2 * Copyright(c) 2015-2017 Intel Corporation.
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
47 #include <linux/poll.h>
48 #include <linux/cdev.h>
49 #include <linux/vmalloc.h>
51 #include <linux/sched/mm.h>
52 #include <linux/bitmap.h>
62 #include "user_sdma.h"
63 #include "user_exp_rcv.h"
67 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
69 #define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */
72 * File operation functions
74 static int hfi1_file_open(struct inode
*inode
, struct file
*fp
);
75 static int hfi1_file_close(struct inode
*inode
, struct file
*fp
);
76 static ssize_t
hfi1_write_iter(struct kiocb
*kiocb
, struct iov_iter
*from
);
77 static __poll_t
hfi1_poll(struct file
*fp
, struct poll_table_struct
*pt
);
78 static int hfi1_file_mmap(struct file
*fp
, struct vm_area_struct
*vma
);
80 static u64
kvirt_to_phys(void *addr
);
81 static int assign_ctxt(struct hfi1_filedata
*fd
, unsigned long arg
, u32 len
);
82 static void init_subctxts(struct hfi1_ctxtdata
*uctxt
,
83 const struct hfi1_user_info
*uinfo
);
84 static int init_user_ctxt(struct hfi1_filedata
*fd
,
85 struct hfi1_ctxtdata
*uctxt
);
86 static void user_init(struct hfi1_ctxtdata
*uctxt
);
87 static int get_ctxt_info(struct hfi1_filedata
*fd
, unsigned long arg
, u32 len
);
88 static int get_base_info(struct hfi1_filedata
*fd
, unsigned long arg
, u32 len
);
89 static int user_exp_rcv_setup(struct hfi1_filedata
*fd
, unsigned long arg
,
91 static int user_exp_rcv_clear(struct hfi1_filedata
*fd
, unsigned long arg
,
93 static int user_exp_rcv_invalid(struct hfi1_filedata
*fd
, unsigned long arg
,
95 static int setup_base_ctxt(struct hfi1_filedata
*fd
,
96 struct hfi1_ctxtdata
*uctxt
);
97 static int setup_subctxt(struct hfi1_ctxtdata
*uctxt
);
99 static int find_sub_ctxt(struct hfi1_filedata
*fd
,
100 const struct hfi1_user_info
*uinfo
);
101 static int allocate_ctxt(struct hfi1_filedata
*fd
, struct hfi1_devdata
*dd
,
102 struct hfi1_user_info
*uinfo
,
103 struct hfi1_ctxtdata
**cd
);
104 static void deallocate_ctxt(struct hfi1_ctxtdata
*uctxt
);
105 static __poll_t
poll_urgent(struct file
*fp
, struct poll_table_struct
*pt
);
106 static __poll_t
poll_next(struct file
*fp
, struct poll_table_struct
*pt
);
107 static int user_event_ack(struct hfi1_ctxtdata
*uctxt
, u16 subctxt
,
109 static int set_ctxt_pkey(struct hfi1_ctxtdata
*uctxt
, unsigned long arg
);
110 static int ctxt_reset(struct hfi1_ctxtdata
*uctxt
);
111 static int manage_rcvq(struct hfi1_ctxtdata
*uctxt
, u16 subctxt
,
113 static int vma_fault(struct vm_fault
*vmf
);
114 static long hfi1_file_ioctl(struct file
*fp
, unsigned int cmd
,
117 static const struct file_operations hfi1_file_ops
= {
118 .owner
= THIS_MODULE
,
119 .write_iter
= hfi1_write_iter
,
120 .open
= hfi1_file_open
,
121 .release
= hfi1_file_close
,
122 .unlocked_ioctl
= hfi1_file_ioctl
,
124 .mmap
= hfi1_file_mmap
,
125 .llseek
= noop_llseek
,
128 static const struct vm_operations_struct vm_ops
= {
133 * Types of memories mapped into user processes' space
152 * Masks and offsets defining the mmap tokens
154 #define HFI1_MMAP_OFFSET_MASK 0xfffULL
155 #define HFI1_MMAP_OFFSET_SHIFT 0
156 #define HFI1_MMAP_SUBCTXT_MASK 0xfULL
157 #define HFI1_MMAP_SUBCTXT_SHIFT 12
158 #define HFI1_MMAP_CTXT_MASK 0xffULL
159 #define HFI1_MMAP_CTXT_SHIFT 16
160 #define HFI1_MMAP_TYPE_MASK 0xfULL
161 #define HFI1_MMAP_TYPE_SHIFT 24
162 #define HFI1_MMAP_MAGIC_MASK 0xffffffffULL
163 #define HFI1_MMAP_MAGIC_SHIFT 32
165 #define HFI1_MMAP_MAGIC 0xdabbad00
167 #define HFI1_MMAP_TOKEN_SET(field, val) \
168 (((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT)
169 #define HFI1_MMAP_TOKEN_GET(field, token) \
170 (((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK)
171 #define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr) \
172 (HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \
173 HFI1_MMAP_TOKEN_SET(TYPE, type) | \
174 HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \
175 HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \
176 HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr))))
178 #define dbg(fmt, ...) \
179 pr_info(fmt, ##__VA_ARGS__)
181 static inline int is_valid_mmap(u64 token
)
183 return (HFI1_MMAP_TOKEN_GET(MAGIC
, token
) == HFI1_MMAP_MAGIC
);
186 static int hfi1_file_open(struct inode
*inode
, struct file
*fp
)
188 struct hfi1_filedata
*fd
;
189 struct hfi1_devdata
*dd
= container_of(inode
->i_cdev
,
193 if (!((dd
->flags
& HFI1_PRESENT
) && dd
->kregbase1
))
196 if (!atomic_inc_not_zero(&dd
->user_refcount
))
199 /* The real work is performed later in assign_ctxt() */
201 fd
= kzalloc(sizeof(*fd
), GFP_KERNEL
);
204 fd
->rec_cpu_num
= -1; /* no cpu affinity by default */
205 fd
->mm
= current
->mm
;
208 kobject_get(&fd
->dd
->kobj
);
209 fp
->private_data
= fd
;
