x86/topology: Update the 'cpu cores' field in /proc/cpuinfo correctly across CPU...
[cris-mirror.git] / drivers / infiniband / hw / hfi1 / driver.c
blobaddc68e83606fe92552b09a7cf43b768ffc9a327
1 /*
2 * Copyright(c) 2015-2017 Intel Corporation.
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
7 * GPL LICENSE SUMMARY
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * BSD LICENSE
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 #include <linux/spinlock.h>
49 #include <linux/pci.h>
50 #include <linux/io.h>
51 #include <linux/delay.h>
52 #include <linux/netdevice.h>
53 #include <linux/vmalloc.h>
54 #include <linux/module.h>
55 #include <linux/prefetch.h>
56 #include <rdma/ib_verbs.h>
58 #include "hfi.h"
59 #include "trace.h"
60 #include "qp.h"
61 #include "sdma.h"
62 #include "debugfs.h"
63 #include "vnic.h"
65 #undef pr_fmt
66 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
69 * The size has to be longer than this string, so we can append
70 * board/chip information to it in the initialization code.
72 const char ib_hfi1_version[] = HFI1_DRIVER_VERSION "\n";
74 DEFINE_SPINLOCK(hfi1_devs_lock);
75 LIST_HEAD(hfi1_dev_list);
76 DEFINE_MUTEX(hfi1_mutex); /* general driver use */
78 unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
79 module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO);
80 MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is " __stringify(
81 HFI1_DEFAULT_MAX_MTU));
83 unsigned int hfi1_cu = 1;
84 module_param_named(cu, hfi1_cu, uint, S_IRUGO);
85 MODULE_PARM_DESC(cu, "Credit return units");
87 unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT;
88 static int hfi1_caps_set(const char *val, const struct kernel_param *kp);
89 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp);
90 static const struct kernel_param_ops cap_ops = {
91 .set = hfi1_caps_set,
92 .get = hfi1_caps_get
94 module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO);
95 MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features");
97 MODULE_LICENSE("Dual BSD/GPL");
98 MODULE_DESCRIPTION("Intel Omni-Path Architecture driver");
101 * MAX_PKT_RCV is the max # if packets processed per receive interrupt.
103 #define MAX_PKT_RECV 64
105 * MAX_PKT_THREAD_RCV is the max # of packets processed before
106 * the qp_wait_list queue is flushed.
108 #define MAX_PKT_RECV_THREAD (MAX_PKT_RECV * 4)
109 #define EGR_HEAD_UPDATE_THRESHOLD 16
111 struct hfi1_ib_stats hfi1_stats;
113 static int hfi1_caps_set(const char *val, const struct kernel_param *kp)
115 int ret = 0;
116 unsigned long *cap_mask_ptr = (unsigned long *)kp->arg,
117 cap_mask = *cap_mask_ptr, value, diff,
118 write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) |
119 HFI1_CAP_WRITABLE_MASK);
121 ret = kstrtoul(val, 0, &value);
122 if (ret) {
123 pr_warn("Invalid module parameter value for 'cap_mask'\n");
124 goto done;
126 /* Get the changed bits (except the locked bit) */
127 diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK);
129 /* Remove any bits that are not allowed to change after driver load */
130 if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) {
131 pr_warn("Ignoring non-writable capability bits %#lx\n",
132 diff & ~write_mask);
133 diff &= write_mask;
136 /* Mask off any reserved bits */
137 diff &= ~HFI1_CAP_RESERVED_MASK;
138 /* Clear any previously set and changing bits */
139 cap_mask &= ~diff;
140 /* Update the bits with the new capability */
141 cap_mask |= (value & diff);
142 /* Check for any kernel/user restrictions */
143 diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^
144 ((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT);
145 cap_mask &= ~diff;
146 /* Set the bitmask to the final set */
147 *cap_mask_ptr = cap_mask;
148 done:
149 return ret;
152 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp)
154 unsigned long cap_mask = *(unsigned long *)kp->arg;
156 cap_mask &= ~HFI1_CAP_LOCKED_SMASK;
157 cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT);
159 return scnprintf(buffer, PAGE_SIZE, "0x%lx", cap_mask);
162 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi)
164 struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi);
165 struct hfi1_devdata *dd = container_of(ibdev,
166 struct hfi1_devdata, verbs_dev);
167 return dd->pcidev;
171 * Return count of units with at least one port ACTIVE.
173 int hfi1_count_active_units(void)
175 struct hfi1_devdata *dd;
176 struct hfi1_pportdata *ppd;
177 unsigned long flags;
178 int pidx, nunits_active = 0;
180 spin_lock_irqsave(&hfi1_devs_lock, flags);
181 list_for_each_entry(dd, &hfi1_dev_list, list) {
182 if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase1)
183 continue;
184 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
185 ppd = dd->pport + pidx;
186 if (ppd->lid && ppd->linkup) {
187 nunits_active++;
188 break;
192 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
193 return nunits_active;
197 * Get address of eager buffer from it's index (allocated in chunks, not
198 * contiguous).
200 static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf,
201 u8 *update)
203 u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf);
205 *update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset;
206 return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) +
207 (offset * RCV_BUF_BLOCK_SIZE));
210 static inline void *hfi1_get_header(struct hfi1_devdata *dd,
211 __le32 *rhf_addr)
213 u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
215 return (void *)(rhf_addr - dd->rhf_offset + offset);
218 static inline struct ib_header *hfi1_get_msgheader(struct hfi1_devdata *dd,
219 __le32 *rhf_addr)
221 return (struct ib_header *)hfi1_get_header(dd, rhf_addr);
224 static inline struct hfi1_16b_header
225 *hfi1_get_16B_header(struct hfi1_devdata *dd,
226 __le32 *rhf_addr)
228 return (struct hfi1_16b_header *)hfi1_get_header(dd, rhf_addr);
232 * Validate and encode the a given RcvArray Buffer size.
233 * The function will check whether the given size falls within
234 * allowed size ranges for the respective type and, optionally,
235 * return the proper encoding.
