi1_devdata
*dd
, struct sc2vlnt
*dp
)
11134 write_csr(dd
, DCC_CFG_SC_VL_TABLE_15_0
,
11136 0, dp
->vlnt
[0] & 0xf,
11137 1, dp
->vlnt
[1] & 0xf,
11138 2, dp
->vlnt
[2] & 0xf,
11139 3, dp
->vlnt
[3] & 0xf,
11140 4, dp
->vlnt
[4] & 0xf,
11141 5, dp
->vlnt
[5] & 0xf,
11142 6, dp
->vlnt
[6] & 0xf,
11143 7, dp
->vlnt
[7] & 0xf,
11144 8, dp
->vlnt
[8] & 0xf,
11145 9, dp
->vlnt
[9] & 0xf,
11146 10, dp
->vlnt
[10] & 0xf,
11147 11, dp
->vlnt
[11] & 0xf,
11148 12, dp
->vlnt
[12] & 0xf,
11149 13, dp
->vlnt
[13] & 0xf,
11150 14, dp
->vlnt
[14] & 0xf,
11151 15, dp
->vlnt
[15] & 0xf));
11152 write_csr(dd
, DCC_CFG_SC_VL_TABLE_31_16
,
11153 DC_SC_VL_VAL(31_16
,
11154 16, dp
->vlnt
[16] & 0xf,
11155 17, dp
->vlnt
[17] & 0xf,
11156 18, dp
->vlnt
[18] & 0xf,
11157 19, dp
->vlnt
[19] & 0xf,
11158 20, dp
->vlnt
[20] & 0xf,
11159 21, dp
->vlnt
[21] & 0xf,
11160 22, dp
->vlnt
[22] & 0xf,
11161 23, dp
->vlnt
[23] & 0xf,
11162 24, dp
->vlnt
[24] & 0xf,
11163 25, dp
->vlnt
[25] & 0xf,
11164 26, dp
->vlnt
[26] & 0xf,
11165 27, dp
->vlnt
[27] & 0xf,
11166 28, dp
->vlnt
[28] & 0xf,
11167 29, dp
->vlnt
[29] & 0xf,
11168 30, dp
->vlnt
[30] & 0xf,
11169 31, dp
->vlnt
[31] & 0xf));
11172 static void nonzero_msg(struct hfi1_devdata
*dd
, int idx
, const char *what
,
11176 dd_dev_info(dd
, "Invalid %s limit %d on VL %d, ignoring\n",
11177 what
, (int)limit
, idx
);
11180 /* change only the shared limit portion of SendCmGLobalCredit */
11181 static void set_global_shared(struct hfi1_devdata
*dd
, u16 limit
)
11185 reg
= read_csr(dd
, SEND_CM_GLOBAL_CREDIT
);
11186 reg
&= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK
;
11187 reg
|= (u64
)limit
<< SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT
;
11188 write_csr(dd
, SEND_CM_GLOBAL_CREDIT
, reg
);
11191 /* change only the total credit limit portion of SendCmGLobalCredit */
11192 static void set_global_limit(struct hfi1_devdata
*dd
, u16 limit
)
11196 reg
= read_csr(dd
, SEND_CM_GLOBAL_CREDIT
);
11197 reg
&= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK
;
11198 reg
|= (u64
)limit
<< SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT
;
11199 write_csr(dd
, SEND_CM_GLOBAL_CREDIT
, reg
);
11202 /* set the given per-VL shared limit */
11203 static void set_vl_shared(struct hfi1_devdata
*dd
, int vl
, u16 limit
)
11208 if (vl
< TXE_NUM_DATA_VL
)
11209 addr
= SEND_CM_CREDIT_VL
+ (8 * vl
);
11211 addr
= SEND_CM_CREDIT_VL15
;
11213 reg
= read_csr(dd
, addr
);
11214 reg
&= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK
;
11215 reg
|= (u64
)limit
<< SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT
;
11216 write_csr(dd
, addr
, reg
);
11219 /* set the given per-VL dedicated limit */
11220 static void set_vl_dedicated(struct hfi1_devdata
*dd
, int vl
, u16 limit
)
11225 if (vl
< TXE_NUM_DATA_VL
)
11226 addr
= SEND_CM_CREDIT_VL
+ (8 * vl
);
11228 addr
= SEND_CM_CREDIT_VL15
;
11230 reg
= read_csr(dd
, addr
);
11231 reg
&= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK
;
11232 reg
|= (u64
)limit
<< SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT
;
11233 write_csr(dd
, addr
, reg
);
11236 /* spin until the given per-VL status mask bits clear */
11237 static void wait_for_vl_status_clear(struct hfi1_devdata
*dd
, u64 mask
,
11240 unsigned long timeout
;
11243 timeout
= jiffies
+ msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT
);
11245 reg
= read_csr(dd
, SEND_CM_CREDIT_USED_STATUS
) & mask
;
11248 return; /* success */
11249 if (time_after(jiffies
, timeout
))
11250 break; /* timed out */
11255 "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
11256 which
, VL_STATUS_CLEAR_TIMEOUT
, mask
, reg
);
11258 * If this occurs, it is likely there was a credit loss on the link.
11259 * The only recovery from that is a link bounce.
11262 "Continuing anyway. A credit loss may occur. Suggest a link bounce\n");
11266 * The number of credits on the VLs may be changed while everything
11267 * is "live", but the following algorithm must be followed due to
11268 * how the hardware is actually implemented. In particular,
11269 * Return_Credit_Status[] is the only correct status check.
11271 * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11272 * set Global_Shared_Credit_Limit = 0
11274 * mask0 = all VLs that are changing either dedicated or shared limits
11275 * set Shared_Limit[mask0] = 0
11276 * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11277 * if (changing any dedicated limit)
11278 * mask1 = all VLs that are lowering dedicated limits
11279 * lower Dedicated_Limit[mask1]
11280 * spin until Return_Credit_Status[mask1] == 0
11281 * raise Dedicated_Limits
11282 * raise Shared_Limits
11283 * raise Global_Shared_Credit_Limit
11285 * lower = if the new limit is lower, set the limit to the new value
11286 * raise = if the new limit is higher than the current value (may be changed
11287 * earlier in the algorithm), set the new limit to the new value
11289 int set_buffer_control(struct hfi1_pportdata
*ppd
,
11290 struct buffer_control
*new_bc
)
11292 struct hfi1_devdata
*dd
= ppd
->dd
;
11293 u64 changing_mask
, ld_mask
, stat_mask
;
11295 int i
, use_all_mask
;
11296 int this_shared_changing
;
11297 int vl_count
= 0, ret
;
11299 * A0: add the variable any_shared_limit_changing below and in the
11300 * algorithm above. If removing A0 support, it can be removed.
11302 int any_shared_limit_changing
;
11303 struct buffer_control cur_bc
;
11304 u8 changing
[OPA_MAX_VLS
];
11305 u8 lowering_dedicated
[OPA_MAX_VLS
];
11308 const u64 all_mask
=
11309 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11310 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11311 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11312 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11313 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11314 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11315 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11316 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11317 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK
;
11319 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11320 #define NUM_USABLE_VLS 16 /* look at VL15 and less */
11322 /* find the new total credits, do sanity check on unused VLs */
11323 for (i
= 0; i
< OPA_MAX_VLS
; i
++) {
11325 new_total
+= be16_to_cpu(new_bc
->vl
[i
].dedicated
);
11328 nonzero_msg(dd
, i
, "dedicated",
11329 be16_to_cpu(new_bc
->vl
[i
].dedicated
));
11330 nonzero_msg(dd
, i
, "shared",
11331 be16_to_cpu(new_bc
->vl
[i
].shared
));
11332 new_bc
->vl
[i
].dedicated
= 0;
11333 new_bc
->vl
[i
].shared
= 0;
11335 new_total
+= be16_to_cpu(new_bc
->overall_shared_limit
);
11337 /* fetch the current values */
11338 get_buffer_control(dd
, &cur_bc
, &cur_total
);
11341 * Create the masks we will use.
11343 memset(changing
, 0, sizeof(changing
));
11344 memset(lowering_dedicated
, 0, sizeof(lowering_dedicated
));
11346 * NOTE: Assumes that the individual VL bits are adjacent and in
11350 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
;
11354 any_shared_limit_changing
= 0;
11355 for (i
= 0; i
< NUM_USABLE_VLS
; i
++, stat_mask
<<= 1) {
11358 this_shared_changing
= new_bc
->vl
[i
].shared
11359 != cur_bc
.vl
[i
].shared
;
11360 if (this_shared_changing
)
11361 any_shared_limit_changing
= 1;
11362 if (new_bc
->vl
[i
].dedicated
!= cur_bc
.vl
[i
].dedicated
||
11363 this_shared_changing
) {
11365 changing_mask
|= stat_mask
;
11368 if (be16_to_cpu(new_bc
->vl
[i
].dedicated
) <
11369 be16_to_cpu(cur_bc
.vl
[i
].dedicated
)) {
11370 lowering_dedicated
[i
] = 1;
11371 ld_mask
|= stat_mask
;
11375 /* bracket the credit change with a total adjustment */
11376 if (new_total
> cur_total
)
11377 set_global_limit(dd
, new_total
);
11380 * Start the credit change algorithm.
11383 if ((be16_to_cpu(new_bc
->overall_shared_limit
) <
11384 be16_to_cpu(cur_bc
.overall_shared_limit
)) ||
11385 (is_ax(dd
) && any_shared_limit_changing
)) {
11386 set_global_shared(dd
, 0);
11387 cur_bc
.overall_shared_limit
= 0;
11391 for (i
= 0; i
< NUM_USABLE_VLS
; i
++) {
11396 set_vl_shared(dd
, i
, 0);
11397 cur_bc
.vl
[i
].shared
= 0;
11401 wait_for_vl_status_clear(dd
, use_all_mask
? all_mask
: changing_mask
,
11404 if (change_count
> 0) {
11405 for (i
= 0; i
< NUM_USABLE_VLS
; i
++) {
11409 if (lowering_dedicated
[i
]) {
11410 set_vl_dedicated(dd
, i
,
11411 be16_to_cpu(new_bc
->
11413 cur_bc
.vl
[i
].dedicated
=
11414 new_bc
->vl
[i
].dedicated
;
11418 wait_for_vl_status_clear(dd
, ld_mask
, "dedicated");
11420 /* now raise all dedicated that are going up */
11421 for (i
= 0; i
< NUM_USABLE_VLS
; i
++) {
11425 if (be16_to_cpu(new_bc
->vl
[i
].dedicated
) >
11426 be16_to_cpu(cur_bc
.vl
[i
].dedicated
))
11427 set_vl_dedicated(dd
, i
,
11428 be16_to_cpu(new_bc
->
11433 /* next raise all shared that are going up */
11434 for (i
= 0; i
< NUM_USABLE_VLS
; i
++) {
11438 if (be16_to_cpu(new_bc
->vl
[i
].shared
) >
11439 be16_to_cpu(cur_bc
.vl
[i
].shared
))
11440 set_vl_shared(dd
, i
, be16_to_cpu(new_bc
->vl
[i
].shared
));
11443 /* finally raise the global shared */
11444 if (be16_to_cpu(new_bc
->overall_shared_limit
) >
11445 be16_to_cpu(cur_bc
.overall_shared_limit
))
11446 set_global_shared(dd
,
11447 be16_to_cpu(new_bc
->overall_shared_limit
));
11449 /* bracket the credit change with a total adjustment */
11450 if (new_total
< cur_total
)
11451 set_global_limit(dd
, new_total
);
11454 * Determine the actual number of operational VLS using the number of
11455 * dedicated and shared credits for each VL.
11457 if (change_count
> 0) {
11458 for (i
= 0; i
< TXE_NUM_DATA_VL
; i
++)
11459 if (be16_to_cpu(new_bc
->vl
[i
].dedicated
) > 0 ||
11460 be16_to_cpu(new_bc
->vl
[i
].shared
) > 0)
11462 ppd
->actual_vls_operational
= vl_count
;
11463 ret
= sdma_map_init(dd
, ppd
->port
- 1, vl_count
?
11464 ppd
->actual_vls_operational
:
11465 ppd
->vls_operational
,
11468 ret
= pio_map_init(dd
, ppd
->port
- 1, vl_count
?
11469 ppd
->actual_vls_operational
:
11470 ppd
->vls_operational
, NULL
);
11478 * Read the given fabric manager table. Return the size of the
11479 * table (in bytes) on success, and a negative error code on
11482 int fm_get_table(struct hfi1_pportdata
*ppd
, int which
, void *t
)
11486 struct vl_arb_cache
*vlc
;
11489 case FM_TBL_VL_HIGH_ARB
:
11492 * OPA specifies 128 elements (of 2 bytes each), though
11493 * HFI supports only 16 elements in h/w.
11495 vlc
= vl_arb_lock_cache(ppd
, HI_PRIO_TABLE
);
11496 vl_arb_get_cache(vlc
, t
);
11497 vl_arb_unlock_cache(ppd
, HI_PRIO_TABLE
);
11499 case FM_TBL_VL_LOW_ARB
:
11502 * OPA specifies 128 elements (of 2 bytes each), though
11503 * HFI supports only 16 elements in h/w.
11505 vlc
= vl_arb_lock_cache(ppd
, LO_PRIO_TABLE
);
11506 vl_arb_get_cache(vlc
, t
);
11507 vl_arb_unlock_cache(ppd
, LO_PRIO_TABLE
);
11509 case FM_TBL_BUFFER_CONTROL
:
11510 size
= get_buffer_control(ppd
->dd
, t
, NULL
);
11512 case FM_TBL_SC2VLNT
:
11513 size
= get_sc2vlnt(ppd
->dd
, t
);
11515 case FM_TBL_VL_PREEMPT_ELEMS
:
11517 /* OPA specifies 128 elements, of 2 bytes each */
11518 get_vlarb_preempt(ppd
->dd
, OPA_MAX_VLS
, t
);
11520 case FM_TBL_VL_PREEMPT_MATRIX
:
11523 * OPA specifies that this is the same size as the VL
11524 * arbitration tables (i.e., 256 bytes).
11534 * Write the given fabric manager table.
11536 int fm_set_table(struct hfi1_pportdata
*ppd
, int which
, void *t
)
11539 struct vl_arb_cache
*vlc
;
11542 case FM_TBL_VL_HIGH_ARB
:
11543 vlc
= vl_arb_lock_cache(ppd
, HI_PRIO_TABLE
);
11544 if (vl_arb_match_cache(vlc
, t
)) {
11545 vl_arb_unlock_cache(ppd
, HI_PRIO_TABLE
);
11548 vl_arb_set_cache(vlc
, t
);
11549 vl_arb_unlock_cache(ppd
, HI_PRIO_TABLE
);
11550 ret
= set_vl_weights(ppd
, SEND_HIGH_PRIORITY_LIST
,
11551 VL_ARB_HIGH_PRIO_TABLE_SIZE
, t
);
11553 case FM_TBL_VL_LOW_ARB
:
11554 vlc
= vl_arb_lock_cache(ppd
, LO_PRIO_TABLE
);
11555 if (vl_arb_match_cache(vlc
, t
)) {
11556 vl_arb_unlock_cache(ppd
, LO_PRIO_TABLE
);
11559 vl_arb_set_cache(vlc
, t
);
11560 vl_arb_unlock_cache(ppd
, LO_PRIO_TABLE
);
11561 ret
= set_vl_weights(ppd
, SEND_LOW_PRIORITY_LIST
,
11562 VL_ARB_LOW_PRIO_TABLE_SIZE
, t
);
11564 case FM_TBL_BUFFER_CONTROL
:
11565 ret
= set_buffer_control(ppd
, t
);
11567 case FM_TBL_SC2VLNT
:
11568 set_sc2vlnt(ppd
->dd
, t
);
11577 * Disable all data VLs.
11579 * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11581 static int disable_data_vls(struct hfi1_devdata
*dd
)
11586 pio_send_control(dd
, PSC_DATA_VL_DISABLE
);
11592 * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11593 * Just re-enables all data VLs (the "fill" part happens
11594 * automatically - the name was chosen for symmetry with
11595 * stop_drain_data_vls()).
11597 * Return 0 if successful, non-zero if the VLs cannot be enabled.
11599 int open_fill_data_vls(struct hfi1_devdata
*dd
)
11604 pio_send_control(dd
, PSC_DATA_VL_ENABLE
);
11610 * drain_data_vls() - assumes that disable_data_vls() has been called,
11611 * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11612 * engines to drop to 0.
11614 static void drain_data_vls(struct hfi1_devdata
*dd
)
11618 pause_for_credit_return(dd
);
11622 * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11624 * Use open_fill_data_vls() to resume using data VLs. This pair is
11625 * meant to be used like this:
11627 * stop_drain_data_vls(dd);
11628 * // do things with per-VL resources
11629 * open_fill_data_vls(dd);
11631 int stop_drain_data_vls(struct hfi1_devdata
*dd
)
11635 ret
= disable_data_vls(dd
);
11637 drain_data_vls(dd
);
11643 * Convert a nanosecond time to a cclock count. No matter how slow
11644 * the cclock, a non-zero ns will always have a non-zero result.
11646 u32
ns_to_cclock(struct hfi1_devdata
*dd
, u32 ns
)
11650 if (dd
->icode
== ICODE_FPGA_EMULATION
)
11651 cclocks
= (ns
* 1000) / FPGA_CCLOCK_PS
;
11652 else /* simulation pretends to be ASIC */
11653 cclocks
= (ns
* 1000) / ASIC_CCLOCK_PS
;
11654 if (ns
&& !cclocks
) /* if ns nonzero, must be at least 1 */
11660 * Convert a cclock count to nanoseconds. Not matter how slow
11661 * the cclock, a non-zero cclocks will always have a non-zero result.
11663 u32
cclock_to_ns(struct hfi1_devdata
*dd
, u32 cclocks
)
11667 if (dd
->icode
== ICODE_FPGA_EMULATION
)
11668 ns
= (cclocks
* FPGA_CCLOCK_PS
) / 1000;
11669 else /* simulation pretends to be ASIC */
11670 ns
= (cclocks
* ASIC_CCLOCK_PS
) / 1000;
11671 if (cclocks
&& !ns
)
11677 * Dynamically adjust the receive interrupt timeout for a context based on
11678 * incoming packet rate.
11680 * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11682 static void adjust_rcv_timeout(struct hfi1_ctxtdata
*rcd
, u32 npkts
)
11684 struct hfi1_devdata
*dd
= rcd
->dd
;
11685 u32 timeout
= rcd
->rcvavail_timeout
;
11688 * This algorithm doubles or halves the timeout depending on whether
11689 * the number of packets received in this interrupt were less than or
11690 * greater equal the interrupt count.
11692 * The calculations below do not allow a steady state to be achieved.
11693 * Only at the endpoints it is possible to have an unchanging
11696 if (npkts
< rcv_intr_count
) {
11698 * Not enough packets arrived before the timeout, adjust
11699 * timeout downward.
11701 if (timeout
< 2) /* already at minimum? */
11706 * More than enough packets arrived before the timeout, adjust
11709 if (timeout
>= dd
->rcv_intr_timeout_csr
) /* already at max? */
11711 timeout
= min(timeout
<< 1, dd
->rcv_intr_timeout_csr
);
11714 rcd
->rcvavail_timeout
= timeout
;
11716 * timeout cannot be larger than rcv_intr_timeout_csr which has already
11717 * been verified to be in range
11719 write_kctxt_csr(dd
, rcd
->ctxt
, RCV_AVAIL_TIME_OUT
,
11721 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT
);
11724 void update_usrhead(struct hfi1_ctxtdata
*rcd
, u32 hd
, u32 updegr
, u32 egrhd
,
11725 u32 intr_adjust
, u32 npkts
)
11727 struct hfi1_devdata
*dd
= rcd
->dd
;
11729 u32 ctxt
= rcd
->ctxt
;
11732 * Need to write timeout register before updating RcvHdrHead to ensure
11733 * that a new value is used when the HW decides to restart counting.
