x86/topology: Update the 'cpu cores' field in /proc/cpuinfo correctly across CPU...
[cris-mirror.git] / drivers / soc / ti / knav_qmss_queue.c
blob77d6b5c03aae8bf1e1b7bf10f0f9fcb21528b189
1 /*
2 * Keystone Queue Manager subsystem driver
4 * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
5 * Authors: Sandeep Nair <sandeep_n@ti.com>
6 * Cyril Chemparathy <cyril@ti.com>
7 * Santosh Shilimkar <santosh.shilimkar@ti.com>
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * version 2 as published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
19 #include <linux/debugfs.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/firmware.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/module.h>
25 #include <linux/of_address.h>
26 #include <linux/of_device.h>
27 #include <linux/of_irq.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30 #include <linux/soc/ti/knav_qmss.h>
32 #include "knav_qmss.h"
34 static struct knav_device *kdev;
35 static DEFINE_MUTEX(knav_dev_lock);
37 /* Queue manager register indices in DTS */
38 #define KNAV_QUEUE_PEEK_REG_INDEX 0
39 #define KNAV_QUEUE_STATUS_REG_INDEX 1
40 #define KNAV_QUEUE_CONFIG_REG_INDEX 2
41 #define KNAV_QUEUE_REGION_REG_INDEX 3
42 #define KNAV_QUEUE_PUSH_REG_INDEX 4
43 #define KNAV_QUEUE_POP_REG_INDEX 5
45 /* PDSP register indices in DTS */
46 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX 0
47 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX 1
48 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX 2
49 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX 3
51 #define knav_queue_idx_to_inst(kdev, idx) \
52 (kdev->instances + (idx << kdev->inst_shift))
54 #define for_each_handle_rcu(qh, inst) \
55 list_for_each_entry_rcu(qh, &inst->handles, list)
57 #define for_each_instance(idx, inst, kdev) \
58 for (idx = 0, inst = kdev->instances; \
59 idx < (kdev)->num_queues_in_use; \
60 idx++, inst = knav_queue_idx_to_inst(kdev, idx))
62 /* All firmware file names end up here. List the firmware file names below.
63 * Newest followed by older ones. Search is done from start of the array
64 * until a firmware file is found.
66 const char *knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"};
68 /**
69 * knav_queue_notify: qmss queue notfier call
71 * @inst: qmss queue instance like accumulator
73 void knav_queue_notify(struct knav_queue_inst *inst)
75 struct knav_queue *qh;
77 if (!inst)
78 return;
80 rcu_read_lock();
81 for_each_handle_rcu(qh, inst) {
82 if (atomic_read(&qh->notifier_enabled) <= 0)
83 continue;
84 if (WARN_ON(!qh->notifier_fn))
85 continue;
86 atomic_inc(&qh->stats.notifies);
87 qh->notifier_fn(qh->notifier_fn_arg);
89 rcu_read_unlock();
91 EXPORT_SYMBOL_GPL(knav_queue_notify);
93 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
95 struct knav_queue_inst *inst = _instdata;
97 knav_queue_notify(inst);
98 return IRQ_HANDLED;
101 static int knav_queue_setup_irq(struct knav_range_info *range,
102 struct knav_queue_inst *inst)
104 unsigned queue = inst->id - range->queue_base;
105 unsigned long cpu_map;
106 int ret = 0, irq;
108 if (range->flags & RANGE_HAS_IRQ) {
109 irq = range->irqs[queue].irq;
110 cpu_map = range->irqs[queue].cpu_map;
111 ret = request_irq(irq, knav_queue_int_handler, 0,
112 inst->irq_name, inst);
113 if (ret)
114 return ret;
115 disable_irq(irq);
116 if (cpu_map) {
117 ret = irq_set_affinity_hint(irq, to_cpumask(&cpu_map));
118 if (ret) {
119 dev_warn(range->kdev->dev,
120 "Failed to set IRQ affinity\n");
121 return ret;
125 return ret;
128 static void knav_queue_free_irq(struct knav_queue_inst *inst)
130 struct knav_range_info *range = inst->range;
131 unsigned queue = inst->id - inst->range->queue_base;
132 int irq;
134 if (range->flags & RANGE_HAS_IRQ) {
135 irq = range->irqs[queue].irq;
136 irq_set_affinity_hint(irq, NULL);
137 free_irq(irq, inst);
141 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
143 return !list_empty(&inst->handles);
146 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
148 return inst->range->flags & RANGE_RESERVED;
151 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
153 struct knav_queue *tmp;
155 rcu_read_lock();
156 for_each_handle_rcu(tmp, inst) {
157 if (tmp->flags & KNAV_QUEUE_SHARED) {
158 rcu_read_unlock();
159 return true;
162 rcu_read_unlock();
163 return false;
166 static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
167 unsigned type)
169 if ((type == KNAV_QUEUE_QPEND) &&
170 (inst->range->flags & RANGE_HAS_IRQ)) {
171 return true;
172 } else if ((type == KNAV_QUEUE_ACC) &&
173 (inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
174 return true;
175 } else if ((type == KNAV_QUEUE_GP) &&
176 !(inst->range->flags &
177 (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
178 return true;
180 return false;
183 static inline struct knav_queue_inst *
184 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
186 struct knav_queue_inst *inst;
187 int idx;
189 for_each_instance(idx, inst, kdev) {
190 if (inst->id == id)
191 return inst;
193 return NULL;
196 static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
198 if (kdev->base_id <= id &&
199 kdev->base_id + kdev->num_queues > id) {
200 id -= kdev->base_id;
201 return knav_queue_match_id_to_inst(kdev, id);
203 return NULL;
206 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
207 const char *name, unsigned flags)
209 struct knav_queue *qh;
210 unsigned id;
211 int ret = 0;
213 qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
214 if (!qh)
215 return ERR_PTR(-ENOMEM);
217 qh->flags = flags;
218 qh->inst = inst;
219 id = inst->id - inst->qmgr->start_queue;
220 qh->reg_push = &inst->qmgr->reg_push[id];
221 qh->reg_pop = &inst->qmgr->reg_pop[id];
222 qh->reg_peek = &inst->qmgr->reg_peek[id];
224 /* first opener? */
225 if (!knav_queue_is_busy(inst)) {
226 struct knav_range_info *range = inst->range;
228 inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
229 if (range->ops && range->ops->open_queue)
230 ret = range->ops->open_queue(range, inst, flags);
232 if (ret) {
233 devm_kfree(inst->kdev->dev, qh);
234 return ERR_PTR(ret);
237 list_add_tail_rcu(&qh->list, &inst->handles);
238 return qh;
241 static struct knav_queue *
242 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