237 int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded)
239 if (unlikely(!PAGE_ALIGNED(size)))
240 return 0;
241 if (unlikely(size < MIN_EAGER_BUFFER))
242 return 0;
243 if (size >
244 (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER))
245 return 0;
246 if (encoded)
247 *encoded = ilog2(size / PAGE_SIZE) + 1;
248 return 1;
251 static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd,
252 struct hfi1_packet *packet)
254 struct ib_header *rhdr = packet->hdr;
255 u32 rte = rhf_rcv_type_err(packet->rhf);
256 u32 mlid_base;
257 struct hfi1_ibport *ibp = rcd_to_iport(rcd);
258 struct hfi1_devdata *dd = ppd->dd;
259 struct hfi1_ibdev *verbs_dev = &dd->verbs_dev;
260 struct rvt_dev_info *rdi = &verbs_dev->rdi;
262 if ((packet->rhf & RHF_DC_ERR) &&
263 hfi1_dbg_fault_suppress_err(verbs_dev))
264 return;
266 if (packet->rhf & (RHF_VCRC_ERR | RHF_ICRC_ERR))
267 return;
269 if (packet->etype == RHF_RCV_TYPE_BYPASS) {
270 goto drop;
271 } else {
272 u8 lnh = ib_get_lnh(rhdr);
274 mlid_base = be16_to_cpu(IB_MULTICAST_LID_BASE);
275 if (lnh == HFI1_LRH_BTH) {
276 packet->ohdr = &rhdr->u.oth;
277 } else if (lnh == HFI1_LRH_GRH) {
278 packet->ohdr = &rhdr->u.l.oth;
279 packet->grh = &rhdr->u.l.grh;
280 } else {
281 goto drop;
285 if (packet->rhf & RHF_TID_ERR) {
286 /* For TIDERR and RC QPs preemptively schedule a NAK */
287 u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
288 u32 dlid = ib_get_dlid(rhdr);
289 u32 qp_num;
291 /* Sanity check packet */
292 if (tlen < 24)
293 goto drop;
295 /* Check for GRH */
296 if (packet->grh) {
297 u32 vtf;
298 struct ib_grh *grh = packet->grh;
300 if (grh->next_hdr != IB_GRH_NEXT_HDR)
301 goto drop;
302 vtf = be32_to_cpu(grh->version_tclass_flow);
303 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
304 goto drop;
307 /* Get the destination QP number. */
308 qp_num = ib_bth_get_qpn(packet->ohdr);
309 if (dlid < mlid_base) {
310 struct rvt_qp *qp;
311 unsigned long flags;
313 rcu_read_lock();
314 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
315 if (!qp) {
316 rcu_read_unlock();
317 goto drop;
321 * Handle only RC QPs - for other QP types drop error
322 * packet.
324 spin_lock_irqsave(&qp->r_lock, flags);
326 /* Check for valid receive state. */
327 if (!(ib_rvt_state_ops[qp->state] &
328 RVT_PROCESS_RECV_OK)) {
329 ibp->rvp.n_pkt_drops++;
332 switch (qp->ibqp.qp_type) {
333 case IB_QPT_RC:
334 hfi1_rc_hdrerr(rcd, packet, qp);
335 break;
336 default:
337 /* For now don't handle any other QP types */
338 break;
341 spin_unlock_irqrestore(&qp->r_lock, flags);
342 rcu_read_unlock();
343 } /* Unicast QP */
344 } /* Valid packet with TIDErr */
346 /* handle "RcvTypeErr" flags */
347 switch (rte) {
348 case RHF_RTE_ERROR_OP_CODE_ERR:
350 void *ebuf = NULL;
351 u8 opcode;
353 if (rhf_use_egr_bfr(packet->rhf))
354 ebuf = packet->ebuf;
356 if (!ebuf)
357 goto drop; /* this should never happen */
359 opcode = ib_bth_get_opcode(packet->ohdr);
360 if (opcode == IB_OPCODE_CNP) {
362 * Only in pre-B0 h/w is the CNP_OPCODE handled
363 * via this code path.
365 struct rvt_qp *qp = NULL;
366 u32 lqpn, rqpn;
367 u16 rlid;
368 u8 svc_type, sl, sc5;
370 sc5 = hfi1_9B_get_sc5(rhdr, packet->rhf);
371 sl = ibp->sc_to_sl[sc5];
373 lqpn = ib_bth_get_qpn(packet->ohdr);
374 rcu_read_lock();
375 qp = rvt_lookup_qpn(rdi, &ibp->rvp, lqpn);
376 if (!qp) {
377 rcu_read_unlock();
378 goto drop;
381 switch (qp->ibqp.qp_type) {
382 case IB_QPT_UD:
383 rlid = 0;
384 rqpn = 0;
385 svc_type = IB_CC_SVCTYPE_UD;
386 break;
387 case IB_QPT_UC:
388 rlid = ib_get_slid(rhdr);
389 rqpn = qp->remote_qpn;
390 svc_type = IB_CC_SVCTYPE_UC;
391 break;
392 default:
393 goto drop;
396 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
397 rcu_read_unlock();
400 packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK;
401 break;
403 default:
404 break;
407 drop:
408 return;
411 static inline void init_packet(struct hfi1_ctxtdata *rcd,
412 struct hfi1_packet *packet)
414 packet->rsize = rcd->rcvhdrqentsize; /* words */
415 packet->maxcnt = rcd->rcvhdrq_cnt * packet->rsize; /* words */
416 packet->rcd = rcd;
417 packet->updegr = 0;
418 packet->etail = -1;
419 packet->rhf_addr = get_rhf_addr(rcd);
420 packet->rhf = rhf_to_cpu(packet->rhf_addr);
421 packet->rhqoff = rcd->head;
422 packet->numpkt = 0;
425 /* We support only two types - 9B and 16B for now */
426 static const hfi1_handle_cnp hfi1_handle_cnp_tbl[2] = {
427 [HFI1_PKT_TYPE_9B] = &return_cnp,
428 [HFI1_PKT_TYPE_16B] = &return_cnp_16B
431 void hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt,
432 bool do_cnp)
434 struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
435 struct ib_other_headers *ohdr = pkt->ohdr;
436 struct ib_grh *grh = pkt->grh;
437 u32 rqpn = 0, bth1;
438 u16 pkey, rlid, dlid = ib_get_dlid(pkt->hdr);
439 u8 hdr_type, sc, svc_type;
440 bool is_mcast = false;
442 if (pkt->etype == RHF_RCV_TYPE_BYPASS) {
443 is_mcast = hfi1_is_16B_mcast(dlid);
444 pkey = hfi1_16B_get_pkey(pkt->hdr);
445 sc = hfi1_16B_get_sc(pkt->hdr);
446 hdr_type = HFI1_PKT_TYPE_16B;
447 } else {
448 is_mcast = (dlid > be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
449 (dlid != be16_to_cpu(IB_LID_PERMISSIVE));
450 pkey = ib_bth_get_pkey(ohdr);
451 sc = hfi1_9B_get_sc5(pkt->hdr, pkt->rhf);
452 hdr_type = HFI1_PKT_TYPE_9B;
455 switch (qp->ibqp.qp_type) {
456 case IB_QPT_SMI:
457 case IB_QPT_GSI:
458 case IB_QPT_UD:
459 rlid = ib_get_slid(pkt->hdr);
460 rqpn = ib_get_sqpn(pkt->ohdr);
461 svc_type = IB_CC_SVCTYPE_UD;
462 break;
463 case IB_QPT_UC:
464 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
465 rqpn = qp->remote_qpn;
466 svc_type = IB_CC_SVCTYPE_UC;
467 break;
468 case IB_QPT_RC:
469 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
470 rqpn = qp->remote_qpn;
471 svc_type = IB_CC_SVCTYPE_RC;
472 break;
473 default:
474 return;
477 bth1 = be32_to_cpu(ohdr->bth[1]);
478 /* Call appropriate CNP handler */
479 if (do_cnp && (bth1 & IB_FECN_SMASK))
480 hfi1_handle_cnp_tbl[hdr_type](ibp, qp, rqpn, pkey,
481 dlid, rlid, sc, grh);
483 if (!is_mcast && (bth1 & IB_BECN_SMASK)) {
484 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
485 u32 lqpn = bth1 & RVT_QPN_MASK;
486 u8 sl = ibp->sc_to_sl[sc];
488 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
493 struct ps_mdata {
494 struct hfi1_ctxtdata *rcd;
495 u32 rsize;
496 u32 maxcnt;
497 u32 ps_head;
498 u32 ps_tail;
499 u32 ps_seq;
502 static inline void init_ps_mdata(struct ps_mdata *mdata,
503 struct hfi1_packet *packet)
505 struct hfi1_ctxtdata *rcd = packet->rcd;
507 mdata->rcd = rcd;
508 mdata->rsize = packet->rsize;
509 mdata->maxcnt = packet->maxcnt;
510 mdata->ps_head = packet->rhqoff;
512 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
513 mdata->ps_tail = get_rcvhdrtail(rcd);
514 if (rcd->ctxt == HFI1_CTRL_CTXT)
515 mdata->ps_seq = rcd->seq_cnt;
516 else
517 mdata->ps_seq = 0; /* not used with DMA_RTAIL */
518 } else {
519 mdata->ps_tail = 0; /* used only with DMA_RTAIL*/
520 mdata->ps_seq = rcd->seq_cnt;
524 static inline int ps_done(struct ps_mdata *mdata, u64 rhf,
525 struct hfi1_ctxtdata *rcd)
527 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
528 return mdata->ps_head == mdata->ps_tail;
529 return mdata->ps_seq != rhf_rcv_seq(rhf);
532 static inline int ps_skip(struct ps_mdata *mdata, u64 rhf,
533 struct hfi1_ctxtdata *rcd)
536 * Control context can potentially receive an invalid rhf.
