x86/topology: Update the 'cpu cores' field in /proc/cpuinfo correctly across CPU...
[cris-mirror.git] / fs / cifs / smbdirect.c
blob91710eb571fb3a61a1fe601d2eb72b0e7b15cc8a
1 /*
2 * Copyright (C) 2017, Microsoft Corporation.
4 * Author(s): Long Li <longli@microsoft.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
14 * the GNU General Public License for more details.
16 #include <linux/module.h>
17 #include <linux/highmem.h>
18 #include "smbdirect.h"
19 #include "cifs_debug.h"
21 static struct smbd_response *get_empty_queue_buffer(
22 struct smbd_connection *info);
23 static struct smbd_response *get_receive_buffer(
24 struct smbd_connection *info);
25 static void put_receive_buffer(
26 struct smbd_connection *info,
27 struct smbd_response *response);
28 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf);
29 static void destroy_receive_buffers(struct smbd_connection *info);
31 static void put_empty_packet(
32 struct smbd_connection *info, struct smbd_response *response);
33 static void enqueue_reassembly(
34 struct smbd_connection *info,
35 struct smbd_response *response, int data_length);
36 static struct smbd_response *_get_first_reassembly(
37 struct smbd_connection *info);
39 static int smbd_post_recv(
40 struct smbd_connection *info,
41 struct smbd_response *response);
43 static int smbd_post_send_empty(struct smbd_connection *info);
44 static int smbd_post_send_data(
45 struct smbd_connection *info,
46 struct kvec *iov, int n_vec, int remaining_data_length);
47 static int smbd_post_send_page(struct smbd_connection *info,
48 struct page *page, unsigned long offset,
49 size_t size, int remaining_data_length);
51 static void destroy_mr_list(struct smbd_connection *info);
52 static int allocate_mr_list(struct smbd_connection *info);
54 /* SMBD version number */
55 #define SMBD_V1 0x0100
57 /* Port numbers for SMBD transport */
58 #define SMB_PORT 445
59 #define SMBD_PORT 5445
61 /* Address lookup and resolve timeout in ms */
62 #define RDMA_RESOLVE_TIMEOUT 5000
64 /* SMBD negotiation timeout in seconds */
65 #define SMBD_NEGOTIATE_TIMEOUT 120
67 /* SMBD minimum receive size and fragmented sized defined in [MS-SMBD] */
68 #define SMBD_MIN_RECEIVE_SIZE 128
69 #define SMBD_MIN_FRAGMENTED_SIZE 131072
72 * Default maximum number of RDMA read/write outstanding on this connection
73 * This value is possibly decreased during QP creation on hardware limit
75 #define SMBD_CM_RESPONDER_RESOURCES 32
77 /* Maximum number of retries on data transfer operations */
78 #define SMBD_CM_RETRY 6
79 /* No need to retry on Receiver Not Ready since SMBD manages credits */
80 #define SMBD_CM_RNR_RETRY 0
83 * User configurable initial values per SMBD transport connection
84 * as defined in [MS-SMBD] 3.1.1.1
85 * Those may change after a SMBD negotiation
87 /* The local peer's maximum number of credits to grant to the peer */
88 int smbd_receive_credit_max = 255;
90 /* The remote peer's credit request of local peer */
91 int smbd_send_credit_target = 255;
93 /* The maximum single message size can be sent to remote peer */
94 int smbd_max_send_size = 1364;
96 /* The maximum fragmented upper-layer payload receive size supported */
97 int smbd_max_fragmented_recv_size = 1024 * 1024;
99 /* The maximum single-message size which can be received */
100 int smbd_max_receive_size = 8192;
102 /* The timeout to initiate send of a keepalive message on idle */
103 int smbd_keep_alive_interval = 120;
106 * User configurable initial values for RDMA transport
107 * The actual values used may be lower and are limited to hardware capabilities
109 /* Default maximum number of SGEs in a RDMA write/read */
110 int smbd_max_frmr_depth = 2048;
112 /* If payload is less than this byte, use RDMA send/recv not read/write */
113 int rdma_readwrite_threshold = 4096;