244 struct knav_queue_inst *inst;
245 struct knav_queue *qh;
247 mutex_lock(&knav_dev_lock);
249 qh = ERR_PTR(-ENODEV);
250 inst = knav_queue_find_by_id(id);
251 if (!inst)
252 goto unlock_ret;
254 qh = ERR_PTR(-EEXIST);
255 if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
256 goto unlock_ret;
258 qh = ERR_PTR(-EBUSY);
259 if ((flags & KNAV_QUEUE_SHARED) &&
260 (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
261 goto unlock_ret;
263 qh = __knav_queue_open(inst, name, flags);
265 unlock_ret:
266 mutex_unlock(&knav_dev_lock);
268 return qh;
271 static struct knav_queue *knav_queue_open_by_type(const char *name,
272 unsigned type, unsigned flags)
274 struct knav_queue_inst *inst;
275 struct knav_queue *qh = ERR_PTR(-EINVAL);
276 int idx;
278 mutex_lock(&knav_dev_lock);
280 for_each_instance(idx, inst, kdev) {
281 if (knav_queue_is_reserved(inst))
282 continue;
283 if (!knav_queue_match_type(inst, type))
284 continue;
285 if (knav_queue_is_busy(inst))
286 continue;
287 qh = __knav_queue_open(inst, name, flags);
288 goto unlock_ret;
291 unlock_ret:
292 mutex_unlock(&knav_dev_lock);
293 return qh;
296 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
298 struct knav_range_info *range = inst->range;
300 if (range->ops && range->ops->set_notify)
301 range->ops->set_notify(range, inst, enabled);
304 static int knav_queue_enable_notifier(struct knav_queue *qh)
306 struct knav_queue_inst *inst = qh->inst;
307 bool first;
309 if (WARN_ON(!qh->notifier_fn))
310 return -EINVAL;
312 /* Adjust the per handle notifier count */
313 first = (atomic_inc_return(&qh->notifier_enabled) == 1);
314 if (!first)
315 return 0; /* nothing to do */
317 /* Now adjust the per instance notifier count */
318 first = (atomic_inc_return(&inst->num_notifiers) == 1);
319 if (first)
320 knav_queue_set_notify(inst, true);
322 return 0;
325 static int knav_queue_disable_notifier(struct knav_queue *qh)
327 struct knav_queue_inst *inst = qh->inst;
328 bool last;
330 last = (atomic_dec_return(&qh->notifier_enabled) == 0);
331 if (!last)
332 return 0; /* nothing to do */
334 last = (atomic_dec_return(&inst->num_notifiers) == 0);
335 if (last)
336 knav_queue_set_notify(inst, false);
338 return 0;
341 static int knav_queue_set_notifier(struct knav_queue *qh,
342 struct knav_queue_notify_config *cfg)
344 knav_queue_notify_fn old_fn = qh->notifier_fn;
346 if (!cfg)
347 return -EINVAL;
349 if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
350 return -ENOTSUPP;
352 if (!cfg->fn && old_fn)
353 knav_queue_disable_notifier(qh);
355 qh->notifier_fn = cfg->fn;
356 qh->notifier_fn_arg = cfg->fn_arg;
358 if (cfg->fn && !old_fn)
359 knav_queue_enable_notifier(qh);
361 return 0;
364 static int knav_gp_set_notify(struct knav_range_info *range,
365 struct knav_queue_inst *inst,
366 bool enabled)
368 unsigned queue;
370 if (range->flags & RANGE_HAS_IRQ) {
371 queue = inst->id - range->queue_base;
372 if (enabled)
373 enable_irq(range->irqs[queue].irq);
374 else
375 disable_irq_nosync(range->irqs[queue].irq);
377 return 0;
380 static int knav_gp_open_queue(struct knav_range_info *range,
381 struct knav_queue_inst *inst, unsigned flags)
383 return knav_queue_setup_irq(range, inst);
386 static int knav_gp_close_queue(struct knav_range_info *range,
387 struct knav_queue_inst *inst)
389 knav_queue_free_irq(inst);
390 return 0;
393 struct knav_range_ops knav_gp_range_ops = {
394 .set_notify = knav_gp_set_notify,
395 .open_queue = knav_gp_open_queue,
396 .close_queue = knav_gp_close_queue,
400 static int knav_queue_get_count(void *qhandle)
402 struct knav_queue *qh = qhandle;
403 struct knav_queue_inst *inst = qh->inst;
405 return readl_relaxed(&qh->reg_peek[0].entry_count) +
406 atomic_read(&inst->desc_count);
409 static void knav_queue_debug_show_instance(struct seq_file *s,
410 struct knav_queue_inst *inst)
412 struct knav_device *kdev = inst->kdev;
413 struct knav_queue *qh;
415 if (!knav_queue_is_busy(inst))
416 return;
418 seq_printf(s, "\tqueue id %d (%s)\n",
419 kdev->base_id + inst->id, inst->name);
420 for_each_handle_rcu(qh, inst) {
421 seq_printf(s, "\t\thandle %p: ", qh);
422 seq_printf(s, "pushes %8d, ",
423 atomic_read(&qh->stats.pushes));
424 seq_printf(s, "pops %8d, ",
425 atomic_read(&qh->stats.pops));
426 seq_printf(s, "count %8d, ",
427 knav_queue_get_count(qh));
428 seq_printf(s, "notifies %8d, ",
429 atomic_read(&qh->stats.notifies));
430 seq_printf(s, "push errors %8d, ",
431 atomic_read(&qh->stats.push_errors));
432 seq_printf(s, "pop errors %8d\n",
433 atomic_read(&qh->stats.pop_errors));
437 static int knav_queue_debug_show(struct seq_file *s, void *v)
439 struct knav_queue_inst *inst;
440 int idx;
442 mutex_lock(&knav_dev_lock);
443 seq_printf(s, "%s: %u-%u\n",
444 dev_name(kdev->dev), kdev->base_id,
445 kdev->base_id + kdev->num_queues - 1);
446 for_each_instance(idx, inst, kdev)
447 knav_queue_debug_show_instance(s, inst);
448 mutex_unlock(&knav_dev_lock);
450 return 0;
453 static int knav_queue_debug_open(struct inode *inode, struct file *file)
455 return single_open(file, knav_queue_debug_show, NULL);
458 static const struct file_operations knav_queue_debug_ops = {
459 .open = knav_queue_debug_open,
460 .read = seq_read,
461 .llseek = seq_lseek,
462 .release = single_release,
465 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
466 u32 flags)
468 unsigned long end;
469 u32 val = 0;
471 end = jiffies + msecs_to_jiffies(timeout);
472 while (time_after(end, jiffies)) {
473 val = readl_relaxed(addr);
474 if (flags)
475 val &= flags;
476 if (!val)
477 break;
478 cpu_relax();
480 return val ? -ETIMEDOUT : 0;
484 static int knav_queue_flush(struct knav_queue *qh)
486 struct knav_queue_inst *inst = qh->inst;
487 unsigned id = inst->id - inst->qmgr->start_queue;
489 atomic_set(&inst->desc_count, 0);
490 writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
491 return 0;
495 * knav_queue_open() - open a hardware queue
496 * @name - name to give the queue handle
497 * @id - desired queue number if any or specifes the type
498 * of queue
499 * @flags - the following flags are applicable to queues:
500 * KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
501 * exclusive by default.