537 * Drop such packets.
539 if ((rcd->ctxt == HFI1_CTRL_CTXT) && (mdata->ps_head != mdata->ps_tail))
540 return mdata->ps_seq != rhf_rcv_seq(rhf);
542 return 0;
545 static inline void update_ps_mdata(struct ps_mdata *mdata,
546 struct hfi1_ctxtdata *rcd)
548 mdata->ps_head += mdata->rsize;
549 if (mdata->ps_head >= mdata->maxcnt)
550 mdata->ps_head = 0;
552 /* Control context must do seq counting */
553 if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
554 (rcd->ctxt == HFI1_CTRL_CTXT)) {
555 if (++mdata->ps_seq > 13)
556 mdata->ps_seq = 1;
561 * prescan_rxq - search through the receive queue looking for packets
562 * containing Excplicit Congestion Notifications (FECNs, or BECNs).
563 * When an ECN is found, process the Congestion Notification, and toggle
564 * it off.
565 * This is declared as a macro to allow quick checking of the port to avoid
566 * the overhead of a function call if not enabled.
568 #define prescan_rxq(rcd, packet) \
569 do { \
570 if (rcd->ppd->cc_prescan) \
571 __prescan_rxq(packet); \
572 } while (0)
573 static void __prescan_rxq(struct hfi1_packet *packet)
575 struct hfi1_ctxtdata *rcd = packet->rcd;
576 struct ps_mdata mdata;
578 init_ps_mdata(&mdata, packet);
580 while (1) {
581 struct hfi1_devdata *dd = rcd->dd;
582 struct hfi1_ibport *ibp = rcd_to_iport(rcd);
583 __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
584 dd->rhf_offset;
585 struct rvt_qp *qp;
586 struct ib_header *hdr;
587 struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
588 u64 rhf = rhf_to_cpu(rhf_addr);
589 u32 etype = rhf_rcv_type(rhf), qpn, bth1;
590 int is_ecn = 0;
591 u8 lnh;
593 if (ps_done(&mdata, rhf, rcd))
594 break;
596 if (ps_skip(&mdata, rhf, rcd))
597 goto next;
599 if (etype != RHF_RCV_TYPE_IB)
600 goto next;
602 packet->hdr = hfi1_get_msgheader(dd, rhf_addr);
603 hdr = packet->hdr;
604 lnh = ib_get_lnh(hdr);
606 if (lnh == HFI1_LRH_BTH) {
607 packet->ohdr = &hdr->u.oth;
608 packet->grh = NULL;
609 } else if (lnh == HFI1_LRH_GRH) {
610 packet->ohdr = &hdr->u.l.oth;
611 packet->grh = &hdr->u.l.grh;
612 } else {
613 goto next; /* just in case */
616 bth1 = be32_to_cpu(packet->ohdr->bth[1]);
617 is_ecn = !!(bth1 & (IB_FECN_SMASK | IB_BECN_SMASK));
619 if (!is_ecn)
620 goto next;
622 qpn = bth1 & RVT_QPN_MASK;
623 rcu_read_lock();
624 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qpn);
626 if (!qp) {
627 rcu_read_unlock();
628 goto next;
631 process_ecn(qp, packet, true);
632 rcu_read_unlock();
634 /* turn off BECN, FECN */
635 bth1 &= ~(IB_FECN_SMASK | IB_BECN_SMASK);
636 packet->ohdr->bth[1] = cpu_to_be32(bth1);
637 next:
638 update_ps_mdata(&mdata, rcd);
642 static void process_rcv_qp_work(struct hfi1_packet *packet)
644 struct rvt_qp *qp, *nqp;
645 struct hfi1_ctxtdata *rcd = packet->rcd;
648 * Iterate over all QPs waiting to respond.
649 * The list won't change since the IRQ is only run on one CPU.
651 list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) {
652 list_del_init(&qp->rspwait);
653 if (qp->r_flags & RVT_R_RSP_NAK) {
654 qp->r_flags &= ~RVT_R_RSP_NAK;
655 packet->qp = qp;
656 hfi1_send_rc_ack(packet, 0);
658 if (qp->r_flags & RVT_R_RSP_SEND) {
659 unsigned long flags;
661 qp->r_flags &= ~RVT_R_RSP_SEND;
662 spin_lock_irqsave(&qp->s_lock, flags);
663 if (ib_rvt_state_ops[qp->state] &
664 RVT_PROCESS_OR_FLUSH_SEND)
665 hfi1_schedule_send(qp);
666 spin_unlock_irqrestore(&qp->s_lock, flags);
668 rvt_put_qp(qp);
672 static noinline int max_packet_exceeded(struct hfi1_packet *packet, int thread)
674 if (thread) {
675 if ((packet->numpkt & (MAX_PKT_RECV_THREAD - 1)) == 0)
676 /* allow defered processing */
677 process_rcv_qp_work(packet);
678 cond_resched();
679 return RCV_PKT_OK;
680 } else {
681 this_cpu_inc(*packet->rcd->dd->rcv_limit);
682 return RCV_PKT_LIMIT;
686 static inline int check_max_packet(struct hfi1_packet *packet, int thread)
688 int ret = RCV_PKT_OK;
690 if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0))
691 ret = max_packet_exceeded(packet, thread);
692 return ret;
695 static noinline int skip_rcv_packet(struct hfi1_packet *packet, int thread)
697 int ret;
699 /* Set up for the next packet */
700 packet->rhqoff += packet->rsize;
701 if (packet->rhqoff >= packet->maxcnt)
702 packet->rhqoff = 0;
704 packet->numpkt++;
705 ret = check_max_packet(packet, thread);
707 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
708 packet->rcd->dd->rhf_offset;
709 packet->rhf = rhf_to_cpu(packet->rhf_addr);
711 return ret;
714 static inline int process_rcv_packet(struct hfi1_packet *packet, int thread)
716 int ret;
718 packet->etype = rhf_rcv_type(packet->rhf);
720 /* total length */
721 packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
722 /* retrieve eager buffer details */
723 packet->ebuf = NULL;
724 if (rhf_use_egr_bfr(packet->rhf)) {
725 packet->etail = rhf_egr_index(packet->rhf);
726 packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
727 &packet->updegr);
729 * Prefetch the contents of the eager buffer. It is
730 * OK to send a negative length to prefetch_range().