11736 adjust_rcv_timeout(rcd
, npkts
);
11738 reg
= (egrhd
& RCV_EGR_INDEX_HEAD_HEAD_MASK
)
11739 << RCV_EGR_INDEX_HEAD_HEAD_SHIFT
;
11740 write_uctxt_csr(dd
, ctxt
, RCV_EGR_INDEX_HEAD
, reg
);
11743 reg
= ((u64
)rcv_intr_count
<< RCV_HDR_HEAD_COUNTER_SHIFT
) |
11744 (((u64
)hd
& RCV_HDR_HEAD_HEAD_MASK
)
11745 << RCV_HDR_HEAD_HEAD_SHIFT
);
11746 write_uctxt_csr(dd
, ctxt
, RCV_HDR_HEAD
, reg
);
11750 u32
hdrqempty(struct hfi1_ctxtdata
*rcd
)
11754 head
= (read_uctxt_csr(rcd
->dd
, rcd
->ctxt
, RCV_HDR_HEAD
)
11755 & RCV_HDR_HEAD_HEAD_SMASK
) >> RCV_HDR_HEAD_HEAD_SHIFT
;
11757 if (rcd
->rcvhdrtail_kvaddr
)
11758 tail
= get_rcvhdrtail(rcd
);
11760 tail
= read_uctxt_csr(rcd
->dd
, rcd
->ctxt
, RCV_HDR_TAIL
);
11762 return head
== tail
;
11766 * Context Control and Receive Array encoding for buffer size:
11775 * 0x8 512 KB (Receive Array only)
11776 * 0x9 1 MB (Receive Array only)
11777 * 0xa 2 MB (Receive Array only)
11779 * 0xB-0xF - reserved (Receive Array only)
11782 * This routine assumes that the value has already been sanity checked.
11784 static u32
encoded_size(u32 size
)
11787 case 4 * 1024: return 0x1;
11788 case 8 * 1024: return 0x2;
11789 case 16 * 1024: return 0x3;
11790 case 32 * 1024: return 0x4;
11791 case 64 * 1024: return 0x5;
11792 case 128 * 1024: return 0x6;
11793 case 256 * 1024: return 0x7;
11794 case 512 * 1024: return 0x8;
11795 case 1 * 1024 * 1024: return 0x9;
11796 case 2 * 1024 * 1024: return 0xa;
11798 return 0x1; /* if invalid, go with the minimum size */
11801 void hfi1_rcvctrl(struct hfi1_devdata
*dd
, unsigned int op
,
11802 struct hfi1_ctxtdata
*rcd
)
11805 int did_enable
= 0;
11813 hfi1_cdbg(RCVCTRL
, "ctxt %d op 0x%x", ctxt
, op
);
11815 rcvctrl
= read_kctxt_csr(dd
, ctxt
, RCV_CTXT_CTRL
);
11816 /* if the context already enabled, don't do the extra steps */
11817 if ((op
& HFI1_RCVCTRL_CTXT_ENB
) &&
11818 !(rcvctrl
& RCV_CTXT_CTRL_ENABLE_SMASK
)) {
11819 /* reset the tail and hdr addresses, and sequence count */
11820 write_kctxt_csr(dd
, ctxt
, RCV_HDR_ADDR
,
11822 if (HFI1_CAP_KGET_MASK(rcd
->flags
, DMA_RTAIL
))
11823 write_kctxt_csr(dd
, ctxt
, RCV_HDR_TAIL_ADDR
,
11824 rcd
->rcvhdrqtailaddr_dma
);
11827 /* reset the cached receive header queue head value */
11831 * Zero the receive header queue so we don't get false
11832 * positives when checking the sequence number. The
11833 * sequence numbers could land exactly on the same spot.
11834 * E.g. a rcd restart before the receive header wrapped.
11836 memset(rcd
->rcvhdrq
, 0, rcd
->rcvhdrq_size
);
11838 /* starting timeout */
11839 rcd
->rcvavail_timeout
= dd
->rcv_intr_timeout_csr
;
11841 /* enable the context */
11842 rcvctrl
|= RCV_CTXT_CTRL_ENABLE_SMASK
;
11844 /* clean the egr buffer size first */
11845 rcvctrl
&= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK
;
11846 rcvctrl
|= ((u64
)encoded_size(rcd
->egrbufs
.rcvtid_size
)
11847 & RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK
)
11848 << RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT
;
11850 /* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11851 write_uctxt_csr(dd
, ctxt
, RCV_HDR_HEAD
, 0);
11854 /* zero RcvEgrIndexHead */
11855 write_uctxt_csr(dd
, ctxt
, RCV_EGR_INDEX_HEAD
, 0);
11857 /* set eager count and base index */
11858 reg
= (((u64
)(rcd
->egrbufs
.alloced
>> RCV_SHIFT
)
11859 & RCV_EGR_CTRL_EGR_CNT_MASK
)
11860 << RCV_EGR_CTRL_EGR_CNT_SHIFT
) |
11861 (((rcd
->eager_base
>> RCV_SHIFT
)
11862 & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK
)
11863 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT
);
11864 write_kctxt_csr(dd
, ctxt
, RCV_EGR_CTRL
, reg
);
11867 * Set TID (expected) count and base index.
11868 * rcd->expected_count is set to individual RcvArray entries,
11869 * not pairs, and the CSR takes a pair-count in groups of
11870 * four, so divide by 8.
11872 reg
= (((rcd
->expected_count
>> RCV_SHIFT
)
11873 & RCV_TID_CTRL_TID_PAIR_CNT_MASK
)
11874 << RCV_TID_CTRL_TID_PAIR_CNT_SHIFT
) |
11875 (((rcd
->expected_base
>> RCV_SHIFT
)
11876 & RCV_TID_CTRL_TID_BASE_INDEX_MASK
)
11877 << RCV_TID_CTRL_TID_BASE_INDEX_SHIFT
);
11878 write_kctxt_csr(dd
, ctxt
, RCV_TID_CTRL
, reg
);
11879 if (ctxt
== HFI1_CTRL_CTXT
)
11880 write_csr(dd
, RCV_VL15
, HFI1_CTRL_CTXT
);
11882 if (op
& HFI1_RCVCTRL_CTXT_DIS
) {
11883 write_csr(dd
, RCV_VL15
, 0);
11885 * When receive context is being disabled turn on tail
11886 * update with a dummy tail address and then disable
11889 if (dd
->rcvhdrtail_dummy_dma
) {
11890 write_kctxt_csr(dd
, ctxt
, RCV_HDR_TAIL_ADDR
,
11891 dd
->rcvhdrtail_dummy_dma
);
11892 /* Enabling RcvCtxtCtrl.TailUpd is intentional. */
11893 rcvctrl
|= RCV_CTXT_CTRL_TAIL_UPD_SMASK
;
11896 rcvctrl
&= ~RCV_CTXT_CTRL_ENABLE_SMASK
;
11898 if (op
& HFI1_RCVCTRL_INTRAVAIL_ENB
)
11899 rcvctrl
|= RCV_CTXT_CTRL_INTR_AVAIL_SMASK
;
11900 if (op
& HFI1_RCVCTRL_INTRAVAIL_DIS
)
11901 rcvctrl
&= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK
;
11902 if (op
& HFI1_RCVCTRL_TAILUPD_ENB
&& rcd
->rcvhdrqtailaddr_dma
)
11903 rcvctrl
|= RCV_CTXT_CTRL_TAIL_UPD_SMASK
;
11904 if (op
& HFI1_RCVCTRL_TAILUPD_DIS
) {
11905 /* See comment on RcvCtxtCtrl.TailUpd above */
11906 if (!(op
& HFI1_RCVCTRL_CTXT_DIS
))
11907 rcvctrl
&= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK
;
11909 if (op
& HFI1_RCVCTRL_TIDFLOW_ENB
)
11910 rcvctrl
|= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK
;
11911 if (op
& HFI1_RCVCTRL_TIDFLOW_DIS
)
11912 rcvctrl
&= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK
;
11913 if (op
& HFI1_RCVCTRL_ONE_PKT_EGR_ENB
) {
11915 * In one-packet-per-eager mode, the size comes from
11916 * the RcvArray entry.
11918 rcvctrl
&= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK
;
11919 rcvctrl
|= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK
;
11921 if (op
& HFI1_RCVCTRL_ONE_PKT_EGR_DIS
)
11922 rcvctrl
&= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK
;
11923 if (op
& HFI1_RCVCTRL_NO_RHQ_DROP_ENB
)
11924 rcvctrl
|= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK
;
11925 if (op
& HFI1_RCVCTRL_NO_RHQ_DROP_DIS
)
11926 rcvctrl
&= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK
;
11927 if (op
& HFI1_RCVCTRL_NO_EGR_DROP_ENB
)
11928 rcvctrl
|= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK
;
11929 if (op
& HFI1_RCVCTRL_NO_EGR_DROP_DIS
)
11930 rcvctrl
&= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK
;
11931 rcd
->rcvctrl
= rcvctrl
;
11932 hfi1_cdbg(RCVCTRL
, "ctxt %d rcvctrl 0x%llx\n", ctxt
, rcvctrl
);
11933 write_kctxt_csr(dd
, ctxt
, RCV_CTXT_CTRL
, rcd
->rcvctrl
);
11935 /* work around sticky RcvCtxtStatus.BlockedRHQFull */
11937 (rcvctrl
& RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK
)) {
11938 reg
= read_kctxt_csr(dd
, ctxt
, RCV_CTXT_STATUS
);
11940 dd_dev_info(dd
, "ctxt %d status %lld (blocked)\n",
11942 read_uctxt_csr(dd
, ctxt
, RCV_HDR_HEAD
);
11943 write_uctxt_csr(dd
, ctxt
, RCV_HDR_HEAD
, 0x10);
11944 write_uctxt_csr(dd
, ctxt
, RCV_HDR_HEAD
, 0x00);
11945 read_uctxt_csr(dd
, ctxt
, RCV_HDR_HEAD
);
11946 reg
= read_kctxt_csr(dd
, ctxt
, RCV_CTXT_STATUS
);
11947 dd_dev_info(dd
, "ctxt %d status %lld (%s blocked)\n",
11948 ctxt
, reg
, reg
== 0 ? "not" : "still");
11954 * The interrupt timeout and count must be set after
11955 * the context is enabled to take effect.
11957 /* set interrupt timeout */
11958 write_kctxt_csr(dd
, ctxt
, RCV_AVAIL_TIME_OUT
,
11959 (u64
)rcd
->rcvavail_timeout
<<
11960 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT
);
11962 /* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
11963 reg
= (u64
)rcv_intr_count
<< RCV_HDR_HEAD_COUNTER_SHIFT
;
11964 write_uctxt_csr(dd
, ctxt
, RCV_HDR_HEAD
, reg
);
11967 if (op
& (HFI1_RCVCTRL_TAILUPD_DIS
| HFI1_RCVCTRL_CTXT_DIS
))
11969 * If the context has been disabled and the Tail Update has
11970 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
11971 * so it doesn't contain an address that is invalid.
11973 write_kctxt_csr(dd
, ctxt
, RCV_HDR_TAIL_ADDR
,
11974 dd
->rcvhdrtail_dummy_dma
);
11977 u32
hfi1_read_cntrs(struct hfi1_devdata
*dd
, char **namep
, u64
**cntrp
)
11983 ret
= dd
->cntrnameslen
;
11984 *namep
= dd
->cntrnames
;
11986 const struct cntr_entry
*entry
;
11989 ret
= (dd
->ndevcntrs
) * sizeof(u64
);
11991 /* Get the start of the block of counters */
11992 *cntrp
= dd
->cntrs
;
11995 * Now go and fill in each counter in the block.
11997 for (i
= 0; i
< DEV_CNTR_LAST
; i
++) {
11998 entry
= &dev_cntrs
[i
];
11999 hfi1_cdbg(CNTR
, "reading %s", entry
->name
);
12000 if (entry
->flags
& CNTR_DISABLED
) {
12002 hfi1_cdbg(CNTR
, "\tDisabled\n");
12004 if (entry
->flags
& CNTR_VL
) {
12005 hfi1_cdbg(CNTR
, "\tPer VL\n");
12006 for (j
= 0; j
< C_VL_COUNT
; j
++) {
12007 val
= entry
->rw_cntr(entry
,
12013 "\t\tRead 0x%llx for %d\n",
12015 dd
->cntrs
[entry
->offset
+ j
] =
12018 } else if (entry
->flags
& CNTR_SDMA
) {
12020 "\t Per SDMA Engine\n");
12021 for (j
= 0; j
< dd
->chip_sdma_engines
;
12024 entry
->rw_cntr(entry
, dd
, j
,
12027 "\t\tRead 0x%llx for %d\n",
12029 dd
->cntrs
[entry
->offset
+ j
] =
12033 val
= entry
->rw_cntr(entry
, dd
,
12036 dd
->cntrs
[entry
->offset
] = val
;
12037 hfi1_cdbg(CNTR
, "\tRead 0x%llx", val
);
12046 * Used by sysfs to create files for hfi stats to read
12048 u32
hfi1_read_portcntrs(struct hfi1_pportdata
*ppd
, char **namep
, u64
**cntrp
)
12054 ret
= ppd
->dd
->portcntrnameslen
;
12055 *namep
= ppd
->dd
->portcntrnames
;
12057 const struct cntr_entry
*entry
;
12060 ret
= ppd
->dd
->nportcntrs
* sizeof(u64
);
12061 *cntrp
= ppd
->cntrs
;
12063 for (i
= 0; i
< PORT_CNTR_LAST
; i
++) {
12064 entry
= &port_cntrs
[i
];
12065 hfi1_cdbg(CNTR
, "reading %s", entry
->name
);
12066 if (entry
->flags
& CNTR_DISABLED
) {
12068 hfi1_cdbg(CNTR
, "\tDisabled\n");
12072 if (entry
->flags
& CNTR_VL
) {
12073 hfi1_cdbg(CNTR
, "\tPer VL");
12074 for (j
= 0; j
< C_VL_COUNT
; j
++) {
12075 val
= entry
->rw_cntr(entry
, ppd
, j
,
12080 "\t\tRead 0x%llx for %d",
12082 ppd
->cntrs
[entry
->offset
+ j
] = val
;
12085 val
= entry
->rw_cntr(entry
, ppd
,
12089 ppd
->cntrs
[entry
->offset
] = val
;
12090 hfi1_cdbg(CNTR
, "\tRead 0x%llx", val
);
12097 static void free_cntrs(struct hfi1_devdata
*dd
)
12099 struct hfi1_pportdata
*ppd
;
12102 if (dd
->synth_stats_timer
.function
)
12103 del_timer_sync(&dd
->synth_stats_timer
);
12104 ppd
= (struct hfi1_pportdata
*)(dd
+ 1);
12105 for (i
= 0; i
< dd
->num_pports
; i
++, ppd
++) {
12107 kfree(ppd
->scntrs
);
12108 free_percpu(ppd
->ibport_data
.rvp
.rc_acks
);
12109 free_percpu(ppd
->ibport_data
.rvp
.rc_qacks
);
12110 free_percpu(ppd
->ibport_data
.rvp
.rc_delayed_comp
);
12112 ppd
->scntrs
= NULL
;
12113 ppd
->ibport_data
.rvp
.rc_acks
= NULL
;
12114 ppd
->ibport_data
.rvp
.rc_qacks
= NULL
;
12115 ppd
->ibport_data
.rvp
.rc_delayed_comp
= NULL
;
12117 kfree(dd
->portcntrnames
);
12118 dd
->portcntrnames
= NULL
;
12123 kfree(dd
->cntrnames
);
12124 dd
->cntrnames
= NULL
;
12125 if (dd
->update_cntr_wq
) {
12126 destroy_workqueue(dd
->update_cntr_wq
);
12127 dd
->update_cntr_wq
= NULL
;
12131 static u64
read_dev_port_cntr(struct hfi1_devdata
*dd
, struct cntr_entry
*entry
,
12132 u64
*psval
, void *context
, int vl
)
12137 if (entry
->flags
& CNTR_DISABLED
) {
12138 dd_dev_err(dd
, "Counter %s not enabled", entry
->name
);
12142 hfi1_cdbg(CNTR
, "cntr: %s vl %d psval 0x%llx", entry
->name
, vl
, *psval
);
12144 val
= entry
->rw_cntr(entry
, context
, vl
, CNTR_MODE_R
, 0);
12146 /* If its a synthetic counter there is more work we need to do */
12147 if (entry
->flags
& CNTR_SYNTH
) {
12148 if (sval
== CNTR_MAX
) {
12149 /* No need to read already saturated */
12153 if (entry
->flags
& CNTR_32BIT
) {
12154 /* 32bit counters can wrap multiple times */
12155 u64 upper
= sval
>> 32;
12156 u64 lower
= (sval
<< 32) >> 32;
12158 if (lower
> val
) { /* hw wrapped */
12159 if (upper
== CNTR_32BIT_MAX
)
12165 if (val
!= CNTR_MAX
)
12166 val
= (upper
<< 32) | val
;
12169 /* If we rolled we are saturated */
12170 if ((val
< sval
) || (val
> CNTR_MAX
))
12177 hfi1_cdbg(CNTR
, "\tNew val=0x%llx", val
);
12182 static u64
write_dev_port_cntr(struct hfi1_devdata
*dd
,
12183 struct cntr_entry
*entry
,
12184 u64
*psval
, void *context
, int vl
, u64 data
)
12188 if (entry
->flags
& CNTR_DISABLED
) {
12189 dd_dev_err(dd
, "Counter %s not enabled", entry
->name
);
12193 hfi1_cdbg(CNTR
, "cntr: %s vl %d psval 0x%llx", entry
->name
, vl
, *psval
);
12195 if (entry
->flags
& CNTR_SYNTH
) {
12197 if (entry
->flags
& CNTR_32BIT
) {
12198 val
= entry
->rw_cntr(entry
, context
, vl
, CNTR_MODE_W
,
12199 (data
<< 32) >> 32);
12200 val
= data
; /* return the full 64bit value */
12202 val
= entry
->rw_cntr(entry
, context
, vl
, CNTR_MODE_W
,
12206 val
= entry
->rw_cntr(entry
, context
, vl
, CNTR_MODE_W
, data
);
12211 hfi1_cdbg(CNTR
, "\tNew val=0x%llx", val
);
12216 u64
read_dev_cntr(struct hfi1_devdata
*dd
, int index
, int vl
)
12218 struct cntr_entry
*entry
;
12221 entry
= &dev_cntrs
[index
];
12222 sval
= dd
->scntrs
+ entry
->offset
;
12224 if (vl
!= CNTR_INVALID_VL
)
12227 return read_dev_port_cntr(dd
, entry
, sval
, dd
, vl
);
12230 u64
write_dev_cntr(struct hfi1_devdata
*dd
, int index
, int vl
, u64 data
)
12232 struct cntr_entry
*entry
;
12235 entry
= &dev_cntrs
[index
];
12236 sval
= dd
->scntrs
+ entry
->offset
;
12238 if (vl
!= CNTR_INVALID_VL
)
12241 return write_dev_port_cntr(dd
, entry
, sval
, dd
, vl
, data
);
12244 u64
read_port_cntr(struct hfi1_pportdata
*ppd
, int index
, int vl
)
12246 struct cntr_entry
*entry
;
12249 entry
= &port_cntrs
[index
];
12250 sval
= ppd
->scntrs
+ entry
->offset
;
12252 if (vl
!= CNTR_INVALID_VL
)
12255 if ((index
>= C_RCV_HDR_OVF_FIRST
+ ppd
->dd
->num_rcv_contexts
) &&
12256 (index
<= C_RCV_HDR_OVF_LAST
)) {
12257 /* We do not want to bother for disabled contexts */
12261 return read_dev_port_cntr(ppd
->dd
, entry
, sval
, ppd
, vl
);
12264 u64
write_port_cntr(struct hfi1_pportdata
*ppd
, int index
, int vl
, u64 data
)
12266 struct cntr_entry
*entry
;
12269 entry
= &port_cntrs
[index
];
12270 sval
= ppd
->scntrs
+ entry
->offset
;
12272 if (vl
!= CNTR_INVALID_VL
)
12275 if ((index
>= C_RCV_HDR_OVF_FIRST
+ ppd
->dd
->num_rcv_contexts
) &&
12276 (index
<= C_RCV_HDR_OVF_LAST
)) {
12277 /* We do not want to bother for disabled contexts */
12281 return write_dev_port_cntr(ppd
->dd
, entry
, sval
, ppd
, vl
, data
);
12284 static void do_update_synth_timer(struct work_struct
*work
)
12291 struct hfi1_pportdata
*ppd
;
12292 struct cntr_entry
*entry
;
12293 struct hfi1_devdata
*dd
= container_of(work
, struct hfi1_devdata
,
12297 * Rather than keep beating on the CSRs pick a minimal set that we can
12298 * check to watch for potential roll over. We can do this by looking at
12299 * the number of flits sent/recv. If the total flits exceeds 32bits then
12300 * we have to iterate all the counters and update.
