2 * Copyright(c) 2015-2017 Intel Corporation.
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 #include <linux/string.h>
51 #include "user_exp_rcv.h"
54 static void unlock_exp_tids(struct hfi1_ctxtdata
*uctxt
,
55 struct exp_tid_set
*set
,
56 struct hfi1_filedata
*fd
);
57 static u32
find_phys_blocks(struct tid_user_buf
*tidbuf
, unsigned int npages
);
58 static int set_rcvarray_entry(struct hfi1_filedata
*fd
,
59 struct tid_user_buf
*tbuf
,
60 u32 rcventry
, struct tid_group
*grp
,
61 u16 pageidx
, unsigned int npages
);
62 static int tid_rb_insert(void *arg
, struct mmu_rb_node
*node
);
63 static void cacheless_tid_rb_remove(struct hfi1_filedata
*fdata
,
64 struct tid_rb_node
*tnode
);
65 static void tid_rb_remove(void *arg
, struct mmu_rb_node
*node
);
66 static int tid_rb_invalidate(void *arg
, struct mmu_rb_node
*mnode
);
67 static int program_rcvarray(struct hfi1_filedata
*fd
, struct tid_user_buf
*,
68 struct tid_group
*grp
,
69 unsigned int start
, u16 count
,
70 u32
*tidlist
, unsigned int *tididx
,
71 unsigned int *pmapped
);
72 static int unprogram_rcvarray(struct hfi1_filedata
*fd
, u32 tidinfo
,
73 struct tid_group
**grp
);
74 static void clear_tid_node(struct hfi1_filedata
*fd
, struct tid_rb_node
*node
);
76 static struct mmu_rb_ops tid_rb_ops
= {
77 .insert
= tid_rb_insert
,
78 .remove
= tid_rb_remove
,
79 .invalidate
= tid_rb_invalidate
83 * Initialize context and file private data needed for Expected
84 * receive caching. This needs to be done after the context has
85 * been configured with the eager/expected RcvEntry counts.
87 int hfi1_user_exp_rcv_init(struct hfi1_filedata
*fd
,
88 struct hfi1_ctxtdata
*uctxt
)
90 struct hfi1_devdata
*dd
= uctxt
->dd
;
93 spin_lock_init(&fd
->tid_lock
);
94 spin_lock_init(&fd
->invalid_lock
);
96 fd
->entry_to_rb
= kcalloc(uctxt
->expected_count
,
97 sizeof(struct rb_node
*),
102 if (!HFI1_CAP_UGET_MASK(uctxt
->flags
, TID_UNMAP
)) {
103 fd
->invalid_tid_idx
= 0;
104 fd
->invalid_tids
= kcalloc(uctxt
->expected_count
,
105 sizeof(*fd
->invalid_tids
),
107 if (!fd
->invalid_tids
) {
108 kfree(fd
->entry_to_rb
);
109 fd
->entry_to_rb
= NULL
;
114 * Register MMU notifier callbacks. If the registration
115 * fails, continue without TID caching for this context.
117 ret
= hfi1_mmu_rb_register(fd
, fd
->mm
, &tid_rb_ops
,
122 "Failed MMU notifier registration %d\n",
129 * PSM does not have a good way to separate, count, and
130 * effectively enforce a limit on RcvArray entries used by
131 * subctxts (when context sharing is used) when TID caching
132 * is enabled. To help with that, we calculate a per-process
133 * RcvArray entry share and enforce that.