731 * The +2 is the size of the RHF.
733 prefetch_range(packet->ebuf,
734 packet->tlen - ((packet->rcd->rcvhdrqentsize -
735 (rhf_hdrq_offset(packet->rhf)
736 + 2)) * 4));
740 * Call a type specific handler for the packet. We
741 * should be able to trust that etype won't be beyond
742 * the range of valid indexes. If so something is really
743 * wrong and we can probably just let things come
744 * crashing down. There is no need to eat another
745 * comparison in this performance critical code.
747 packet->rcd->dd->rhf_rcv_function_map[packet->etype](packet);
748 packet->numpkt++;
750 /* Set up for the next packet */
751 packet->rhqoff += packet->rsize;
752 if (packet->rhqoff >= packet->maxcnt)
753 packet->rhqoff = 0;
755 ret = check_max_packet(packet, thread);
757 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
758 packet->rcd->dd->rhf_offset;
759 packet->rhf = rhf_to_cpu(packet->rhf_addr);
761 return ret;
764 static inline void process_rcv_update(int last, struct hfi1_packet *packet)
767 * Update head regs etc., every 16 packets, if not last pkt,
768 * to help prevent rcvhdrq overflows, when many packets
769 * are processed and queue is nearly full.
770 * Don't request an interrupt for intermediate updates.
772 if (!last && !(packet->numpkt & 0xf)) {
773 update_usrhead(packet->rcd, packet->rhqoff, packet->updegr,
774 packet->etail, 0, 0);
775 packet->updegr = 0;
777 packet->grh = NULL;
780 static inline void finish_packet(struct hfi1_packet *packet)
783 * Nothing we need to free for the packet.
785 * The only thing we need to do is a final update and call for an
786 * interrupt
788 update_usrhead(packet->rcd, packet->rcd->head, packet->updegr,
789 packet->etail, rcv_intr_dynamic, packet->numpkt);
793 * Handle receive interrupts when using the no dma rtail option.
795 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread)
797 u32 seq;
798 int last = RCV_PKT_OK;
799 struct hfi1_packet packet;
801 init_packet(rcd, &packet);
802 seq = rhf_rcv_seq(packet.rhf);
803 if (seq != rcd->seq_cnt) {
804 last = RCV_PKT_DONE;
805 goto bail;
808 prescan_rxq(rcd, &packet);
810 while (last == RCV_PKT_OK) {
811 last = process_rcv_packet(&packet, thread);
812 seq = rhf_rcv_seq(packet.rhf);
813 if (++rcd->seq_cnt > 13)
814 rcd->seq_cnt = 1;
815 if (seq != rcd->seq_cnt)
816 last = RCV_PKT_DONE;
817 process_rcv_update(last, &packet);
819 process_rcv_qp_work(&packet);
820 rcd->head = packet.rhqoff;
821 bail:
822 finish_packet(&packet);
823 return last;
826 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread)
828 u32 hdrqtail;
829 int last = RCV_PKT_OK;
830 struct hfi1_packet packet;
832 init_packet(rcd, &packet);
833 hdrqtail = get_rcvhdrtail(rcd);
834 if (packet.rhqoff == hdrqtail) {
835 last = RCV_PKT_DONE;
836 goto bail;
838 smp_rmb(); /* prevent speculative reads of dma'ed hdrq */
840 prescan_rxq(rcd, &packet);
842 while (last == RCV_PKT_OK) {
843 last = process_rcv_packet(&packet, thread);
844 if (packet.rhqoff == hdrqtail)
845 last = RCV_PKT_DONE;
846 process_rcv_update(last, &packet);
848 process_rcv_qp_work(&packet);
849 rcd->head = packet.rhqoff;
850 bail:
851 finish_packet(&packet);
852 return last;
855 static inline void set_nodma_rtail(struct hfi1_devdata *dd, u16 ctxt)
857 struct hfi1_ctxtdata *rcd;
858 u16 i;
861 * For dynamically allocated kernel contexts (like vnic) switch
862 * interrupt handler only for that context. Otherwise, switch
863 * interrupt handler for all statically allocated kernel contexts.
865 if (ctxt >= dd->first_dyn_alloc_ctxt) {
866 rcd = hfi1_rcd_get_by_index_safe(dd, ctxt);
867 if (rcd) {
868 rcd->do_interrupt =
869 &handle_receive_interrupt_nodma_rtail;
870 hfi1_rcd_put(rcd);
872 return;
875 for (i = HFI1_CTRL_CTXT + 1; i < dd->first_dyn_alloc_ctxt; i++) {
876 rcd = hfi1_rcd_get_by_index(dd, i);
877 if (rcd)
878 rcd->do_interrupt =
879 &handle_receive_interrupt_nodma_rtail;
880 hfi1_rcd_put(rcd);
884 static inline void set_dma_rtail(struct hfi1_devdata *dd, u16 ctxt)
886 struct hfi1_ctxtdata *rcd;
887 u16 i;
890 * For dynamically allocated kernel contexts (like vnic) switch
891 * interrupt handler only for that context. Otherwise, switch
892 * interrupt handler for all statically allocated kernel contexts.