211 fp
->private_data
= NULL
;
213 if (atomic_dec_and_test(&dd
->user_refcount
))
214 complete(&dd
->user_comp
);
222 static long hfi1_file_ioctl(struct file
*fp
, unsigned int cmd
,
225 struct hfi1_filedata
*fd
= fp
->private_data
;
226 struct hfi1_ctxtdata
*uctxt
= fd
->uctxt
;
230 hfi1_cdbg(IOCTL
, "IOCTL recv: 0x%x", cmd
);
231 if (cmd
!= HFI1_IOCTL_ASSIGN_CTXT
&&
232 cmd
!= HFI1_IOCTL_GET_VERS
&&
237 case HFI1_IOCTL_ASSIGN_CTXT
:
238 ret
= assign_ctxt(fd
, arg
, _IOC_SIZE(cmd
));
241 case HFI1_IOCTL_CTXT_INFO
:
242 ret
= get_ctxt_info(fd
, arg
, _IOC_SIZE(cmd
));
245 case HFI1_IOCTL_USER_INFO
:
246 ret
= get_base_info(fd
, arg
, _IOC_SIZE(cmd
));
249 case HFI1_IOCTL_CREDIT_UPD
:
251 sc_return_credits(uctxt
->sc
);
254 case HFI1_IOCTL_TID_UPDATE
:
255 ret
= user_exp_rcv_setup(fd
, arg
, _IOC_SIZE(cmd
));
258 case HFI1_IOCTL_TID_FREE
:
259 ret
= user_exp_rcv_clear(fd
, arg
, _IOC_SIZE(cmd
));
262 case HFI1_IOCTL_TID_INVAL_READ
:
263 ret
= user_exp_rcv_invalid(fd
, arg
, _IOC_SIZE(cmd
));
266 case HFI1_IOCTL_RECV_CTRL
:
267 ret
= manage_rcvq(uctxt
, fd
->subctxt
, arg
);
270 case HFI1_IOCTL_POLL_TYPE
:
271 if (get_user(uval
, (int __user
*)arg
))
273 uctxt
->poll_type
= (typeof(uctxt
->poll_type
))uval
;
276 case HFI1_IOCTL_ACK_EVENT
:
277 ret
= user_event_ack(uctxt
, fd
->subctxt
, arg
);
280 case HFI1_IOCTL_SET_PKEY
:
281 ret
= set_ctxt_pkey(uctxt
, arg
);
284 case HFI1_IOCTL_CTXT_RESET
:
285 ret
= ctxt_reset(uctxt
);
288 case HFI1_IOCTL_GET_VERS
:
289 uval
= HFI1_USER_SWVERSION
;
290 if (put_user(uval
, (int __user
*)arg
))
301 static ssize_t
hfi1_write_iter(struct kiocb
*kiocb
, struct iov_iter
*from
)
303 struct hfi1_filedata
*fd
= kiocb
->ki_filp
->private_data
;
304 struct hfi1_user_sdma_pkt_q
*pq
= fd
->pq
;
305 struct hfi1_user_sdma_comp_q
*cq
= fd
->cq
;
306 int done
= 0, reqs
= 0;
307 unsigned long dim
= from
->nr_segs
;
312 if (!iter_is_iovec(from
) || !dim
)
315 trace_hfi1_sdma_request(fd
->dd
, fd
->uctxt
->ctxt
, fd
->subctxt
, dim
);
317 if (atomic_read(&pq
->n_reqs
) == pq
->n_max_reqs
)
322 unsigned long count
= 0;
324 ret
= hfi1_user_sdma_process_request(
325 fd
, (struct iovec
*)(from
->iov
+ done
),
339 static int hfi1_file_mmap(struct file
*fp
, struct vm_area_struct
*vma
)
341 struct hfi1_filedata
*fd
= fp
->private_data
;
342 struct hfi1_ctxtdata
*uctxt
= fd
->uctxt
;
343 struct hfi1_devdata
*dd
;
345 u64 token
= vma
->vm_pgoff
<< PAGE_SHIFT
,
347 void *memvirt
= NULL
;
348 u8 subctxt
, mapio
= 0, vmf
= 0, type
;
353 if (!is_valid_mmap(token
) || !uctxt
||
354 !(vma
->vm_flags
& VM_SHARED
)) {
359 ctxt
= HFI1_MMAP_TOKEN_GET(CTXT
, token
);
360 subctxt
= HFI1_MMAP_TOKEN_GET(SUBCTXT
, token
);
361 type
= HFI1_MMAP_TOKEN_GET(TYPE
, token
);
362 if (ctxt
!= uctxt
->ctxt
|| subctxt
!= fd
->subctxt
) {
367 flags
= vma
->vm_flags
;
372 memaddr
= ((dd
->physaddr
+ TXE_PIO_SEND
) +
374 (uctxt
->sc
->hw_context
* BIT(16))) +
375 /* 64K PIO space / ctxt */
376 (type
== PIO_BUFS_SOP
?
377 (TXE_PIO_SIZE
/ 2) : 0); /* sop? */
379 * Map only the amount allocated to the context, not the
380 * entire available context's PIO space.
382 memlen
= PAGE_ALIGN(uctxt
->sc
->credits
* PIO_BLOCK_SIZE
);
383 flags
&= ~VM_MAYREAD
;
384 flags
|= VM_DONTCOPY
| VM_DONTEXPAND
;
385 vma
->vm_page_prot
= pgprot_writecombine(vma
->vm_page_prot
);
389 if (flags
& VM_WRITE
) {
394 * The credit return location for this context could be on the
395 * second or third page allocated for credit returns (if number
396 * of enabled contexts > 64 and 128 respectively).
398 memvirt
= dd
->cr_base
[uctxt
->numa_id
].va
;
399 memaddr
= virt_to_phys(memvirt
) +
400 (((u64
)uctxt
->sc
->hw_free
-
401 (u64
)dd
->cr_base
[uctxt
->numa_id
].va
) & PAGE_MASK
);
403 flags
&= ~VM_MAYWRITE
;
404 flags
|= VM_DONTCOPY
| VM_DONTEXPAND
;
406 * The driver has already allocated memory for credit
407 * returns and programmed it into the chip. Has that
408 * memory been flagged as non-cached?
410 /* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */
414 memlen
= uctxt
->rcvhdrq_size
;
415 memvirt
= uctxt
->rcvhdrq
;
421 * The RcvEgr buffer need to be handled differently
422 * as multiple non-contiguous pages need to be mapped
423 * into the user process.
425 memlen
= uctxt
->egrbufs
.size
;
426 if ((vma
->vm_end
- vma
->vm_start
) != memlen
) {
427 dd_dev_err(dd
, "Eager buffer map size invalid (%lu != %lu)\n",
428 (vma
->vm_end
- vma
->vm_start
), memlen
);
432 if (vma
->vm_flags
& VM_WRITE
) {
436 vma
->vm_flags
&= ~VM_MAYWRITE
;
437 addr
= vma
->vm_start
;
438 for (i
= 0 ; i
< uctxt
->egrbufs
.numbufs
; i
++) {
439 memlen
= uctxt
->egrbufs
.buffers
[i
].len
;
440 memvirt
= uctxt
->egrbufs
.buffers
[i
].addr
;
441 ret
= remap_pfn_range(
444 * virt_to_pfn() does the same, but
445 * it's not available on x86_64
446 * when CONFIG_MMU is enabled.