502 * Subsequent attempts to open a shared queue should
503 * also have this flag.
505 * Returns a handle to the open hardware queue if successful. Use IS_ERR()
506 * to check the returned value for error codes.
508 void *knav_queue_open(const char *name, unsigned id,
509 unsigned flags)
511 struct knav_queue *qh = ERR_PTR(-EINVAL);
513 switch (id) {
514 case KNAV_QUEUE_QPEND:
515 case KNAV_QUEUE_ACC:
516 case KNAV_QUEUE_GP:
517 qh = knav_queue_open_by_type(name, id, flags);
518 break;
520 default:
521 qh = knav_queue_open_by_id(name, id, flags);
522 break;
524 return qh;
526 EXPORT_SYMBOL_GPL(knav_queue_open);
529 * knav_queue_close() - close a hardware queue handle
530 * @qh - handle to close
532 void knav_queue_close(void *qhandle)
534 struct knav_queue *qh = qhandle;
535 struct knav_queue_inst *inst = qh->inst;
537 while (atomic_read(&qh->notifier_enabled) > 0)
538 knav_queue_disable_notifier(qh);
540 mutex_lock(&knav_dev_lock);
541 list_del_rcu(&qh->list);
542 mutex_unlock(&knav_dev_lock);
543 synchronize_rcu();
544 if (!knav_queue_is_busy(inst)) {
545 struct knav_range_info *range = inst->range;
547 if (range->ops && range->ops->close_queue)
548 range->ops->close_queue(range, inst);
550 devm_kfree(inst->kdev->dev, qh);
552 EXPORT_SYMBOL_GPL(knav_queue_close);
555 * knav_queue_device_control() - Perform control operations on a queue
556 * @qh - queue handle
557 * @cmd - control commands
558 * @arg - command argument
560 * Returns 0 on success, errno otherwise.
562 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
563 unsigned long arg)
565 struct knav_queue *qh = qhandle;
566 struct knav_queue_notify_config *cfg;
567 int ret;
569 switch ((int)cmd) {
570 case KNAV_QUEUE_GET_ID:
571 ret = qh->inst->kdev->base_id + qh->inst->id;
572 break;
574 case KNAV_QUEUE_FLUSH:
575 ret = knav_queue_flush(qh);
576 break;
578 case KNAV_QUEUE_SET_NOTIFIER:
579 cfg = (void *)arg;
580 ret = knav_queue_set_notifier(qh, cfg);
581 break;
583 case KNAV_QUEUE_ENABLE_NOTIFY:
584 ret = knav_queue_enable_notifier(qh);
585 break;
587 case KNAV_QUEUE_DISABLE_NOTIFY:
588 ret = knav_queue_disable_notifier(qh);
589 break;
591 case KNAV_QUEUE_GET_COUNT:
592 ret = knav_queue_get_count(qh);
593 break;
595 default:
596 ret = -ENOTSUPP;
597 break;
599 return ret;
601 EXPORT_SYMBOL_GPL(knav_queue_device_control);
606 * knav_queue_push() - push data (or descriptor) to the tail of a queue
607 * @qh - hardware queue handle
608 * @data - data to push
609 * @size - size of data to push
610 * @flags - can be used to pass additional information
612 * Returns 0 on success, errno otherwise.
614 int knav_queue_push(void *qhandle, dma_addr_t dma,
615 unsigned size, unsigned flags)
617 struct knav_queue *qh = qhandle;
618 u32 val;
620 val = (u32)dma | ((size / 16) - 1);
621 writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
623 atomic_inc(&qh->stats.pushes);
624 return 0;
626 EXPORT_SYMBOL_GPL(knav_queue_push);
629 * knav_queue_pop() - pop data (or descriptor) from the head of a queue
630 * @qh - hardware queue handle
631 * @size - (optional) size of the data pop'ed.
633 * Returns a DMA address on success, 0 on failure.
635 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
637 struct knav_queue *qh = qhandle;
638 struct knav_queue_inst *inst = qh->inst;
639 dma_addr_t dma;
640 u32 val, idx;
642 /* are we accumulated? */
643 if (inst->descs) {
644 if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
645 atomic_inc(&inst->desc_count);
646 return 0;
648 idx = atomic_inc_return(&inst->desc_head);
649 idx &= ACC_DESCS_MASK;
650 val = inst->descs[idx];
651 } else {
652 val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
653 if (unlikely(!val))
654 return 0;
657 dma = val & DESC_PTR_MASK;
658 if (size)
659 *size = ((val & DESC_SIZE_MASK) + 1) * 16;
661 atomic_inc(&qh->stats.pops);
662 return dma;
664 EXPORT_SYMBOL_GPL(knav_queue_pop);
666 /* carve out descriptors and push into queue */
667 static void kdesc_fill_pool(struct knav_pool *pool)
669 struct knav_region *region;
670 int i;
672 region = pool->region;
673 pool->desc_size = region->desc_size;
674 for (i = 0; i < pool->num_desc; i++) {
675 int index = pool->region_offset + i;
676 dma_addr_t dma_addr;
677 unsigned dma_size;
678 dma_addr = region->dma_start + (region->desc_size * index);
679 dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
680 dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
681 DMA_TO_DEVICE);
682 knav_queue_push(pool->queue, dma_addr, dma_size, 0);
686 /* pop out descriptors and close the queue */
687 static void kdesc_empty_pool(struct knav_pool *pool)
689 dma_addr_t dma;
690 unsigned size;
691 void *desc;
692 int i;
694 if (!pool->queue)
695 return;
697 for (i = 0;; i++) {
698 dma = knav_queue_pop(pool->queue, &size);
699 if (!dma)
700 break;
701 desc = knav_pool_desc_dma_to_virt(pool, dma);
702 if (!desc) {
703 dev_dbg(pool->kdev->dev,
704 "couldn't unmap desc, continuing\n");
705 continue;
708 WARN_ON(i != pool->num_desc);
709 knav_queue_close(pool->queue);
713 /* Get the DMA address of a descriptor */
714 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
716 struct knav_pool *pool = ph;
717 return pool->region->dma_start + (virt - pool->region->virt_start);
719 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
721 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
723 struct knav_pool *pool = ph;
724 return pool->region->virt_start + (dma - pool->region->dma_start);
726 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
729 * knav_pool_create() - Create a pool of descriptors
730 * @name - name to give the pool handle
731 * @num_desc - numbers of descriptors in the pool
732 * @region_id - QMSS region id from which the descriptors are to be
733 * allocated.