12302 entry
= &dev_cntrs
[C_DC_RCV_FLITS
];
12303 cur_rx
= entry
->rw_cntr(entry
, dd
, CNTR_INVALID_VL
, CNTR_MODE_R
, 0);
12305 entry
= &dev_cntrs
[C_DC_XMIT_FLITS
];
12306 cur_tx
= entry
->rw_cntr(entry
, dd
, CNTR_INVALID_VL
, CNTR_MODE_R
, 0);
12310 "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12311 dd
->unit
, cur_tx
, cur_rx
, dd
->last_tx
, dd
->last_rx
);
12313 if ((cur_tx
< dd
->last_tx
) || (cur_rx
< dd
->last_rx
)) {
12315 * May not be strictly necessary to update but it won't hurt and
12316 * simplifies the logic here.
12319 hfi1_cdbg(CNTR
, "[%d] Tripwire counter rolled, updating",
12322 total_flits
= (cur_tx
- dd
->last_tx
) + (cur_rx
- dd
->last_rx
);
12324 "[%d] total flits 0x%llx limit 0x%llx\n", dd
->unit
,
12325 total_flits
, (u64
)CNTR_32BIT_MAX
);
12326 if (total_flits
>= CNTR_32BIT_MAX
) {
12327 hfi1_cdbg(CNTR
, "[%d] 32bit limit hit, updating",
12334 hfi1_cdbg(CNTR
, "[%d] Updating dd and ppd counters", dd
->unit
);
12335 for (i
= 0; i
< DEV_CNTR_LAST
; i
++) {
12336 entry
= &dev_cntrs
[i
];
12337 if (entry
->flags
& CNTR_VL
) {
12338 for (vl
= 0; vl
< C_VL_COUNT
; vl
++)
12339 read_dev_cntr(dd
, i
, vl
);
12341 read_dev_cntr(dd
, i
, CNTR_INVALID_VL
);
12344 ppd
= (struct hfi1_pportdata
*)(dd
+ 1);
12345 for (i
= 0; i
< dd
->num_pports
; i
++, ppd
++) {
12346 for (j
= 0; j
< PORT_CNTR_LAST
; j
++) {
12347 entry
= &port_cntrs
[j
];
12348 if (entry
->flags
& CNTR_VL
) {
12349 for (vl
= 0; vl
< C_VL_COUNT
; vl
++)
12350 read_port_cntr(ppd
, j
, vl
);
12352 read_port_cntr(ppd
, j
, CNTR_INVALID_VL
);
12358 * We want the value in the register. The goal is to keep track
12359 * of the number of "ticks" not the counter value. In other
12360 * words if the register rolls we want to notice it and go ahead
12361 * and force an update.
12363 entry
= &dev_cntrs
[C_DC_XMIT_FLITS
];
12364 dd
->last_tx
= entry
->rw_cntr(entry
, dd
, CNTR_INVALID_VL
,
12367 entry
= &dev_cntrs
[C_DC_RCV_FLITS
];
12368 dd
->last_rx
= entry
->rw_cntr(entry
, dd
, CNTR_INVALID_VL
,
12371 hfi1_cdbg(CNTR
, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12372 dd
->unit
, dd
->last_tx
, dd
->last_rx
);
12375 hfi1_cdbg(CNTR
, "[%d] No update necessary", dd
->unit
);
12379 static void update_synth_timer(struct timer_list
*t
)
12381 struct hfi1_devdata
*dd
= from_timer(dd
, t
, synth_stats_timer
);
12383 queue_work(dd
->update_cntr_wq
, &dd
->update_cntr_work
);
12384 mod_timer(&dd
->synth_stats_timer
, jiffies
+ HZ
* SYNTH_CNT_TIME
);
12387 #define C_MAX_NAME 16 /* 15 chars + one for /0 */
12388 static int init_cntrs(struct hfi1_devdata
*dd
)
12390 int i
, rcv_ctxts
, j
;
12393 char name
[C_MAX_NAME
];
12394 struct hfi1_pportdata
*ppd
;
12395 const char *bit_type_32
= ",32";
12396 const int bit_type_32_sz
= strlen(bit_type_32
);
12398 /* set up the stats timer; the add_timer is done at the end */
12399 timer_setup(&dd
->synth_stats_timer
, update_synth_timer
, 0);
12401 /***********************/
12402 /* per device counters */
12403 /***********************/
12405 /* size names and determine how many we have*/
12409 for (i
= 0; i
< DEV_CNTR_LAST
; i
++) {
12410 if (dev_cntrs
[i
].flags
& CNTR_DISABLED
) {
12411 hfi1_dbg_early("\tSkipping %s\n", dev_cntrs
[i
].name
);
12415 if (dev_cntrs
[i
].flags
& CNTR_VL
) {
12416 dev_cntrs
[i
].offset
= dd
->ndevcntrs
;
12417 for (j
= 0; j
< C_VL_COUNT
; j
++) {
12418 snprintf(name
, C_MAX_NAME
, "%s%d",
12419 dev_cntrs
[i
].name
, vl_from_idx(j
));
12420 sz
+= strlen(name
);
12421 /* Add ",32" for 32-bit counters */
12422 if (dev_cntrs
[i
].flags
& CNTR_32BIT
)
12423 sz
+= bit_type_32_sz
;
12427 } else if (dev_cntrs
[i
].flags
& CNTR_SDMA
) {
12428 dev_cntrs
[i
].offset
= dd
->ndevcntrs
;
12429 for (j
= 0; j
< dd
->chip_sdma_engines
; j
++) {
12430 snprintf(name
, C_MAX_NAME
, "%s%d",
12431 dev_cntrs
[i
].name
, j
);
12432 sz
+= strlen(name
);
12433 /* Add ",32" for 32-bit counters */
12434 if (dev_cntrs
[i
].flags
& CNTR_32BIT
)
12435 sz
+= bit_type_32_sz
;
12440 /* +1 for newline. */
12441 sz
+= strlen(dev_cntrs
[i
].name
) + 1;
12442 /* Add ",32" for 32-bit counters */
12443 if (dev_cntrs
[i
].flags
& CNTR_32BIT
)
12444 sz
+= bit_type_32_sz
;
12445 dev_cntrs
[i
].offset
= dd
->ndevcntrs
;
12450 /* allocate space for the counter values */
12451 dd
->cntrs
= kcalloc(dd
->ndevcntrs
, sizeof(u64
), GFP_KERNEL
);
12455 dd
->scntrs
= kcalloc(dd
->ndevcntrs
, sizeof(u64
), GFP_KERNEL
);
12459 /* allocate space for the counter names */
12460 dd
->cntrnameslen
= sz
;
12461 dd
->cntrnames
= kmalloc(sz
, GFP_KERNEL
);
12462 if (!dd
->cntrnames
)
12465 /* fill in the names */
12466 for (p
= dd
->cntrnames
, i
= 0; i
< DEV_CNTR_LAST
; i
++) {
12467 if (dev_cntrs
[i
].flags
& CNTR_DISABLED
) {
12469 } else if (dev_cntrs
[i
].flags
& CNTR_VL
) {
12470 for (j
= 0; j
< C_VL_COUNT
; j
++) {
12471 snprintf(name
, C_MAX_NAME
, "%s%d",
12474 memcpy(p
, name
, strlen(name
));
12477 /* Counter is 32 bits */
12478 if (dev_cntrs
[i
].flags
& CNTR_32BIT
) {
12479 memcpy(p
, bit_type_32
, bit_type_32_sz
);
12480 p
+= bit_type_32_sz
;
12485 } else if (dev_cntrs
[i
].flags
& CNTR_SDMA
) {
12486 for (j
= 0; j
< dd
->chip_sdma_engines
; j
++) {
12487 snprintf(name
, C_MAX_NAME
, "%s%d",
12488 dev_cntrs
[i
].name
, j
);
12489 memcpy(p
, name
, strlen(name
));
12492 /* Counter is 32 bits */
12493 if (dev_cntrs
[i
].flags
& CNTR_32BIT
) {
12494 memcpy(p
, bit_type_32
, bit_type_32_sz
);
12495 p
+= bit_type_32_sz
;
12501 memcpy(p
, dev_cntrs
[i
].name
, strlen(dev_cntrs
[i
].name
));
12502 p
+= strlen(dev_cntrs
[i
].name
);
12504 /* Counter is 32 bits */
12505 if (dev_cntrs
[i
].flags
& CNTR_32BIT
) {
12506 memcpy(p
, bit_type_32
, bit_type_32_sz
);
12507 p
+= bit_type_32_sz
;
12514 /*********************/
12515 /* per port counters */
12516 /*********************/
12519 * Go through the counters for the overflows and disable the ones we
12520 * don't need. This varies based on platform so we need to do it
12521 * dynamically here.
12523 rcv_ctxts
= dd
->num_rcv_contexts
;
12524 for (i
= C_RCV_HDR_OVF_FIRST
+ rcv_ctxts
;
12525 i
<= C_RCV_HDR_OVF_LAST
; i
++) {
12526 port_cntrs
[i
].flags
|= CNTR_DISABLED
;
12529 /* size port counter names and determine how many we have*/
12531 dd
->nportcntrs
= 0;
12532 for (i
= 0; i
< PORT_CNTR_LAST
; i
++) {
12533 if (port_cntrs
[i
].flags
& CNTR_DISABLED
) {
12534 hfi1_dbg_early("\tSkipping %s\n", port_cntrs
[i
].name
);
12538 if (port_cntrs
[i
].flags
& CNTR_VL
) {
12539 port_cntrs
[i
].offset
= dd
->nportcntrs
;
12540 for (j
= 0; j
< C_VL_COUNT
; j
++) {
12541 snprintf(name
, C_MAX_NAME
, "%s%d",
12542 port_cntrs
[i
].name
, vl_from_idx(j
));
12543 sz
+= strlen(name
);
12544 /* Add ",32" for 32-bit counters */
12545 if (port_cntrs
[i
].flags
& CNTR_32BIT
)
12546 sz
+= bit_type_32_sz
;
12551 /* +1 for newline */
12552 sz
+= strlen(port_cntrs
[i
].name
) + 1;
12553 /* Add ",32" for 32-bit counters */
12554 if (port_cntrs
[i
].flags
& CNTR_32BIT
)
12555 sz
+= bit_type_32_sz
;
12556 port_cntrs
[i
].offset
= dd
->nportcntrs
;
12561 /* allocate space for the counter names */
12562 dd
->portcntrnameslen
= sz
;
12563 dd
->portcntrnames
= kmalloc(sz
, GFP_KERNEL
);
12564 if (!dd
->portcntrnames
)
12567 /* fill in port cntr names */
12568 for (p
= dd
->portcntrnames
, i
= 0; i
< PORT_CNTR_LAST
; i
++) {
12569 if (port_cntrs
[i
].flags
& CNTR_DISABLED
)
12572 if (port_cntrs
[i
].flags
& CNTR_VL
) {
12573 for (j
= 0; j
< C_VL_COUNT
; j
++) {
12574 snprintf(name
, C_MAX_NAME
, "%s%d",
12575 port_cntrs
[i
].name
, vl_from_idx(j
));
12576 memcpy(p
, name
, strlen(name
));
12579 /* Counter is 32 bits */
12580 if (port_cntrs
[i
].flags
& CNTR_32BIT
) {
12581 memcpy(p
, bit_type_32
, bit_type_32_sz
);
12582 p
+= bit_type_32_sz
;
12588 memcpy(p
, port_cntrs
[i
].name
,
12589 strlen(port_cntrs
[i
].name
));
12590 p
+= strlen(port_cntrs
[i
].name
);
12592 /* Counter is 32 bits */
12593 if (port_cntrs
[i
].flags
& CNTR_32BIT
) {
12594 memcpy(p
, bit_type_32
, bit_type_32_sz
);
12595 p
+= bit_type_32_sz
;
12602 /* allocate per port storage for counter values */
12603 ppd
= (struct hfi1_pportdata
*)(dd
+ 1);
12604 for (i
= 0; i
< dd
->num_pports
; i
++, ppd
++) {
12605 ppd
->cntrs
= kcalloc(dd
->nportcntrs
, sizeof(u64
), GFP_KERNEL
);
12609 ppd
->scntrs
= kcalloc(dd
->nportcntrs
, sizeof(u64
), GFP_KERNEL
);
12614 /* CPU counters need to be allocated and zeroed */
12615 if (init_cpu_counters(dd
))
12618 dd
->update_cntr_wq
= alloc_ordered_workqueue("hfi1_update_cntr_%d",
12619 WQ_MEM_RECLAIM
, dd
->unit
);
12620 if (!dd
->update_cntr_wq
)
12623 INIT_WORK(&dd
->update_cntr_work
, do_update_synth_timer
);
12625 mod_timer(&dd
->synth_stats_timer
, jiffies
+ HZ
* SYNTH_CNT_TIME
);
12632 static u32
chip_to_opa_lstate(struct hfi1_devdata
*dd
, u32 chip_lstate
)
12634 switch (chip_lstate
) {
12637 "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12641 return IB_PORT_DOWN
;
12643 return IB_PORT_INIT
;
12645 return IB_PORT_ARMED
;
12646 case LSTATE_ACTIVE
:
12647 return IB_PORT_ACTIVE
;
12651 u32
chip_to_opa_pstate(struct hfi1_devdata
*dd
, u32 chip_pstate
)
12653 /* look at the HFI meta-states only */
12654 switch (chip_pstate
& 0xf0) {
12656 dd_dev_err(dd
, "Unexpected chip physical state of 0x%x\n",
12660 return IB_PORTPHYSSTATE_DISABLED
;
12662 return OPA_PORTPHYSSTATE_OFFLINE
;
12664 return IB_PORTPHYSSTATE_POLLING
;
12665 case PLS_CONFIGPHY
:
12666 return IB_PORTPHYSSTATE_TRAINING
;
12668 return IB_PORTPHYSSTATE_LINKUP
;
12670 return IB_PORTPHYSSTATE_PHY_TEST
;
12674 /* return the OPA port logical state name */
12675 const char *opa_lstate_name(u32 lstate
)
12677 static const char * const port_logical_names
[] = {
12683 "PORT_ACTIVE_DEFER",
12685 if (lstate
< ARRAY_SIZE(port_logical_names
))
12686 return port_logical_names
[lstate
];
12690 /* return the OPA port physical state name */
12691 const char *opa_pstate_name(u32 pstate
)
12693 static const char * const port_physical_names
[] = {
12700 "PHYS_LINK_ERR_RECOVER",
12707 if (pstate
< ARRAY_SIZE(port_physical_names
))
12708 return port_physical_names
[pstate
];
12713 * update_statusp - Update userspace status flag
12714 * @ppd: Port data structure
12715 * @state: port state information
12717 * Actual port status is determined by the host_link_state value
12720 * host_link_state MUST be updated before updating the user space
12723 static void update_statusp(struct hfi1_pportdata
*ppd
, u32 state
)
12726 * Set port status flags in the page mapped into userspace
12727 * memory. Do it here to ensure a reliable state - this is
12728 * the only function called by all state handling code.
12729 * Always set the flags due to the fact that the cache value
12730 * might have been changed explicitly outside of this
12733 if (ppd
->statusp
) {
12737 *ppd
->statusp
&= ~(HFI1_STATUS_IB_CONF
|
12738 HFI1_STATUS_IB_READY
);
12740 case IB_PORT_ARMED
:
12741 *ppd
->statusp
|= HFI1_STATUS_IB_CONF
;
12743 case IB_PORT_ACTIVE
:
12744 *ppd
->statusp
|= HFI1_STATUS_IB_READY
;
12748 dd_dev_info(ppd
->dd
, "logical state changed to %s (0x%x)\n",
12749 opa_lstate_name(state
), state
);
12753 * wait_logical_linkstate - wait for an IB link state change to occur
12754 * @ppd: port device
12755 * @state: the state to wait for
12756 * @msecs: the number of milliseconds to wait
12758 * Wait up to msecs milliseconds for IB link state change to occur.
12759 * For now, take the easy polling route.
12760 * Returns 0 if state reached, otherwise -ETIMEDOUT.
12762 static int wait_logical_linkstate(struct hfi1_pportdata
*ppd
, u32 state
,
12765 unsigned long timeout
;
12768 timeout
= jiffies
+ msecs_to_jiffies(msecs
);
12770 new_state
= chip_to_opa_lstate(ppd
->dd
,
12771 read_logical_state(ppd
->dd
));
12772 if (new_state
== state
)
12774 if (time_after(jiffies
, timeout
)) {
12775 dd_dev_err(ppd
->dd
,
12776 "timeout waiting for link state 0x%x\n",
12786 static void log_state_transition(struct hfi1_pportdata
*ppd
, u32 state
)
12788 u32 ib_pstate
= chip_to_opa_pstate(ppd
->dd
, state
);
12790 dd_dev_info(ppd
->dd
,
12791 "physical state changed to %s (0x%x), phy 0x%x\n",
12792 opa_pstate_name(ib_pstate
), ib_pstate
, state
);
12796 * Read the physical hardware link state and check if it matches host
12797 * drivers anticipated state.
12799 static void log_physical_state(struct hfi1_pportdata
*ppd
, u32 state
)
12801 u32 read_state
= read_physical_state(ppd
->dd
);
12803 if (read_state
== state
) {
12804 log_state_transition(ppd
, state
);
12806 dd_dev_err(ppd
->dd
,
12807 "anticipated phy link state 0x%x, read 0x%x\n",
12808 state
, read_state
);
12813 * wait_physical_linkstate - wait for an physical link state change to occur
12814 * @ppd: port device
12815 * @state: the state to wait for
12816 * @msecs: the number of milliseconds to wait
12818 * Wait up to msecs milliseconds for physical link state change to occur.
12819 * Returns 0 if state reached, otherwise -ETIMEDOUT.
12821 static int wait_physical_linkstate(struct hfi1_pportdata
*ppd
, u32 state
,
12825 unsigned long timeout
;
12827 timeout
= jiffies
+ msecs_to_jiffies(msecs
);
12829 read_state
= read_physical_state(ppd
->dd
);
12830 if (read_state
== state
)
12832 if (time_after(jiffies
, timeout
)) {
12833 dd_dev_err(ppd
->dd
,
12834 "timeout waiting for phy link state 0x%x\n",
12838 usleep_range(1950, 2050); /* sleep 2ms-ish */
12841 log_state_transition(ppd
, state
);
12846 * wait_phys_link_offline_quiet_substates - wait for any offline substate
12847 * @ppd: port device
12848 * @msecs: the number of milliseconds to wait
12850 * Wait up to msecs milliseconds for any offline physical link
12851 * state change to occur.