448 PFN_DOWN(__pa(memvirt
)),
460 * Map only the page that contains this context's user
463 memaddr
= (unsigned long)
464 (dd
->physaddr
+ RXE_PER_CONTEXT_USER
)
465 + (uctxt
->ctxt
* RXE_PER_CONTEXT_SIZE
);
467 * TidFlow table is on the same page as the rest of the
471 flags
|= VM_DONTCOPY
| VM_DONTEXPAND
;
472 vma
->vm_page_prot
= pgprot_noncached(vma
->vm_page_prot
);
477 * Use the page where this context's flags are. User level
478 * knows where it's own bitmap is within the page.
480 memaddr
= (unsigned long)
481 (dd
->events
+ uctxt_offset(uctxt
)) & PAGE_MASK
;
484 * v3.7 removes VM_RESERVED but the effect is kept by
487 flags
|= VM_IO
| VM_DONTEXPAND
;
491 if (flags
& (unsigned long)(VM_WRITE
| VM_EXEC
)) {
495 memaddr
= kvirt_to_phys((void *)dd
->status
);
497 flags
|= VM_IO
| VM_DONTEXPAND
;
500 if (!HFI1_CAP_IS_USET(DMA_RTAIL
)) {
502 * If the memory allocation failed, the context alloc
503 * also would have failed, so we would never get here
508 if (flags
& VM_WRITE
) {
513 memvirt
= (void *)uctxt
->rcvhdrtail_kvaddr
;
514 flags
&= ~VM_MAYWRITE
;
517 memaddr
= (u64
)uctxt
->subctxt_uregbase
;
519 flags
|= VM_IO
| VM_DONTEXPAND
;
522 case SUBCTXT_RCV_HDRQ
:
523 memaddr
= (u64
)uctxt
->subctxt_rcvhdr_base
;
524 memlen
= uctxt
->rcvhdrq_size
* uctxt
->subctxt_cnt
;
525 flags
|= VM_IO
| VM_DONTEXPAND
;
529 memaddr
= (u64
)uctxt
->subctxt_rcvegrbuf
;
530 memlen
= uctxt
->egrbufs
.size
* uctxt
->subctxt_cnt
;
531 flags
|= VM_IO
| VM_DONTEXPAND
;
532 flags
&= ~VM_MAYWRITE
;
536 struct hfi1_user_sdma_comp_q
*cq
= fd
->cq
;
542 memaddr
= (u64
)cq
->comps
;
543 memlen
= PAGE_ALIGN(sizeof(*cq
->comps
) * cq
->nentries
);
544 flags
|= VM_IO
| VM_DONTEXPAND
;
553 if ((vma
->vm_end
- vma
->vm_start
) != memlen
) {
554 hfi1_cdbg(PROC
, "%u:%u Memory size mismatch %lu:%lu",
555 uctxt
->ctxt
, fd
->subctxt
,
556 (vma
->vm_end
- vma
->vm_start
), memlen
);
561 vma
->vm_flags
= flags
;
563 "%u:%u type:%u io/vf:%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx\n",
564 ctxt
, subctxt
, type
, mapio
, vmf
, memaddr
, memlen
,
565 vma
->vm_end
- vma
->vm_start
, vma
->vm_flags
);
567 vma
->vm_pgoff
= PFN_DOWN(memaddr
);
568 vma
->vm_ops
= &vm_ops
;
571 ret
= io_remap_pfn_range(vma
, vma
->vm_start
,
575 } else if (memvirt
) {
576 ret
= remap_pfn_range(vma
, vma
->vm_start
,
577 PFN_DOWN(__pa(memvirt
)),
581 ret
= remap_pfn_range(vma
, vma
->vm_start
,
591 * Local (non-chip) user memory is not mapped right away but as it is
592 * accessed by the user-level code.
594 static int vma_fault(struct vm_fault
*vmf
)
598 page
= vmalloc_to_page((void *)(vmf
->pgoff
<< PAGE_SHIFT
));
600 return VM_FAULT_SIGBUS
;
608 static __poll_t
hfi1_poll(struct file
*fp
, struct poll_table_struct
*pt
)
610 struct hfi1_ctxtdata
*uctxt
;
613 uctxt
= ((struct hfi1_filedata
*)fp
->private_data
)->uctxt
;
616 else if (uctxt
->poll_type
== HFI1_POLL_TYPE_URGENT
)
617 pollflag
= poll_urgent(fp
, pt
);
618 else if (uctxt
->poll_type
== HFI1_POLL_TYPE_ANYRCV
)
619 pollflag
= poll_next(fp
, pt
);
626 static int hfi1_file_close(struct inode
*inode
, struct file
*fp
)
628 struct hfi1_filedata
*fdata
= fp
->private_data
;
629 struct hfi1_ctxtdata
*uctxt
= fdata
->uctxt
;
630 struct hfi1_devdata
*dd
= container_of(inode
->i_cdev
,
633 unsigned long flags
, *ev
;
635 fp
->private_data
= NULL
;
640 hfi1_cdbg(PROC
, "closing ctxt %u:%u", uctxt
->ctxt
, fdata
->subctxt
);
643 /* drain user sdma queue */
644 hfi1_user_sdma_free_queues(fdata
, uctxt
);
646 /* release the cpu */
647 hfi1_put_proc_affinity(fdata
->rec_cpu_num
);
649 /* clean up rcv side */
650 hfi1_user_exp_rcv_free(fdata
);
653 * fdata->uctxt is used in the above cleanup. It is not ready to be
654 * removed until here.
660 * Clear any left over, unhandled events so the next process that
661 * gets this context doesn't get confused.
663 ev
= dd
->events
+ uctxt_offset(uctxt
) + fdata
->subctxt
;
666 spin_lock_irqsave(&dd
->uctxt_lock
, flags
);
667 __clear_bit(fdata
->subctxt
, uctxt
->in_use_ctxts
);
668 if (!bitmap_empty(uctxt
->in_use_ctxts
, HFI1_MAX_SHARED_CTXTS
)) {
669 spin_unlock_irqrestore(&dd
->uctxt_lock
, flags
);
672 spin_unlock_irqrestore(&dd
->uctxt_lock
, flags
);
675 * Disable receive context and interrupt available, reset all
676 * RcvCtxtCtrl bits to default values.
678 hfi1_rcvctrl(dd
, HFI1_RCVCTRL_CTXT_DIS
|
679 HFI1_RCVCTRL_TIDFLOW_DIS
|
680 HFI1_RCVCTRL_INTRAVAIL_DIS
|
681 HFI1_RCVCTRL_TAILUPD_DIS
|
682 HFI1_RCVCTRL_ONE_PKT_EGR_DIS
|
683 HFI1_RCVCTRL_NO_RHQ_DROP_DIS
|
684 HFI1_RCVCTRL_NO_EGR_DROP_DIS
, uctxt
);
685 /* Clear the context's J_KEY */
686 hfi1_clear_ctxt_jkey(dd
, uctxt
);
688 * If a send context is allocated, reset context integrity
689 * checks to default and disable the send context.