735 * Returns a pool handle on success.
736 * Use IS_ERR_OR_NULL() to identify error values on return.
738 void *knav_pool_create(const char *name,
739 int num_desc, int region_id)
741 struct knav_region *reg_itr, *region = NULL;
742 struct knav_pool *pool, *pi;
743 struct list_head *node;
744 unsigned last_offset;
745 bool slot_found;
746 int ret;
748 if (!kdev)
749 return ERR_PTR(-EPROBE_DEFER);
751 if (!kdev->dev)
752 return ERR_PTR(-ENODEV);
754 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
755 if (!pool) {
756 dev_err(kdev->dev, "out of memory allocating pool\n");
757 return ERR_PTR(-ENOMEM);
760 for_each_region(kdev, reg_itr) {
761 if (reg_itr->id != region_id)
762 continue;
763 region = reg_itr;
764 break;
767 if (!region) {
768 dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
769 ret = -EINVAL;
770 goto err;
773 pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
774 if (IS_ERR_OR_NULL(pool->queue)) {
775 dev_err(kdev->dev,
776 "failed to open queue for pool(%s), error %ld\n",
777 name, PTR_ERR(pool->queue));
778 ret = PTR_ERR(pool->queue);
779 goto err;
782 pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
783 pool->kdev = kdev;
784 pool->dev = kdev->dev;
786 mutex_lock(&knav_dev_lock);
788 if (num_desc > (region->num_desc - region->used_desc)) {
789 dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
790 region_id, name);
791 ret = -ENOMEM;
792 goto err_unlock;
795 /* Region maintains a sorted (by region offset) list of pools
796 * use the first free slot which is large enough to accomodate
797 * the request
799 last_offset = 0;
800 slot_found = false;
801 node = &region->pools;
802 list_for_each_entry(pi, &region->pools, region_inst) {
803 if ((pi->region_offset - last_offset) >= num_desc) {
804 slot_found = true;
805 break;
807 last_offset = pi->region_offset + pi->num_desc;
809 node = &pi->region_inst;
811 if (slot_found) {
812 pool->region = region;
813 pool->num_desc = num_desc;
814 pool->region_offset = last_offset;
815 region->used_desc += num_desc;
816 list_add_tail(&pool->list, &kdev->pools);
817 list_add_tail(&pool->region_inst, node);
818 } else {
819 dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
820 name, region_id);
821 ret = -ENOMEM;
822 goto err_unlock;
825 mutex_unlock(&knav_dev_lock);
826 kdesc_fill_pool(pool);
827 return pool;
829 err_unlock:
830 mutex_unlock(&knav_dev_lock);
831 err:
832 kfree(pool->name);
833 devm_kfree(kdev->dev, pool);
834 return ERR_PTR(ret);
836 EXPORT_SYMBOL_GPL(knav_pool_create);
839 * knav_pool_destroy() - Free a pool of descriptors
840 * @pool - pool handle
842 void knav_pool_destroy(void *ph)
844 struct knav_pool *pool = ph;
846 if (!pool)
847 return;
849 if (!pool->region)
850 return;
852 kdesc_empty_pool(pool);
853 mutex_lock(&knav_dev_lock);
855 pool->region->used_desc -= pool->num_desc;
856 list_del(&pool->region_inst);
857 list_del(&pool->list);
859 mutex_unlock(&knav_dev_lock);
860 kfree(pool->name);
861 devm_kfree(kdev->dev, pool);
863 EXPORT_SYMBOL_GPL(knav_pool_destroy);
867 * knav_pool_desc_get() - Get a descriptor from the pool
868 * @pool - pool handle
870 * Returns descriptor from the pool.
872 void *knav_pool_desc_get(void *ph)
874 struct knav_pool *pool = ph;
875 dma_addr_t dma;
876 unsigned size;
877 void *data;
879 dma = knav_queue_pop(pool->queue, &size);
880 if (unlikely(!dma))
881 return ERR_PTR(-ENOMEM);
882 data = knav_pool_desc_dma_to_virt(pool, dma);
883 return data;
885 EXPORT_SYMBOL_GPL(knav_pool_desc_get);
888 * knav_pool_desc_put() - return a descriptor to the pool
889 * @pool - pool handle
891 void knav_pool_desc_put(void *ph, void *desc)
893 struct knav_pool *pool = ph;
894 dma_addr_t dma;
895 dma = knav_pool_desc_virt_to_dma(pool, desc);
896 knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
898 EXPORT_SYMBOL_GPL(knav_pool_desc_put);
901 * knav_pool_desc_map() - Map descriptor for DMA transfer
902 * @pool - pool handle
903 * @desc - address of descriptor to map
904 * @size - size of descriptor to map
905 * @dma - DMA address return pointer
906 * @dma_sz - adjusted return pointer
908 * Returns 0 on success, errno otherwise.
910 int knav_pool_desc_map(void *ph, void *desc, unsigned size,
911 dma_addr_t *dma, unsigned *dma_sz)
913 struct knav_pool *pool = ph;
914 *dma = knav_pool_desc_virt_to_dma(pool, desc);
915 size = min(size, pool->region->desc_size);
916 size = ALIGN(size, SMP_CACHE_BYTES);
917 *dma_sz = size;
918 dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
920 /* Ensure the descriptor reaches to the memory */
921 __iowmb();
923 return 0;
925 EXPORT_SYMBOL_GPL(knav_pool_desc_map);
928 * knav_pool_desc_unmap() - Unmap descriptor after DMA transfer
929 * @pool - pool handle
930 * @dma - DMA address of descriptor to unmap
931 * @dma_sz - size of descriptor to unmap
933 * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
934 * error values on return.
936 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
938 struct knav_pool *pool = ph;
939 unsigned desc_sz;
940 void *desc;
942 desc_sz = min(dma_sz, pool->region->desc_size);
943 desc = knav_pool_desc_dma_to_virt(pool, dma);
944 dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
945 prefetch(desc);
946 return desc;
948 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
951 * knav_pool_count() - Get the number of descriptors in pool.
952 * @pool - pool handle
953 * Returns number of elements in the pool.