12852 * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
12854 static int wait_phys_link_offline_substates(struct hfi1_pportdata
*ppd
,
12858 unsigned long timeout
;
12860 timeout
= jiffies
+ msecs_to_jiffies(msecs
);
12862 read_state
= read_physical_state(ppd
->dd
);
12863 if ((read_state
& 0xF0) == PLS_OFFLINE
)
12865 if (time_after(jiffies
, timeout
)) {
12866 dd_dev_err(ppd
->dd
,
12867 "timeout waiting for phy link offline.quiet substates. Read state 0x%x, %dms\n",
12868 read_state
, msecs
);
12871 usleep_range(1950, 2050); /* sleep 2ms-ish */
12874 log_state_transition(ppd
, read_state
);
12878 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
12879 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12881 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
12882 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12884 void hfi1_init_ctxt(struct send_context
*sc
)
12887 struct hfi1_devdata
*dd
= sc
->dd
;
12889 u8 set
= (sc
->type
== SC_USER
?
12890 HFI1_CAP_IS_USET(STATIC_RATE_CTRL
) :
12891 HFI1_CAP_IS_KSET(STATIC_RATE_CTRL
));
12892 reg
= read_kctxt_csr(dd
, sc
->hw_context
,
12893 SEND_CTXT_CHECK_ENABLE
);
12895 CLEAR_STATIC_RATE_CONTROL_SMASK(reg
);
12897 SET_STATIC_RATE_CONTROL_SMASK(reg
);
12898 write_kctxt_csr(dd
, sc
->hw_context
,
12899 SEND_CTXT_CHECK_ENABLE
, reg
);
12903 int hfi1_tempsense_rd(struct hfi1_devdata
*dd
, struct hfi1_temp
*temp
)
12908 if (dd
->icode
!= ICODE_RTL_SILICON
) {
12909 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL
))
12910 dd_dev_info(dd
, "%s: tempsense not supported by HW\n",
12914 reg
= read_csr(dd
, ASIC_STS_THERM
);
12915 temp
->curr
= ((reg
>> ASIC_STS_THERM_CURR_TEMP_SHIFT
) &
12916 ASIC_STS_THERM_CURR_TEMP_MASK
);
12917 temp
->lo_lim
= ((reg
>> ASIC_STS_THERM_LO_TEMP_SHIFT
) &
12918 ASIC_STS_THERM_LO_TEMP_MASK
);
12919 temp
->hi_lim
= ((reg
>> ASIC_STS_THERM_HI_TEMP_SHIFT
) &
12920 ASIC_STS_THERM_HI_TEMP_MASK
);
12921 temp
->crit_lim
= ((reg
>> ASIC_STS_THERM_CRIT_TEMP_SHIFT
) &
12922 ASIC_STS_THERM_CRIT_TEMP_MASK
);
12923 /* triggers is a 3-bit value - 1 bit per trigger. */
12924 temp
->triggers
= (u8
)((reg
>> ASIC_STS_THERM_LOW_SHIFT
) & 0x7);
12930 * get_int_mask - get 64 bit int mask
12931 * @dd - the devdata
12932 * @i - the csr (relative to CCE_INT_MASK)
12934 * Returns the mask with the urgent interrupt mask
12935 * bit clear for kernel receive contexts.
12937 static u64
get_int_mask(struct hfi1_devdata
*dd
, u32 i
)
12939 u64 mask
= U64_MAX
; /* default to no change */
12941 if (i
>= (IS_RCVURGENT_START
/ 64) && i
< (IS_RCVURGENT_END
/ 64)) {
12942 int j
= (i
- (IS_RCVURGENT_START
/ 64)) * 64;
12943 int k
= !j
? IS_RCVURGENT_START
% 64 : 0;
12946 j
-= IS_RCVURGENT_START
% 64;
12947 /* j = 0..dd->first_dyn_alloc_ctxt - 1,k = 0..63 */
12948 for (; j
< dd
->first_dyn_alloc_ctxt
&& k
< 64; j
++, k
++)
12949 /* convert to bit in mask and clear */
12950 mask
&= ~BIT_ULL(k
);
12955 /* ========================================================================= */
12958 * Enable/disable chip from delivering interrupts.
12960 void set_intr_state(struct hfi1_devdata
*dd
, u32 enable
)
12965 * In HFI, the mask needs to be 1 to allow interrupts.
12968 /* enable all interrupts but urgent on kernel contexts */
12969 for (i
= 0; i
< CCE_NUM_INT_CSRS
; i
++) {
12970 u64 mask
= get_int_mask(dd
, i
);
12972 write_csr(dd
, CCE_INT_MASK
+ (8 * i
), mask
);
12977 for (i
= 0; i
< CCE_NUM_INT_CSRS
; i
++)
12978 write_csr(dd
, CCE_INT_MASK
+ (8 * i
), 0ull);
12983 * Clear all interrupt sources on the chip.
12985 static void clear_all_interrupts(struct hfi1_devdata
*dd
)
12989 for (i
= 0; i
< CCE_NUM_INT_CSRS
; i
++)
12990 write_csr(dd
, CCE_INT_CLEAR
+ (8 * i
), ~(u64
)0);
12992 write_csr(dd
, CCE_ERR_CLEAR
, ~(u64
)0);
12993 write_csr(dd
, MISC_ERR_CLEAR
, ~(u64
)0);
12994 write_csr(dd
, RCV_ERR_CLEAR
, ~(u64
)0);
12995 write_csr(dd
, SEND_ERR_CLEAR
, ~(u64
)0);
12996 write_csr(dd
, SEND_PIO_ERR_CLEAR
, ~(u64
)0);
12997 write_csr(dd
, SEND_DMA_ERR_CLEAR
, ~(u64
)0);
12998 write_csr(dd
, SEND_EGRESS_ERR_CLEAR
, ~(u64
)0);
12999 for (i
= 0; i
< dd
->chip_send_contexts
; i
++)
13000 write_kctxt_csr(dd
, i
, SEND_CTXT_ERR_CLEAR
, ~(u64
)0);
13001 for (i
= 0; i
< dd
->chip_sdma_engines
; i
++)
13002 write_kctxt_csr(dd
, i
, SEND_DMA_ENG_ERR_CLEAR
, ~(u64
)0);
13004 write_csr(dd
, DCC_ERR_FLG_CLR
, ~(u64
)0);
13005 write_csr(dd
, DC_LCB_ERR_CLR
, ~(u64
)0);
13006 write_csr(dd
, DC_DC8051_ERR_CLR
, ~(u64
)0);
13009 /* Move to pcie.c? */
13010 static void disable_intx(struct pci_dev
*pdev
)
13016 * hfi1_clean_up_interrupts() - Free all IRQ resources
13017 * @dd: valid device data data structure
13019 * Free the MSI or INTx IRQs and assoicated PCI resources,
13020 * if they have been allocated.
13022 void hfi1_clean_up_interrupts(struct hfi1_devdata
*dd
)
13026 /* remove irqs - must happen before disabling/turning off */
13027 if (dd
->num_msix_entries
) {
13029 struct hfi1_msix_entry
*me
= dd
->msix_entries
;
13031 for (i
= 0; i
< dd
->num_msix_entries
; i
++, me
++) {
13032 if (!me
->arg
) /* => no irq, no affinity */
13034 hfi1_put_irq_affinity(dd
, me
);
13035 pci_free_irq(dd
->pcidev
, i
, me
->arg
);
13038 /* clean structures */
13039 kfree(dd
->msix_entries
);
13040 dd
->msix_entries
= NULL
;
13041 dd
->num_msix_entries
= 0;
13044 if (dd
->requested_intx_irq
) {
13045 pci_free_irq(dd
->pcidev
, 0, dd
);
13046 dd
->requested_intx_irq
= 0;
13048 disable_intx(dd
->pcidev
);
13051 pci_free_irq_vectors(dd
->pcidev
);
13055 * Remap the interrupt source from the general handler to the given MSI-X
13058 static void remap_intr(struct hfi1_devdata
*dd
, int isrc
, int msix_intr
)
13063 /* clear from the handled mask of the general interrupt */
13066 if (likely(m
< CCE_NUM_INT_CSRS
)) {
13067 dd
->gi_mask
[m
] &= ~((u64
)1 << n
);
13069 dd_dev_err(dd
, "remap interrupt err\n");
13073 /* direct the chip source to the given MSI-X interrupt */
13076 reg
= read_csr(dd
, CCE_INT_MAP
+ (8 * m
));
13077 reg
&= ~((u64
)0xff << (8 * n
));
13078 reg
|= ((u64
)msix_intr
& 0xff) << (8 * n
);
13079 write_csr(dd
, CCE_INT_MAP
+ (8 * m
), reg
);
13082 static void remap_sdma_interrupts(struct hfi1_devdata
*dd
,
13083 int engine
, int msix_intr
)
13086 * SDMA engine interrupt sources grouped by type, rather than
13087 * engine. Per-engine interrupts are as follows:
13092 remap_intr(dd
, IS_SDMA_START
+ 0 * TXE_NUM_SDMA_ENGINES
+ engine
,
13094 remap_intr(dd
, IS_SDMA_START
+ 1 * TXE_NUM_SDMA_ENGINES
+ engine
,
13096 remap_intr(dd
, IS_SDMA_START
+ 2 * TXE_NUM_SDMA_ENGINES
+ engine
,
13100 static int request_intx_irq(struct hfi1_devdata
*dd
)
13104 ret
= pci_request_irq(dd
->pcidev
, 0, general_interrupt
, NULL
, dd
,
13105 DRIVER_NAME
"_%d", dd
->unit
);
13107 dd_dev_err(dd
, "unable to request INTx interrupt, err %d\n",
13110 dd
->requested_intx_irq
= 1;
13114 static int request_msix_irqs(struct hfi1_devdata
*dd
)
13116 int first_general
, last_general
;
13117 int first_sdma
, last_sdma
;
13118 int first_rx
, last_rx
;
13121 /* calculate the ranges we are going to use */
13123 last_general
= first_general
+ 1;
13124 first_sdma
= last_general
;
13125 last_sdma
= first_sdma
+ dd
->num_sdma
;
13126 first_rx
= last_sdma
;
13127 last_rx
= first_rx
+ dd
->n_krcv_queues
+ dd
->num_vnic_contexts
;
13129 /* VNIC MSIx interrupts get mapped when VNIC contexts are created */
13130 dd
->first_dyn_msix_idx
= first_rx
+ dd
->n_krcv_queues
;
13133 * Sanity check - the code expects all SDMA chip source
13134 * interrupts to be in the same CSR, starting at bit 0. Verify
13135 * that this is true by checking the bit location of the start.
13137 BUILD_BUG_ON(IS_SDMA_START
% 64);
13139 for (i
= 0; i
< dd
->num_msix_entries
; i
++) {
13140 struct hfi1_msix_entry
*me
= &dd
->msix_entries
[i
];
13141 const char *err_info
;
13142 irq_handler_t handler
;
13143 irq_handler_t thread
= NULL
;
13146 struct hfi1_ctxtdata
*rcd
= NULL
;
13147 struct sdma_engine
*sde
= NULL
;
13148 char name
[MAX_NAME_SIZE
];
13150 /* obtain the arguments to pci_request_irq */
13151 if (first_general
<= i
&& i
< last_general
) {
13152 idx
= i
- first_general
;
13153 handler
= general_interrupt
;
13155 snprintf(name
, sizeof(name
),
13156 DRIVER_NAME
"_%d", dd
->unit
);
13157 err_info
= "general";
13158 me
->type
= IRQ_GENERAL
;
13159 } else if (first_sdma
<= i
&& i
< last_sdma
) {
13160 idx
= i
- first_sdma
;
13161 sde
= &dd
->per_sdma
[idx
];
13162 handler
= sdma_interrupt
;
13164 snprintf(name
, sizeof(name
),
13165 DRIVER_NAME
"_%d sdma%d", dd
->unit
, idx
);
13167 remap_sdma_interrupts(dd
, idx
, i
);
13168 me
->type
= IRQ_SDMA
;
13169 } else if (first_rx
<= i
&& i
< last_rx
) {
13170 idx
= i
- first_rx
;
13171 rcd
= hfi1_rcd_get_by_index_safe(dd
, idx
);
13174 * Set the interrupt register and mask for this
13175 * context's interrupt.
13177 rcd
->ireg
= (IS_RCVAVAIL_START
+ idx
) / 64;
13178 rcd
->imask
= ((u64
)1) <<
13179 ((IS_RCVAVAIL_START
+ idx
) % 64);
13180 handler
= receive_context_interrupt
;
13181 thread
= receive_context_thread
;
13183 snprintf(name
, sizeof(name
),
13184 DRIVER_NAME
"_%d kctxt%d",
13186 err_info
= "receive context";
13187 remap_intr(dd
, IS_RCVAVAIL_START
+ idx
, i
);
13188 me
->type
= IRQ_RCVCTXT
;
13189 rcd
->msix_intr
= i
;
13193 /* not in our expected range - complain, then
13197 "Unexpected extra MSI-X interrupt %d\n", i
);
13200 /* no argument, no interrupt */
13203 /* make sure the name is terminated */
13204 name
[sizeof(name
) - 1] = 0;
13205 me
->irq
= pci_irq_vector(dd
->pcidev
, i
);
13206 ret
= pci_request_irq(dd
->pcidev
, i
, handler
, thread
, arg
,
13210 "unable to allocate %s interrupt, irq %d, index %d, err %d\n",
13211 err_info
, me
->irq
, idx
, ret
);
13215 * assign arg after pci_request_irq call, so it will be
13220 ret
= hfi1_get_irq_affinity(dd
, me
);
13222 dd_dev_err(dd
, "unable to pin IRQ %d\n", ret
);
13228 void hfi1_vnic_synchronize_irq(struct hfi1_devdata
*dd
)
13232 if (!dd
->num_msix_entries
) {
13233 synchronize_irq(pci_irq_vector(dd
->pcidev
, 0));
13237 for (i
= 0; i
< dd
->vnic
.num_ctxt
; i
++) {
13238 struct hfi1_ctxtdata
*rcd
= dd
->vnic
.ctxt
[i
];
13239 struct hfi1_msix_entry
*me
= &dd
->msix_entries
[rcd
->msix_intr
];
13241 synchronize_irq(me
->irq
);
13245 void hfi1_reset_vnic_msix_info(struct hfi1_ctxtdata
*rcd
)
13247 struct hfi1_devdata
*dd
= rcd
->dd
;
13248 struct hfi1_msix_entry
*me
= &dd
->msix_entries
[rcd
->msix_intr
];
13250 if (!me
->arg
) /* => no irq, no affinity */
13253 hfi1_put_irq_affinity(dd
, me
);
13254 pci_free_irq(dd
->pcidev
, rcd
->msix_intr
, me
->arg
);
13259 void hfi1_set_vnic_msix_info(struct hfi1_ctxtdata
*rcd
)
13261 struct hfi1_devdata
*dd
= rcd
->dd
;
13262 struct hfi1_msix_entry
*me
;
13263 int idx
= rcd
->ctxt
;
13267 rcd
->msix_intr
= dd
->vnic
.msix_idx
++;
13268 me
= &dd
->msix_entries
[rcd
->msix_intr
];
13271 * Set the interrupt register and mask for this
13272 * context's interrupt.
13274 rcd
->ireg
= (IS_RCVAVAIL_START
+ idx
) / 64;
13275 rcd
->imask
= ((u64
)1) <<
13276 ((IS_RCVAVAIL_START
+ idx
) % 64);
13277 me
->type
= IRQ_RCVCTXT
;
13278 me
->irq
= pci_irq_vector(dd
->pcidev
, rcd
->msix_intr
);
13279 remap_intr(dd
, IS_RCVAVAIL_START
+ idx
, rcd
->msix_intr
);
13281 ret
= pci_request_irq(dd
->pcidev
, rcd
->msix_intr
,
13282 receive_context_interrupt
,
13283 receive_context_thread
, arg
,
13284 DRIVER_NAME
"_%d kctxt%d", dd
->unit
, idx
);
13286 dd_dev_err(dd
, "vnic irq request (irq %d, idx %d) fail %d\n",
13287 me
->irq
, idx
, ret
);
13291 * assign arg after pci_request_irq call, so it will be
13296 ret
= hfi1_get_irq_affinity(dd
, me
);
13299 "unable to pin IRQ %d\n", ret
);
13300 pci_free_irq(dd
->pcidev
, rcd
->msix_intr
, me
->arg
);
13305 * Set the general handler to accept all interrupts, remap all
13306 * chip interrupts back to MSI-X 0.
13308 static void reset_interrupts(struct hfi1_devdata
*dd
)
13312 /* all interrupts handled by the general handler */
13313 for (i
= 0; i
< CCE_NUM_INT_CSRS
; i
++)
13314 dd
->gi_mask
[i
] = ~(u64
)0;
13316 /* all chip interrupts map to MSI-X 0 */
13317 for (i
= 0; i
< CCE_NUM_INT_MAP_CSRS
; i
++)
13318 write_csr(dd
, CCE_INT_MAP
+ (8 * i
), 0);
13321 static int set_up_interrupts(struct hfi1_devdata
*dd
)
13325 int single_interrupt
= 0; /* we expect to have all the interrupts */
13329 * 1 general, "slow path" interrupt (includes the SDMA engines
13330 * slow source, SDMACleanupDone)
13331 * N interrupts - one per used SDMA engine
13332 * M interrupt - one per kernel receive context
13333 * V interrupt - one for each VNIC context
13335 total
= 1 + dd
->num_sdma
+ dd
->n_krcv_queues
+ dd
->num_vnic_contexts
;
13337 /* ask for MSI-X interrupts */
13338 request
= request_msix(dd
, total
);
13342 } else if (request
== 0) {
13344 /* dd->num_msix_entries already zero */
13345 single_interrupt
= 1;
13346 dd_dev_err(dd
, "MSI-X failed, using INTx interrupts\n");
13347 } else if (request
< total
) {
13348 /* using MSI-X, with reduced interrupts */
13349 dd_dev_err(dd
, "reduced interrupt found, wanted %u, got %u\n",
13354 dd
->msix_entries
= kcalloc(total
, sizeof(*dd
->msix_entries
),
13356 if (!dd
->msix_entries
) {
13361 dd
->num_msix_entries
= total
;
13362 dd_dev_info(dd
, "%u MSI-X interrupts allocated\n", total
);
13365 /* mask all interrupts */
13366 set_intr_state(dd
, 0);
13367 /* clear all pending interrupts */
13368 clear_all_interrupts(dd
);
13370 /* reset general handler mask, chip MSI-X mappings */
13371 reset_interrupts(dd
);
13373 if (single_interrupt
)
13374 ret
= request_intx_irq(dd
);
13376 ret
= request_msix_irqs(dd
);
13383 hfi1_clean_up_interrupts(dd
);
13388 * Set up context values in dd. Sets:
13390 * num_rcv_contexts - number of contexts being used
13391 * n_krcv_queues - number of kernel contexts
13392 * first_dyn_alloc_ctxt - first dynamically allocated context
13393 * in array of contexts
13394 * freectxts - number of free user contexts
13395 * num_send_contexts - number of PIO send contexts being used
13396 * num_vnic_contexts - number of contexts reserved for VNIC
13398 static int set_up_context_variables(struct hfi1_devdata
*dd
)
13400 unsigned long num_kernel_contexts
;
13401 u16 num_vnic_contexts
= HFI1_NUM_VNIC_CTXT
;
13402 int total_contexts
;
13406 int user_rmt_reduced
;
13410 * Kernel receive contexts:
13411 * - Context 0 - control context (VL15/multicast/error)
13412 * - Context 1 - first kernel context
13413 * - Context 2 - second kernel context
13418 * n_krcvqs is the sum of module parameter kernel receive
13419 * contexts, krcvqs[]. It does not include the control
13420 * context, so add that.
13422 num_kernel_contexts
= n_krcvqs
+ 1;
13424 num_kernel_contexts
= DEFAULT_KRCVQS
+ 1;
13426 * Every kernel receive context needs an ACK send context.