894 if (ctxt >= dd->first_dyn_alloc_ctxt) {
895 rcd = hfi1_rcd_get_by_index_safe(dd, ctxt);
896 if (rcd) {
897 rcd->do_interrupt =
898 &handle_receive_interrupt_dma_rtail;
899 hfi1_rcd_put(rcd);
901 return;
904 for (i = HFI1_CTRL_CTXT + 1; i < dd->first_dyn_alloc_ctxt; i++) {
905 rcd = hfi1_rcd_get_by_index(dd, i);
906 if (rcd)
907 rcd->do_interrupt =
908 &handle_receive_interrupt_dma_rtail;
909 hfi1_rcd_put(rcd);
913 void set_all_slowpath(struct hfi1_devdata *dd)
915 struct hfi1_ctxtdata *rcd;
916 u16 i;
918 /* HFI1_CTRL_CTXT must always use the slow path interrupt handler */
919 for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) {
920 rcd = hfi1_rcd_get_by_index(dd, i);
921 if (!rcd)
922 continue;
923 if (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
924 rcd->do_interrupt = &handle_receive_interrupt;
926 hfi1_rcd_put(rcd);
930 static inline int set_armed_to_active(struct hfi1_ctxtdata *rcd,
931 struct hfi1_packet *packet,
932 struct hfi1_devdata *dd)
934 struct work_struct *lsaw = &rcd->ppd->linkstate_active_work;
935 u8 etype = rhf_rcv_type(packet->rhf);
936 u8 sc = SC15_PACKET;
938 if (etype == RHF_RCV_TYPE_IB) {
939 struct ib_header *hdr = hfi1_get_msgheader(packet->rcd->dd,
940 packet->rhf_addr);
941 sc = hfi1_9B_get_sc5(hdr, packet->rhf);
942 } else if (etype == RHF_RCV_TYPE_BYPASS) {
943 struct hfi1_16b_header *hdr = hfi1_get_16B_header(
944 packet->rcd->dd,
945 packet->rhf_addr);
946 sc = hfi1_16B_get_sc(hdr);
948 if (sc != SC15_PACKET) {
949 int hwstate = driver_lstate(rcd->ppd);
951 if (hwstate != IB_PORT_ACTIVE) {
952 dd_dev_info(dd,
953 "Unexpected link state %s\n",
954 opa_lstate_name(hwstate));
955 return 0;
958 queue_work(rcd->ppd->link_wq, lsaw);
959 return 1;
961 return 0;
965 * handle_receive_interrupt - receive a packet
966 * @rcd: the context
968 * Called from interrupt handler for errors or receive interrupt.
969 * This is the slow path interrupt handler.
971 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread)
973 struct hfi1_devdata *dd = rcd->dd;
974 u32 hdrqtail;
975 int needset, last = RCV_PKT_OK;
976 struct hfi1_packet packet;
977 int skip_pkt = 0;
979 /* Control context will always use the slow path interrupt handler */
980 needset = (rcd->ctxt == HFI1_CTRL_CTXT) ? 0 : 1;
982 init_packet(rcd, &packet);
984 if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
985 u32 seq = rhf_rcv_seq(packet.rhf);
987 if (seq != rcd->seq_cnt) {
988 last = RCV_PKT_DONE;
989 goto bail;
991 hdrqtail = 0;
992 } else {
993 hdrqtail = get_rcvhdrtail(rcd);
994 if (packet.rhqoff == hdrqtail) {
995 last = RCV_PKT_DONE;
996 goto bail;
998 smp_rmb(); /* prevent speculative reads of dma'ed hdrq */
1001 * Control context can potentially receive an invalid
1002 * rhf. Drop such packets.
1004 if (rcd->ctxt == HFI1_CTRL_CTXT) {
1005 u32 seq = rhf_rcv_seq(packet.rhf);
1007 if (seq != rcd->seq_cnt)
1008 skip_pkt = 1;
1012 prescan_rxq(rcd, &packet);
1014 while (last == RCV_PKT_OK) {
1015 if (unlikely(dd->do_drop &&
1016 atomic_xchg(&dd->drop_packet, DROP_PACKET_OFF) ==
1017 DROP_PACKET_ON)) {
1018 dd->do_drop = 0;
1020 /* On to the next packet */
1021 packet.rhqoff += packet.rsize;
1022 packet.rhf_addr = (__le32 *)rcd->rcvhdrq +
1023 packet.rhqoff +
1024 dd->rhf_offset;
1025 packet.rhf = rhf_to_cpu(packet.rhf_addr);
1027 } else if (skip_pkt) {
1028 last = skip_rcv_packet(&packet, thread);
1029 skip_pkt = 0;
1030 } else {
1031 /* Auto activate link on non-SC15 packet receive */
1032 if (unlikely(rcd->ppd->host_link_state ==
1033 HLS_UP_ARMED) &&
1034 set_armed_to_active(rcd, &packet, dd))
1035 goto bail;
1036 last = process_rcv_packet(&packet, thread);
1039 if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
1040 u32 seq = rhf_rcv_seq(packet.rhf);
1042 if (++rcd->seq_cnt > 13)
1043 rcd->seq_cnt = 1;
1044 if (seq != rcd->seq_cnt)
1045 last = RCV_PKT_DONE;
1046 if (needset) {
1047 dd_dev_info(dd, "Switching to NO_DMA_RTAIL\n");
1048 set_nodma_rtail(dd, rcd->ctxt);
1049 needset = 0;
1051 } else {
1052 if (packet.rhqoff == hdrqtail)
1053 last = RCV_PKT_DONE;
1055 * Control context can potentially receive an invalid
1056 * rhf. Drop such packets.
1058 if (rcd->ctxt == HFI1_CTRL_CTXT) {
1059 u32 seq = rhf_rcv_seq(packet.rhf);
1061 if (++rcd->seq_cnt > 13)
1062 rcd->seq_cnt = 1;
1063 if (!last && (seq != rcd->seq_cnt))
1064 skip_pkt = 1;
1067 if (needset) {
1068 dd_dev_info(dd,
1069 "Switching to DMA_RTAIL\n");
1070 set_dma_rtail(dd, rcd->ctxt);
1071 needset = 0;
1075 process_rcv_update(last, &packet);
1078 process_rcv_qp_work(&packet);
1079 rcd->head = packet.rhqoff;
1081 bail:
1083 * Always write head at end, and setup rcv interrupt, even
1084 * if no packets were processed.
1086 finish_packet(&packet);
1087 return last;
1091 * We may discover in the interrupt that the hardware link state has
1092 * changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet),
1093 * and we need to update the driver's notion of the link state. We cannot
1094 * run set_link_state from interrupt context, so we queue this function on
1095 * a workqueue.
1097 * We delay the regular interrupt processing until after the state changes
1098 * so that the link will be in the correct state by the time any application
1099 * we wake up attempts to send a reply to any message it received.
1100 * (Subsequent receive interrupts may possibly force the wakeup before we
1101 * update the link state.)
1103 * The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes
1104 * dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues,
1105 * so we're safe from use-after-free of the rcd.
1107 void receive_interrupt_work(struct work_struct *work)
1109 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
1110 linkstate_active_work);
1111 struct hfi1_devdata *dd = ppd->dd;
1112 struct hfi1_ctxtdata *rcd;
1113 u16 i;
1115 /* Received non-SC15 packet implies neighbor_normal */
1116 ppd->neighbor_normal = 1;
1117 set_link_state(ppd, HLS_UP_ACTIVE);
1120 * Interrupt all statically allocated kernel contexts that could
1121 * have had an interrupt during auto activation.
1123 for (i = HFI1_CTRL_CTXT; i < dd->first_dyn_alloc_ctxt; i++) {
1124 rcd = hfi1_rcd_get_by_index(dd, i);
1125 if (rcd)
1126 force_recv_intr(rcd);
1127 hfi1_rcd_put(rcd);
1132 * Convert a given MTU size to the on-wire MAD packet enumeration.
1133 * Return -1 if the size is invalid.