115 /* Transport logging functions
116 * Logging are defined as classes. They can be OR'ed to define the actual
117 * logging level via module parameter smbd_logging_class
118 * e.g. cifs.smbd_logging_class=0xa0 will log all log_rdma_recv() and
119 * log_rdma_event()
121 #define LOG_OUTGOING 0x1
122 #define LOG_INCOMING 0x2
123 #define LOG_READ 0x4
124 #define LOG_WRITE 0x8
125 #define LOG_RDMA_SEND 0x10
126 #define LOG_RDMA_RECV 0x20
127 #define LOG_KEEP_ALIVE 0x40
128 #define LOG_RDMA_EVENT 0x80
129 #define LOG_RDMA_MR 0x100
130 static unsigned int smbd_logging_class;
131 module_param(smbd_logging_class, uint, 0644);
132 MODULE_PARM_DESC(smbd_logging_class,
133 "Logging class for SMBD transport 0x0 to 0x100");
135 #define ERR 0x0
136 #define INFO 0x1
137 static unsigned int smbd_logging_level = ERR;
138 module_param(smbd_logging_level, uint, 0644);
139 MODULE_PARM_DESC(smbd_logging_level,
140 "Logging level for SMBD transport, 0 (default): error, 1: info");
142 #define log_rdma(level, class, fmt, args...) \
143 do { \
144 if (level <= smbd_logging_level || class & smbd_logging_class) \
145 cifs_dbg(VFS, "%s:%d " fmt, __func__, __LINE__, ##args);\
146 } while (0)
148 #define log_outgoing(level, fmt, args...) \
149 log_rdma(level, LOG_OUTGOING, fmt, ##args)
150 #define log_incoming(level, fmt, args...) \
151 log_rdma(level, LOG_INCOMING, fmt, ##args)
152 #define log_read(level, fmt, args...) log_rdma(level, LOG_READ, fmt, ##args)
153 #define log_write(level, fmt, args...) log_rdma(level, LOG_WRITE, fmt, ##args)
154 #define log_rdma_send(level, fmt, args...) \
155 log_rdma(level, LOG_RDMA_SEND, fmt, ##args)
156 #define log_rdma_recv(level, fmt, args...) \
157 log_rdma(level, LOG_RDMA_RECV, fmt, ##args)
158 #define log_keep_alive(level, fmt, args...) \
159 log_rdma(level, LOG_KEEP_ALIVE, fmt, ##args)
160 #define log_rdma_event(level, fmt, args...) \
161 log_rdma(level, LOG_RDMA_EVENT, fmt, ##args)
162 #define log_rdma_mr(level, fmt, args...) \
163 log_rdma(level, LOG_RDMA_MR, fmt, ##args)
166 * Destroy the transport and related RDMA and memory resources
167 * Need to go through all the pending counters and make sure on one is using
168 * the transport while it is destroyed
170 static void smbd_destroy_rdma_work(struct work_struct *work)
172 struct smbd_response *response;
173 struct smbd_connection *info =
174 container_of(work, struct smbd_connection, destroy_work);
175 unsigned long flags;
177 log_rdma_event(INFO, "destroying qp\n");
178 ib_drain_qp(info->id->qp);
179 rdma_destroy_qp(info->id);
181 /* Unblock all I/O waiting on the send queue */
182 wake_up_interruptible_all(&info->wait_send_queue);
184 log_rdma_event(INFO, "cancelling idle timer\n");
185 cancel_delayed_work_sync(&info->idle_timer_work);
186 log_rdma_event(INFO, "cancelling send immediate work\n");
187 cancel_delayed_work_sync(&info->send_immediate_work);
189 log_rdma_event(INFO, "wait for all send to finish\n");
190 wait_event(info->wait_smbd_send_pending,
191 info->smbd_send_pending == 0);
193 log_rdma_event(INFO, "wait for all recv to finish\n");
194 wake_up_interruptible(&info->wait_reassembly_queue);
195 wait_event(info->wait_smbd_recv_pending,
196 info->smbd_recv_pending == 0);
198 log_rdma_event(INFO, "wait for all send posted to IB to finish\n");
199 wait_event(info->wait_send_pending,
200 atomic_read(&info->send_pending) == 0);
201 wait_event(info->wait_send_payload_pending,
202 atomic_read(&info->send_payload_pending) == 0);
204 log_rdma_event(INFO, "freeing mr list\n");
205 wake_up_interruptible_all(&info->wait_mr);
206 wait_event(info->wait_for_mr_cleanup,
207 atomic_read(&info->mr_used_count) == 0);
208 destroy_mr_list(info);
210 /* It's not posssible for upper layer to get to reassembly */
211 log_rdma_event(INFO, "drain the reassembly queue\n");