692 set_pio_integrity(uctxt
->sc
);
693 sc_disable(uctxt
->sc
);
696 hfi1_free_ctxt_rcv_groups(uctxt
);
697 hfi1_clear_ctxt_pkey(dd
, uctxt
);
699 uctxt
->event_flags
= 0;
701 deallocate_ctxt(uctxt
);
704 kobject_put(&dd
->kobj
);
706 if (atomic_dec_and_test(&dd
->user_refcount
))
707 complete(&dd
->user_comp
);
714 * Convert kernel *virtual* addresses to physical addresses.
715 * This is used to vmalloc'ed addresses.
717 static u64
kvirt_to_phys(void *addr
)
722 page
= vmalloc_to_page(addr
);
724 paddr
= page_to_pfn(page
) << PAGE_SHIFT
;
731 * @fd: valid filedata pointer
733 * Sub-context info can only be set up after the base context
734 * has been completed. This is indicated by the clearing of the
735 * HFI1_CTXT_BASE_UINIT bit.
737 * Wait for the bit to be cleared, and then complete the subcontext
741 static int complete_subctxt(struct hfi1_filedata
*fd
)
747 * sub-context info can only be set up after the base context
748 * has been completed.
750 ret
= wait_event_interruptible(
752 !test_bit(HFI1_CTXT_BASE_UNINIT
, &fd
->uctxt
->event_flags
));
754 if (test_bit(HFI1_CTXT_BASE_FAILED
, &fd
->uctxt
->event_flags
))
757 /* Finish the sub-context init */
759 fd
->rec_cpu_num
= hfi1_get_proc_affinity(fd
->uctxt
->numa_id
);
760 ret
= init_user_ctxt(fd
, fd
->uctxt
);
764 spin_lock_irqsave(&fd
->dd
->uctxt_lock
, flags
);
765 __clear_bit(fd
->subctxt
, fd
->uctxt
->in_use_ctxts
);
766 spin_unlock_irqrestore(&fd
->dd
->uctxt_lock
, flags
);
767 hfi1_rcd_put(fd
->uctxt
);
774 static int assign_ctxt(struct hfi1_filedata
*fd
, unsigned long arg
, u32 len
)
777 unsigned int swmajor
;
778 struct hfi1_ctxtdata
*uctxt
= NULL
;
779 struct hfi1_user_info uinfo
;
784 if (sizeof(uinfo
) != len
)
787 if (copy_from_user(&uinfo
, (void __user
*)arg
, sizeof(uinfo
)))
790 swmajor
= uinfo
.userversion
>> 16;
791 if (swmajor
!= HFI1_USER_SWMAJOR
)
794 if (uinfo
.subctxt_cnt
> HFI1_MAX_SHARED_CTXTS
)
798 * Acquire the mutex to protect against multiple creations of what
799 * could be a shared base context.
801 mutex_lock(&hfi1_mutex
);
803 * Get a sub context if available (fd->uctxt will be set).
804 * ret < 0 error, 0 no context, 1 sub-context found
806 ret
= find_sub_ctxt(fd
, &uinfo
);
809 * Allocate a base context if context sharing is not required or a
810 * sub context wasn't found.
813 ret
= allocate_ctxt(fd
, fd
->dd
, &uinfo
, &uctxt
);
815 mutex_unlock(&hfi1_mutex
);
817 /* Depending on the context type, finish the appropriate init */
820 ret
= setup_base_ctxt(fd
, uctxt
);
822 deallocate_ctxt(uctxt
);
825 ret
= complete_subctxt(fd
);
836 * @fd: valid filedata pointer
837 * @uinfo: user info to compare base context with
838 * @uctxt: context to compare uinfo to.
840 * Compare the given context with the given information to see if it
841 * can be used for a sub context.
843 static int match_ctxt(struct hfi1_filedata
*fd
,
844 const struct hfi1_user_info
*uinfo
,
845 struct hfi1_ctxtdata
*uctxt
)
847 struct hfi1_devdata
*dd
= fd
->dd
;
851 /* Skip dynamically allocated kernel contexts */
852 if (uctxt
->sc
&& (uctxt
->sc
->type
== SC_KERNEL
))
855 /* Skip ctxt if it doesn't match the requested one */
856 if (memcmp(uctxt
->uuid
, uinfo
->uuid
, sizeof(uctxt
->uuid
)) ||
857 uctxt
->jkey
!= generate_jkey(current_uid()) ||
858 uctxt
->subctxt_id
!= uinfo
->subctxt_id
||
859 uctxt
->subctxt_cnt
!= uinfo
->subctxt_cnt
)
862 /* Verify the sharing process matches the base */
863 if (uctxt
->userversion
!= uinfo
->userversion
)
866 /* Find an unused sub context */
867 spin_lock_irqsave(&dd
->uctxt_lock
, flags
);
868 if (bitmap_empty(uctxt
->in_use_ctxts
, HFI1_MAX_SHARED_CTXTS
)) {
869 /* context is being closed, do not use */
870 spin_unlock_irqrestore(&dd
->uctxt_lock
, flags
);
874 subctxt
= find_first_zero_bit(uctxt
->in_use_ctxts
,
875 HFI1_MAX_SHARED_CTXTS
);
876 if (subctxt
>= uctxt
->subctxt_cnt
) {
877 spin_unlock_irqrestore(&dd
->uctxt_lock
, flags
);
881 fd
->subctxt
= subctxt
;
882 __set_bit(fd
->subctxt
, uctxt
->in_use_ctxts
);
883 spin_unlock_irqrestore(&dd
->uctxt_lock
, flags
);
893 * @fd: valid filedata pointer
894 * @uinfo: matching info to use to find a possible context to share.
896 * The hfi1_mutex must be held when this function is called. It is
897 * necessary to ensure serialized creation of shared contexts.