955 int knav_pool_count(void *ph)
957 struct knav_pool *pool = ph;
958 return knav_queue_get_count(pool->queue);
960 EXPORT_SYMBOL_GPL(knav_pool_count);
962 static void knav_queue_setup_region(struct knav_device *kdev,
963 struct knav_region *region)
965 unsigned hw_num_desc, hw_desc_size, size;
966 struct knav_reg_region __iomem *regs;
967 struct knav_qmgr_info *qmgr;
968 struct knav_pool *pool;
969 int id = region->id;
970 struct page *page;
972 /* unused region? */
973 if (!region->num_desc) {
974 dev_warn(kdev->dev, "unused region %s\n", region->name);
975 return;
978 /* get hardware descriptor value */
979 hw_num_desc = ilog2(region->num_desc - 1) + 1;
981 /* did we force fit ourselves into nothingness? */
982 if (region->num_desc < 32) {
983 region->num_desc = 0;
984 dev_warn(kdev->dev, "too few descriptors in region %s\n",
985 region->name);
986 return;
989 size = region->num_desc * region->desc_size;
990 region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
991 GFP_DMA32);
992 if (!region->virt_start) {
993 region->num_desc = 0;
994 dev_err(kdev->dev, "memory alloc failed for region %s\n",
995 region->name);
996 return;
998 region->virt_end = region->virt_start + size;
999 page = virt_to_page(region->virt_start);
1001 region->dma_start = dma_map_page(kdev->dev, page, 0, size,
1002 DMA_BIDIRECTIONAL);
1003 if (dma_mapping_error(kdev->dev, region->dma_start)) {
1004 dev_err(kdev->dev, "dma map failed for region %s\n",
1005 region->name);
1006 goto fail;
1008 region->dma_end = region->dma_start + size;
1010 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1011 if (!pool) {
1012 dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1013 goto fail;
1015 pool->num_desc = 0;
1016 pool->region_offset = region->num_desc;
1017 list_add(&pool->region_inst, &region->pools);
1019 dev_dbg(kdev->dev,
1020 "region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n",
1021 region->name, id, region->desc_size, region->num_desc,
1022 region->link_index, &region->dma_start, &region->dma_end,
1023 region->virt_start, region->virt_end);
1025 hw_desc_size = (region->desc_size / 16) - 1;
1026 hw_num_desc -= 5;
1028 for_each_qmgr(kdev, qmgr) {
1029 regs = qmgr->reg_region + id;
1030 writel_relaxed((u32)region->dma_start, &regs->base);
1031 writel_relaxed(region->link_index, &regs->start_index);
1032 writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1033 &regs->size_count);
1035 return;
1037 fail:
1038 if (region->dma_start)
1039 dma_unmap_page(kdev->dev, region->dma_start, size,
1040 DMA_BIDIRECTIONAL);
1041 if (region->virt_start)
1042 free_pages_exact(region->virt_start, size);
1043 region->num_desc = 0;
1044 return;
1047 static const char *knav_queue_find_name(struct device_node *node)
1049 const char *name;
1051 if (of_property_read_string(node, "label", &name) < 0)
1052 name = node->name;
1053 if (!name)
1054 name = "unknown";
1055 return name;
1058 static int knav_queue_setup_regions(struct knav_device *kdev,
1059 struct device_node *regions)
1061 struct device *dev = kdev->dev;
1062 struct knav_region *region;
1063 struct device_node *child;
1064 u32 temp[2];
1065 int ret;
1067 for_each_child_of_node(regions, child) {
1068 region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1069 if (!region) {
1070 dev_err(dev, "out of memory allocating region\n");
1071 return -ENOMEM;
1074 region->name = knav_queue_find_name(child);
1075 of_property_read_u32(child, "id", &region->id);
1076 ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1077 if (!ret) {
1078 region->num_desc = temp[0];
1079 region->desc_size = temp[1];
1080 } else {
1081 dev_err(dev, "invalid region info %s\n", region->name);
1082 devm_kfree(dev, region);
1083 continue;
1086 if (!of_get_property(child, "link-index", NULL)) {
1087 dev_err(dev, "No link info for %s\n", region->name);
1088 devm_kfree(dev, region);
1089 continue;
1091 ret = of_property_read_u32(child, "link-index",
1092 &region->link_index);
1093 if (ret) {
1094 dev_err(dev, "link index not found for %s\n",
1095 region->name);
1096 devm_kfree(dev, region);
1097 continue;
1100 INIT_LIST_HEAD(&region->pools);
1101 list_add_tail(&region->list, &kdev->regions);
1103 if (list_empty(&kdev->regions)) {
1104 dev_err(dev, "no valid region information found\n");
1105 return -ENODEV;
1108 /* Next, we run through the regions and set things up */
1109 for_each_region(kdev, region)
1110 knav_queue_setup_region(kdev, region);
1112 return 0;
1115 static int knav_get_link_ram(struct knav_device *kdev,
1116 const char *name,
1117 struct knav_link_ram_block *block)
1119 struct platform_device *pdev = to_platform_device(kdev->dev);
1120 struct device_node *node = pdev->dev.of_node;
1121 u32 temp[2];
1124 * Note: link ram resources are specified in "entry" sized units. In
1125 * reality, although entries are ~40bits in hardware, we treat them as
1126 * 64-bit entities here.
1128 * For example, to specify the internal link ram for Keystone-I class
1129 * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1131 * This gets a bit weird when other link rams are used. For example,
1132 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1133 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1134 * which accounts for 64-bits per entry, for 16K entries.