212 do {
213 spin_lock_irqsave(&info->reassembly_queue_lock, flags);
214 response = _get_first_reassembly(info);
215 if (response) {
216 list_del(&response->list);
217 spin_unlock_irqrestore(
218 &info->reassembly_queue_lock, flags);
219 put_receive_buffer(info, response);
220 } else
221 spin_unlock_irqrestore(&info->reassembly_queue_lock, flags);
222 } while (response);
224 info->reassembly_data_length = 0;
226 log_rdma_event(INFO, "free receive buffers\n");
227 wait_event(info->wait_receive_queues,
228 info->count_receive_queue + info->count_empty_packet_queue
229 == info->receive_credit_max);
230 destroy_receive_buffers(info);
232 ib_free_cq(info->send_cq);
233 ib_free_cq(info->recv_cq);
234 ib_dealloc_pd(info->pd);
235 rdma_destroy_id(info->id);
237 /* free mempools */
238 mempool_destroy(info->request_mempool);
239 kmem_cache_destroy(info->request_cache);
241 mempool_destroy(info->response_mempool);
242 kmem_cache_destroy(info->response_cache);
244 info->transport_status = SMBD_DESTROYED;
245 wake_up_all(&info->wait_destroy);
248 static int smbd_process_disconnected(struct smbd_connection *info)
250 schedule_work(&info->destroy_work);
251 return 0;
254 static void smbd_disconnect_rdma_work(struct work_struct *work)
256 struct smbd_connection *info =
257 container_of(work, struct smbd_connection, disconnect_work);
259 if (info->transport_status == SMBD_CONNECTED) {
260 info->transport_status = SMBD_DISCONNECTING;
261 rdma_disconnect(info->id);
265 static void smbd_disconnect_rdma_connection(struct smbd_connection *info)
267 queue_work(info->workqueue, &info->disconnect_work);
270 /* Upcall from RDMA CM */
271 static int smbd_conn_upcall(
272 struct rdma_cm_id *id, struct rdma_cm_event *event)
274 struct smbd_connection *info = id->context;
276 log_rdma_event(INFO, "event=%d status=%d\n",
277 event->event, event->status);
279 switch (event->event) {
280 case RDMA_CM_EVENT_ADDR_RESOLVED:
281 case RDMA_CM_EVENT_ROUTE_RESOLVED:
282 info->ri_rc = 0;
283 complete(&info->ri_done);
284 break;
286 case RDMA_CM_EVENT_ADDR_ERROR:
287 info->ri_rc = -EHOSTUNREACH;
288 complete(&info->ri_done);
289 break;
291 case RDMA_CM_EVENT_ROUTE_ERROR:
292 info->ri_rc = -ENETUNREACH;
293 complete(&info->ri_done);
294 break;
296 case RDMA_CM_EVENT_ESTABLISHED:
297 log_rdma_event(INFO, "connected event=%d\n", event->event);
298 info->transport_status = SMBD_CONNECTED;
299 wake_up_interruptible(&info->conn_wait);
300 break;
302 case RDMA_CM_EVENT_CONNECT_ERROR:
303 case RDMA_CM_EVENT_UNREACHABLE:
304 case RDMA_CM_EVENT_REJECTED:
305 log_rdma_event(INFO, "connecting failed event=%d\n", event->event);
306 info->transport_status = SMBD_DISCONNECTED;
307 wake_up_interruptible(&info->conn_wait);
308 break;
310 case RDMA_CM_EVENT_DEVICE_REMOVAL:
311 case RDMA_CM_EVENT_DISCONNECTED:
312 /* This happenes when we fail the negotiation */
313 if (info->transport_status == SMBD_NEGOTIATE_FAILED) {
314 info->transport_status = SMBD_DISCONNECTED;
315 wake_up(&info->conn_wait);
316 break;
319 info->transport_status = SMBD_DISCONNECTED;
320 smbd_process_disconnected(info);
321 break;
323 default:
324 break;
327 return 0;
330 /* Upcall from RDMA QP */
331 static void
332 smbd_qp_async_error_upcall(struct ib_event *event, void *context)
334 struct smbd_connection *info = context;
336 log_rdma_event(ERR, "%s on device %s info %p\n",
337 ib_event_msg(event->event), event->device->name, info);
339 switch (event->event) {
340 case IB_EVENT_CQ_ERR:
341 case IB_EVENT_QP_FATAL:
342 smbd_disconnect_rdma_connection(info);
344 default:
345 break;
349 static inline void *smbd_request_payload(struct smbd_request *request)
351 return (void *)request->packet;
354 static inline void *smbd_response_payload(struct smbd_response *response)
356 return (void *)response->packet;