900 * 0 No sub-context found
901 * 1 Subcontext found and allocated
902 * errno EINVAL (incorrect parameters)
903 * EBUSY (all sub contexts in use)
905 static int find_sub_ctxt(struct hfi1_filedata
*fd
,
906 const struct hfi1_user_info
*uinfo
)
908 struct hfi1_ctxtdata
*uctxt
;
909 struct hfi1_devdata
*dd
= fd
->dd
;
913 if (!uinfo
->subctxt_cnt
)
916 for (i
= dd
->first_dyn_alloc_ctxt
; i
< dd
->num_rcv_contexts
; i
++) {
917 uctxt
= hfi1_rcd_get_by_index(dd
, i
);
919 ret
= match_ctxt(fd
, uinfo
, uctxt
);
921 /* value of != 0 will return */
930 static int allocate_ctxt(struct hfi1_filedata
*fd
, struct hfi1_devdata
*dd
,
931 struct hfi1_user_info
*uinfo
,
932 struct hfi1_ctxtdata
**rcd
)
934 struct hfi1_ctxtdata
*uctxt
;
937 if (dd
->flags
& HFI1_FROZEN
) {
939 * Pick an error that is unique from all other errors
940 * that are returned so the user process knows that
941 * it tried to allocate while the SPC was frozen. It
942 * it should be able to retry with success in a short
952 * If we don't have a NUMA node requested, preference is towards
955 fd
->rec_cpu_num
= hfi1_get_proc_affinity(dd
->node
);
956 if (fd
->rec_cpu_num
!= -1)
957 numa
= cpu_to_node(fd
->rec_cpu_num
);
959 numa
= numa_node_id();
960 ret
= hfi1_create_ctxtdata(dd
->pport
, numa
, &uctxt
);
962 dd_dev_err(dd
, "user ctxtdata allocation failed\n");
965 hfi1_cdbg(PROC
, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)",
966 uctxt
->ctxt
, fd
->subctxt
, current
->pid
, fd
->rec_cpu_num
,
970 * Allocate and enable a PIO send context.
972 uctxt
->sc
= sc_alloc(dd
, SC_USER
, uctxt
->rcvhdrqentsize
, dd
->node
);
977 hfi1_cdbg(PROC
, "allocated send context %u(%u)\n", uctxt
->sc
->sw_index
,
978 uctxt
->sc
->hw_context
);
979 ret
= sc_enable(uctxt
->sc
);
984 * Setup sub context information if the user-level has requested
986 * This has to be done here so the rest of the sub-contexts find the
987 * proper base context.
989 if (uinfo
->subctxt_cnt
)
990 init_subctxts(uctxt
, uinfo
);
991 uctxt
->userversion
= uinfo
->userversion
;
992 uctxt
->flags
= hfi1_cap_mask
; /* save current flag state */
993 init_waitqueue_head(&uctxt
->wait
);
994 strlcpy(uctxt
->comm
, current
->comm
, sizeof(uctxt
->comm
));
995 memcpy(uctxt
->uuid
, uinfo
->uuid
, sizeof(uctxt
->uuid
));
996 uctxt
->jkey
= generate_jkey(current_uid());
997 hfi1_stats
.sps_ctxts
++;
999 * Disable ASPM when there are open user/PSM contexts to avoid
1000 * issues with ASPM L1 exit latency
1002 if (dd
->freectxts
-- == dd
->num_user_contexts
)
1003 aspm_disable_all(dd
);
1010 hfi1_free_ctxt(uctxt
);
1014 static void deallocate_ctxt(struct hfi1_ctxtdata
*uctxt
)
1016 mutex_lock(&hfi1_mutex
);
1017 hfi1_stats
.sps_ctxts
--;
1018 if (++uctxt
->dd
->freectxts
== uctxt
->dd
->num_user_contexts
)
1019 aspm_enable_all(uctxt
->dd
);
1020 mutex_unlock(&hfi1_mutex
);
1022 hfi1_free_ctxt(uctxt
);
1025 static void init_subctxts(struct hfi1_ctxtdata
*uctxt
,
1026 const struct hfi1_user_info
*uinfo
)
1028 uctxt
->subctxt_cnt
= uinfo
->subctxt_cnt
;
1029 uctxt
->subctxt_id
= uinfo
->subctxt_id
;
1030 set_bit(HFI1_CTXT_BASE_UNINIT
, &uctxt
->event_flags
);
1033 static int setup_subctxt(struct hfi1_ctxtdata
*uctxt
)
1036 u16 num_subctxts
= uctxt
->subctxt_cnt
;
1038 uctxt
->subctxt_uregbase
= vmalloc_user(PAGE_SIZE
);
1039 if (!uctxt
->subctxt_uregbase
)
1042 /* We can take the size of the RcvHdr Queue from the master */
1043 uctxt
->subctxt_rcvhdr_base
= vmalloc_user(uctxt
->rcvhdrq_size
*
1045 if (!uctxt
->subctxt_rcvhdr_base
) {
1050 uctxt
->subctxt_rcvegrbuf
= vmalloc_user(uctxt
->egrbufs
.size
*
1052 if (!uctxt
->subctxt_rcvegrbuf
) {
1060 vfree(uctxt
->subctxt_rcvhdr_base
);
1061 uctxt
->subctxt_rcvhdr_base
= NULL
;
1063 vfree(uctxt
->subctxt_uregbase
);
1064 uctxt
->subctxt_uregbase
= NULL
;
1069 static void user_init(struct hfi1_ctxtdata
*uctxt
)
1071 unsigned int rcvctrl_ops
= 0;
1073 /* initialize poll variables... */
1075 uctxt
->urgent_poll
= 0;
1078 * Now enable the ctxt for receive.
1079 * For chips that are set to DMA the tail register to memory
1080 * when they change (and when the update bit transitions from
1081 * 0 to 1. So for those chips, we turn it off and then back on.
1082 * This will (very briefly) affect any other open ctxts, but the
1083 * duration is very short, and therefore isn't an issue. We
1084 * explicitly set the in-memory tail copy to 0 beforehand, so we
1085 * don't have to wait to be sure the DMA update has happened
1086 * (chip resets head/tail to 0 on transition to enable).
1088 if (uctxt
->rcvhdrtail_kvaddr
)
1089 clear_rcvhdrtail(uctxt
);
1091 /* Setup J_KEY before enabling the context */
1092 hfi1_set_ctxt_jkey(uctxt
->dd
, uctxt
, uctxt
->jkey
);
1094 rcvctrl_ops
= HFI1_RCVCTRL_CTXT_ENB
;
1095 if (HFI1_CAP_UGET_MASK(uctxt
->flags
, HDRSUPP
))
1096 rcvctrl_ops
|= HFI1_RCVCTRL_TIDFLOW_ENB
;
1098 * Ignore the bit in the flags for now until proper
1099 * support for multiple packet per rcv array entry is
1102 if (!HFI1_CAP_UGET_MASK(uctxt
->flags
, MULTI_PKT_EGR
))
1103 rcvctrl_ops
|= HFI1_RCVCTRL_ONE_PKT_EGR_ENB
;
1104 if (HFI1_CAP_UGET_MASK(uctxt
->flags
, NODROP_EGR_FULL
))
1105 rcvctrl_ops
|= HFI1_RCVCTRL_NO_EGR_DROP_ENB
;
1106 if (HFI1_CAP_UGET_MASK(uctxt
->flags
, NODROP_RHQ_FULL
))
1107 rcvctrl_ops
|= HFI1_RCVCTRL_NO_RHQ_DROP_ENB
;
1109 * The RcvCtxtCtrl.TailUpd bit has to be explicitly written.