1136 if (!of_property_read_u32_array(node, name , temp, 2)) {
1137 if (temp[0]) {
1139 * queue_base specified => using internal or onchip
1140 * link ram WARNING - we do not "reserve" this block
1142 block->dma = (dma_addr_t)temp[0];
1143 block->virt = NULL;
1144 block->size = temp[1];
1145 } else {
1146 block->size = temp[1];
1147 /* queue_base not specific => allocate requested size */
1148 block->virt = dmam_alloc_coherent(kdev->dev,
1149 8 * block->size, &block->dma,
1150 GFP_KERNEL);
1151 if (!block->virt) {
1152 dev_err(kdev->dev, "failed to alloc linkram\n");
1153 return -ENOMEM;
1156 } else {
1157 return -ENODEV;
1159 return 0;
1162 static int knav_queue_setup_link_ram(struct knav_device *kdev)
1164 struct knav_link_ram_block *block;
1165 struct knav_qmgr_info *qmgr;
1167 for_each_qmgr(kdev, qmgr) {
1168 block = &kdev->link_rams[0];
1169 dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n",
1170 &block->dma, block->virt, block->size);
1171 writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0);
1172 writel_relaxed(block->size, &qmgr->reg_config->link_ram_size0);
1174 block++;
1175 if (!block->size)
1176 continue;
1178 dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n",
1179 &block->dma, block->virt, block->size);
1180 writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1);
1183 return 0;
1186 static int knav_setup_queue_range(struct knav_device *kdev,
1187 struct device_node *node)
1189 struct device *dev = kdev->dev;
1190 struct knav_range_info *range;
1191 struct knav_qmgr_info *qmgr;
1192 u32 temp[2], start, end, id, index;
1193 int ret, i;
1195 range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1196 if (!range) {
1197 dev_err(dev, "out of memory allocating range\n");
1198 return -ENOMEM;
1201 range->kdev = kdev;
1202 range->name = knav_queue_find_name(node);
1203 ret = of_property_read_u32_array(node, "qrange", temp, 2);
1204 if (!ret) {
1205 range->queue_base = temp[0] - kdev->base_id;
1206 range->num_queues = temp[1];
1207 } else {
1208 dev_err(dev, "invalid queue range %s\n", range->name);
1209 devm_kfree(dev, range);
1210 return -EINVAL;
1213 for (i = 0; i < RANGE_MAX_IRQS; i++) {
1214 struct of_phandle_args oirq;
1216 if (of_irq_parse_one(node, i, &oirq))
1217 break;
1219 range->irqs[i].irq = irq_create_of_mapping(&oirq);
1220 if (range->irqs[i].irq == IRQ_NONE)
1221 break;
1223 range->num_irqs++;
1225 if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3)
1226 range->irqs[i].cpu_map =
1227 (oirq.args[2] & 0x0000ff00) >> 8;
1230 range->num_irqs = min(range->num_irqs, range->num_queues);
1231 if (range->num_irqs)
1232 range->flags |= RANGE_HAS_IRQ;
1234 if (of_get_property(node, "qalloc-by-id", NULL))
1235 range->flags |= RANGE_RESERVED;
1237 if (of_get_property(node, "accumulator", NULL)) {
1238 ret = knav_init_acc_range(kdev, node, range);
1239 if (ret < 0) {
1240 devm_kfree(dev, range);
1241 return ret;
1243 } else {
1244 range->ops = &knav_gp_range_ops;
1247 /* set threshold to 1, and flush out the queues */
1248 for_each_qmgr(kdev, qmgr) {
1249 start = max(qmgr->start_queue, range->queue_base);
1250 end = min(qmgr->start_queue + qmgr->num_queues,
1251 range->queue_base + range->num_queues);
1252 for (id = start; id < end; id++) {
1253 index = id - qmgr->start_queue;
1254 writel_relaxed(THRESH_GTE | 1,
1255 &qmgr->reg_peek[index].ptr_size_thresh);
1256 writel_relaxed(0,
1257 &qmgr->reg_push[index].ptr_size_thresh);
1261 list_add_tail(&range->list, &kdev->queue_ranges);
1262 dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1263 range->name, range->queue_base,
1264 range->queue_base + range->num_queues - 1,
1265 range->num_irqs,
1266 (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1267 (range->flags & RANGE_RESERVED) ? ", reserved" : "",
1268 (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1269 kdev->num_queues_in_use += range->num_queues;
1270 return 0;
1273 static int knav_setup_queue_pools(struct knav_device *kdev,
1274 struct device_node *queue_pools)
1276 struct device_node *type, *range;
1277 int ret;
1279 for_each_child_of_node(queue_pools, type) {
1280 for_each_child_of_node(type, range) {
1281 ret = knav_setup_queue_range(kdev, range);
1282 /* return value ignored, we init the rest... */
1286 /* ... and barf if they all failed! */
1287 if (list_empty(&kdev->queue_ranges)) {
1288 dev_err(kdev->dev, "no valid queue range found\n");
1289 return -ENODEV;
1291 return 0;
1294 static void knav_free_queue_range(struct knav_device *kdev,
1295 struct knav_range_info *range)
1297 if (range->ops && range->ops->free_range)
1298 range->ops->free_range(range);
1299 list_del(&range->list);
1300 devm_kfree(kdev->dev, range);
1303 static void knav_free_queue_ranges(struct knav_device *kdev)
1305 struct knav_range_info *range;
1307 for (;;) {
1308 range = first_queue_range(kdev);
1309 if (!range)
1310 break;
1311 knav_free_queue_range(kdev, range);
1315 static void knav_queue_free_regions(struct knav_device *kdev)
1317 struct knav_region *region;
1318 struct knav_pool *pool, *tmp;
1319 unsigned size;
1321 for (;;) {
1322 region = first_region(kdev);
1323 if (!region)
1324 break;
1325 list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
1326 knav_pool_destroy(pool);
1328 size = region->virt_end - region->virt_start;
1329 if (size)
1330 free_pages_exact(region->virt_start, size);
1331 list_del(&region->list);
1332 devm_kfree(kdev->dev, region);
1336 static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1337 struct device_node *node, int index)
1339 struct resource res;
1340 void __iomem *regs;
1341 int ret;
1343 ret = of_address_to_resource(node, index, &res);
1344 if (ret) {
1345 dev_err(kdev->dev, "Can't translate of node(%s) address for index(%d)\n",
1346 node->name, index);
1347 return ERR_PTR(ret);
1350 regs = devm_ioremap_resource(kdev->dev, &res);
1351 if (IS_ERR(regs))
1352 dev_err(kdev->dev, "Failed to map register base for index(%d) node(%s)\n",
1353 index, node->name);
1354 return regs;
1357 static int knav_queue_init_qmgrs(struct knav_device *kdev,
1358 struct device_node *qmgrs)
1360 struct device *dev = kdev->dev;
1361 struct knav_qmgr_info *qmgr;
1362 struct device_node *child;
1363 u32 temp[2];
1364 int ret;
1366 for_each_child_of_node(qmgrs, child) {
1367 qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1368 if (!qmgr) {
1369 dev_err(dev, "out of memory allocating qmgr\n");
1370 return -ENOMEM;
1373 ret = of_property_read_u32_array(child, "managed-queues",