134 * If TID caching is not in use, PSM deals with usage on its
135 * own. In that case, we allow any subctxt to take all of the
138 * Make sure that we set the tid counts only after successful
141 spin_lock(&fd
->tid_lock
);
142 if (uctxt
->subctxt_cnt
&& fd
->handler
) {
145 fd
->tid_limit
= uctxt
->expected_count
/ uctxt
->subctxt_cnt
;
146 remainder
= uctxt
->expected_count
% uctxt
->subctxt_cnt
;
147 if (remainder
&& fd
->subctxt
< remainder
)
150 fd
->tid_limit
= uctxt
->expected_count
;
152 spin_unlock(&fd
->tid_lock
);
157 void hfi1_user_exp_rcv_free(struct hfi1_filedata
*fd
)
159 struct hfi1_ctxtdata
*uctxt
= fd
->uctxt
;
162 * The notifier would have been removed when the process'es mm
166 hfi1_mmu_rb_unregister(fd
->handler
);
168 if (!EXP_TID_SET_EMPTY(uctxt
->tid_full_list
))
169 unlock_exp_tids(uctxt
, &uctxt
->tid_full_list
, fd
);
170 if (!EXP_TID_SET_EMPTY(uctxt
->tid_used_list
))
171 unlock_exp_tids(uctxt
, &uctxt
->tid_used_list
, fd
);
174 kfree(fd
->invalid_tids
);
175 fd
->invalid_tids
= NULL
;
177 kfree(fd
->entry_to_rb
);
178 fd
->entry_to_rb
= NULL
;
182 * Release pinned receive buffer pages.
184 * @mapped - true if the pages have been DMA mapped. false otherwise.
185 * @idx - Index of the first page to unpin.
186 * @npages - No of pages to unpin.
188 * If the pages have been DMA mapped (indicated by mapped parameter), their
189 * info will be passed via a struct tid_rb_node. If they haven't been mapped,
190 * their info will be passed via a struct tid_user_buf.
192 static void unpin_rcv_pages(struct hfi1_filedata
*fd
,
193 struct tid_user_buf
*tidbuf
,
194 struct tid_rb_node
*node
,
200 struct hfi1_devdata
*dd
= fd
->uctxt
->dd
;
203 pci_unmap_single(dd
->pcidev
, node
->dma_addr
,
204 node
->mmu
.len
, PCI_DMA_FROMDEVICE
);
205 pages
= &node
->pages
[idx
];
207 pages
= &tidbuf
->pages
[idx
];
209 hfi1_release_user_pages(fd
->mm
, pages
, npages
, mapped
);
210 fd
->tid_n_pinned
-= npages
;
214 * Pin receive buffer pages.
216 static int pin_rcv_pages(struct hfi1_filedata
*fd
, struct tid_user_buf
*tidbuf
)
220 unsigned long vaddr
= tidbuf
->vaddr
;
221 struct page
**pages
= NULL
;
222 struct hfi1_devdata
*dd
= fd
->uctxt
->dd
;
224 /* Get the number of pages the user buffer spans */
225 npages
= num_user_pages(vaddr
, tidbuf
->length
);
229 if (npages
> fd
->uctxt
->expected_count
) {
230 dd_dev_err(dd
, "Expected buffer too big\n");
234 /* Verify that access is OK for the user buffer */
235 if (!access_ok(VERIFY_WRITE
, (void __user
*)vaddr
,
236 npages
* PAGE_SIZE
)) {
237 dd_dev_err(dd
, "Fail vaddr %p, %u pages, !access_ok\n",
238 (void *)vaddr
, npages
);
241 /* Allocate the array of struct page pointers needed for pinning */
242 pages
= kcalloc(npages
, sizeof(*pages
), GFP_KERNEL
);
247 * Pin all the pages of the user buffer. If we can't pin all the
248 * pages, accept the amount pinned so far and program only that.
249 * User space knows how to deal with partially programmed buffers.
251 if (!hfi1_can_pin_pages(dd
, fd
->mm
, fd
->tid_n_pinned
, npages
)) {
256 pinned
= hfi1_acquire_user_pages(fd
->mm
, vaddr
, npages
, true, pages
);
261 tidbuf
->pages
= pages
;
262 tidbuf
->npages
= npages
;
263 fd
->tid_n_pinned
+= pinned
;
268 * RcvArray entry allocation for Expected Receives is done by the
269 * following algorithm:
271 * The context keeps 3 lists of groups of RcvArray entries:
272 * 1. List of empty groups - tid_group_list
273 * This list is created during user context creation and
274 * contains elements which describe sets (of 8) of empty
276 * 2. List of partially used groups - tid_used_list
277 * This list contains sets of RcvArray entries which are
278 * not completely used up. Another mapping request could
279 * use some of all of the remaining entries.