13427 * one send context is allocated for each VL{0-7} and VL15
13429 if (num_kernel_contexts
> (dd
->chip_send_contexts
- num_vls
- 1)) {
13431 "Reducing # kernel rcv contexts to: %d, from %lu\n",
13432 (int)(dd
->chip_send_contexts
- num_vls
- 1),
13433 num_kernel_contexts
);
13434 num_kernel_contexts
= dd
->chip_send_contexts
- num_vls
- 1;
13437 /* Accommodate VNIC contexts if possible */
13438 if ((num_kernel_contexts
+ num_vnic_contexts
) > dd
->chip_rcv_contexts
) {
13439 dd_dev_err(dd
, "No receive contexts available for VNIC\n");
13440 num_vnic_contexts
= 0;
13442 total_contexts
= num_kernel_contexts
+ num_vnic_contexts
;
13446 * - default to 1 user context per real (non-HT) CPU core if
13447 * num_user_contexts is negative
13449 if (num_user_contexts
< 0)
13450 n_usr_ctxts
= cpumask_weight(&node_affinity
.real_cpu_mask
);
13452 n_usr_ctxts
= num_user_contexts
;
13454 * Adjust the counts given a global max.
13456 if (total_contexts
+ n_usr_ctxts
> dd
->chip_rcv_contexts
) {
13458 "Reducing # user receive contexts to: %d, from %u\n",
13459 (int)(dd
->chip_rcv_contexts
- total_contexts
),
13462 n_usr_ctxts
= dd
->chip_rcv_contexts
- total_contexts
;
13465 /* each user context requires an entry in the RMT */
13466 qos_rmt_count
= qos_rmt_entries(dd
, NULL
, NULL
);
13467 if (qos_rmt_count
+ n_usr_ctxts
> NUM_MAP_ENTRIES
) {
13468 user_rmt_reduced
= NUM_MAP_ENTRIES
- qos_rmt_count
;
13470 "RMT size is reducing the number of user receive contexts from %u to %d\n",
13474 n_usr_ctxts
= user_rmt_reduced
;
13477 total_contexts
+= n_usr_ctxts
;
13479 /* the first N are kernel contexts, the rest are user/vnic contexts */
13480 dd
->num_rcv_contexts
= total_contexts
;
13481 dd
->n_krcv_queues
= num_kernel_contexts
;
13482 dd
->first_dyn_alloc_ctxt
= num_kernel_contexts
;
13483 dd
->num_vnic_contexts
= num_vnic_contexts
;
13484 dd
->num_user_contexts
= n_usr_ctxts
;
13485 dd
->freectxts
= n_usr_ctxts
;
13487 "rcv contexts: chip %d, used %d (kernel %d, vnic %u, user %u)\n",
13488 (int)dd
->chip_rcv_contexts
,
13489 (int)dd
->num_rcv_contexts
,
13490 (int)dd
->n_krcv_queues
,
13491 dd
->num_vnic_contexts
,
13492 dd
->num_user_contexts
);
13495 * Receive array allocation:
13496 * All RcvArray entries are divided into groups of 8. This
13497 * is required by the hardware and will speed up writes to
13498 * consecutive entries by using write-combining of the entire
13501 * The number of groups are evenly divided among all contexts.
13502 * any left over groups will be given to the first N user
13505 dd
->rcv_entries
.group_size
= RCV_INCREMENT
;
13506 ngroups
= dd
->chip_rcv_array_count
/ dd
->rcv_entries
.group_size
;
13507 dd
->rcv_entries
.ngroups
= ngroups
/ dd
->num_rcv_contexts
;
13508 dd
->rcv_entries
.nctxt_extra
= ngroups
-
13509 (dd
->num_rcv_contexts
* dd
->rcv_entries
.ngroups
);
13510 dd_dev_info(dd
, "RcvArray groups %u, ctxts extra %u\n",
13511 dd
->rcv_entries
.ngroups
,
13512 dd
->rcv_entries
.nctxt_extra
);
13513 if (dd
->rcv_entries
.ngroups
* dd
->rcv_entries
.group_size
>
13514 MAX_EAGER_ENTRIES
* 2) {
13515 dd
->rcv_entries
.ngroups
= (MAX_EAGER_ENTRIES
* 2) /
13516 dd
->rcv_entries
.group_size
;
13518 "RcvArray group count too high, change to %u\n",
13519 dd
->rcv_entries
.ngroups
);
13520 dd
->rcv_entries
.nctxt_extra
= 0;
13523 * PIO send contexts
13525 ret
= init_sc_pools_and_sizes(dd
);
13526 if (ret
>= 0) { /* success */
13527 dd
->num_send_contexts
= ret
;
13530 "send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13531 dd
->chip_send_contexts
,
13532 dd
->num_send_contexts
,
13533 dd
->sc_sizes
[SC_KERNEL
].count
,
13534 dd
->sc_sizes
[SC_ACK
].count
,
13535 dd
->sc_sizes
[SC_USER
].count
,
13536 dd
->sc_sizes
[SC_VL15
].count
);
13537 ret
= 0; /* success */
13544 * Set the device/port partition key table. The MAD code
13545 * will ensure that, at least, the partial management
13546 * partition key is present in the table.
13548 static void set_partition_keys(struct hfi1_pportdata
*ppd
)
13550 struct hfi1_devdata
*dd
= ppd
->dd
;
13554 dd_dev_info(dd
, "Setting partition keys\n");
13555 for (i
= 0; i
< hfi1_get_npkeys(dd
); i
++) {
13556 reg
|= (ppd
->pkeys
[i
] &
13557 RCV_PARTITION_KEY_PARTITION_KEY_A_MASK
) <<
13559 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT
);
13560 /* Each register holds 4 PKey values. */
13561 if ((i
% 4) == 3) {
13562 write_csr(dd
, RCV_PARTITION_KEY
+
13563 ((i
- 3) * 2), reg
);
13568 /* Always enable HW pkeys check when pkeys table is set */
13569 add_rcvctrl(dd
, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK
);
13573 * These CSRs and memories are uninitialized on reset and must be
13574 * written before reading to set the ECC/parity bits.
13576 * NOTE: All user context CSRs that are not mmaped write-only
13577 * (e.g. the TID flows) must be initialized even if the driver never
13580 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata
*dd
)
13585 for (i
= 0; i
< CCE_NUM_INT_MAP_CSRS
; i
++)
13586 write_csr(dd
, CCE_INT_MAP
+ (8 * i
), 0);
13588 /* SendCtxtCreditReturnAddr */
13589 for (i
= 0; i
< dd
->chip_send_contexts
; i
++)
13590 write_kctxt_csr(dd
, i
, SEND_CTXT_CREDIT_RETURN_ADDR
, 0);
13592 /* PIO Send buffers */
13593 /* SDMA Send buffers */
13595 * These are not normally read, and (presently) have no method
13596 * to be read, so are not pre-initialized
13600 /* RcvHdrTailAddr */
13601 /* RcvTidFlowTable */
13602 for (i
= 0; i
< dd
->chip_rcv_contexts
; i
++) {
13603 write_kctxt_csr(dd
, i
, RCV_HDR_ADDR
, 0);
13604 write_kctxt_csr(dd
, i
, RCV_HDR_TAIL_ADDR
, 0);
13605 for (j
= 0; j
< RXE_NUM_TID_FLOWS
; j
++)
13606 write_uctxt_csr(dd
, i
, RCV_TID_FLOW_TABLE
+ (8 * j
), 0);
13610 for (i
= 0; i
< dd
->chip_rcv_array_count
; i
++)
13611 hfi1_put_tid(dd
, i
, PT_INVALID_FLUSH
, 0, 0);
13613 /* RcvQPMapTable */
13614 for (i
= 0; i
< 32; i
++)
13615 write_csr(dd
, RCV_QP_MAP_TABLE
+ (8 * i
), 0);
13619 * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13621 static void clear_cce_status(struct hfi1_devdata
*dd
, u64 status_bits
,
13624 unsigned long timeout
;
13627 /* is the condition present? */
13628 reg
= read_csr(dd
, CCE_STATUS
);
13629 if ((reg
& status_bits
) == 0)
13632 /* clear the condition */
13633 write_csr(dd
, CCE_CTRL
, ctrl_bits
);
13635 /* wait for the condition to clear */
13636 timeout
= jiffies
+ msecs_to_jiffies(CCE_STATUS_TIMEOUT
);
13638 reg
= read_csr(dd
, CCE_STATUS
);
13639 if ((reg
& status_bits
) == 0)
13641 if (time_after(jiffies
, timeout
)) {
13643 "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13644 status_bits
, reg
& status_bits
);
13651 /* set CCE CSRs to chip reset defaults */
13652 static void reset_cce_csrs(struct hfi1_devdata
*dd
)
13656 /* CCE_REVISION read-only */
13657 /* CCE_REVISION2 read-only */
13658 /* CCE_CTRL - bits clear automatically */
13659 /* CCE_STATUS read-only, use CceCtrl to clear */
13660 clear_cce_status(dd
, ALL_FROZE
, CCE_CTRL_SPC_UNFREEZE_SMASK
);
13661 clear_cce_status(dd
, ALL_TXE_PAUSE
, CCE_CTRL_TXE_RESUME_SMASK
);
13662 clear_cce_status(dd
, ALL_RXE_PAUSE
, CCE_CTRL_RXE_RESUME_SMASK
);
13663 for (i
= 0; i
< CCE_NUM_SCRATCH
; i
++)
13664 write_csr(dd
, CCE_SCRATCH
+ (8 * i
), 0);
13665 /* CCE_ERR_STATUS read-only */
13666 write_csr(dd
, CCE_ERR_MASK
, 0);
13667 write_csr(dd
, CCE_ERR_CLEAR
, ~0ull);
13668 /* CCE_ERR_FORCE leave alone */
13669 for (i
= 0; i
< CCE_NUM_32_BIT_COUNTERS
; i
++)
13670 write_csr(dd
, CCE_COUNTER_ARRAY32
+ (8 * i
), 0);
13671 write_csr(dd
, CCE_DC_CTRL
, CCE_DC_CTRL_RESETCSR
);
13672 /* CCE_PCIE_CTRL leave alone */
13673 for (i
= 0; i
< CCE_NUM_MSIX_VECTORS
; i
++) {
13674 write_csr(dd
, CCE_MSIX_TABLE_LOWER
+ (8 * i
), 0);
13675 write_csr(dd
, CCE_MSIX_TABLE_UPPER
+ (8 * i
),
13676 CCE_MSIX_TABLE_UPPER_RESETCSR
);
13678 for (i
= 0; i
< CCE_NUM_MSIX_PBAS
; i
++) {
13679 /* CCE_MSIX_PBA read-only */
13680 write_csr(dd
, CCE_MSIX_INT_GRANTED
, ~0ull);
13681 write_csr(dd
, CCE_MSIX_VEC_CLR_WITHOUT_INT
, ~0ull);
13683 for (i
= 0; i
< CCE_NUM_INT_MAP_CSRS
; i
++)
13684 write_csr(dd
, CCE_INT_MAP
, 0);
13685 for (i
= 0; i
< CCE_NUM_INT_CSRS
; i
++) {
13686 /* CCE_INT_STATUS read-only */
13687 write_csr(dd
, CCE_INT_MASK
+ (8 * i
), 0);
13688 write_csr(dd
, CCE_INT_CLEAR
+ (8 * i
), ~0ull);
13689 /* CCE_INT_FORCE leave alone */
13690 /* CCE_INT_BLOCKED read-only */
13692 for (i
= 0; i
< CCE_NUM_32_BIT_INT_COUNTERS
; i
++)
13693 write_csr(dd
, CCE_INT_COUNTER_ARRAY32
+ (8 * i
), 0);
13696 /* set MISC CSRs to chip reset defaults */
13697 static void reset_misc_csrs(struct hfi1_devdata
*dd
)
13701 for (i
= 0; i
< 32; i
++) {
13702 write_csr(dd
, MISC_CFG_RSA_R2
+ (8 * i
), 0);
13703 write_csr(dd
, MISC_CFG_RSA_SIGNATURE
+ (8 * i
), 0);
13704 write_csr(dd
, MISC_CFG_RSA_MODULUS
+ (8 * i
), 0);
13707 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13708 * only be written 128-byte chunks
13710 /* init RSA engine to clear lingering errors */
13711 write_csr(dd
, MISC_CFG_RSA_CMD
, 1);
13712 write_csr(dd
, MISC_CFG_RSA_MU
, 0);
13713 write_csr(dd
, MISC_CFG_FW_CTRL
, 0);
13714 /* MISC_STS_8051_DIGEST read-only */
13715 /* MISC_STS_SBM_DIGEST read-only */
13716 /* MISC_STS_PCIE_DIGEST read-only */
13717 /* MISC_STS_FAB_DIGEST read-only */
13718 /* MISC_ERR_STATUS read-only */
13719 write_csr(dd
, MISC_ERR_MASK
, 0);
13720 write_csr(dd
, MISC_ERR_CLEAR
, ~0ull);
13721 /* MISC_ERR_FORCE leave alone */
13724 /* set TXE CSRs to chip reset defaults */
13725 static void reset_txe_csrs(struct hfi1_devdata
*dd
)
13732 write_csr(dd
, SEND_CTRL
, 0);
13733 __cm_reset(dd
, 0); /* reset CM internal state */
13734 /* SEND_CONTEXTS read-only */
13735 /* SEND_DMA_ENGINES read-only */
13736 /* SEND_PIO_MEM_SIZE read-only */
13737 /* SEND_DMA_MEM_SIZE read-only */
13738 write_csr(dd
, SEND_HIGH_PRIORITY_LIMIT
, 0);
13739 pio_reset_all(dd
); /* SEND_PIO_INIT_CTXT */
13740 /* SEND_PIO_ERR_STATUS read-only */
13741 write_csr(dd
, SEND_PIO_ERR_MASK
, 0);
13742 write_csr(dd
, SEND_PIO_ERR_CLEAR
, ~0ull);
13743 /* SEND_PIO_ERR_FORCE leave alone */
13744 /* SEND_DMA_ERR_STATUS read-only */
13745 write_csr(dd
, SEND_DMA_ERR_MASK
, 0);
13746 write_csr(dd
, SEND_DMA_ERR_CLEAR
, ~0ull);
13747 /* SEND_DMA_ERR_FORCE leave alone */
13748 /* SEND_EGRESS_ERR_STATUS read-only */
13749 write_csr(dd
, SEND_EGRESS_ERR_MASK
, 0);
13750 write_csr(dd
, SEND_EGRESS_ERR_CLEAR
, ~0ull);
13751 /* SEND_EGRESS_ERR_FORCE leave alone */
13752 write_csr(dd
, SEND_BTH_QP
, 0);
13753 write_csr(dd
, SEND_STATIC_RATE_CONTROL
, 0);
13754 write_csr(dd
, SEND_SC2VLT0
, 0);
13755 write_csr(dd
, SEND_SC2VLT1
, 0);
13756 write_csr(dd
, SEND_SC2VLT2
, 0);
13757 write_csr(dd
, SEND_SC2VLT3
, 0);
13758 write_csr(dd
, SEND_LEN_CHECK0
, 0);
13759 write_csr(dd
, SEND_LEN_CHECK1
, 0);
13760 /* SEND_ERR_STATUS read-only */
13761 write_csr(dd
, SEND_ERR_MASK
, 0);
13762 write_csr(dd
, SEND_ERR_CLEAR
, ~0ull);
13763 /* SEND_ERR_FORCE read-only */
13764 for (i
= 0; i
< VL_ARB_LOW_PRIO_TABLE_SIZE
; i
++)
13765 write_csr(dd
, SEND_LOW_PRIORITY_LIST
+ (8 * i
), 0);
13766 for (i
= 0; i
< VL_ARB_HIGH_PRIO_TABLE_SIZE
; i
++)
13767 write_csr(dd
, SEND_HIGH_PRIORITY_LIST
+ (8 * i
), 0);
13768 for (i
= 0; i
< dd
->chip_send_contexts
/ NUM_CONTEXTS_PER_SET
; i
++)
13769 write_csr(dd
, SEND_CONTEXT_SET_CTRL
+ (8 * i
), 0);
13770 for (i
= 0; i
< TXE_NUM_32_BIT_COUNTER
; i
++)
13771 write_csr(dd
, SEND_COUNTER_ARRAY32
+ (8 * i
), 0);
13772 for (i
= 0; i
< TXE_NUM_64_BIT_COUNTER
; i
++)
13773 write_csr(dd
, SEND_COUNTER_ARRAY64
+ (8 * i
), 0);
13774 write_csr(dd
, SEND_CM_CTRL
, SEND_CM_CTRL_RESETCSR
);
13775 write_csr(dd
, SEND_CM_GLOBAL_CREDIT
, SEND_CM_GLOBAL_CREDIT_RESETCSR
);
13776 /* SEND_CM_CREDIT_USED_STATUS read-only */
13777 write_csr(dd
, SEND_CM_TIMER_CTRL
, 0);
13778 write_csr(dd
, SEND_CM_LOCAL_AU_TABLE0_TO3
, 0);
13779 write_csr(dd
, SEND_CM_LOCAL_AU_TABLE4_TO7
, 0);
13780 write_csr(dd
, SEND_CM_REMOTE_AU_TABLE0_TO3
, 0);
13781 write_csr(dd
, SEND_CM_REMOTE_AU_TABLE4_TO7
, 0);
13782 for (i
= 0; i
< TXE_NUM_DATA_VL
; i
++)
13783 write_csr(dd
, SEND_CM_CREDIT_VL
+ (8 * i
), 0);
13784 write_csr(dd
, SEND_CM_CREDIT_VL15
, 0);
13785 /* SEND_CM_CREDIT_USED_VL read-only */
13786 /* SEND_CM_CREDIT_USED_VL15 read-only */
13787 /* SEND_EGRESS_CTXT_STATUS read-only */
13788 /* SEND_EGRESS_SEND_DMA_STATUS read-only */
13789 write_csr(dd
, SEND_EGRESS_ERR_INFO
, ~0ull);
13790 /* SEND_EGRESS_ERR_INFO read-only */
13791 /* SEND_EGRESS_ERR_SOURCE read-only */
13794 * TXE Per-Context CSRs
13796 for (i
= 0; i
< dd
->chip_send_contexts
; i
++) {
13797 write_kctxt_csr(dd
, i
, SEND_CTXT_CTRL
, 0);
13798 write_kctxt_csr(dd
, i
, SEND_CTXT_CREDIT_CTRL
, 0);
13799 write_kctxt_csr(dd
, i
, SEND_CTXT_CREDIT_RETURN_ADDR
, 0);
13800 write_kctxt_csr(dd
, i
, SEND_CTXT_CREDIT_FORCE
, 0);
13801 write_kctxt_csr(dd
, i
, SEND_CTXT_ERR_MASK
, 0);
13802 write_kctxt_csr(dd
, i
, SEND_CTXT_ERR_CLEAR
, ~0ull);
13803 write_kctxt_csr(dd
, i
, SEND_CTXT_CHECK_ENABLE
, 0);
13804 write_kctxt_csr(dd
, i
, SEND_CTXT_CHECK_VL
, 0);
13805 write_kctxt_csr(dd
, i
, SEND_CTXT_CHECK_JOB_KEY
, 0);
13806 write_kctxt_csr(dd
, i
, SEND_CTXT_CHECK_PARTITION_KEY
, 0);
13807 write_kctxt_csr(dd
, i
, SEND_CTXT_CHECK_SLID
, 0);
13808 write_kctxt_csr(dd
, i
, SEND_CTXT_CHECK_OPCODE
, 0);
13812 * TXE Per-SDMA CSRs
13814 for (i
= 0; i
< dd
->chip_sdma_engines
; i
++) {
13815 write_kctxt_csr(dd
, i
, SEND_DMA_CTRL
, 0);
13816 /* SEND_DMA_STATUS read-only */
13817 write_kctxt_csr(dd
, i
, SEND_DMA_BASE_ADDR
, 0);
13818 write_kctxt_csr(dd
, i
, SEND_DMA_LEN_GEN
, 0);
13819 write_kctxt_csr(dd
, i
, SEND_DMA_TAIL
, 0);
13820 /* SEND_DMA_HEAD read-only */
13821 write_kctxt_csr(dd
, i
, SEND_DMA_HEAD_ADDR
, 0);
13822 write_kctxt_csr(dd
, i
, SEND_DMA_PRIORITY_THLD
, 0);
13823 /* SEND_DMA_IDLE_CNT read-only */
13824 write_kctxt_csr(dd
, i
, SEND_DMA_RELOAD_CNT
, 0);
13825 write_kctxt_csr(dd
, i
, SEND_DMA_DESC_CNT
, 0);
13826 /* SEND_DMA_DESC_FETCHED_CNT read-only */
13827 /* SEND_DMA_ENG_ERR_STATUS read-only */
13828 write_kctxt_csr(dd
, i
, SEND_DMA_ENG_ERR_MASK
, 0);
13829 write_kctxt_csr(dd
, i
, SEND_DMA_ENG_ERR_CLEAR
, ~0ull);
13830 /* SEND_DMA_ENG_ERR_FORCE leave alone */
13831 write_kctxt_csr(dd
, i
, SEND_DMA_CHECK_ENABLE
, 0);
13832 write_kctxt_csr(dd
, i
, SEND_DMA_CHECK_VL
, 0);
13833 write_kctxt_csr(dd
, i
, SEND_DMA_CHECK_JOB_KEY
, 0);
13834 write_kctxt_csr(dd
, i
, SEND_DMA_CHECK_PARTITION_KEY
, 0);
13835 write_kctxt_csr(dd
, i
, SEND_DMA_CHECK_SLID
, 0);
13836 write_kctxt_csr(dd
, i
, SEND_DMA_CHECK_OPCODE
, 0);
13837 write_kctxt_csr(dd
, i
, SEND_DMA_MEMORY
, 0);
13843 * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13845 static void init_rbufs(struct hfi1_devdata
*dd
)
13851 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13856 reg
= read_csr(dd
, RCV_STATUS
);
13857 if ((reg
& (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13858 | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK
)) == 0)
13861 * Give up after 1ms - maximum wait time.