1135 int mtu_to_enum(u32 mtu, int default_if_bad)
1137 switch (mtu) {
1138 case 0: return OPA_MTU_0;
1139 case 256: return OPA_MTU_256;
1140 case 512: return OPA_MTU_512;
1141 case 1024: return OPA_MTU_1024;
1142 case 2048: return OPA_MTU_2048;
1143 case 4096: return OPA_MTU_4096;
1144 case 8192: return OPA_MTU_8192;
1145 case 10240: return OPA_MTU_10240;
1147 return default_if_bad;
1150 u16 enum_to_mtu(int mtu)
1152 switch (mtu) {
1153 case OPA_MTU_0: return 0;
1154 case OPA_MTU_256: return 256;
1155 case OPA_MTU_512: return 512;
1156 case OPA_MTU_1024: return 1024;
1157 case OPA_MTU_2048: return 2048;
1158 case OPA_MTU_4096: return 4096;
1159 case OPA_MTU_8192: return 8192;
1160 case OPA_MTU_10240: return 10240;
1161 default: return 0xffff;
1166 * set_mtu - set the MTU
1167 * @ppd: the per port data
1169 * We can handle "any" incoming size, the issue here is whether we
1170 * need to restrict our outgoing size. We do not deal with what happens
1171 * to programs that are already running when the size changes.
1173 int set_mtu(struct hfi1_pportdata *ppd)
1175 struct hfi1_devdata *dd = ppd->dd;
1176 int i, drain, ret = 0, is_up = 0;
1178 ppd->ibmtu = 0;
1179 for (i = 0; i < ppd->vls_supported; i++)
1180 if (ppd->ibmtu < dd->vld[i].mtu)
1181 ppd->ibmtu = dd->vld[i].mtu;
1182 ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd);
1184 mutex_lock(&ppd->hls_lock);
1185 if (ppd->host_link_state == HLS_UP_INIT ||
1186 ppd->host_link_state == HLS_UP_ARMED ||
1187 ppd->host_link_state == HLS_UP_ACTIVE)
1188 is_up = 1;
1190 drain = !is_ax(dd) && is_up;
1192 if (drain)
1194 * MTU is specified per-VL. To ensure that no packet gets
1195 * stuck (due, e.g., to the MTU for the packet's VL being
1196 * reduced), empty the per-VL FIFOs before adjusting MTU.
1198 ret = stop_drain_data_vls(dd);
1200 if (ret) {
1201 dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n",
1202 __func__);
1203 goto err;
1206 hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0);
1208 if (drain)
1209 open_fill_data_vls(dd); /* reopen all VLs */
1211 err:
1212 mutex_unlock(&ppd->hls_lock);
1214 return ret;
1217 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc)
1219 struct hfi1_devdata *dd = ppd->dd;
1221 ppd->lid = lid;
1222 ppd->lmc = lmc;
1223 hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0);
1225 dd_dev_info(dd, "port %u: got a lid: 0x%x\n", ppd->port, lid);
1227 return 0;
1230 void shutdown_led_override(struct hfi1_pportdata *ppd)
1232 struct hfi1_devdata *dd = ppd->dd;
1235 * This pairs with the memory barrier in hfi1_start_led_override to
1236 * ensure that we read the correct state of LED beaconing represented
1237 * by led_override_timer_active
1239 smp_rmb();
1240 if (atomic_read(&ppd->led_override_timer_active)) {
1241 del_timer_sync(&ppd->led_override_timer);
1242 atomic_set(&ppd->led_override_timer_active, 0);
1243 /* Ensure the atomic_set is visible to all CPUs */
1244 smp_wmb();
1247 /* Hand control of the LED to the DC for normal operation */
1248 write_csr(dd, DCC_CFG_LED_CNTRL, 0);
1251 static void run_led_override(struct timer_list *t)
1253 struct hfi1_pportdata *ppd = from_timer(ppd, t, led_override_timer);
1254 struct hfi1_devdata *dd = ppd->dd;
1255 unsigned long timeout;
1256 int phase_idx;
1258 if (!(dd->flags & HFI1_INITTED))
1259 return;
1261 phase_idx = ppd->led_override_phase & 1;
1263 setextled(dd, phase_idx);
1265 timeout = ppd->led_override_vals[phase_idx];
1267 /* Set up for next phase */
1268 ppd->led_override_phase = !ppd->led_override_phase;
1270 mod_timer(&ppd->led_override_timer, jiffies + timeout);
1274 * To have the LED blink in a particular pattern, provide timeon and timeoff
1275 * in milliseconds.
1276 * To turn off custom blinking and return to normal operation, use
1277 * shutdown_led_override()
1279 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon,
1280 unsigned int timeoff)
1282 if (!(ppd->dd->flags & HFI1_INITTED))
1283 return;
1285 /* Convert to jiffies for direct use in timer */
1286 ppd->led_override_vals[0] = msecs_to_jiffies(timeoff);
1287 ppd->led_override_vals[1] = msecs_to_jiffies(timeon);
1289 /* Arbitrarily start from LED on phase */
1290 ppd->led_override_phase = 1;
1293 * If the timer has not already been started, do so. Use a "quick"
1294 * timeout so the handler will be called soon to look at our request.
1296 if (!timer_pending(&ppd->led_override_timer)) {
1297 timer_setup(&ppd->led_override_timer, run_led_override, 0);
1298 ppd->led_override_timer.expires = jiffies + 1;
1299 add_timer(&ppd->led_override_timer);
1300 atomic_set(&ppd->led_override_timer_active, 1);
1301 /* Ensure the atomic_set is visible to all CPUs */
1302 smp_wmb();
1307 * hfi1_reset_device - reset the chip if possible
1308 * @unit: the device to reset
1310 * Whether or not reset is successful, we attempt to re-initialize the chip
1311 * (that is, much like a driver unload/reload). We clear the INITTED flag
1312 * so that the various entry points will fail until we reinitialize. For
1313 * now, we only allow this if no user contexts are open that use chip resources
1315 int hfi1_reset_device(int unit)
1317 int ret;
1318 struct hfi1_devdata *dd = hfi1_lookup(unit);
1319 struct hfi1_pportdata *ppd;
1320 int pidx;
1322 if (!dd) {
1323 ret = -ENODEV;
1324 goto bail;
1327 dd_dev_info(dd, "Reset on unit %u requested\n", unit);
1329 if (!dd->kregbase1 || !(dd->flags & HFI1_PRESENT)) {
1330 dd_dev_info(dd,
1331 "Invalid unit number %u or not initialized or not present\n",
1332 unit);
1333 ret = -ENXIO;
1334 goto bail;
1337 /* If there are any user/vnic contexts, we cannot reset */
1338 mutex_lock(&hfi1_mutex);
1339 if (dd->rcd)
1340 if (hfi1_stats.sps_ctxts) {
1341 mutex_unlock(&hfi1_mutex);
1342 ret = -EBUSY;
1343 goto bail;
1345 mutex_unlock(&hfi1_mutex);
1347 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1348 ppd = dd->pport + pidx;
1350 shutdown_led_override(ppd);
1352 if (dd->flags & HFI1_HAS_SEND_DMA)
1353 sdma_exit(dd);
1355 hfi1_reset_cpu_counters(dd);
1357 ret = hfi1_init(dd, 1);
1359 if (ret)
1360 dd_dev_err(dd,
1361 "Reinitialize unit %u after reset failed with %d\n",
1362 unit, ret);