280 * 3. List of full groups - tid_full_list
281 * This is the list where sets that are completely used
284 * An attempt to optimize the usage of RcvArray entries is
285 * made by finding all sets of physically contiguous pages in a
287 * These physically contiguous sets are further split into
288 * sizes supported by the receive engine of the HFI. The
289 * resulting sets of pages are stored in struct tid_pageset,
290 * which describes the sets as:
291 * * .count - number of pages in this set
292 * * .idx - starting index into struct page ** array
295 * From this point on, the algorithm deals with the page sets
296 * described above. The number of pagesets is divided by the
297 * RcvArray group size to produce the number of full groups
300 * Groups from the 3 lists are manipulated using the following
302 * 1. For each set of 8 pagesets, a complete group from
303 * tid_group_list is taken, programmed, and moved to
304 * the tid_full_list list.
305 * 2. For all remaining pagesets:
306 * 2.1 If the tid_used_list is empty and the tid_group_list
307 * is empty, stop processing pageset and return only
308 * what has been programmed up to this point.
309 * 2.2 If the tid_used_list is empty and the tid_group_list
310 * is not empty, move a group from tid_group_list to
312 * 2.3 For each group is tid_used_group, program as much as
313 * can fit into the group. If the group becomes fully
314 * used, move it to tid_full_list.
316 int hfi1_user_exp_rcv_setup(struct hfi1_filedata
*fd
,
317 struct hfi1_tid_info
*tinfo
)
319 int ret
= 0, need_group
= 0, pinned
;
320 struct hfi1_ctxtdata
*uctxt
= fd
->uctxt
;
321 struct hfi1_devdata
*dd
= uctxt
->dd
;
322 unsigned int ngroups
, pageidx
= 0, pageset_count
,
323 tididx
= 0, mapped
, mapped_pages
= 0;
325 struct tid_user_buf
*tidbuf
;
327 tidbuf
= kzalloc(sizeof(*tidbuf
), GFP_KERNEL
);
331 tidbuf
->vaddr
= tinfo
->vaddr
;
332 tidbuf
->length
= tinfo
->length
;
333 tidbuf
->psets
= kcalloc(uctxt
->expected_count
, sizeof(*tidbuf
->psets
),
335 if (!tidbuf
->psets
) {
340 pinned
= pin_rcv_pages(fd
, tidbuf
);
342 kfree(tidbuf
->psets
);
347 /* Find sets of physically contiguous pages */
348 tidbuf
->n_psets
= find_phys_blocks(tidbuf
, pinned
);
351 * We don't need to access this under a lock since tid_used is per
352 * process and the same process cannot be in hfi1_user_exp_rcv_clear()
353 * and hfi1_user_exp_rcv_setup() at the same time.
355 spin_lock(&fd
->tid_lock
);
356 if (fd
->tid_used
+ tidbuf
->n_psets
> fd
->tid_limit
)
357 pageset_count
= fd
->tid_limit
- fd
->tid_used
;
359 pageset_count
= tidbuf
->n_psets
;
360 spin_unlock(&fd
->tid_lock
);
365 ngroups
= pageset_count
/ dd
->rcv_entries
.group_size
;
366 tidlist
= kcalloc(pageset_count
, sizeof(*tidlist
), GFP_KERNEL
);
375 * From this point on, we are going to be using shared (between master
376 * and subcontexts) context resources. We need to take the lock.
378 mutex_lock(&uctxt
->exp_lock
);
380 * The first step is to program the RcvArray entries which are complete
383 while (ngroups
&& uctxt
->tid_group_list
.count
) {
384 struct tid_group
*grp
=
385 tid_group_pop(&uctxt
->tid_group_list
);
387 ret
= program_rcvarray(fd
, tidbuf
, grp
,
388 pageidx
, dd
->rcv_entries
.group_size
,
389 tidlist
, &tididx
, &mapped
);
391 * If there was a failure to program the RcvArray
392 * entries for the entire group, reset the grp fields
393 * and add the grp back to the free group list.