1374 temp, 2);
1375 if (!ret) {
1376 qmgr->start_queue = temp[0];
1377 qmgr->num_queues = temp[1];
1378 } else {
1379 dev_err(dev, "invalid qmgr queue range\n");
1380 devm_kfree(dev, qmgr);
1381 continue;
1384 dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1385 qmgr->start_queue, qmgr->num_queues);
1387 qmgr->reg_peek =
1388 knav_queue_map_reg(kdev, child,
1389 KNAV_QUEUE_PEEK_REG_INDEX);
1390 qmgr->reg_status =
1391 knav_queue_map_reg(kdev, child,
1392 KNAV_QUEUE_STATUS_REG_INDEX);
1393 qmgr->reg_config =
1394 knav_queue_map_reg(kdev, child,
1395 KNAV_QUEUE_CONFIG_REG_INDEX);
1396 qmgr->reg_region =
1397 knav_queue_map_reg(kdev, child,
1398 KNAV_QUEUE_REGION_REG_INDEX);
1399 qmgr->reg_push =
1400 knav_queue_map_reg(kdev, child,
1401 KNAV_QUEUE_PUSH_REG_INDEX);
1402 qmgr->reg_pop =
1403 knav_queue_map_reg(kdev, child,
1404 KNAV_QUEUE_POP_REG_INDEX);
1406 if (IS_ERR(qmgr->reg_peek) || IS_ERR(qmgr->reg_status) ||
1407 IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1408 IS_ERR(qmgr->reg_push) || IS_ERR(qmgr->reg_pop)) {
1409 dev_err(dev, "failed to map qmgr regs\n");
1410 if (!IS_ERR(qmgr->reg_peek))
1411 devm_iounmap(dev, qmgr->reg_peek);
1412 if (!IS_ERR(qmgr->reg_status))
1413 devm_iounmap(dev, qmgr->reg_status);
1414 if (!IS_ERR(qmgr->reg_config))
1415 devm_iounmap(dev, qmgr->reg_config);
1416 if (!IS_ERR(qmgr->reg_region))
1417 devm_iounmap(dev, qmgr->reg_region);
1418 if (!IS_ERR(qmgr->reg_push))
1419 devm_iounmap(dev, qmgr->reg_push);
1420 if (!IS_ERR(qmgr->reg_pop))
1421 devm_iounmap(dev, qmgr->reg_pop);
1422 devm_kfree(dev, qmgr);
1423 continue;
1426 list_add_tail(&qmgr->list, &kdev->qmgrs);
1427 dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1428 qmgr->start_queue, qmgr->num_queues,
1429 qmgr->reg_peek, qmgr->reg_status,
1430 qmgr->reg_config, qmgr->reg_region,
1431 qmgr->reg_push, qmgr->reg_pop);
1433 return 0;
1436 static int knav_queue_init_pdsps(struct knav_device *kdev,
1437 struct device_node *pdsps)
1439 struct device *dev = kdev->dev;
1440 struct knav_pdsp_info *pdsp;
1441 struct device_node *child;
1443 for_each_child_of_node(pdsps, child) {
1444 pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1445 if (!pdsp) {
1446 dev_err(dev, "out of memory allocating pdsp\n");
1447 return -ENOMEM;
1449 pdsp->name = knav_queue_find_name(child);
1450 pdsp->iram =
1451 knav_queue_map_reg(kdev, child,
1452 KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1453 pdsp->regs =
1454 knav_queue_map_reg(kdev, child,
1455 KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1456 pdsp->intd =
1457 knav_queue_map_reg(kdev, child,
1458 KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1459 pdsp->command =
1460 knav_queue_map_reg(kdev, child,
1461 KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1463 if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1464 IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1465 dev_err(dev, "failed to map pdsp %s regs\n",
1466 pdsp->name);
1467 if (!IS_ERR(pdsp->command))
1468 devm_iounmap(dev, pdsp->command);
1469 if (!IS_ERR(pdsp->iram))
1470 devm_iounmap(dev, pdsp->iram);
1471 if (!IS_ERR(pdsp->regs))
1472 devm_iounmap(dev, pdsp->regs);
1473 if (!IS_ERR(pdsp->intd))
1474 devm_iounmap(dev, pdsp->intd);
1475 devm_kfree(dev, pdsp);
1476 continue;
1478 of_property_read_u32(child, "id", &pdsp->id);
1479 list_add_tail(&pdsp->list, &kdev->pdsps);
1480 dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
1481 pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1482 pdsp->intd);
1484 return 0;
1487 static int knav_queue_stop_pdsp(struct knav_device *kdev,
1488 struct knav_pdsp_info *pdsp)
1490 u32 val, timeout = 1000;
1491 int ret;
1493 val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1494 writel_relaxed(val, &pdsp->regs->control);
1495 ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1496 PDSP_CTRL_RUNNING);
1497 if (ret < 0) {
1498 dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1499 return ret;
1501 pdsp->loaded = false;
1502 pdsp->started = false;
1503 return 0;
1506 static int knav_queue_load_pdsp(struct knav_device *kdev,
1507 struct knav_pdsp_info *pdsp)
1509 int i, ret, fwlen;
1510 const struct firmware *fw;
1511 bool found = false;
1512 u32 *fwdata;
1514 for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
1515 if (knav_acc_firmwares[i]) {
1516 ret = request_firmware_direct(&fw,
1517 knav_acc_firmwares[i],
1518 kdev->dev);
1519 if (!ret) {
1520 found = true;
1521 break;
1526 if (!found) {
1527 dev_err(kdev->dev, "failed to get firmware for pdsp\n");
1528 return -ENODEV;
1531 dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
1532 knav_acc_firmwares[i]);
1534 writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1535 /* download the firmware */
1536 fwdata = (u32 *)fw->data;
1537 fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1538 for (i = 0; i < fwlen; i++)
1539 writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1541 release_firmware(fw);
1542 return 0;
1545 static int knav_queue_start_pdsp(struct knav_device *kdev,
1546 struct knav_pdsp_info *pdsp)
1548 u32 val, timeout = 1000;
1549 int ret;
1551 /* write a command for sync */
1552 writel_relaxed(0xffffffff, pdsp->command);
1553 while (readl_relaxed(pdsp->command) != 0xffffffff)
1554 cpu_relax();
1556 /* soft reset the PDSP */
1557 val = readl_relaxed(&pdsp->regs->control);
1558 val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1559 writel_relaxed(val, &pdsp->regs->control);
1561 /* enable pdsp */
1562 val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1563 writel_relaxed(val, &pdsp->regs->control);
1565 /* wait for command register to clear */
1566 ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1567 if (ret < 0) {
1568 dev_err(kdev->dev,
1569 "timed out on pdsp %s command register wait\n",
1570 pdsp->name);
1571 return ret;
1573 return 0;
1576 static void knav_queue_stop_pdsps(struct knav_device *kdev)
1578 struct knav_pdsp_info *pdsp;
1580 /* disable all pdsps */
1581 for_each_pdsp(kdev, pdsp)
1582 knav_queue_stop_pdsp(kdev, pdsp);
1585 static int knav_queue_start_pdsps(struct knav_device *kdev)
1587 struct knav_pdsp_info *pdsp;
1588 int ret;
1590 knav_queue_stop_pdsps(kdev);
1591 /* now load them all. We return success even if pdsp
1592 * is not loaded as acc channels are optional on having
1593 * firmware availability in the system. We set the loaded
1594 * and stated flag and when initialize the acc range, check
1595 * it and init the range only if pdsp is started.