1363 else
1364 dd_dev_info(dd, "Reinitialized unit %u after resetting\n",
1365 unit);
1367 bail:
1368 return ret;
1371 static inline void hfi1_setup_ib_header(struct hfi1_packet *packet)
1373 packet->hdr = (struct hfi1_ib_message_header *)
1374 hfi1_get_msgheader(packet->rcd->dd,
1375 packet->rhf_addr);
1376 packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr;
1379 static int hfi1_bypass_ingress_pkt_check(struct hfi1_packet *packet)
1381 struct hfi1_pportdata *ppd = packet->rcd->ppd;
1383 /* slid and dlid cannot be 0 */
1384 if ((!packet->slid) || (!packet->dlid))
1385 return -EINVAL;
1387 /* Compare port lid with incoming packet dlid */
1388 if ((!(hfi1_is_16B_mcast(packet->dlid))) &&
1389 (packet->dlid !=
1390 opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))) {
1391 if (packet->dlid != ppd->lid)
1392 return -EINVAL;
1395 /* No multicast packets with SC15 */
1396 if ((hfi1_is_16B_mcast(packet->dlid)) && (packet->sc == 0xF))
1397 return -EINVAL;
1399 /* Packets with permissive DLID always on SC15 */
1400 if ((packet->dlid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE),
1401 16B)) &&
1402 (packet->sc != 0xF))
1403 return -EINVAL;
1405 return 0;
1408 static int hfi1_setup_9B_packet(struct hfi1_packet *packet)
1410 struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1411 struct ib_header *hdr;
1412 u8 lnh;
1414 hfi1_setup_ib_header(packet);
1415 hdr = packet->hdr;
1417 lnh = ib_get_lnh(hdr);
1418 if (lnh == HFI1_LRH_BTH) {
1419 packet->ohdr = &hdr->u.oth;
1420 packet->grh = NULL;
1421 } else if (lnh == HFI1_LRH_GRH) {
1422 u32 vtf;
1424 packet->ohdr = &hdr->u.l.oth;
1425 packet->grh = &hdr->u.l.grh;
1426 if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1427 goto drop;
1428 vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1429 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1430 goto drop;
1431 } else {
1432 goto drop;
1435 /* Query commonly used fields from packet header */
1436 packet->payload = packet->ebuf;
1437 packet->opcode = ib_bth_get_opcode(packet->ohdr);
1438 packet->slid = ib_get_slid(hdr);
1439 packet->dlid = ib_get_dlid(hdr);
1440 if (unlikely((packet->dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
1441 (packet->dlid != be16_to_cpu(IB_LID_PERMISSIVE))))
1442 packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1443 be16_to_cpu(IB_MULTICAST_LID_BASE);
1444 packet->sl = ib_get_sl(hdr);
1445 packet->sc = hfi1_9B_get_sc5(hdr, packet->rhf);
1446 packet->pad = ib_bth_get_pad(packet->ohdr);
1447 packet->extra_byte = 0;
1448 packet->pkey = ib_bth_get_pkey(packet->ohdr);
1449 packet->migrated = ib_bth_is_migration(packet->ohdr);
1451 return 0;
1452 drop:
1453 ibp->rvp.n_pkt_drops++;
1454 return -EINVAL;
1457 static int hfi1_setup_bypass_packet(struct hfi1_packet *packet)
1460 * Bypass packets have a different header/payload split
1461 * compared to an IB packet.
1462 * Current split is set such that 16 bytes of the actual
1463 * header is in the header buffer and the remining is in
1464 * the eager buffer. We chose 16 since hfi1 driver only
1465 * supports 16B bypass packets and we will be able to
1466 * receive the entire LRH with such a split.
1469 struct hfi1_ctxtdata *rcd = packet->rcd;
1470 struct hfi1_pportdata *ppd = rcd->ppd;
1471 struct hfi1_ibport *ibp = &ppd->ibport_data;
1472 u8 l4;
1473 u8 grh_len;
1475 packet->hdr = (struct hfi1_16b_header *)
1476 hfi1_get_16B_header(packet->rcd->dd,
1477 packet->rhf_addr);
1478 packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr;
1480 l4 = hfi1_16B_get_l4(packet->hdr);
1481 if (l4 == OPA_16B_L4_IB_LOCAL) {
1482 grh_len = 0;
1483 packet->ohdr = packet->ebuf;
1484 packet->grh = NULL;
1485 } else if (l4 == OPA_16B_L4_IB_GLOBAL) {
1486 u32 vtf;
1488 grh_len = sizeof(struct ib_grh);
1489 packet->ohdr = packet->ebuf + grh_len;
1490 packet->grh = packet->ebuf;
1491 if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1492 goto drop;
1493 vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1494 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1495 goto drop;
1496 } else {
1497 goto drop;
1500 /* Query commonly used fields from packet header */
1501 packet->opcode = ib_bth_get_opcode(packet->ohdr);
1502 /* hdr_len_by_opcode already has an IB LRH factored in */
1503 packet->hlen = hdr_len_by_opcode[packet->opcode] +
1504 (LRH_16B_BYTES - LRH_9B_BYTES) + grh_len;
1505 packet->payload = packet->ebuf + packet->hlen - LRH_16B_BYTES;
1506 packet->slid = hfi1_16B_get_slid(packet->hdr);
1507 packet->dlid = hfi1_16B_get_dlid(packet->hdr);
1508 if (unlikely(hfi1_is_16B_mcast(packet->dlid)))
1509 packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1510 opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR),
1511 16B);
1512 packet->sc = hfi1_16B_get_sc(packet->hdr);
1513 packet->sl = ibp->sc_to_sl[packet->sc];
1514 packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
1515 packet->extra_byte = SIZE_OF_LT;
1516 packet->pkey = hfi1_16B_get_pkey(packet->hdr);
1517 packet->migrated = opa_bth_is_migration(packet->ohdr);
1519 if (hfi1_bypass_ingress_pkt_check(packet))
1520 goto drop;
1522 return 0;
1523 drop:
1524 hfi1_cdbg(PKT, "%s: packet dropped\n", __func__);
1525 ibp->rvp.n_pkt_drops++;
1526 return -EINVAL;
1529 void handle_eflags(struct hfi1_packet *packet)
1531 struct hfi1_ctxtdata *rcd = packet->rcd;
1532 u32 rte = rhf_rcv_type_err(packet->rhf);
1534 rcv_hdrerr(rcd, rcd->ppd, packet);
1535 if (rhf_err_flags(packet->rhf))
1536 dd_dev_err(rcd->dd,
1537 "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s%s] rte 0x%x\n",
1538 rcd->ctxt, packet->rhf,
1539 packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "",
1540 packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "",
1541 packet->rhf & RHF_DC_ERR ? "dc " : "",
1542 packet->rhf & RHF_TID_ERR ? "tid " : "",
1543 packet->rhf & RHF_LEN_ERR ? "len " : "",
1544 packet->rhf & RHF_ECC_ERR ? "ecc " : "",
1545 packet->rhf & RHF_VCRC_ERR ? "vcrc " : "",
1546 packet->rhf & RHF_ICRC_ERR ? "icrc " : "",
1547 rte);
1551 * The following functions are called by the interrupt handler. They are type
1552 * specific handlers for each packet type.