396 tid_group_add_tail(grp
, &uctxt
->tid_group_list
);
398 "Failed to program RcvArray group %d", ret
);
402 tid_group_add_tail(grp
, &uctxt
->tid_full_list
);
405 mapped_pages
+= mapped
;
408 while (pageidx
< pageset_count
) {
409 struct tid_group
*grp
, *ptr
;
411 * If we don't have any partially used tid groups, check
412 * if we have empty groups. If so, take one from there and
413 * put in the partially used list.
415 if (!uctxt
->tid_used_list
.count
|| need_group
) {
416 if (!uctxt
->tid_group_list
.count
)
419 grp
= tid_group_pop(&uctxt
->tid_group_list
);
420 tid_group_add_tail(grp
, &uctxt
->tid_used_list
);
424 * There is an optimization opportunity here - instead of
425 * fitting as many page sets as we can, check for a group
426 * later on in the list that could fit all of them.
428 list_for_each_entry_safe(grp
, ptr
, &uctxt
->tid_used_list
.list
,
430 unsigned use
= min_t(unsigned, pageset_count
- pageidx
,
431 grp
->size
- grp
->used
);
433 ret
= program_rcvarray(fd
, tidbuf
, grp
,
434 pageidx
, use
, tidlist
,
438 "Failed to program RcvArray entries %d",
442 } else if (ret
> 0) {
443 if (grp
->used
== grp
->size
)
445 &uctxt
->tid_used_list
,
446 &uctxt
->tid_full_list
);
448 mapped_pages
+= mapped
;
450 /* Check if we are done so we break out early */
451 if (pageidx
>= pageset_count
)
453 } else if (WARN_ON(ret
== 0)) {
455 * If ret is 0, we did not program any entries
456 * into this group, which can only happen if
457 * we've screwed up the accounting somewhere.
458 * Warn and try to continue.
465 mutex_unlock(&uctxt
->exp_lock
);
467 hfi1_cdbg(TID
, "total mapped: tidpairs:%u pages:%u (%d)", tididx
,
470 spin_lock(&fd
->tid_lock
);
471 fd
->tid_used
+= tididx
;
472 spin_unlock(&fd
->tid_lock
);
473 tinfo
->tidcnt
= tididx
;
474 tinfo
->length
= mapped_pages
* PAGE_SIZE
;
476 if (copy_to_user((void __user
*)(unsigned long)tinfo
->tidlist
,
477 tidlist
, sizeof(tidlist
[0]) * tididx
)) {
479 * On failure to copy to the user level, we need to undo
480 * everything done so far so we don't leak resources.
482 tinfo
->tidlist
= (unsigned long)&tidlist
;
483 hfi1_user_exp_rcv_clear(fd
, tinfo
);
491 * If not everything was mapped (due to insufficient RcvArray entries,
492 * for example), unpin all unmapped pages so we can pin them nex time.