1110 * We can't rely on the correct value to be set from prior
1111 * uses of the chip or ctxt. Therefore, add the rcvctrl op
1114 if (HFI1_CAP_UGET_MASK(uctxt
->flags
, DMA_RTAIL
))
1115 rcvctrl_ops
|= HFI1_RCVCTRL_TAILUPD_ENB
;
1117 rcvctrl_ops
|= HFI1_RCVCTRL_TAILUPD_DIS
;
1118 hfi1_rcvctrl(uctxt
->dd
, rcvctrl_ops
, uctxt
);
1121 static int get_ctxt_info(struct hfi1_filedata
*fd
, unsigned long arg
, u32 len
)
1123 struct hfi1_ctxt_info cinfo
;
1124 struct hfi1_ctxtdata
*uctxt
= fd
->uctxt
;
1126 if (sizeof(cinfo
) != len
)
1129 memset(&cinfo
, 0, sizeof(cinfo
));
1130 cinfo
.runtime_flags
= (((uctxt
->flags
>> HFI1_CAP_MISC_SHIFT
) &
1131 HFI1_CAP_MISC_MASK
) << HFI1_CAP_USER_SHIFT
) |
1132 HFI1_CAP_UGET_MASK(uctxt
->flags
, MASK
) |
1133 HFI1_CAP_KGET_MASK(uctxt
->flags
, K2U
);
1134 /* adjust flag if this fd is not able to cache */
1136 cinfo
.runtime_flags
|= HFI1_CAP_TID_UNMAP
; /* no caching */
1138 cinfo
.num_active
= hfi1_count_active_units();
1139 cinfo
.unit
= uctxt
->dd
->unit
;
1140 cinfo
.ctxt
= uctxt
->ctxt
;
1141 cinfo
.subctxt
= fd
->subctxt
;
1142 cinfo
.rcvtids
= roundup(uctxt
->egrbufs
.alloced
,
1143 uctxt
->dd
->rcv_entries
.group_size
) +
1144 uctxt
->expected_count
;
1145 cinfo
.credits
= uctxt
->sc
->credits
;
1146 cinfo
.numa_node
= uctxt
->numa_id
;
1147 cinfo
.rec_cpu
= fd
->rec_cpu_num
;
1148 cinfo
.send_ctxt
= uctxt
->sc
->hw_context
;
1150 cinfo
.egrtids
= uctxt
->egrbufs
.alloced
;
1151 cinfo
.rcvhdrq_cnt
= uctxt
->rcvhdrq_cnt
;
1152 cinfo
.rcvhdrq_entsize
= uctxt
->rcvhdrqentsize
<< 2;
1153 cinfo
.sdma_ring_size
= fd
->cq
->nentries
;
1154 cinfo
.rcvegr_size
= uctxt
->egrbufs
.rcvtid_size
;
1156 trace_hfi1_ctxt_info(uctxt
->dd
, uctxt
->ctxt
, fd
->subctxt
, cinfo
);
1157 if (copy_to_user((void __user
*)arg
, &cinfo
, len
))
1163 static int init_user_ctxt(struct hfi1_filedata
*fd
,
1164 struct hfi1_ctxtdata
*uctxt
)
1168 ret
= hfi1_user_sdma_alloc_queues(uctxt
, fd
);
1172 ret
= hfi1_user_exp_rcv_init(fd
, uctxt
);
1174 hfi1_user_sdma_free_queues(fd
, uctxt
);
1179 static int setup_base_ctxt(struct hfi1_filedata
*fd
,
1180 struct hfi1_ctxtdata
*uctxt
)
1182 struct hfi1_devdata
*dd
= uctxt
->dd
;
1185 hfi1_init_ctxt(uctxt
->sc
);
1187 /* Now allocate the RcvHdr queue and eager buffers. */
1188 ret
= hfi1_create_rcvhdrq(dd
, uctxt
);
1192 ret
= hfi1_setup_eagerbufs(uctxt
);
1196 /* If sub-contexts are enabled, do the appropriate setup */
1197 if (uctxt
->subctxt_cnt
)
1198 ret
= setup_subctxt(uctxt
);
1202 ret
= hfi1_alloc_ctxt_rcv_groups(uctxt
);
1206 ret
= init_user_ctxt(fd
, uctxt
);
1212 /* Now that the context is set up, the fd can get a reference. */
1214 hfi1_rcd_get(uctxt
);
1217 if (uctxt
->subctxt_cnt
) {
1219 * On error, set the failed bit so sub-contexts will clean up
1223 set_bit(HFI1_CTXT_BASE_FAILED
, &uctxt
->event_flags
);
1226 * Base context is done (successfully or not), notify anybody
1227 * using a sub-context that is waiting for this completion.
1229 clear_bit(HFI1_CTXT_BASE_UNINIT
, &uctxt
->event_flags
);
1230 wake_up(&uctxt
->wait
);
1236 static int get_base_info(struct hfi1_filedata
*fd
, unsigned long arg
, u32 len
)
1238 struct hfi1_base_info binfo
;
1239 struct hfi1_ctxtdata
*uctxt
= fd
->uctxt
;
1240 struct hfi1_devdata
*dd
= uctxt
->dd
;
1243 trace_hfi1_uctxtdata(uctxt
->dd
, uctxt
, fd
->subctxt
);
1245 if (sizeof(binfo
) != len
)
1248 memset(&binfo
, 0, sizeof(binfo
));
1249 binfo
.hw_version
= dd
->revision
;
1250 binfo
.sw_version
= HFI1_KERN_SWVERSION
;
1251 binfo
.bthqp
= kdeth_qp
;
1252 binfo
.jkey
= uctxt
->jkey
;
1254 * If more than 64 contexts are enabled the allocated credit
1255 * return will span two or three contiguous pages. Since we only
1256 * map the page containing the context's credit return address,
1257 * we need to calculate the offset in the proper page.