359 /* Called when a RDMA send is done */
360 static void send_done(struct ib_cq *cq, struct ib_wc *wc)
362 int i;
363 struct smbd_request *request =
364 container_of(wc->wr_cqe, struct smbd_request, cqe);
366 log_rdma_send(INFO, "smbd_request %p completed wc->status=%d\n",
367 request, wc->status);
369 if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_SEND) {
370 log_rdma_send(ERR, "wc->status=%d wc->opcode=%d\n",
371 wc->status, wc->opcode);
372 smbd_disconnect_rdma_connection(request->info);
375 for (i = 0; i < request->num_sge; i++)
376 ib_dma_unmap_single(request->info->id->device,
377 request->sge[i].addr,
378 request->sge[i].length,
379 DMA_TO_DEVICE);
381 if (request->has_payload) {
382 if (atomic_dec_and_test(&request->info->send_payload_pending))
383 wake_up(&request->info->wait_send_payload_pending);
384 } else {
385 if (atomic_dec_and_test(&request->info->send_pending))
386 wake_up(&request->info->wait_send_pending);
389 mempool_free(request, request->info->request_mempool);
392 static void dump_smbd_negotiate_resp(struct smbd_negotiate_resp *resp)
394 log_rdma_event(INFO, "resp message min_version %u max_version %u "
395 "negotiated_version %u credits_requested %u "
396 "credits_granted %u status %u max_readwrite_size %u "
397 "preferred_send_size %u max_receive_size %u "
398 "max_fragmented_size %u\n",
399 resp->min_version, resp->max_version, resp->negotiated_version,
400 resp->credits_requested, resp->credits_granted, resp->status,
401 resp->max_readwrite_size, resp->preferred_send_size,
402 resp->max_receive_size, resp->max_fragmented_size);
406 * Process a negotiation response message, according to [MS-SMBD]3.1.5.7
407 * response, packet_length: the negotiation response message
408 * return value: true if negotiation is a success, false if failed
410 static bool process_negotiation_response(
411 struct smbd_response *response, int packet_length)
413 struct smbd_connection *info = response->info;
414 struct smbd_negotiate_resp *packet = smbd_response_payload(response);
416 if (packet_length < sizeof(struct smbd_negotiate_resp)) {
417 log_rdma_event(ERR,
418 "error: packet_length=%d\n", packet_length);
419 return false;
422 if (le16_to_cpu(packet->negotiated_version) != SMBD_V1) {
423 log_rdma_event(ERR, "error: negotiated_version=%x\n",
424 le16_to_cpu(packet->negotiated_version));
425 return false;
427 info->protocol = le16_to_cpu(packet->negotiated_version);
429 if (packet->credits_requested == 0) {
430 log_rdma_event(ERR, "error: credits_requested==0\n");
431 return false;
433 info->receive_credit_target = le16_to_cpu(packet->credits_requested);
435 if (packet->credits_granted == 0) {
436 log_rdma_event(ERR, "error: credits_granted==0\n");
437 return false;
439 atomic_set(&info->send_credits, le16_to_cpu(packet->credits_granted));
441 atomic_set(&info->receive_credits, 0);
443 if (le32_to_cpu(packet->preferred_send_size) > info->max_receive_size) {
444 log_rdma_event(ERR, "error: preferred_send_size=%d\n",
445 le32_to_cpu(packet->preferred_send_size));
446 return false;
448 info->max_receive_size = le32_to_cpu(packet->preferred_send_size);
450 if (le32_to_cpu(packet->max_receive_size) < SMBD_MIN_RECEIVE_SIZE) {
451 log_rdma_event(ERR, "error: max_receive_size=%d\n",
452 le32_to_cpu(packet->max_receive_size));
453 return false;
455 info->max_send_size = min_t(int, info->max_send_size,
456 le32_to_cpu(packet->max_receive_size));
458 if (le32_to_cpu(packet->max_fragmented_size) <
459 SMBD_MIN_FRAGMENTED_SIZE) {
460 log_rdma_event(ERR, "error: max_fragmented_size=%d\n",
461 le32_to_cpu(packet->max_fragmented_size));
462 return false;
464 info->max_fragmented_send_size =
465 le32_to_cpu(packet->max_fragmented_size);
466 info->rdma_readwrite_threshold =
467 rdma_readwrite_threshold > info->max_fragmented_send_size ?