494 if (mapped_pages
!= pinned
)
495 unpin_rcv_pages(fd
, tidbuf
, NULL
, mapped_pages
,
496 (pinned
- mapped_pages
), false);
498 kfree(tidbuf
->psets
);
500 kfree(tidbuf
->pages
);
502 return ret
> 0 ? 0 : ret
;
505 int hfi1_user_exp_rcv_clear(struct hfi1_filedata
*fd
,
506 struct hfi1_tid_info
*tinfo
)
509 struct hfi1_ctxtdata
*uctxt
= fd
->uctxt
;
513 if (unlikely(tinfo
->tidcnt
> fd
->tid_used
))
516 tidinfo
= memdup_user((void __user
*)(unsigned long)tinfo
->tidlist
,
517 sizeof(tidinfo
[0]) * tinfo
->tidcnt
);
519 return PTR_ERR(tidinfo
);
521 mutex_lock(&uctxt
->exp_lock
);
522 for (tididx
= 0; tididx
< tinfo
->tidcnt
; tididx
++) {
523 ret
= unprogram_rcvarray(fd
, tidinfo
[tididx
], NULL
);
525 hfi1_cdbg(TID
, "Failed to unprogram rcv array %d",
530 spin_lock(&fd
->tid_lock
);
531 fd
->tid_used
-= tididx
;
532 spin_unlock(&fd
->tid_lock
);
533 tinfo
->tidcnt
= tididx
;
534 mutex_unlock(&uctxt
->exp_lock
);
540 int hfi1_user_exp_rcv_invalid(struct hfi1_filedata
*fd
,
541 struct hfi1_tid_info
*tinfo
)
543 struct hfi1_ctxtdata
*uctxt
= fd
->uctxt
;
544 unsigned long *ev
= uctxt
->dd
->events
+
545 (uctxt_offset(uctxt
) + fd
->subctxt
);
550 * copy_to_user() can sleep, which will leave the invalid_lock
551 * locked and cause the MMU notifier to be blocked on the lock
553 * Copy the data to a local buffer so we can release the lock.
555 array
= kcalloc(uctxt
->expected_count
, sizeof(*array
), GFP_KERNEL
);
559 spin_lock(&fd
->invalid_lock
);
560 if (fd
->invalid_tid_idx
) {
561 memcpy(array
, fd
->invalid_tids
, sizeof(*array
) *
562 fd
->invalid_tid_idx
);
563 memset(fd
->invalid_tids
, 0, sizeof(*fd
->invalid_tids
) *
564 fd
->invalid_tid_idx
);
565 tinfo
->tidcnt
= fd
->invalid_tid_idx
;
566 fd
->invalid_tid_idx
= 0;
568 * Reset the user flag while still holding the lock.
569 * Otherwise, PSM can miss events.
571 clear_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT
, ev
);
575 spin_unlock(&fd
->invalid_lock
);
578 if (copy_to_user((void __user
*)tinfo
->tidlist
,
579 array
, sizeof(*array
) * tinfo
->tidcnt
))
587 static u32
find_phys_blocks(struct tid_user_buf
*tidbuf
, unsigned int npages
)
589 unsigned pagecount
, pageidx
, setcount
= 0, i
;
590 unsigned long pfn
, this_pfn
;
591 struct page
**pages
= tidbuf
->pages
;
592 struct tid_pageset
*list
= tidbuf
->psets
;
598 * Look for sets of physically contiguous pages in the user buffer.
599 * This will allow us to optimize Expected RcvArray entry usage by
600 * using the bigger supported sizes.
602 pfn
= page_to_pfn(pages
[0]);
603 for (pageidx
= 0, pagecount
= 1, i
= 1; i
<= npages
; i
++) {
604 this_pfn
= i
< npages
? page_to_pfn(pages
[i
]) : 0;
607 * If the pfn's are not sequential, pages are not physically
610 if (this_pfn
!= ++pfn
) {
612 * At this point we have to loop over the set of
613 * physically contiguous pages and break them down it
614 * sizes supported by the HW.
615 * There are two main constraints:
616 * 1. The max buffer size is MAX_EXPECTED_BUFFER.
617 * If the total set size is bigger than that
618 * program only a MAX_EXPECTED_BUFFER chunk.
619 * 2. The buffer size has to be a power of two. If
620 * it is not, round down to the closes power of
621 * 2 and program that size.
624 int maxpages
= pagecount
;
625 u32 bufsize
= pagecount
* PAGE_SIZE
;
627 if (bufsize
> MAX_EXPECTED_BUFFER
)
629 MAX_EXPECTED_BUFFER
>>
631 else if (!is_power_of_2(bufsize
))
633 rounddown_pow_of_two(bufsize
) >>
636 list
[setcount
].idx
= pageidx
;
637 list
[setcount
].count
= maxpages
;
638 pagecount
-= maxpages
;
653 * program_rcvarray() - program an RcvArray group with receive buffers
654 * @fd: filedata pointer
655 * @tbuf: pointer to struct tid_user_buf that has the user buffer starting
656 * virtual address, buffer length, page pointers, pagesets (array of
657 * struct tid_pageset holding information on physically contiguous
658 * chunks from the user buffer), and other fields.