13863 * RBuf size is 136KiB. Slowest possible is PCIe Gen1 x1 at
13864 * 250MB/s bandwidth. Lower rate to 66% for overhead to get:
13865 * 136 KB / (66% * 250MB/s) = 844us
13867 if (count
++ > 500) {
13869 "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13873 udelay(2); /* do not busy-wait the CSR */
13876 /* start the init - expect RcvCtrl to be 0 */
13877 write_csr(dd
, RCV_CTRL
, RCV_CTRL_RX_RBUF_INIT_SMASK
);
13880 * Read to force the write of Rcvtrl.RxRbufInit. There is a brief
13881 * period after the write before RcvStatus.RxRbufInitDone is valid.
13882 * The delay in the first run through the loop below is sufficient and
13883 * required before the first read of RcvStatus.RxRbufInintDone.
13885 read_csr(dd
, RCV_CTRL
);
13887 /* wait for the init to finish */
13890 /* delay is required first time through - see above */
13891 udelay(2); /* do not busy-wait the CSR */
13892 reg
= read_csr(dd
, RCV_STATUS
);
13893 if (reg
& (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK
))
13896 /* give up after 100us - slowest possible at 33MHz is 73us */
13897 if (count
++ > 50) {
13899 "%s: RcvStatus.RxRbufInit not set, continuing\n",
13906 /* set RXE CSRs to chip reset defaults */
13907 static void reset_rxe_csrs(struct hfi1_devdata
*dd
)
13914 write_csr(dd
, RCV_CTRL
, 0);
13916 /* RCV_STATUS read-only */
13917 /* RCV_CONTEXTS read-only */
13918 /* RCV_ARRAY_CNT read-only */
13919 /* RCV_BUF_SIZE read-only */
13920 write_csr(dd
, RCV_BTH_QP
, 0);
13921 write_csr(dd
, RCV_MULTICAST
, 0);
13922 write_csr(dd
, RCV_BYPASS
, 0);
13923 write_csr(dd
, RCV_VL15
, 0);
13924 /* this is a clear-down */
13925 write_csr(dd
, RCV_ERR_INFO
,
13926 RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK
);
13927 /* RCV_ERR_STATUS read-only */
13928 write_csr(dd
, RCV_ERR_MASK
, 0);
13929 write_csr(dd
, RCV_ERR_CLEAR
, ~0ull);
13930 /* RCV_ERR_FORCE leave alone */
13931 for (i
= 0; i
< 32; i
++)
13932 write_csr(dd
, RCV_QP_MAP_TABLE
+ (8 * i
), 0);
13933 for (i
= 0; i
< 4; i
++)
13934 write_csr(dd
, RCV_PARTITION_KEY
+ (8 * i
), 0);
13935 for (i
= 0; i
< RXE_NUM_32_BIT_COUNTERS
; i
++)
13936 write_csr(dd
, RCV_COUNTER_ARRAY32
+ (8 * i
), 0);
13937 for (i
= 0; i
< RXE_NUM_64_BIT_COUNTERS
; i
++)
13938 write_csr(dd
, RCV_COUNTER_ARRAY64
+ (8 * i
), 0);
13939 for (i
= 0; i
< RXE_NUM_RSM_INSTANCES
; i
++)
13940 clear_rsm_rule(dd
, i
);
13941 for (i
= 0; i
< 32; i
++)
13942 write_csr(dd
, RCV_RSM_MAP_TABLE
+ (8 * i
), 0);
13945 * RXE Kernel and User Per-Context CSRs
13947 for (i
= 0; i
< dd
->chip_rcv_contexts
; i
++) {
13949 write_kctxt_csr(dd
, i
, RCV_CTXT_CTRL
, 0);
13950 /* RCV_CTXT_STATUS read-only */
13951 write_kctxt_csr(dd
, i
, RCV_EGR_CTRL
, 0);
13952 write_kctxt_csr(dd
, i
, RCV_TID_CTRL
, 0);
13953 write_kctxt_csr(dd
, i
, RCV_KEY_CTRL
, 0);
13954 write_kctxt_csr(dd
, i
, RCV_HDR_ADDR
, 0);
13955 write_kctxt_csr(dd
, i
, RCV_HDR_CNT
, 0);
13956 write_kctxt_csr(dd
, i
, RCV_HDR_ENT_SIZE
, 0);
13957 write_kctxt_csr(dd
, i
, RCV_HDR_SIZE
, 0);
13958 write_kctxt_csr(dd
, i
, RCV_HDR_TAIL_ADDR
, 0);
13959 write_kctxt_csr(dd
, i
, RCV_AVAIL_TIME_OUT
, 0);
13960 write_kctxt_csr(dd
, i
, RCV_HDR_OVFL_CNT
, 0);
13963 /* RCV_HDR_TAIL read-only */
13964 write_uctxt_csr(dd
, i
, RCV_HDR_HEAD
, 0);
13965 /* RCV_EGR_INDEX_TAIL read-only */
13966 write_uctxt_csr(dd
, i
, RCV_EGR_INDEX_HEAD
, 0);
13967 /* RCV_EGR_OFFSET_TAIL read-only */
13968 for (j
= 0; j
< RXE_NUM_TID_FLOWS
; j
++) {
13969 write_uctxt_csr(dd
, i
,
13970 RCV_TID_FLOW_TABLE
+ (8 * j
), 0);
13976 * Set sc2vl tables.
13978 * They power on to zeros, so to avoid send context errors
13979 * they need to be set:
13981 * SC 0-7 -> VL 0-7 (respectively)
13986 static void init_sc2vl_tables(struct hfi1_devdata
*dd
)
13989 /* init per architecture spec, constrained by hardware capability */
13991 /* HFI maps sent packets */
13992 write_csr(dd
, SEND_SC2VLT0
, SC2VL_VAL(
13998 write_csr(dd
, SEND_SC2VLT1
, SC2VL_VAL(
14004 write_csr(dd
, SEND_SC2VLT2
, SC2VL_VAL(
14010 write_csr(dd
, SEND_SC2VLT3
, SC2VL_VAL(
14017 /* DC maps received packets */
14018 write_csr(dd
, DCC_CFG_SC_VL_TABLE_15_0
, DC_SC_VL_VAL(
14020 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7,
14021 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
14022 write_csr(dd
, DCC_CFG_SC_VL_TABLE_31_16
, DC_SC_VL_VAL(
14024 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
14025 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
14027 /* initialize the cached sc2vl values consistently with h/w */
14028 for (i
= 0; i
< 32; i
++) {
14029 if (i
< 8 || i
== 15)
14030 *((u8
*)(dd
->sc2vl
) + i
) = (u8
)i
;
14032 *((u8
*)(dd
->sc2vl
) + i
) = 0;
14037 * Read chip sizes and then reset parts to sane, disabled, values. We cannot
14038 * depend on the chip going through a power-on reset - a driver may be loaded
14039 * and unloaded many times.
14041 * Do not write any CSR values to the chip in this routine - there may be
14042 * a reset following the (possible) FLR in this routine.
14045 static int init_chip(struct hfi1_devdata
*dd
)
14051 * Put the HFI CSRs in a known state.
14052 * Combine this with a DC reset.
14054 * Stop the device from doing anything while we do a
14055 * reset. We know there are no other active users of
14056 * the device since we are now in charge. Turn off
14057 * off all outbound and inbound traffic and make sure
14058 * the device does not generate any interrupts.
14061 /* disable send contexts and SDMA engines */
14062 write_csr(dd
, SEND_CTRL
, 0);
14063 for (i
= 0; i
< dd
->chip_send_contexts
; i
++)
14064 write_kctxt_csr(dd
, i
, SEND_CTXT_CTRL
, 0);
14065 for (i
= 0; i
< dd
->chip_sdma_engines
; i
++)
14066 write_kctxt_csr(dd
, i
, SEND_DMA_CTRL
, 0);
14067 /* disable port (turn off RXE inbound traffic) and contexts */
14068 write_csr(dd
, RCV_CTRL
, 0);
14069 for (i
= 0; i
< dd
->chip_rcv_contexts
; i
++)
14070 write_csr(dd
, RCV_CTXT_CTRL
, 0);
14071 /* mask all interrupt sources */
14072 for (i
= 0; i
< CCE_NUM_INT_CSRS
; i
++)
14073 write_csr(dd
, CCE_INT_MASK
+ (8 * i
), 0ull);
14076 * DC Reset: do a full DC reset before the register clear.
14077 * A recommended length of time to hold is one CSR read,
14078 * so reread the CceDcCtrl. Then, hold the DC in reset
14079 * across the clear.
14081 write_csr(dd
, CCE_DC_CTRL
, CCE_DC_CTRL_DC_RESET_SMASK
);
14082 (void)read_csr(dd
, CCE_DC_CTRL
);
14086 * A FLR will reset the SPC core and part of the PCIe.
14087 * The parts that need to be restored have already been
14090 dd_dev_info(dd
, "Resetting CSRs with FLR\n");
14092 /* do the FLR, the DC reset will remain */
14093 pcie_flr(dd
->pcidev
);
14095 /* restore command and BARs */
14096 ret
= restore_pci_variables(dd
);
14098 dd_dev_err(dd
, "%s: Could not restore PCI variables\n",
14104 dd_dev_info(dd
, "Resetting CSRs with FLR\n");
14105 pcie_flr(dd
->pcidev
);
14106 ret
= restore_pci_variables(dd
);
14108 dd_dev_err(dd
, "%s: Could not restore PCI variables\n",
14114 dd_dev_info(dd
, "Resetting CSRs with writes\n");
14115 reset_cce_csrs(dd
);
14116 reset_txe_csrs(dd
);
14117 reset_rxe_csrs(dd
);
14118 reset_misc_csrs(dd
);
14120 /* clear the DC reset */
14121 write_csr(dd
, CCE_DC_CTRL
, 0);
14123 /* Set the LED off */
14127 * Clear the QSFP reset.
14128 * An FLR enforces a 0 on all out pins. The driver does not touch
14129 * ASIC_QSFPn_OUT otherwise. This leaves RESET_N low and
14130 * anything plugged constantly in reset, if it pays attention
14132 * Prime examples of this are optical cables. Set all pins high.
14133 * I2CCLK and I2CDAT will change per direction, and INT_N and
14134 * MODPRS_N are input only and their value is ignored.
14136 write_csr(dd
, ASIC_QSFP1_OUT
, 0x1f);
14137 write_csr(dd
, ASIC_QSFP2_OUT
, 0x1f);
14138 init_chip_resources(dd
);
14142 static void init_early_variables(struct hfi1_devdata
*dd
)
14146 /* assign link credit variables */
14148 dd
->link_credits
= CM_GLOBAL_CREDITS
;
14150 dd
->link_credits
--;
14151 dd
->vcu
= cu_to_vcu(hfi1_cu
);
14152 /* enough room for 8 MAD packets plus header - 17K */
14153 dd
->vl15_init
= (8 * (2048 + 128)) / vau_to_au(dd
->vau
);
14154 if (dd
->vl15_init
> dd
->link_credits
)
14155 dd
->vl15_init
= dd
->link_credits
;
14157 write_uninitialized_csrs_and_memories(dd
);
14159 if (HFI1_CAP_IS_KSET(PKEY_CHECK
))
14160 for (i
= 0; i
< dd
->num_pports
; i
++) {
14161 struct hfi1_pportdata
*ppd
= &dd
->pport
[i
];
14163 set_partition_keys(ppd
);
14165 init_sc2vl_tables(dd
);
14168 static void init_kdeth_qp(struct hfi1_devdata
*dd
)
14170 /* user changed the KDETH_QP */
14171 if (kdeth_qp
!= 0 && kdeth_qp
>= 0xff) {
14172 /* out of range or illegal value */
14173 dd_dev_err(dd
, "Invalid KDETH queue pair prefix, ignoring");
14176 if (kdeth_qp
== 0) /* not set, or failed range check */
14177 kdeth_qp
= DEFAULT_KDETH_QP
;
14179 write_csr(dd
, SEND_BTH_QP
,
14180 (kdeth_qp
& SEND_BTH_QP_KDETH_QP_MASK
) <<
14181 SEND_BTH_QP_KDETH_QP_SHIFT
);
14183 write_csr(dd
, RCV_BTH_QP
,
14184 (kdeth_qp
& RCV_BTH_QP_KDETH_QP_MASK
) <<
14185 RCV_BTH_QP_KDETH_QP_SHIFT
);
14190 * @dd - device data
14191 * @first_ctxt - first context
14192 * @last_ctxt - first context
14194 * This return sets the qpn mapping table that
14195 * is indexed by qpn[8:1].
14197 * The routine will round robin the 256 settings
14198 * from first_ctxt to last_ctxt.
14200 * The first/last looks ahead to having specialized
14201 * receive contexts for mgmt and bypass. Normal
14202 * verbs traffic will assumed to be on a range
14203 * of receive contexts.
14205 static void init_qpmap_table(struct hfi1_devdata
*dd
,
14210 u64 regno
= RCV_QP_MAP_TABLE
;
14212 u64 ctxt
= first_ctxt
;
14214 for (i
= 0; i
< 256; i
++) {
14215 reg
|= ctxt
<< (8 * (i
% 8));
14217 if (ctxt
> last_ctxt
)
14220 write_csr(dd
, regno
, reg
);
14226 add_rcvctrl(dd
, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
14227 | RCV_CTRL_RCV_BYPASS_ENABLE_SMASK
);
14230 struct rsm_map_table
{
14231 u64 map
[NUM_MAP_REGS
];
14235 struct rsm_rule_data
{
14251 * Return an initialized RMT map table for users to fill in. OK if it
14252 * returns NULL, indicating no table.
14254 static struct rsm_map_table
*alloc_rsm_map_table(struct hfi1_devdata
*dd
)
14256 struct rsm_map_table
*rmt
;
14257 u8 rxcontext
= is_ax(dd
) ? 0 : 0xff; /* 0 is default if a0 ver. */
14259 rmt
= kmalloc(sizeof(*rmt
), GFP_KERNEL
);
14261 memset(rmt
->map
, rxcontext
, sizeof(rmt
->map
));
14269 * Write the final RMT map table to the chip and free the table. OK if
14272 static void complete_rsm_map_table(struct hfi1_devdata
*dd
,
14273 struct rsm_map_table
*rmt
)
14278 /* write table to chip */
14279 for (i
= 0; i
< NUM_MAP_REGS
; i
++)
14280 write_csr(dd
, RCV_RSM_MAP_TABLE
+ (8 * i
), rmt
->map
[i
]);
14283 add_rcvctrl(dd
, RCV_CTRL_RCV_RSM_ENABLE_SMASK
);
14288 * Add a receive side mapping rule.
14290 static void add_rsm_rule(struct hfi1_devdata
*dd
, u8 rule_index
,
14291 struct rsm_rule_data
*rrd
)
14293 write_csr(dd
, RCV_RSM_CFG
+ (8 * rule_index
),
14294 (u64
)rrd
->offset
<< RCV_RSM_CFG_OFFSET_SHIFT
|
14295 1ull << rule_index
| /* enable bit */
14296 (u64
)rrd
->pkt_type
<< RCV_RSM_CFG_PACKET_TYPE_SHIFT
);
14297 write_csr(dd
, RCV_RSM_SELECT
+ (8 * rule_index
),
14298 (u64
)rrd
->field1_off
<< RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT
|
14299 (u64
)rrd
->field2_off
<< RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT
|
14300 (u64
)rrd
->index1_off
<< RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT
|
14301 (u64
)rrd
->index1_width
<< RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT
|
14302 (u64
)rrd
->index2_off
<< RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT
|
14303 (u64
)rrd
->index2_width
<< RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT
);
14304 write_csr(dd
, RCV_RSM_MATCH
+ (8 * rule_index
),
14305 (u64
)rrd
->mask1
<< RCV_RSM_MATCH_MASK1_SHIFT
|
14306 (u64
)rrd
->value1
<< RCV_RSM_MATCH_VALUE1_SHIFT
|
14307 (u64
)rrd
->mask2
<< RCV_RSM_MATCH_MASK2_SHIFT
|
14308 (u64
)rrd
->value2
<< RCV_RSM_MATCH_VALUE2_SHIFT
);
14312 * Clear a receive side mapping rule.
14314 static void clear_rsm_rule(struct hfi1_devdata
*dd
, u8 rule_index
)
14316 write_csr(dd
, RCV_RSM_CFG
+ (8 * rule_index
), 0);
14317 write_csr(dd
, RCV_RSM_SELECT
+ (8 * rule_index
), 0);
14318 write_csr(dd
, RCV_RSM_MATCH
+ (8 * rule_index
), 0);
14321 /* return the number of RSM map table entries that will be used for QOS */
14322 static int qos_rmt_entries(struct hfi1_devdata
*dd
, unsigned int *mp
,
14329 /* is QOS active at all? */
14330 if (dd
->n_krcv_queues
<= MIN_KERNEL_KCTXTS
||
14335 /* determine bits for qpn */
14336 for (i
= 0; i
< min_t(unsigned int, num_vls
, krcvqsset
); i
++)
14337 if (krcvqs
[i
] > max_by_vl
)
14338 max_by_vl
= krcvqs
[i
];
14339 if (max_by_vl
> 32)
14341 m
= ilog2(__roundup_pow_of_two(max_by_vl
));
14343 /* determine bits for vl */
14344 n
= ilog2(__roundup_pow_of_two(num_vls
));
14346 /* reject if too much is used */
14355 return 1 << (m
+ n
);
14366 * init_qos - init RX qos
14367 * @dd - device data
14368 * @rmt - RSM map table
14370 * This routine initializes Rule 0 and the RSM map table to implement
14371 * quality of service (qos).
14373 * If all of the limit tests succeed, qos is applied based on the array
14374 * interpretation of krcvqs where entry 0 is VL0.