468 info->max_fragmented_send_size :
469 rdma_readwrite_threshold;
472 info->max_readwrite_size = min_t(u32,
473 le32_to_cpu(packet->max_readwrite_size),
474 info->max_frmr_depth * PAGE_SIZE);
475 info->max_frmr_depth = info->max_readwrite_size / PAGE_SIZE;
477 return true;
481 * Check and schedule to send an immediate packet
482 * This is used to extend credtis to remote peer to keep the transport busy
484 static void check_and_send_immediate(struct smbd_connection *info)
486 if (info->transport_status != SMBD_CONNECTED)
487 return;
489 info->send_immediate = true;
492 * Promptly send a packet if our peer is running low on receive
493 * credits
495 if (atomic_read(&info->receive_credits) <
496 info->receive_credit_target - 1)
497 queue_delayed_work(
498 info->workqueue, &info->send_immediate_work, 0);
501 static void smbd_post_send_credits(struct work_struct *work)
503 int ret = 0;
504 int use_receive_queue = 1;
505 int rc;
506 struct smbd_response *response;
507 struct smbd_connection *info =
508 container_of(work, struct smbd_connection,
509 post_send_credits_work);
511 if (info->transport_status != SMBD_CONNECTED) {
512 wake_up(&info->wait_receive_queues);
513 return;
516 if (info->receive_credit_target >
517 atomic_read(&info->receive_credits)) {
518 while (true) {
519 if (use_receive_queue)
520 response = get_receive_buffer(info);
521 else
522 response = get_empty_queue_buffer(info);
523 if (!response) {
524 /* now switch to emtpy packet queue */
525 if (use_receive_queue) {
526 use_receive_queue = 0;
527 continue;
528 } else
529 break;
532 response->type = SMBD_TRANSFER_DATA;
533 response->first_segment = false;
534 rc = smbd_post_recv(info, response);
535 if (rc) {
536 log_rdma_recv(ERR,
537 "post_recv failed rc=%d\n", rc);
538 put_receive_buffer(info, response);
539 break;
542 ret++;
546 spin_lock(&info->lock_new_credits_offered);
547 info->new_credits_offered += ret;
548 spin_unlock(&info->lock_new_credits_offered);
550 atomic_add(ret, &info->receive_credits);
552 /* Check if we can post new receive and grant credits to peer */
553 check_and_send_immediate(info);
556 static void smbd_recv_done_work(struct work_struct *work)
558 struct smbd_connection *info =
559 container_of(work, struct smbd_connection, recv_done_work);
562 * We may have new send credits granted from remote peer
563 * If any sender is blcoked on lack of credets, unblock it
565 if (atomic_read(&info->send_credits))
566 wake_up_interruptible(&info->wait_send_queue);
569 * Check if we need to send something to remote peer to
570 * grant more credits or respond to KEEP_ALIVE packet
572 check_and_send_immediate(info);
575 /* Called from softirq, when recv is done */
576 static void recv_done(struct ib_cq *cq, struct ib_wc *wc)
578 struct smbd_data_transfer *data_transfer;
579 struct smbd_response *response =
580 container_of(wc->wr_cqe, struct smbd_response, cqe);
581 struct smbd_connection *info = response->info;
582 int data_length = 0;
584 log_rdma_recv(INFO, "response=%p type=%d wc status=%d wc opcode %d "
585 "byte_len=%d pkey_index=%x\n",
586 response, response->type, wc->status, wc->opcode,
587 wc->byte_len, wc->pkey_index);
589 if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_RECV) {
590 log_rdma_recv(INFO, "wc->status=%d opcode=%d\n",
591 wc->status, wc->opcode);
592 smbd_disconnect_rdma_connection(info);
593 goto error;