659 * @grp: RcvArray group
660 * @start: starting index into sets array
661 * @count: number of struct tid_pageset's to program
662 * @tidlist: the array of u32 elements when the information about the
663 * programmed RcvArray entries is to be encoded.
664 * @tididx: starting offset into tidlist
665 * @pmapped: (output parameter) number of pages programmed into the RcvArray
668 * This function will program up to 'count' number of RcvArray entries from the
669 * group 'grp'. To make best use of write-combining writes, the function will
670 * perform writes to the unused RcvArray entries which will be ignored by the
671 * HW. Each RcvArray entry will be programmed with a physically contiguous
672 * buffer chunk from the user's virtual buffer.
675 * -EINVAL if the requested count is larger than the size of the group,
676 * -ENOMEM or -EFAULT on error from set_rcvarray_entry(), or
677 * number of RcvArray entries programmed.
679 static int program_rcvarray(struct hfi1_filedata
*fd
, struct tid_user_buf
*tbuf
,
680 struct tid_group
*grp
,
681 unsigned int start
, u16 count
,
682 u32
*tidlist
, unsigned int *tididx
,
683 unsigned int *pmapped
)
685 struct hfi1_ctxtdata
*uctxt
= fd
->uctxt
;
686 struct hfi1_devdata
*dd
= uctxt
->dd
;
688 u32 tidinfo
= 0, rcventry
, useidx
= 0;
691 /* Count should never be larger than the group size */
692 if (count
> grp
->size
)
695 /* Find the first unused entry in the group */
696 for (idx
= 0; idx
< grp
->size
; idx
++) {
697 if (!(grp
->map
& (1 << idx
))) {
701 rcv_array_wc_fill(dd
, grp
->base
+ idx
);
705 while (idx
< count
) {
706 u16 npages
, pageidx
, setidx
= start
+ idx
;
710 * If this entry in the group is used, move to the next one.
711 * If we go past the end of the group, exit the loop.
713 if (useidx
>= grp
->size
) {
715 } else if (grp
->map
& (1 << useidx
)) {
716 rcv_array_wc_fill(dd
, grp
->base
+ useidx
);
721 rcventry
= grp
->base
+ useidx
;
722 npages
= tbuf
->psets
[setidx
].count
;
723 pageidx
= tbuf
->psets
[setidx
].idx
;
725 ret
= set_rcvarray_entry(fd
, tbuf
,
726 rcventry
, grp
, pageidx
,
732 tidinfo
= rcventry2tidinfo(rcventry
- uctxt
->expected_base
) |
733 EXP_TID_SET(LEN
, npages
);
734 tidlist
[(*tididx
)++] = tidinfo
;
736 grp
->map
|= 1 << useidx
++;
740 /* Fill the rest of the group with "blank" writes */
741 for (; useidx
< grp
->size
; useidx
++)
742 rcv_array_wc_fill(dd
, grp
->base
+ useidx
);
747 static int set_rcvarray_entry(struct hfi1_filedata
*fd
,
748 struct tid_user_buf
*tbuf
,
749 u32 rcventry
, struct tid_group
*grp
,
750 u16 pageidx
, unsigned int npages
)
753 struct hfi1_ctxtdata
*uctxt
= fd
->uctxt
;
754 struct tid_rb_node
*node
;
755 struct hfi1_devdata
*dd
= uctxt
->dd
;
757 struct page
**pages
= tbuf
->pages
+ pageidx
;
760 * Allocate the node first so we can handle a potential
761 * failure before we've programmed anything.