14376 * The number of vl bits (n) and the number of qpn bits (m) are computed to
14377 * feed both the RSM map table and the single rule.
14379 static void init_qos(struct hfi1_devdata
*dd
, struct rsm_map_table
*rmt
)
14381 struct rsm_rule_data rrd
;
14382 unsigned qpns_per_vl
, ctxt
, i
, qpn
, n
= 1, m
;
14383 unsigned int rmt_entries
;
14388 rmt_entries
= qos_rmt_entries(dd
, &m
, &n
);
14389 if (rmt_entries
== 0)
14391 qpns_per_vl
= 1 << m
;
14393 /* enough room in the map table? */
14394 rmt_entries
= 1 << (m
+ n
);
14395 if (rmt
->used
+ rmt_entries
>= NUM_MAP_ENTRIES
)
14398 /* add qos entries to the the RSM map table */
14399 for (i
= 0, ctxt
= FIRST_KERNEL_KCTXT
; i
< num_vls
; i
++) {
14402 for (qpn
= 0, tctxt
= ctxt
;
14403 krcvqs
[i
] && qpn
< qpns_per_vl
; qpn
++) {
14404 unsigned idx
, regoff
, regidx
;
14406 /* generate the index the hardware will produce */
14407 idx
= rmt
->used
+ ((qpn
<< n
) ^ i
);
14408 regoff
= (idx
% 8) * 8;
14410 /* replace default with context number */
14411 reg
= rmt
->map
[regidx
];
14412 reg
&= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
14414 reg
|= (u64
)(tctxt
++) << regoff
;
14415 rmt
->map
[regidx
] = reg
;
14416 if (tctxt
== ctxt
+ krcvqs
[i
])
14422 rrd
.offset
= rmt
->used
;
14424 rrd
.field1_off
= LRH_BTH_MATCH_OFFSET
;
14425 rrd
.field2_off
= LRH_SC_MATCH_OFFSET
;
14426 rrd
.index1_off
= LRH_SC_SELECT_OFFSET
;
14427 rrd
.index1_width
= n
;
14428 rrd
.index2_off
= QPN_SELECT_OFFSET
;
14429 rrd
.index2_width
= m
+ n
;
14430 rrd
.mask1
= LRH_BTH_MASK
;
14431 rrd
.value1
= LRH_BTH_VALUE
;
14432 rrd
.mask2
= LRH_SC_MASK
;
14433 rrd
.value2
= LRH_SC_VALUE
;
14436 add_rsm_rule(dd
, RSM_INS_VERBS
, &rrd
);
14438 /* mark RSM map entries as used */
14439 rmt
->used
+= rmt_entries
;
14440 /* map everything else to the mcast/err/vl15 context */
14441 init_qpmap_table(dd
, HFI1_CTRL_CTXT
, HFI1_CTRL_CTXT
);
14442 dd
->qos_shift
= n
+ 1;
14446 init_qpmap_table(dd
, FIRST_KERNEL_KCTXT
, dd
->n_krcv_queues
- 1);
14449 static void init_user_fecn_handling(struct hfi1_devdata
*dd
,
14450 struct rsm_map_table
*rmt
)
14452 struct rsm_rule_data rrd
;
14454 int i
, idx
, regoff
, regidx
;
14457 /* there needs to be enough room in the map table */
14458 if (rmt
->used
+ dd
->num_user_contexts
>= NUM_MAP_ENTRIES
) {
14459 dd_dev_err(dd
, "User FECN handling disabled - too many user contexts allocated\n");
14464 * RSM will extract the destination context as an index into the
14465 * map table. The destination contexts are a sequential block
14466 * in the range first_dyn_alloc_ctxt...num_rcv_contexts-1 (inclusive).
14467 * Map entries are accessed as offset + extracted value. Adjust
14468 * the added offset so this sequence can be placed anywhere in
14469 * the table - as long as the entries themselves do not wrap.
14470 * There are only enough bits in offset for the table size, so
14471 * start with that to allow for a "negative" offset.
14473 offset
= (u8
)(NUM_MAP_ENTRIES
+ (int)rmt
->used
-
14474 (int)dd
->first_dyn_alloc_ctxt
);
14476 for (i
= dd
->first_dyn_alloc_ctxt
, idx
= rmt
->used
;
14477 i
< dd
->num_rcv_contexts
; i
++, idx
++) {
14478 /* replace with identity mapping */
14479 regoff
= (idx
% 8) * 8;
14481 reg
= rmt
->map
[regidx
];
14482 reg
&= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
<< regoff
);
14483 reg
|= (u64
)i
<< regoff
;
14484 rmt
->map
[regidx
] = reg
;
14488 * For RSM intercept of Expected FECN packets:
14489 * o packet type 0 - expected
14490 * o match on F (bit 95), using select/match 1, and
14491 * o match on SH (bit 133), using select/match 2.
14493 * Use index 1 to extract the 8-bit receive context from DestQP
14494 * (start at bit 64). Use that as the RSM map table index.
14496 rrd
.offset
= offset
;
14498 rrd
.field1_off
= 95;
14499 rrd
.field2_off
= 133;
14500 rrd
.index1_off
= 64;
14501 rrd
.index1_width
= 8;
14502 rrd
.index2_off
= 0;
14503 rrd
.index2_width
= 0;
14510 add_rsm_rule(dd
, RSM_INS_FECN
, &rrd
);
14512 rmt
->used
+= dd
->num_user_contexts
;
14515 /* Initialize RSM for VNIC */
14516 void hfi1_init_vnic_rsm(struct hfi1_devdata
*dd
)
14522 struct rsm_rule_data rrd
;
14524 if (hfi1_vnic_is_rsm_full(dd
, NUM_VNIC_MAP_ENTRIES
)) {
14525 dd_dev_err(dd
, "Vnic RSM disabled, rmt entries used = %d\n",
14526 dd
->vnic
.rmt_start
);
14530 dev_dbg(&(dd
)->pcidev
->dev
, "Vnic rsm start = %d, end %d\n",
14531 dd
->vnic
.rmt_start
,
14532 dd
->vnic
.rmt_start
+ NUM_VNIC_MAP_ENTRIES
);
14534 /* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
14535 regoff
= RCV_RSM_MAP_TABLE
+ (dd
->vnic
.rmt_start
/ 8) * 8;
14536 reg
= read_csr(dd
, regoff
);
14537 for (i
= 0; i
< NUM_VNIC_MAP_ENTRIES
; i
++) {
14538 /* Update map register with vnic context */
14539 j
= (dd
->vnic
.rmt_start
+ i
) % 8;
14540 reg
&= ~(0xffllu
<< (j
* 8));
14541 reg
|= (u64
)dd
->vnic
.ctxt
[ctx_id
++]->ctxt
<< (j
* 8);
14542 /* Wrap up vnic ctx index */
14543 ctx_id
%= dd
->vnic
.num_ctxt
;
14544 /* Write back map register */
14545 if (j
== 7 || ((i
+ 1) == NUM_VNIC_MAP_ENTRIES
)) {
14546 dev_dbg(&(dd
)->pcidev
->dev
,
14547 "Vnic rsm map reg[%d] =0x%llx\n",
14548 regoff
- RCV_RSM_MAP_TABLE
, reg
);
14550 write_csr(dd
, regoff
, reg
);
14552 if (i
< (NUM_VNIC_MAP_ENTRIES
- 1))
14553 reg
= read_csr(dd
, regoff
);
14557 /* Add rule for vnic */
14558 rrd
.offset
= dd
->vnic
.rmt_start
;
14560 /* Match 16B packets */
14561 rrd
.field1_off
= L2_TYPE_MATCH_OFFSET
;
14562 rrd
.mask1
= L2_TYPE_MASK
;
14563 rrd
.value1
= L2_16B_VALUE
;
14564 /* Match ETH L4 packets */
14565 rrd
.field2_off
= L4_TYPE_MATCH_OFFSET
;
14566 rrd
.mask2
= L4_16B_TYPE_MASK
;
14567 rrd
.value2
= L4_16B_ETH_VALUE
;
14568 /* Calc context from veswid and entropy */
14569 rrd
.index1_off
= L4_16B_HDR_VESWID_OFFSET
;
14570 rrd
.index1_width
= ilog2(NUM_VNIC_MAP_ENTRIES
);
14571 rrd
.index2_off
= L2_16B_ENTROPY_OFFSET
;
14572 rrd
.index2_width
= ilog2(NUM_VNIC_MAP_ENTRIES
);
14573 add_rsm_rule(dd
, RSM_INS_VNIC
, &rrd
);
14575 /* Enable RSM if not already enabled */
14576 add_rcvctrl(dd
, RCV_CTRL_RCV_RSM_ENABLE_SMASK
);
14579 void hfi1_deinit_vnic_rsm(struct hfi1_devdata
*dd
)
14581 clear_rsm_rule(dd
, RSM_INS_VNIC
);
14583 /* Disable RSM if used only by vnic */
14584 if (dd
->vnic
.rmt_start
== 0)
14585 clear_rcvctrl(dd
, RCV_CTRL_RCV_RSM_ENABLE_SMASK
);
14588 static void init_rxe(struct hfi1_devdata
*dd
)
14590 struct rsm_map_table
*rmt
;
14593 /* enable all receive errors */
14594 write_csr(dd
, RCV_ERR_MASK
, ~0ull);
14596 rmt
= alloc_rsm_map_table(dd
);
14597 /* set up QOS, including the QPN map table */
14599 init_user_fecn_handling(dd
, rmt
);
14600 complete_rsm_map_table(dd
, rmt
);
14601 /* record number of used rsm map entries for vnic */
14602 dd
->vnic
.rmt_start
= rmt
->used
;
14606 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14607 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14608 * space, PciCfgCap2.MaxPayloadSize in HFI). There is only one
14609 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14610 * Max_PayLoad_Size set to its minimum of 128.
14612 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14613 * (64 bytes). Max_Payload_Size is possibly modified upward in
14614 * tune_pcie_caps() which is called after this routine.
14617 /* Have 16 bytes (4DW) of bypass header available in header queue */
14618 val
= read_csr(dd
, RCV_BYPASS
);
14619 val
|= (4ull << 16);
14620 write_csr(dd
, RCV_BYPASS
, val
);
14623 static void init_other(struct hfi1_devdata
*dd
)
14625 /* enable all CCE errors */
14626 write_csr(dd
, CCE_ERR_MASK
, ~0ull);
14627 /* enable *some* Misc errors */
14628 write_csr(dd
, MISC_ERR_MASK
, DRIVER_MISC_MASK
);
14629 /* enable all DC errors, except LCB */
14630 write_csr(dd
, DCC_ERR_FLG_EN
, ~0ull);
14631 write_csr(dd
, DC_DC8051_ERR_EN
, ~0ull);
14635 * Fill out the given AU table using the given CU. A CU is defined in terms
14636 * AUs. The table is a an encoding: given the index, how many AUs does that
14639 * NOTE: Assumes that the register layout is the same for the
14640 * local and remote tables.
14642 static void assign_cm_au_table(struct hfi1_devdata
*dd
, u32 cu
,
14643 u32 csr0to3
, u32 csr4to7
)
14645 write_csr(dd
, csr0to3
,
14646 0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT
|
14647 1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT
|
14649 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT
|
14651 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT
);
14652 write_csr(dd
, csr4to7
,
14654 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT
|
14656 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT
|
14658 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT
|
14660 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT
);
14663 static void assign_local_cm_au_table(struct hfi1_devdata
*dd
, u8 vcu
)
14665 assign_cm_au_table(dd
, vcu_to_cu(vcu
), SEND_CM_LOCAL_AU_TABLE0_TO3
,
14666 SEND_CM_LOCAL_AU_TABLE4_TO7
);
14669 void assign_remote_cm_au_table(struct hfi1_devdata
*dd
, u8 vcu
)
14671 assign_cm_au_table(dd
, vcu_to_cu(vcu
), SEND_CM_REMOTE_AU_TABLE0_TO3
,
14672 SEND_CM_REMOTE_AU_TABLE4_TO7
);
14675 static void init_txe(struct hfi1_devdata
*dd
)
14679 /* enable all PIO, SDMA, general, and Egress errors */
14680 write_csr(dd
, SEND_PIO_ERR_MASK
, ~0ull);
14681 write_csr(dd
, SEND_DMA_ERR_MASK
, ~0ull);
14682 write_csr(dd
, SEND_ERR_MASK
, ~0ull);
14683 write_csr(dd
, SEND_EGRESS_ERR_MASK
, ~0ull);
14685 /* enable all per-context and per-SDMA engine errors */
14686 for (i
= 0; i
< dd
->chip_send_contexts
; i
++)
14687 write_kctxt_csr(dd
, i
, SEND_CTXT_ERR_MASK
, ~0ull);
14688 for (i
= 0; i
< dd
->chip_sdma_engines
; i
++)
14689 write_kctxt_csr(dd
, i
, SEND_DMA_ENG_ERR_MASK
, ~0ull);
14691 /* set the local CU to AU mapping */
14692 assign_local_cm_au_table(dd
, dd
->vcu
);
14695 * Set reasonable default for Credit Return Timer
14696 * Don't set on Simulator - causes it to choke.
14698 if (dd
->icode
!= ICODE_FUNCTIONAL_SIMULATOR
)
14699 write_csr(dd
, SEND_CM_TIMER_CTRL
, HFI1_CREDIT_RETURN_RATE
);
14702 int hfi1_set_ctxt_jkey(struct hfi1_devdata
*dd
, struct hfi1_ctxtdata
*rcd
,
14708 if (!rcd
|| !rcd
->sc
)
14711 hw_ctxt
= rcd
->sc
->hw_context
;
14712 reg
= SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK
| /* mask is always 1's */
14713 ((jkey
& SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK
) <<
14714 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT
);
14715 /* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14716 if (HFI1_CAP_KGET_MASK(rcd
->flags
, ALLOW_PERM_JKEY
))
14717 reg
|= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK
;
14718 write_kctxt_csr(dd
, hw_ctxt
, SEND_CTXT_CHECK_JOB_KEY
, reg
);
14720 * Enable send-side J_KEY integrity check, unless this is A0 h/w
14723 reg
= read_kctxt_csr(dd
, hw_ctxt
, SEND_CTXT_CHECK_ENABLE
);
14724 reg
|= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK
;
14725 write_kctxt_csr(dd
, hw_ctxt
, SEND_CTXT_CHECK_ENABLE
, reg
);
14728 /* Enable J_KEY check on receive context. */
14729 reg
= RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK
|
14730 ((jkey
& RCV_KEY_CTRL_JOB_KEY_VALUE_MASK
) <<
14731 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT
);
14732 write_kctxt_csr(dd
, rcd
->ctxt
, RCV_KEY_CTRL
, reg
);
14737 int hfi1_clear_ctxt_jkey(struct hfi1_devdata
*dd
, struct hfi1_ctxtdata
*rcd
)
14742 if (!rcd
|| !rcd
->sc
)
14745 hw_ctxt
= rcd
->sc
->hw_context
;
14746 write_kctxt_csr(dd
, hw_ctxt
, SEND_CTXT_CHECK_JOB_KEY
, 0);
14748 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14749 * This check would not have been enabled for A0 h/w, see
14753 reg
= read_kctxt_csr(dd
, hw_ctxt
, SEND_CTXT_CHECK_ENABLE
);
14754 reg
&= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK
;
14755 write_kctxt_csr(dd
, hw_ctxt
, SEND_CTXT_CHECK_ENABLE
, reg
);
14757 /* Turn off the J_KEY on the receive side */
14758 write_kctxt_csr(dd
, rcd
->ctxt
, RCV_KEY_CTRL
, 0);
14763 int hfi1_set_ctxt_pkey(struct hfi1_devdata
*dd
, struct hfi1_ctxtdata
*rcd
,
14769 if (!rcd
|| !rcd
->sc
)
14772 hw_ctxt
= rcd
->sc
->hw_context
;
14773 reg
= ((u64
)pkey
& SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK
) <<
14774 SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT
;
14775 write_kctxt_csr(dd
, hw_ctxt
, SEND_CTXT_CHECK_PARTITION_KEY
, reg
);
14776 reg
= read_kctxt_csr(dd
, hw_ctxt
, SEND_CTXT_CHECK_ENABLE
);
14777 reg
|= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK
;
14778 reg
&= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK
;
14779 write_kctxt_csr(dd
, hw_ctxt
, SEND_CTXT_CHECK_ENABLE
, reg
);
14784 int hfi1_clear_ctxt_pkey(struct hfi1_devdata
*dd
, struct hfi1_ctxtdata
*ctxt
)
14789 if (!ctxt
|| !ctxt
->sc
)
14792 hw_ctxt
= ctxt
->sc
->hw_context
;
14793 reg
= read_kctxt_csr(dd
, hw_ctxt
, SEND_CTXT_CHECK_ENABLE
);
14794 reg
&= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK
;
14795 write_kctxt_csr(dd
, hw_ctxt
, SEND_CTXT_CHECK_ENABLE
, reg
);
14796 write_kctxt_csr(dd
, hw_ctxt
, SEND_CTXT_CHECK_PARTITION_KEY
, 0);
14802 * Start doing the clean up the the chip. Our clean up happens in multiple
14803 * stages and this is just the first.
14805 void hfi1_start_cleanup(struct hfi1_devdata
*dd
)
14810 finish_chip_resources(dd
);
14813 #define HFI_BASE_GUID(dev) \
14814 ((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14817 * Information can be shared between the two HFIs on the same ASIC
14818 * in the same OS. This function finds the peer device and sets
14819 * up a shared structure.
14821 static int init_asic_data(struct hfi1_devdata
*dd
)
14823 unsigned long flags
;
14824 struct hfi1_devdata
*tmp
, *peer
= NULL
;
14825 struct hfi1_asic_data
*asic_data
;
14828 /* pre-allocate the asic structure in case we are the first device */
14829 asic_data
= kzalloc(sizeof(*dd
->asic_data
), GFP_KERNEL
);
14833 spin_lock_irqsave(&hfi1_devs_lock
, flags
);
14834 /* Find our peer device */
14835 list_for_each_entry(tmp
, &hfi1_dev_list
, list
) {
14836 if ((HFI_BASE_GUID(dd
) == HFI_BASE_GUID(tmp
)) &&
14837 dd
->unit
!= tmp
->unit
) {
14844 /* use already allocated structure */
14845 dd
->asic_data
= peer
->asic_data
;
14848 dd
->asic_data
= asic_data
;
14849 mutex_init(&dd
->asic_data
->asic_resource_mutex
);
14851 dd
->asic_data
->dds
[dd
->hfi1_id
] = dd
; /* self back-pointer */
14852 spin_unlock_irqrestore(&hfi1_devs_lock
, flags
);
14854 /* first one through - set up i2c devices */
14856 ret
= set_up_i2c(dd
, dd
->asic_data
);
14862 * Set dd->boardname. Use a generic name if a name is not returned from
14863 * EFI variable space.
14865 * Return 0 on success, -ENOMEM if space could not be allocated.
14867 static int obtain_boardname(struct hfi1_devdata
*dd
)
14869 /* generic board description */
14870 const char generic
[] =
14871 "Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14872 unsigned long size
;
14875 ret
= read_hfi1_efi_var(dd
, "description", &size
,
14876 (void **)&dd
->boardname
);
14878 dd_dev_info(dd
, "Board description not found\n");
14879 /* use generic description */
14880 dd
->boardname
= kstrdup(generic
, GFP_KERNEL
);
14881 if (!dd
->boardname
)
14888 * Check the interrupt registers to make sure that they are mapped correctly.
14889 * It is intended to help user identify any mismapping by VMM when the driver
14890 * is running in a VM. This function should only be called before interrupt
14891 * is set up properly.
14893 * Return 0 on success, -EINVAL on failure.