596 ib_dma_sync_single_for_cpu(
597 wc->qp->device,
598 response->sge.addr,
599 response->sge.length,
600 DMA_FROM_DEVICE);
602 switch (response->type) {
603 /* SMBD negotiation response */
604 case SMBD_NEGOTIATE_RESP:
605 dump_smbd_negotiate_resp(smbd_response_payload(response));
606 info->full_packet_received = true;
607 info->negotiate_done =
608 process_negotiation_response(response, wc->byte_len);
609 complete(&info->negotiate_completion);
610 break;
612 /* SMBD data transfer packet */
613 case SMBD_TRANSFER_DATA:
614 data_transfer = smbd_response_payload(response);
615 data_length = le32_to_cpu(data_transfer->data_length);
618 * If this is a packet with data playload place the data in
619 * reassembly queue and wake up the reading thread
621 if (data_length) {
622 if (info->full_packet_received)
623 response->first_segment = true;
625 if (le32_to_cpu(data_transfer->remaining_data_length))
626 info->full_packet_received = false;
627 else
628 info->full_packet_received = true;
630 enqueue_reassembly(
631 info,
632 response,
633 data_length);
634 } else
635 put_empty_packet(info, response);
637 if (data_length)
638 wake_up_interruptible(&info->wait_reassembly_queue);
640 atomic_dec(&info->receive_credits);
641 info->receive_credit_target =
642 le16_to_cpu(data_transfer->credits_requested);
643 atomic_add(le16_to_cpu(data_transfer->credits_granted),
644 &info->send_credits);
646 log_incoming(INFO, "data flags %d data_offset %d "
647 "data_length %d remaining_data_length %d\n",
648 le16_to_cpu(data_transfer->flags),
649 le32_to_cpu(data_transfer->data_offset),
650 le32_to_cpu(data_transfer->data_length),
651 le32_to_cpu(data_transfer->remaining_data_length));
653 /* Send a KEEP_ALIVE response right away if requested */
654 info->keep_alive_requested = KEEP_ALIVE_NONE;
655 if (le16_to_cpu(data_transfer->flags) &
656 SMB_DIRECT_RESPONSE_REQUESTED) {
657 info->keep_alive_requested = KEEP_ALIVE_PENDING;
660 queue_work(info->workqueue, &info->recv_done_work);
661 return;
663 default:
664 log_rdma_recv(ERR,
665 "unexpected response type=%d\n", response->type);
668 error:
669 put_receive_buffer(info, response);
672 static struct rdma_cm_id *smbd_create_id(
673 struct smbd_connection *info,
674 struct sockaddr *dstaddr, int port)
676 struct rdma_cm_id *id;
677 int rc;
678 __be16 *sport;
680 id = rdma_create_id(&init_net, smbd_conn_upcall, info,
681 RDMA_PS_TCP, IB_QPT_RC);
682 if (IS_ERR(id)) {
683 rc = PTR_ERR(id);
684 log_rdma_event(ERR, "rdma_create_id() failed %i\n", rc);
685 return id;
688 if (dstaddr->sa_family == AF_INET6)
689 sport = &((struct sockaddr_in6 *)dstaddr)->sin6_port;
690 else
691 sport = &((struct sockaddr_in *)dstaddr)->sin_port;
693 *sport = htons(port);
695 init_completion(&info->ri_done);
696 info->ri_rc = -ETIMEDOUT;
698 rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)dstaddr,
699 RDMA_RESOLVE_TIMEOUT);
700 if (rc) {
701 log_rdma_event(ERR, "rdma_resolve_addr() failed %i\n", rc);
702 goto out;
704 wait_for_completion_interruptible_timeout(
705 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
706 rc = info->ri_rc;
707 if (rc) {
708 log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc);
709 goto out;
712 info->ri_rc = -ETIMEDOUT;
713 rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
714 if (rc) {
715 log_rdma_event(ERR, "rdma_resolve_route() failed %i\n", rc);
716 goto out;