763 node
= kzalloc(sizeof(*node
) + (sizeof(struct page
*) * npages
),
768 phys
= pci_map_single(dd
->pcidev
,
769 __va(page_to_phys(pages
[0])),
770 npages
* PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
771 if (dma_mapping_error(&dd
->pcidev
->dev
, phys
)) {
772 dd_dev_err(dd
, "Failed to DMA map Exp Rcv pages 0x%llx\n",
778 node
->mmu
.addr
= tbuf
->vaddr
+ (pageidx
* PAGE_SIZE
);
779 node
->mmu
.len
= npages
* PAGE_SIZE
;
780 node
->phys
= page_to_phys(pages
[0]);
781 node
->npages
= npages
;
782 node
->rcventry
= rcventry
;
783 node
->dma_addr
= phys
;
786 memcpy(node
->pages
, pages
, sizeof(struct page
*) * npages
);
789 ret
= tid_rb_insert(fd
, &node
->mmu
);
791 ret
= hfi1_mmu_rb_insert(fd
->handler
, &node
->mmu
);
794 hfi1_cdbg(TID
, "Failed to insert RB node %u 0x%lx, 0x%lx %d",
795 node
->rcventry
, node
->mmu
.addr
, node
->phys
, ret
);
796 pci_unmap_single(dd
->pcidev
, phys
, npages
* PAGE_SIZE
,
801 hfi1_put_tid(dd
, rcventry
, PT_EXPECTED
, phys
, ilog2(npages
) + 1);
802 trace_hfi1_exp_tid_reg(uctxt
->ctxt
, fd
->subctxt
, rcventry
, npages
,
803 node
->mmu
.addr
, node
->phys
, phys
);
807 static int unprogram_rcvarray(struct hfi1_filedata
*fd
, u32 tidinfo
,
808 struct tid_group
**grp
)
810 struct hfi1_ctxtdata
*uctxt
= fd
->uctxt
;
811 struct hfi1_devdata
*dd
= uctxt
->dd
;
812 struct tid_rb_node
*node
;
813 u8 tidctrl
= EXP_TID_GET(tidinfo
, CTRL
);
814 u32 tididx
= EXP_TID_GET(tidinfo
, IDX
) << 1, rcventry
;
816 if (tididx
>= uctxt
->expected_count
) {
817 dd_dev_err(dd
, "Invalid RcvArray entry (%u) index for ctxt %u\n",
818 tididx
, uctxt
->ctxt
);
825 rcventry
= tididx
+ (tidctrl
- 1);
827 node
= fd
->entry_to_rb
[rcventry
];
828 if (!node
|| node
->rcventry
!= (uctxt
->expected_base
+ rcventry
))
835 cacheless_tid_rb_remove(fd
, node
);
837 hfi1_mmu_rb_remove(fd
->handler
, &node
->mmu
);
842 static void clear_tid_node(struct hfi1_filedata
*fd
, struct tid_rb_node
*node
)
844 struct hfi1_ctxtdata
*uctxt
= fd
->uctxt
;
845 struct hfi1_devdata
*dd
= uctxt
->dd
;
847 trace_hfi1_exp_tid_unreg(uctxt
->ctxt
, fd
->subctxt
, node
->rcventry
,
848 node
->npages
, node
->mmu
.addr
, node
->phys
,
852 * Make sure device has seen the write before we unpin the
855 hfi1_put_tid(dd
, node
->rcventry
, PT_INVALID_FLUSH
, 0, 0);
857 unpin_rcv_pages(fd
, NULL
, node
, 0, node
->npages
, true);
860 node
->grp
->map
&= ~(1 << (node
->rcventry
- node
->grp
->base
));
862 if (node
->grp
->used
== node
->grp
->size
- 1)
863 tid_group_move(node
->grp
, &uctxt
->tid_full_list
,
864 &uctxt
->tid_used_list
);
865 else if (!node
->grp
->used
)
866 tid_group_move(node
->grp
, &uctxt
->tid_used_list
,
867 &uctxt
->tid_group_list
);
872 * As a simple helper for hfi1_user_exp_rcv_free, this function deals with
873 * clearing nodes in the non-cached case.