1259 offset
= ((u64
)uctxt
->sc
->hw_free
-
1260 (u64
)dd
->cr_base
[uctxt
->numa_id
].va
) % PAGE_SIZE
;
1261 binfo
.sc_credits_addr
= HFI1_MMAP_TOKEN(PIO_CRED
, uctxt
->ctxt
,
1262 fd
->subctxt
, offset
);
1263 binfo
.pio_bufbase
= HFI1_MMAP_TOKEN(PIO_BUFS
, uctxt
->ctxt
,
1265 uctxt
->sc
->base_addr
);
1266 binfo
.pio_bufbase_sop
= HFI1_MMAP_TOKEN(PIO_BUFS_SOP
,
1269 uctxt
->sc
->base_addr
);
1270 binfo
.rcvhdr_bufbase
= HFI1_MMAP_TOKEN(RCV_HDRQ
, uctxt
->ctxt
,
1273 binfo
.rcvegr_bufbase
= HFI1_MMAP_TOKEN(RCV_EGRBUF
, uctxt
->ctxt
,
1275 uctxt
->egrbufs
.rcvtids
[0].dma
);
1276 binfo
.sdma_comp_bufbase
= HFI1_MMAP_TOKEN(SDMA_COMP
, uctxt
->ctxt
,
1280 * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE))
1282 binfo
.user_regbase
= HFI1_MMAP_TOKEN(UREGS
, uctxt
->ctxt
,
1284 offset
= offset_in_page((uctxt_offset(uctxt
) + fd
->subctxt
) *
1285 sizeof(*dd
->events
));
1286 binfo
.events_bufbase
= HFI1_MMAP_TOKEN(EVENTS
, uctxt
->ctxt
,
1289 binfo
.status_bufbase
= HFI1_MMAP_TOKEN(STATUS
, uctxt
->ctxt
,
1292 if (HFI1_CAP_IS_USET(DMA_RTAIL
))
1293 binfo
.rcvhdrtail_base
= HFI1_MMAP_TOKEN(RTAIL
, uctxt
->ctxt
,
1295 if (uctxt
->subctxt_cnt
) {
1296 binfo
.subctxt_uregbase
= HFI1_MMAP_TOKEN(SUBCTXT_UREGS
,
1299 binfo
.subctxt_rcvhdrbuf
= HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ
,
1302 binfo
.subctxt_rcvegrbuf
= HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF
,
1307 if (copy_to_user((void __user
*)arg
, &binfo
, len
))
1314 * user_exp_rcv_setup - Set up the given tid rcv list
1315 * @fd: file data of the current driver instance
1316 * @arg: ioctl argumnent for user space information
1317 * @len: length of data structure associated with ioctl command
1319 * Wrapper to validate ioctl information before doing _rcv_setup.
1322 static int user_exp_rcv_setup(struct hfi1_filedata
*fd
, unsigned long arg
,
1327 struct hfi1_tid_info tinfo
;
1329 if (sizeof(tinfo
) != len
)
1332 if (copy_from_user(&tinfo
, (void __user
*)arg
, (sizeof(tinfo
))))
1335 ret
= hfi1_user_exp_rcv_setup(fd
, &tinfo
);
1338 * Copy the number of tidlist entries we used
1339 * and the length of the buffer we registered.
1341 addr
= arg
+ offsetof(struct hfi1_tid_info
, tidcnt
);
1342 if (copy_to_user((void __user
*)addr
, &tinfo
.tidcnt
,
1343 sizeof(tinfo
.tidcnt
)))
1346 addr
= arg
+ offsetof(struct hfi1_tid_info
, length
);
1347 if (copy_to_user((void __user
*)addr
, &tinfo
.length
,
1348 sizeof(tinfo
.length
)))
1356 * user_exp_rcv_clear - Clear the given tid rcv list
1357 * @fd: file data of the current driver instance
1358 * @arg: ioctl argumnent for user space information
1359 * @len: length of data structure associated with ioctl command
1361 * The hfi1_user_exp_rcv_clear() can be called from the error path. Because
1362 * of this, we need to use this wrapper to copy the user space information
1363 * before doing the clear.
1365 static int user_exp_rcv_clear(struct hfi1_filedata
*fd
, unsigned long arg
,
1370 struct hfi1_tid_info tinfo
;
1372 if (sizeof(tinfo
) != len
)
1375 if (copy_from_user(&tinfo
, (void __user
*)arg
, (sizeof(tinfo
))))
1378 ret
= hfi1_user_exp_rcv_clear(fd
, &tinfo
);
1380 addr
= arg
+ offsetof(struct hfi1_tid_info
, tidcnt
);
1381 if (copy_to_user((void __user
*)addr
, &tinfo
.tidcnt
,
1382 sizeof(tinfo
.tidcnt
)))
1390 * user_exp_rcv_invalid - Invalidate the given tid rcv list
1391 * @fd: file data of the current driver instance
1392 * @arg: ioctl argumnent for user space information
1393 * @len: length of data structure associated with ioctl command
1395 * Wrapper to validate ioctl information before doing _rcv_invalid.
1398 static int user_exp_rcv_invalid(struct hfi1_filedata
*fd
, unsigned long arg
,
1403 struct hfi1_tid_info tinfo
;
1405 if (sizeof(tinfo
) != len
)
1408 if (!fd
->invalid_tids
)
1411 if (copy_from_user(&tinfo
, (void __user
*)arg
, (sizeof(tinfo
))))
1414 ret
= hfi1_user_exp_rcv_invalid(fd
, &tinfo
);
1418 addr
= arg
+ offsetof(struct hfi1_tid_info
, tidcnt
);
1419 if (copy_to_user((void __user
*)addr
, &tinfo
.tidcnt
,
1420 sizeof(tinfo
.tidcnt
)))
1426 static __poll_t
poll_urgent(struct file
*fp
,
1427 struct poll_table_struct
*pt
)
1429 struct hfi1_filedata
*fd
= fp
->private_data
;
1430 struct hfi1_ctxtdata
*uctxt
= fd
->uctxt
;
1431 struct hfi1_devdata
*dd
= uctxt
->dd
;
1434 poll_wait(fp
, &uctxt
->wait
, pt
);
1436 spin_lock_irq(&dd
->uctxt_lock
);
1437 if (uctxt
->urgent
!= uctxt
->urgent_poll
) {
1438 pollflag
= EPOLLIN
| EPOLLRDNORM
;
1439 uctxt
->urgent_poll
= uctxt
->urgent
;
1442 set_bit(HFI1_CTXT_WAITING_URG
, &uctxt
->event_flags
);
1444 spin_unlock_irq(&dd
->uctxt_lock
);
1449 static __poll_t
poll_next(struct file
*fp
,
1450 struct poll_table_struct
*pt
)
1452 struct hfi1_filedata
*fd
= fp
->private_data
;
1453 struct hfi1_ctxtdata
*uctxt
= fd
->uctxt
;
1454 struct hfi1_devdata
*dd
= uctxt
->dd
;
1457 poll_wait(fp
, &uctxt
->wait
, pt
);
1459 spin_lock_irq(&dd
->uctxt_lock
);
1460 if (hdrqempty(uctxt
)) {
1461 set_bit(HFI1_CTXT_WAITING_RCV
, &uctxt
->event_flags
);
1462 hfi1_rcvctrl(dd
, HFI1_RCVCTRL_INTRAVAIL_ENB
, uctxt
);
1465 pollflag
= EPOLLIN
| EPOLLRDNORM
;
1467 spin_unlock_irq(&dd
->uctxt_lock
);
1473 * Find all user contexts in use, and set the specified bit in their
1475 * See also find_ctxt() for a similar use, that is specific to send buffers.