1554 int process_receive_ib(struct hfi1_packet *packet)
1556 if (unlikely(hfi1_dbg_fault_packet(packet)))
1557 return RHF_RCV_CONTINUE;
1559 if (hfi1_setup_9B_packet(packet))
1560 return RHF_RCV_CONTINUE;
1562 trace_hfi1_rcvhdr(packet);
1564 if (unlikely(rhf_err_flags(packet->rhf))) {
1565 handle_eflags(packet);
1566 return RHF_RCV_CONTINUE;
1569 hfi1_ib_rcv(packet);
1570 return RHF_RCV_CONTINUE;
1573 static inline bool hfi1_is_vnic_packet(struct hfi1_packet *packet)
1575 /* Packet received in VNIC context via RSM */
1576 if (packet->rcd->is_vnic)
1577 return true;
1579 if ((hfi1_16B_get_l2(packet->ebuf) == OPA_16B_L2_TYPE) &&
1580 (hfi1_16B_get_l4(packet->ebuf) == OPA_16B_L4_ETHR))
1581 return true;
1583 return false;
1586 int process_receive_bypass(struct hfi1_packet *packet)
1588 struct hfi1_devdata *dd = packet->rcd->dd;
1590 if (hfi1_is_vnic_packet(packet)) {
1591 hfi1_vnic_bypass_rcv(packet);
1592 return RHF_RCV_CONTINUE;
1595 if (hfi1_setup_bypass_packet(packet))
1596 return RHF_RCV_CONTINUE;
1598 trace_hfi1_rcvhdr(packet);
1600 if (unlikely(rhf_err_flags(packet->rhf))) {
1601 handle_eflags(packet);
1602 return RHF_RCV_CONTINUE;
1605 if (hfi1_16B_get_l2(packet->hdr) == 0x2) {
1606 hfi1_16B_rcv(packet);
1607 } else {
1608 dd_dev_err(dd,
1609 "Bypass packets other than 16B are not supported in normal operation. Dropping\n");
1610 incr_cntr64(&dd->sw_rcv_bypass_packet_errors);
1611 if (!(dd->err_info_rcvport.status_and_code &
1612 OPA_EI_STATUS_SMASK)) {
1613 u64 *flits = packet->ebuf;
1615 if (flits && !(packet->rhf & RHF_LEN_ERR)) {
1616 dd->err_info_rcvport.packet_flit1 = flits[0];
1617 dd->err_info_rcvport.packet_flit2 =
1618 packet->tlen > sizeof(flits[0]) ?
1619 flits[1] : 0;
1621 dd->err_info_rcvport.status_and_code |=
1622 (OPA_EI_STATUS_SMASK | BAD_L2_ERR);
1625 return RHF_RCV_CONTINUE;
1628 int process_receive_error(struct hfi1_packet *packet)
1630 /* KHdrHCRCErr -- KDETH packet with a bad HCRC */
1631 if (unlikely(
1632 hfi1_dbg_fault_suppress_err(&packet->rcd->dd->verbs_dev) &&
1633 rhf_rcv_type_err(packet->rhf) == 3))
1634 return RHF_RCV_CONTINUE;
1636 hfi1_setup_ib_header(packet);
1637 handle_eflags(packet);
1639 if (unlikely(rhf_err_flags(packet->rhf)))
1640 dd_dev_err(packet->rcd->dd,
1641 "Unhandled error packet received. Dropping.\n");
1643 return RHF_RCV_CONTINUE;
1646 int kdeth_process_expected(struct hfi1_packet *packet)
1648 if (unlikely(hfi1_dbg_fault_packet(packet)))
1649 return RHF_RCV_CONTINUE;
1651 hfi1_setup_ib_header(packet);
1652 if (unlikely(rhf_err_flags(packet->rhf)))
1653 handle_eflags(packet);
1655 dd_dev_err(packet->rcd->dd,
1656 "Unhandled expected packet received. Dropping.\n");
1657 return RHF_RCV_CONTINUE;
1660 int kdeth_process_eager(struct hfi1_packet *packet)
1662 hfi1_setup_ib_header(packet);
1663 if (unlikely(rhf_err_flags(packet->rhf)))
1664 handle_eflags(packet);
1665 if (unlikely(hfi1_dbg_fault_packet(packet)))
1666 return RHF_RCV_CONTINUE;
1668 dd_dev_err(packet->rcd->dd,
1669 "Unhandled eager packet received. Dropping.\n");
1670 return RHF_RCV_CONTINUE;
1673 int process_receive_invalid(struct hfi1_packet *packet)
1675 dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n",
1676 rhf_rcv_type(packet->rhf));
1677 return RHF_RCV_CONTINUE;
1680 void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd)
1682 struct hfi1_packet packet;
1683 struct ps_mdata mdata;
1685 seq_printf(s, "Rcd %u: RcvHdr cnt %u entsize %u %s head %llu tail %llu\n",
1686 rcd->ctxt, rcd->rcvhdrq_cnt, rcd->rcvhdrqentsize,
1687 HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
1688 "dma_rtail" : "nodma_rtail",
1689 read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD) &
1690 RCV_HDR_HEAD_HEAD_MASK,
1691 read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL));
1693 init_packet(rcd, &packet);
1694 init_ps_mdata(&mdata, &packet);
1696 while (1) {
1697 struct hfi1_devdata *dd = rcd->dd;
1698 __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
1699 dd->rhf_offset;
1700 struct ib_header *hdr;
1701 u64 rhf = rhf_to_cpu(rhf_addr);
1702 u32 etype = rhf_rcv_type(rhf), qpn;
1703 u8 opcode;
1704 u32 psn;
1705 u8 lnh;
1707 if (ps_done(&mdata, rhf, rcd))
1708 break;
1710 if (ps_skip(&mdata, rhf, rcd))
1711 goto next;
1713 if (etype > RHF_RCV_TYPE_IB)
1714 goto next;
1716 packet.hdr = hfi1_get_msgheader(dd, rhf_addr);
1717 hdr = packet.hdr;
1719 lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1721 if (lnh == HFI1_LRH_BTH)
1722 packet.ohdr = &hdr->u.oth;
1723 else if (lnh == HFI1_LRH_GRH)
1724 packet.ohdr = &hdr->u.l.oth;
1725 else
1726 goto next; /* just in case */
1728 opcode = (be32_to_cpu(packet.ohdr->bth[0]) >> 24);
1729 qpn = be32_to_cpu(packet.ohdr->bth[1]) & RVT_QPN_MASK;
1730 psn = mask_psn(be32_to_cpu(packet.ohdr->bth[2]));
1732 seq_printf(s, "\tEnt %u: opcode 0x%x, qpn 0x%x, psn 0x%x\n",
1733 mdata.ps_head, opcode, qpn, psn);
1734 next:
1735 update_ps_mdata(&mdata, rcd);