875 static void unlock_exp_tids(struct hfi1_ctxtdata
*uctxt
,
876 struct exp_tid_set
*set
,
877 struct hfi1_filedata
*fd
)
879 struct tid_group
*grp
, *ptr
;
882 list_for_each_entry_safe(grp
, ptr
, &set
->list
, list
) {
883 list_del_init(&grp
->list
);
885 for (i
= 0; i
< grp
->size
; i
++) {
886 if (grp
->map
& (1 << i
)) {
887 u16 rcventry
= grp
->base
+ i
;
888 struct tid_rb_node
*node
;
890 node
= fd
->entry_to_rb
[rcventry
-
891 uctxt
->expected_base
];
892 if (!node
|| node
->rcventry
!= rcventry
)
895 cacheless_tid_rb_remove(fd
, node
);
902 * Always return 0 from this function. A non-zero return indicates that the
903 * remove operation will be called and that memory should be unpinned.
904 * However, the driver cannot unpin out from under PSM. Instead, retain the
905 * memory (by returning 0) and inform PSM that the memory is going away. PSM
906 * will call back later when it has removed the memory from its list.
908 static int tid_rb_invalidate(void *arg
, struct mmu_rb_node
*mnode
)
910 struct hfi1_filedata
*fdata
= arg
;
911 struct hfi1_ctxtdata
*uctxt
= fdata
->uctxt
;
912 struct tid_rb_node
*node
=
913 container_of(mnode
, struct tid_rb_node
, mmu
);
918 trace_hfi1_exp_tid_inval(uctxt
->ctxt
, fdata
->subctxt
, node
->mmu
.addr
,
919 node
->rcventry
, node
->npages
, node
->dma_addr
);
922 spin_lock(&fdata
->invalid_lock
);
923 if (fdata
->invalid_tid_idx
< uctxt
->expected_count
) {
924 fdata
->invalid_tids
[fdata
->invalid_tid_idx
] =
925 rcventry2tidinfo(node
->rcventry
- uctxt
->expected_base
);
926 fdata
->invalid_tids
[fdata
->invalid_tid_idx
] |=
927 EXP_TID_SET(LEN
, node
->npages
);
928 if (!fdata
->invalid_tid_idx
) {
932 * hfi1_set_uevent_bits() sets a user event flag
933 * for all processes. Because calling into the
934 * driver to process TID cache invalidations is
935 * expensive and TID cache invalidations are
936 * handled on a per-process basis, we can
937 * optimize this to set the flag only for the
938 * process in question.
940 ev
= uctxt
->dd
->events
+
941 (uctxt_offset(uctxt
) + fdata
->subctxt
);
942 set_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT
, ev
);
944 fdata
->invalid_tid_idx
++;
946 spin_unlock(&fdata
->invalid_lock
);
950 static int tid_rb_insert(void *arg
, struct mmu_rb_node
*node
)
952 struct hfi1_filedata
*fdata
= arg
;
953 struct tid_rb_node
*tnode
=
954 container_of(node
, struct tid_rb_node
, mmu
);
955 u32 base
= fdata
->uctxt
->expected_base
;
957 fdata
->entry_to_rb
[tnode
->rcventry
- base
] = tnode
;
961 static void cacheless_tid_rb_remove(struct hfi1_filedata
*fdata
,
962 struct tid_rb_node
*tnode
)
964 u32 base
= fdata
->uctxt
->expected_base
;
966 fdata
->entry_to_rb
[tnode
->rcventry
- base
] = NULL
;
967 clear_tid_node(fdata
, tnode
);
970 static void tid_rb_remove(void *arg
, struct mmu_rb_node
*node
)
972 struct hfi1_filedata
*fdata
= arg
;
973 struct tid_rb_node
*tnode
=
974 container_of(node
, struct tid_rb_node
, mmu
);
976 cacheless_tid_rb_remove(fdata
, tnode
);