1477 int hfi1_set_uevent_bits(struct hfi1_pportdata
*ppd
, const int evtbit
)
1479 struct hfi1_ctxtdata
*uctxt
;
1480 struct hfi1_devdata
*dd
= ppd
->dd
;
1486 for (ctxt
= dd
->first_dyn_alloc_ctxt
; ctxt
< dd
->num_rcv_contexts
;
1488 uctxt
= hfi1_rcd_get_by_index(dd
, ctxt
);
1493 * subctxt_cnt is 0 if not shared, so do base
1494 * separately, first, then remaining subctxt, if any
1496 evs
= dd
->events
+ uctxt_offset(uctxt
);
1497 set_bit(evtbit
, evs
);
1498 for (i
= 1; i
< uctxt
->subctxt_cnt
; i
++)
1499 set_bit(evtbit
, evs
+ i
);
1500 hfi1_rcd_put(uctxt
);
1508 * manage_rcvq - manage a context's receive queue
1509 * @uctxt: the context
1510 * @subctxt: the sub-context
1511 * @start_stop: action to carry out
1513 * start_stop == 0 disables receive on the context, for use in queue
1514 * overflow conditions. start_stop==1 re-enables, to be used to
1515 * re-init the software copy of the head register
1517 static int manage_rcvq(struct hfi1_ctxtdata
*uctxt
, u16 subctxt
,
1520 struct hfi1_devdata
*dd
= uctxt
->dd
;
1521 unsigned int rcvctrl_op
;
1527 if (get_user(start_stop
, (int __user
*)arg
))
1530 /* atomically clear receive enable ctxt. */
1533 * On enable, force in-memory copy of the tail register to
1534 * 0, so that protocol code doesn't have to worry about
1535 * whether or not the chip has yet updated the in-memory
1536 * copy or not on return from the system call. The chip
1537 * always resets it's tail register back to 0 on a
1538 * transition from disabled to enabled.
1540 if (uctxt
->rcvhdrtail_kvaddr
)
1541 clear_rcvhdrtail(uctxt
);
1542 rcvctrl_op
= HFI1_RCVCTRL_CTXT_ENB
;
1544 rcvctrl_op
= HFI1_RCVCTRL_CTXT_DIS
;
1546 hfi1_rcvctrl(dd
, rcvctrl_op
, uctxt
);
1547 /* always; new head should be equal to new tail; see above */
1553 * clear the event notifier events for this context.
1554 * User process then performs actions appropriate to bit having been
1555 * set, if desired, and checks again in future.
1557 static int user_event_ack(struct hfi1_ctxtdata
*uctxt
, u16 subctxt
,
1561 struct hfi1_devdata
*dd
= uctxt
->dd
;
1563 unsigned long events
;
1568 if (get_user(events
, (unsigned long __user
*)arg
))
1571 evs
= dd
->events
+ uctxt_offset(uctxt
) + subctxt
;
1573 for (i
= 0; i
<= _HFI1_MAX_EVENT_BIT
; i
++) {
1574 if (!test_bit(i
, &events
))
1581 static int set_ctxt_pkey(struct hfi1_ctxtdata
*uctxt
, unsigned long arg
)
1584 struct hfi1_pportdata
*ppd
= uctxt
->ppd
;
1585 struct hfi1_devdata
*dd
= uctxt
->dd
;
1588 if (!HFI1_CAP_IS_USET(PKEY_CHECK
))
1591 if (get_user(pkey
, (u16 __user
*)arg
))
1594 if (pkey
== LIM_MGMT_P_KEY
|| pkey
== FULL_MGMT_P_KEY
)
1597 for (i
= 0; i
< ARRAY_SIZE(ppd
->pkeys
); i
++)
1598 if (pkey
== ppd
->pkeys
[i
])
1599 return hfi1_set_ctxt_pkey(dd
, uctxt
, pkey
);
1605 * ctxt_reset - Reset the user context
1606 * @uctxt: valid user context
1608 static int ctxt_reset(struct hfi1_ctxtdata
*uctxt
)
1610 struct send_context
*sc
;
1611 struct hfi1_devdata
*dd
;
1614 if (!uctxt
|| !uctxt
->dd
|| !uctxt
->sc
)
1618 * There is no protection here. User level has to guarantee that
1619 * no one will be writing to the send context while it is being
1620 * re-initialized. If user level breaks that guarantee, it will
1621 * break it's own context and no one else's.
1627 * Wait until the interrupt handler has marked the context as
1628 * halted or frozen. Report error if we time out.
1630 wait_event_interruptible_timeout(
1631 sc
->halt_wait
, (sc
->flags
& SCF_HALTED
),
1632 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT
));
1633 if (!(sc
->flags
& SCF_HALTED
))
1637 * If the send context was halted due to a Freeze, wait until the
1638 * device has been "unfrozen" before resetting the context.
1640 if (sc
->flags
& SCF_FROZEN
) {
1641 wait_event_interruptible_timeout(
1643 !(READ_ONCE(dd
->flags
) & HFI1_FROZEN
),
1644 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT
));
1645 if (dd
->flags
& HFI1_FROZEN
)
1648 if (dd
->flags
& HFI1_FORCED_FREEZE
)
1650 * Don't allow context reset if we are into
1656 ret
= sc_enable(sc
);
1657 hfi1_rcvctrl(dd
, HFI1_RCVCTRL_CTXT_ENB
, uctxt
);
1659 ret
= sc_restart(sc
);
1662 sc_return_credits(sc
);
1667 static void user_remove(struct hfi1_devdata
*dd
)
1670 hfi1_cdev_cleanup(&dd
->user_cdev
, &dd
->user_device
);
1673 static int user_add(struct hfi1_devdata
*dd
)
1678 snprintf(name
, sizeof(name
), "%s_%d", class_name(), dd
->unit
);
1679 ret
= hfi1_cdev_init(dd
->unit
, name
, &hfi1_file_ops
,
1680 &dd
->user_cdev
, &dd
->user_device
,
1689 * Create per-unit files in /dev
1691 int hfi1_device_create(struct hfi1_devdata
*dd
)
1693 return user_add(dd
);
1697 * Remove per-unit files in /dev
1698 * void, core kernel returns no errors for this stuff
1700 void hfi1_device_remove(struct hfi1_devdata
*dd
)