1597 for_each_pdsp(kdev, pdsp) {
1598 ret = knav_queue_load_pdsp(kdev, pdsp);
1599 if (!ret)
1600 pdsp->loaded = true;
1603 for_each_pdsp(kdev, pdsp) {
1604 if (pdsp->loaded) {
1605 ret = knav_queue_start_pdsp(kdev, pdsp);
1606 if (!ret)
1607 pdsp->started = true;
1610 return 0;
1613 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1615 struct knav_qmgr_info *qmgr;
1617 for_each_qmgr(kdev, qmgr) {
1618 if ((id >= qmgr->start_queue) &&
1619 (id < qmgr->start_queue + qmgr->num_queues))
1620 return qmgr;
1622 return NULL;
1625 static int knav_queue_init_queue(struct knav_device *kdev,
1626 struct knav_range_info *range,
1627 struct knav_queue_inst *inst,
1628 unsigned id)
1630 char irq_name[KNAV_NAME_SIZE];
1631 inst->qmgr = knav_find_qmgr(id);
1632 if (!inst->qmgr)
1633 return -1;
1635 INIT_LIST_HEAD(&inst->handles);
1636 inst->kdev = kdev;
1637 inst->range = range;
1638 inst->irq_num = -1;
1639 inst->id = id;
1640 scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1641 inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1643 if (range->ops && range->ops->init_queue)
1644 return range->ops->init_queue(range, inst);
1645 else
1646 return 0;
1649 static int knav_queue_init_queues(struct knav_device *kdev)
1651 struct knav_range_info *range;
1652 int size, id, base_idx;
1653 int idx = 0, ret = 0;
1655 /* how much do we need for instance data? */
1656 size = sizeof(struct knav_queue_inst);
1658 /* round this up to a power of 2, keep the index to instance
1659 * arithmetic fast.
1660 * */
1661 kdev->inst_shift = order_base_2(size);
1662 size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1663 kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1664 if (!kdev->instances)
1665 return -ENOMEM;
1667 for_each_queue_range(kdev, range) {
1668 if (range->ops && range->ops->init_range)
1669 range->ops->init_range(range);
1670 base_idx = idx;
1671 for (id = range->queue_base;
1672 id < range->queue_base + range->num_queues; id++, idx++) {
1673 ret = knav_queue_init_queue(kdev, range,
1674 knav_queue_idx_to_inst(kdev, idx), id);
1675 if (ret < 0)
1676 return ret;
1678 range->queue_base_inst =
1679 knav_queue_idx_to_inst(kdev, base_idx);
1681 return 0;
1684 static int knav_queue_probe(struct platform_device *pdev)
1686 struct device_node *node = pdev->dev.of_node;
1687 struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
1688 struct device *dev = &pdev->dev;
1689 u32 temp[2];
1690 int ret;
1692 if (!node) {
1693 dev_err(dev, "device tree info unavailable\n");
1694 return -ENODEV;
1697 kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1698 if (!kdev) {
1699 dev_err(dev, "memory allocation failed\n");
1700 return -ENOMEM;
1703 platform_set_drvdata(pdev, kdev);
1704 kdev->dev = dev;
1705 INIT_LIST_HEAD(&kdev->queue_ranges);
1706 INIT_LIST_HEAD(&kdev->qmgrs);
1707 INIT_LIST_HEAD(&kdev->pools);
1708 INIT_LIST_HEAD(&kdev->regions);
1709 INIT_LIST_HEAD(&kdev->pdsps);
1711 pm_runtime_enable(&pdev->dev);
1712 ret = pm_runtime_get_sync(&pdev->dev);
1713 if (ret < 0) {
1714 dev_err(dev, "Failed to enable QMSS\n");
1715 return ret;
1718 if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1719 dev_err(dev, "queue-range not specified\n");
1720 ret = -ENODEV;
1721 goto err;
1723 kdev->base_id = temp[0];
1724 kdev->num_queues = temp[1];
1726 /* Initialize queue managers using device tree configuration */
1727 qmgrs = of_get_child_by_name(node, "qmgrs");
1728 if (!qmgrs) {
1729 dev_err(dev, "queue manager info not specified\n");
1730 ret = -ENODEV;
1731 goto err;
1733 ret = knav_queue_init_qmgrs(kdev, qmgrs);
1734 of_node_put(qmgrs);
1735 if (ret)
1736 goto err;
1738 /* get pdsp configuration values from device tree */
1739 pdsps = of_get_child_by_name(node, "pdsps");
1740 if (pdsps) {
1741 ret = knav_queue_init_pdsps(kdev, pdsps);
1742 if (ret)
1743 goto err;
1745 ret = knav_queue_start_pdsps(kdev);
1746 if (ret)
1747 goto err;
1749 of_node_put(pdsps);
1751 /* get usable queue range values from device tree */
1752 queue_pools = of_get_child_by_name(node, "queue-pools");
1753 if (!queue_pools) {
1754 dev_err(dev, "queue-pools not specified\n");
1755 ret = -ENODEV;
1756 goto err;
1758 ret = knav_setup_queue_pools(kdev, queue_pools);
1759 of_node_put(queue_pools);
1760 if (ret)
1761 goto err;
1763 ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1764 if (ret) {
1765 dev_err(kdev->dev, "could not setup linking ram\n");
1766 goto err;
1769 ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1770 if (ret) {
1772 * nothing really, we have one linking ram already, so we just
1773 * live within our means
1777 ret = knav_queue_setup_link_ram(kdev);
1778 if (ret)
1779 goto err;
1781 regions = of_get_child_by_name(node, "descriptor-regions");
1782 if (!regions) {
1783 dev_err(dev, "descriptor-regions not specified\n");
1784 goto err;
1786 ret = knav_queue_setup_regions(kdev, regions);
1787 of_node_put(regions);
1788 if (ret)
1789 goto err;
1791 ret = knav_queue_init_queues(kdev);
1792 if (ret < 0) {
1793 dev_err(dev, "hwqueue initialization failed\n");
1794 goto err;
1797 debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1798 &knav_queue_debug_ops);
1799 return 0;
1801 err:
1802 knav_queue_stop_pdsps(kdev);
1803 knav_queue_free_regions(kdev);
1804 knav_free_queue_ranges(kdev);
1805 pm_runtime_put_sync(&pdev->dev);
1806 pm_runtime_disable(&pdev->dev);
1807 return ret;
1810 static int knav_queue_remove(struct platform_device *pdev)
1812 /* TODO: Free resources */
1813 pm_runtime_put_sync(&pdev->dev);
1814 pm_runtime_disable(&pdev->dev);
1815 return 0;
1818 /* Match table for of_platform binding */
1819 static struct of_device_id keystone_qmss_of_match[] = {
1820 { .compatible = "ti,keystone-navigator-qmss", },
1823 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1825 static struct platform_driver keystone_qmss_driver = {
1826 .probe = knav_queue_probe,
1827 .remove = knav_queue_remove,
1828 .driver = {
1829 .name = "keystone-navigator-qmss",
1830 .of_match_table = keystone_qmss_of_match,
1833 module_platform_driver(keystone_qmss_driver);
1835 MODULE_LICENSE("GPL v2");
1836 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1837 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
1838 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");