14895 static int check_int_registers(struct hfi1_devdata
*dd
)
14898 u64 all_bits
= ~(u64
)0;
14901 /* Clear CceIntMask[0] to avoid raising any interrupts */
14902 mask
= read_csr(dd
, CCE_INT_MASK
);
14903 write_csr(dd
, CCE_INT_MASK
, 0ull);
14904 reg
= read_csr(dd
, CCE_INT_MASK
);
14908 /* Clear all interrupt status bits */
14909 write_csr(dd
, CCE_INT_CLEAR
, all_bits
);
14910 reg
= read_csr(dd
, CCE_INT_STATUS
);
14914 /* Set all interrupt status bits */
14915 write_csr(dd
, CCE_INT_FORCE
, all_bits
);
14916 reg
= read_csr(dd
, CCE_INT_STATUS
);
14917 if (reg
!= all_bits
)
14920 /* Restore the interrupt mask */
14921 write_csr(dd
, CCE_INT_CLEAR
, all_bits
);
14922 write_csr(dd
, CCE_INT_MASK
, mask
);
14926 write_csr(dd
, CCE_INT_MASK
, mask
);
14927 dd_dev_err(dd
, "Interrupt registers not properly mapped by VMM\n");
14932 * Allocate and initialize the device structure for the hfi.
14933 * @dev: the pci_dev for hfi1_ib device
14934 * @ent: pci_device_id struct for this dev
14936 * Also allocates, initializes, and returns the devdata struct for this
14939 * This is global, and is called directly at init to set up the
14940 * chip-specific function pointers for later use.
14942 struct hfi1_devdata
*hfi1_init_dd(struct pci_dev
*pdev
,
14943 const struct pci_device_id
*ent
)
14945 struct hfi1_devdata
*dd
;
14946 struct hfi1_pportdata
*ppd
;
14949 static const char * const inames
[] = { /* implementation names */
14951 "RTL VCS simulation",
14952 "RTL FPGA emulation",
14953 "Functional simulator"
14955 struct pci_dev
*parent
= pdev
->bus
->self
;
14957 dd
= hfi1_alloc_devdata(pdev
, NUM_IB_PORTS
*
14958 sizeof(struct hfi1_pportdata
));
14962 for (i
= 0; i
< dd
->num_pports
; i
++, ppd
++) {
14964 /* init common fields */
14965 hfi1_init_pportdata(pdev
, ppd
, dd
, 0, 1);
14966 /* DC supports 4 link widths */
14967 ppd
->link_width_supported
=
14968 OPA_LINK_WIDTH_1X
| OPA_LINK_WIDTH_2X
|
14969 OPA_LINK_WIDTH_3X
| OPA_LINK_WIDTH_4X
;
14970 ppd
->link_width_downgrade_supported
=
14971 ppd
->link_width_supported
;
14972 /* start out enabling only 4X */
14973 ppd
->link_width_enabled
= OPA_LINK_WIDTH_4X
;
14974 ppd
->link_width_downgrade_enabled
=
14975 ppd
->link_width_downgrade_supported
;
14976 /* link width active is 0 when link is down */
14977 /* link width downgrade active is 0 when link is down */
14979 if (num_vls
< HFI1_MIN_VLS_SUPPORTED
||
14980 num_vls
> HFI1_MAX_VLS_SUPPORTED
) {
14981 dd_dev_err(dd
, "Invalid num_vls %u, using %u VLs\n",
14982 num_vls
, HFI1_MAX_VLS_SUPPORTED
);
14983 num_vls
= HFI1_MAX_VLS_SUPPORTED
;
14985 ppd
->vls_supported
= num_vls
;
14986 ppd
->vls_operational
= ppd
->vls_supported
;
14987 /* Set the default MTU. */
14988 for (vl
= 0; vl
< num_vls
; vl
++)
14989 dd
->vld
[vl
].mtu
= hfi1_max_mtu
;
14990 dd
->vld
[15].mtu
= MAX_MAD_PACKET
;
14992 * Set the initial values to reasonable default, will be set
14993 * for real when link is up.
14995 ppd
->overrun_threshold
= 0x4;
14996 ppd
->phy_error_threshold
= 0xf;
14997 ppd
->port_crc_mode_enabled
= link_crc_mask
;
14998 /* initialize supported LTP CRC mode */
14999 ppd
->port_ltp_crc_mode
= cap_to_port_ltp(link_crc_mask
) << 8;
15000 /* initialize enabled LTP CRC mode */
15001 ppd
->port_ltp_crc_mode
|= cap_to_port_ltp(link_crc_mask
) << 4;
15002 /* start in offline */
15003 ppd
->host_link_state
= HLS_DN_OFFLINE
;
15004 init_vl_arb_caches(ppd
);
15008 * Do remaining PCIe setup and save PCIe values in dd.
15009 * Any error printing is already done by the init code.
15010 * On return, we have the chip mapped.
15012 ret
= hfi1_pcie_ddinit(dd
, pdev
);
15016 /* Save PCI space registers to rewrite after device reset */
15017 ret
= save_pci_variables(dd
);
15021 /* verify that reads actually work, save revision for reset check */
15022 dd
->revision
= read_csr(dd
, CCE_REVISION
);
15023 if (dd
->revision
== ~(u64
)0) {
15024 dd_dev_err(dd
, "cannot read chip CSRs\n");
15028 dd
->majrev
= (dd
->revision
>> CCE_REVISION_CHIP_REV_MAJOR_SHIFT
)
15029 & CCE_REVISION_CHIP_REV_MAJOR_MASK
;
15030 dd
->minrev
= (dd
->revision
>> CCE_REVISION_CHIP_REV_MINOR_SHIFT
)
15031 & CCE_REVISION_CHIP_REV_MINOR_MASK
;
15034 * Check interrupt registers mapping if the driver has no access to
15035 * the upstream component. In this case, it is likely that the driver
15036 * is running in a VM.
15039 ret
= check_int_registers(dd
);
15045 * obtain the hardware ID - NOT related to unit, which is a
15046 * software enumeration
15048 reg
= read_csr(dd
, CCE_REVISION2
);
15049 dd
->hfi1_id
= (reg
>> CCE_REVISION2_HFI_ID_SHIFT
)
15050 & CCE_REVISION2_HFI_ID_MASK
;
15051 /* the variable size will remove unwanted bits */
15052 dd
->icode
= reg
>> CCE_REVISION2_IMPL_CODE_SHIFT
;
15053 dd
->irev
= reg
>> CCE_REVISION2_IMPL_REVISION_SHIFT
;
15054 dd_dev_info(dd
, "Implementation: %s, revision 0x%x\n",
15055 dd
->icode
< ARRAY_SIZE(inames
) ?
15056 inames
[dd
->icode
] : "unknown", (int)dd
->irev
);
15058 /* speeds the hardware can support */
15059 dd
->pport
->link_speed_supported
= OPA_LINK_SPEED_25G
;
15060 /* speeds allowed to run at */
15061 dd
->pport
->link_speed_enabled
= dd
->pport
->link_speed_supported
;
15062 /* give a reasonable active value, will be set on link up */
15063 dd
->pport
->link_speed_active
= OPA_LINK_SPEED_25G
;
15065 dd
->chip_rcv_contexts
= read_csr(dd
, RCV_CONTEXTS
);
15066 dd
->chip_send_contexts
= read_csr(dd
, SEND_CONTEXTS
);
15067 dd
->chip_sdma_engines
= read_csr(dd
, SEND_DMA_ENGINES
);
15068 dd
->chip_pio_mem_size
= read_csr(dd
, SEND_PIO_MEM_SIZE
);
15069 dd
->chip_sdma_mem_size
= read_csr(dd
, SEND_DMA_MEM_SIZE
);
15070 /* fix up link widths for emulation _p */
15072 if (dd
->icode
== ICODE_FPGA_EMULATION
&& is_emulator_p(dd
)) {
15073 ppd
->link_width_supported
=
15074 ppd
->link_width_enabled
=
15075 ppd
->link_width_downgrade_supported
=
15076 ppd
->link_width_downgrade_enabled
=
15079 /* insure num_vls isn't larger than number of sdma engines */
15080 if (HFI1_CAP_IS_KSET(SDMA
) && num_vls
> dd
->chip_sdma_engines
) {
15081 dd_dev_err(dd
, "num_vls %u too large, using %u VLs\n",
15082 num_vls
, dd
->chip_sdma_engines
);
15083 num_vls
= dd
->chip_sdma_engines
;
15084 ppd
->vls_supported
= dd
->chip_sdma_engines
;
15085 ppd
->vls_operational
= ppd
->vls_supported
;
15089 * Convert the ns parameter to the 64 * cclocks used in the CSR.
15090 * Limit the max if larger than the field holds. If timeout is
15091 * non-zero, then the calculated field will be at least 1.
15093 * Must be after icode is set up - the cclock rate depends
15094 * on knowing the hardware being used.
15096 dd
->rcv_intr_timeout_csr
= ns_to_cclock(dd
, rcv_intr_timeout
) / 64;
15097 if (dd
->rcv_intr_timeout_csr
>
15098 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK
)
15099 dd
->rcv_intr_timeout_csr
=
15100 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK
;
15101 else if (dd
->rcv_intr_timeout_csr
== 0 && rcv_intr_timeout
)
15102 dd
->rcv_intr_timeout_csr
= 1;
15104 /* needs to be done before we look for the peer device */
15107 /* set up shared ASIC data with peer device */
15108 ret
= init_asic_data(dd
);
15112 /* obtain chip sizes, reset chip CSRs */
15113 ret
= init_chip(dd
);
15117 /* read in the PCIe link speed information */
15118 ret
= pcie_speeds(dd
);
15122 /* call before get_platform_config(), after init_chip_resources() */
15123 ret
= eprom_init(dd
);
15125 goto bail_free_rcverr
;
15127 /* Needs to be called before hfi1_firmware_init */
15128 get_platform_config(dd
);
15130 /* read in firmware */
15131 ret
= hfi1_firmware_init(dd
);
15136 * In general, the PCIe Gen3 transition must occur after the
15137 * chip has been idled (so it won't initiate any PCIe transactions
15138 * e.g. an interrupt) and before the driver changes any registers
15139 * (the transition will reset the registers).
15141 * In particular, place this call after:
15142 * - init_chip() - the chip will not initiate any PCIe transactions
15143 * - pcie_speeds() - reads the current link speed
15144 * - hfi1_firmware_init() - the needed firmware is ready to be
15147 ret
= do_pcie_gen3_transition(dd
);
15151 /* start setting dd values and adjusting CSRs */
15152 init_early_variables(dd
);
15154 parse_platform_config(dd
);
15156 ret
= obtain_boardname(dd
);
15160 snprintf(dd
->boardversion
, BOARD_VERS_MAX
,
15161 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
15162 HFI1_CHIP_VERS_MAJ
, HFI1_CHIP_VERS_MIN
,
15165 (dd
->revision
>> CCE_REVISION_SW_SHIFT
)
15166 & CCE_REVISION_SW_MASK
);
15168 ret
= set_up_context_variables(dd
);
15172 /* set initial RXE CSRs */
15174 /* set initial TXE CSRs */
15176 /* set initial non-RXE, non-TXE CSRs */
15178 /* set up KDETH QP prefix in both RX and TX CSRs */
15181 ret
= hfi1_dev_affinity_init(dd
);
15185 /* send contexts must be set up before receive contexts */
15186 ret
= init_send_contexts(dd
);
15190 ret
= hfi1_create_kctxts(dd
);
15195 * Initialize aspm, to be done after gen3 transition and setting up
15196 * contexts and before enabling interrupts
15200 dd
->rcvhdrsize
= DEFAULT_RCVHDRSIZE
;
15202 * rcd[0] is guaranteed to be valid by this point. Also, all
15203 * context are using the same value, as per the module parameter.
15205 dd
->rhf_offset
= dd
->rcd
[0]->rcvhdrqentsize
- sizeof(u64
) / sizeof(u32
);
15207 ret
= init_pervl_scs(dd
);
15212 for (i
= 0; i
< dd
->num_pports
; ++i
) {
15213 ret
= sdma_init(dd
, i
);
15218 /* use contexts created by hfi1_create_kctxts */
15219 ret
= set_up_interrupts(dd
);
15223 /* set up LCB access - must be after set_up_interrupts() */
15224 init_lcb_access(dd
);
15227 * Serial number is created from the base guid:
15228 * [27:24] = base guid [38:35]
15229 * [23: 0] = base guid [23: 0]
15231 snprintf(dd
->serial
, SERIAL_MAX
, "0x%08llx\n",
15232 (dd
->base_guid
& 0xFFFFFF) |
15233 ((dd
->base_guid
>> 11) & 0xF000000));
15235 dd
->oui1
= dd
->base_guid
>> 56 & 0xFF;
15236 dd
->oui2
= dd
->base_guid
>> 48 & 0xFF;
15237 dd
->oui3
= dd
->base_guid
>> 40 & 0xFF;
15239 ret
= load_firmware(dd
); /* asymmetric with dispose_firmware() */
15241 goto bail_clear_intr
;
15245 ret
= init_cntrs(dd
);
15247 goto bail_clear_intr
;
15249 ret
= init_rcverr(dd
);
15251 goto bail_free_cntrs
;
15253 init_completion(&dd
->user_comp
);
15255 /* The user refcount starts with one to inidicate an active device */
15256 atomic_set(&dd
->user_refcount
, 1);
15265 hfi1_clean_up_interrupts(dd
);
15267 hfi1_pcie_ddcleanup(dd
);
15269 hfi1_free_devdata(dd
);
15275 static u16
delay_cycles(struct hfi1_pportdata
*ppd
, u32 desired_egress_rate
,
15279 u32 current_egress_rate
= ppd
->current_egress_rate
;
15280 /* rates here are in units of 10^6 bits/sec */
15282 if (desired_egress_rate
== -1)
15283 return 0; /* shouldn't happen */
15285 if (desired_egress_rate
>= current_egress_rate
)
15286 return 0; /* we can't help go faster, only slower */
15288 delta_cycles
= egress_cycles(dw_len
* 4, desired_egress_rate
) -
15289 egress_cycles(dw_len
* 4, current_egress_rate
);
15291 return (u16
)delta_cycles
;
15295 * create_pbc - build a pbc for transmission
15296 * @flags: special case flags or-ed in built pbc
15297 * @srate: static rate
15299 * @dwlen: dword length (header words + data words + pbc words)
15301 * Create a PBC with the given flags, rate, VL, and length.
15303 * NOTE: The PBC created will not insert any HCRC - all callers but one are
15304 * for verbs, which does not use this PSM feature. The lone other caller
15305 * is for the diagnostic interface which calls this if the user does not
15306 * supply their own PBC.
15308 u64
create_pbc(struct hfi1_pportdata
*ppd
, u64 flags
, int srate_mbs
, u32 vl
,
15311 u64 pbc
, delay
= 0;
15313 if (unlikely(srate_mbs
))
15314 delay
= delay_cycles(ppd
, srate_mbs
, dw_len
);
15317 | (delay
<< PBC_STATIC_RATE_CONTROL_COUNT_SHIFT
)
15318 | ((u64
)PBC_IHCRC_NONE
<< PBC_INSERT_HCRC_SHIFT
)
15319 | (vl
& PBC_VL_MASK
) << PBC_VL_SHIFT
15320 | (dw_len
& PBC_LENGTH_DWS_MASK
)
15321 << PBC_LENGTH_DWS_SHIFT
;
15326 #define SBUS_THERMAL 0x4f
15327 #define SBUS_THERM_MONITOR_MODE 0x1
15329 #define THERM_FAILURE(dev, ret, reason) \
15331 "Thermal sensor initialization failed: %s (%d)\n", \
15335 * Initialize the thermal sensor.
15337 * After initialization, enable polling of thermal sensor through
15338 * SBus interface. In order for this to work, the SBus Master
15339 * firmware has to be loaded due to the fact that the HW polling
15340 * logic uses SBus interrupts, which are not supported with
15341 * default firmware. Otherwise, no data will be returned through
15342 * the ASIC_STS_THERM CSR.
15344 static int thermal_init(struct hfi1_devdata
*dd
)
15348 if (dd
->icode
!= ICODE_RTL_SILICON
||
15349 check_chip_resource(dd
, CR_THERM_INIT
, NULL
))
15352 ret
= acquire_chip_resource(dd
, CR_SBUS
, SBUS_TIMEOUT
);
15354 THERM_FAILURE(dd
, ret
, "Acquire SBus");
15358 dd_dev_info(dd
, "Initializing thermal sensor\n");
15359 /* Disable polling of thermal readings */
15360 write_csr(dd
, ASIC_CFG_THERM_POLL_EN
, 0x0);
15362 /* Thermal Sensor Initialization */
15363 /* Step 1: Reset the Thermal SBus Receiver */
15364 ret
= sbus_request_slow(dd
, SBUS_THERMAL
, 0x0,
15365 RESET_SBUS_RECEIVER
, 0);
15367 THERM_FAILURE(dd
, ret
, "Bus Reset");
15370 /* Step 2: Set Reset bit in Thermal block */
15371 ret
= sbus_request_slow(dd
, SBUS_THERMAL
, 0x0,
15372 WRITE_SBUS_RECEIVER
, 0x1);
15374 THERM_FAILURE(dd
, ret
, "Therm Block Reset");
15377 /* Step 3: Write clock divider value (100MHz -> 2MHz) */
15378 ret
= sbus_request_slow(dd
, SBUS_THERMAL
, 0x1,
15379 WRITE_SBUS_RECEIVER
, 0x32);
15381 THERM_FAILURE(dd
, ret
, "Write Clock Div");
15384 /* Step 4: Select temperature mode */
15385 ret
= sbus_request_slow(dd
, SBUS_THERMAL
, 0x3,
15386 WRITE_SBUS_RECEIVER
,
15387 SBUS_THERM_MONITOR_MODE
);
15389 THERM_FAILURE(dd
, ret
, "Write Mode Sel");
15392 /* Step 5: De-assert block reset and start conversion */
15393 ret
= sbus_request_slow(dd
, SBUS_THERMAL
, 0x0,
15394 WRITE_SBUS_RECEIVER
, 0x2);
15396 THERM_FAILURE(dd
, ret
, "Write Reset Deassert");
15399 /* Step 5.1: Wait for first conversion (21.5ms per spec) */
15402 /* Enable polling of thermal readings */
15403 write_csr(dd
, ASIC_CFG_THERM_POLL_EN
, 0x1);
15405 /* Set initialized flag */
15406 ret
= acquire_chip_resource(dd
, CR_THERM_INIT
, 0);
15408 THERM_FAILURE(dd
, ret
, "Unable to set thermal init flag");
15411 release_chip_resource(dd
, CR_SBUS
);
15415 static void handle_temp_err(struct hfi1_devdata
*dd
)
15417 struct hfi1_pportdata
*ppd
= &dd
->pport
[0];
15419 * Thermal Critical Interrupt
15420 * Put the device into forced freeze mode, take link down to
15421 * offline, and put DC into reset.
15424 "Critical temperature reached! Forcing device into freeze mode!\n");
15425 dd
->flags
|= HFI1_FORCED_FREEZE
;
15426 start_freeze_handling(ppd
, FREEZE_SELF
| FREEZE_ABORT
);
15428 * Shut DC down as much and as quickly as possible.
15430 * Step 1: Take the link down to OFFLINE. This will cause the
15431 * 8051 to put the Serdes in reset. However, we don't want to
15432 * go through the entire link state machine since we want to
15433 * shutdown ASAP. Furthermore, this is not a graceful shutdown
15434 * but rather an attempt to save the chip.
15435 * Code below is almost the same as quiet_serdes() but avoids
15436 * all the extra work and the sleeps.
15438 ppd
->driver_link_ready
= 0;
15439 ppd
->link_enabled
= 0;
15440 set_physical_link_state(dd
, (OPA_LINKDOWN_REASON_SMA_DISABLED
<< 8) |
15443 * Step 2: Shutdown LCB and 8051
15444 * After shutdown, do not restore DC_CFG_RESET value.