718 wait_for_completion_interruptible_timeout(
719 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
720 rc = info->ri_rc;
721 if (rc) {
722 log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc);
723 goto out;
726 return id;
728 out:
729 rdma_destroy_id(id);
730 return ERR_PTR(rc);
734 * Test if FRWR (Fast Registration Work Requests) is supported on the device
735 * This implementation requries FRWR on RDMA read/write
736 * return value: true if it is supported
738 static bool frwr_is_supported(struct ib_device_attr *attrs)
740 if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
741 return false;
742 if (attrs->max_fast_reg_page_list_len == 0)
743 return false;
744 return true;
747 static int smbd_ia_open(
748 struct smbd_connection *info,
749 struct sockaddr *dstaddr, int port)
751 int rc;
753 info->id = smbd_create_id(info, dstaddr, port);
754 if (IS_ERR(info->id)) {
755 rc = PTR_ERR(info->id);
756 goto out1;
759 if (!frwr_is_supported(&info->id->device->attrs)) {
760 log_rdma_event(ERR,
761 "Fast Registration Work Requests "
762 "(FRWR) is not supported\n");
763 log_rdma_event(ERR,
764 "Device capability flags = %llx "
765 "max_fast_reg_page_list_len = %u\n",
766 info->id->device->attrs.device_cap_flags,
767 info->id->device->attrs.max_fast_reg_page_list_len);
768 rc = -EPROTONOSUPPORT;
769 goto out2;
771 info->max_frmr_depth = min_t(int,
772 smbd_max_frmr_depth,
773 info->id->device->attrs.max_fast_reg_page_list_len);
774 info->mr_type = IB_MR_TYPE_MEM_REG;
775 if (info->id->device->attrs.device_cap_flags & IB_DEVICE_SG_GAPS_REG)
776 info->mr_type = IB_MR_TYPE_SG_GAPS;
778 info->pd = ib_alloc_pd(info->id->device, 0);
779 if (IS_ERR(info->pd)) {
780 rc = PTR_ERR(info->pd);
781 log_rdma_event(ERR, "ib_alloc_pd() returned %d\n", rc);
782 goto out2;
785 return 0;
787 out2:
788 rdma_destroy_id(info->id);
789 info->id = NULL;
791 out1:
792 return rc;
796 * Send a negotiation request message to the peer
797 * The negotiation procedure is in [MS-SMBD] 3.1.5.2 and 3.1.5.3
798 * After negotiation, the transport is connected and ready for
799 * carrying upper layer SMB payload
801 static int smbd_post_send_negotiate_req(struct smbd_connection *info)
803 struct ib_send_wr send_wr, *send_wr_fail;
804 int rc = -ENOMEM;
805 struct smbd_request *request;
806 struct smbd_negotiate_req *packet;
808 request = mempool_alloc(info->request_mempool, GFP_KERNEL);
809 if (!request)
810 return rc;
812 request->info = info;
814 packet = smbd_request_payload(request);
815 packet->min_version = cpu_to_le16(SMBD_V1);
816 packet->max_version = cpu_to_le16(SMBD_V1);
817 packet->reserved = 0;
818 packet->credits_requested = cpu_to_le16(info->send_credit_target);
819 packet->preferred_send_size = cpu_to_le32(info->max_send_size);
820 packet->max_receive_size = cpu_to_le32(info->max_receive_size);
821 packet->max_fragmented_size =
822 cpu_to_le32(info->max_fragmented_recv_size);
824 request->num_sge = 1;
825 request->sge[0].addr = ib_dma_map_single(
826 info->id->device, (void *)packet,
827 sizeof(*packet), DMA_TO_DEVICE);
828 if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
829 rc = -EIO;
830 goto dma_mapping_failed;
833 request->sge[0].length = sizeof(*packet);
834 request->sge[0].lkey = info->pd->local_dma_lkey;
836 ib_dma_sync_single_for_device(
837 info->id->device, request->sge[0].addr,
838 request->sge[0].length, DMA_TO_DEVICE);
840 request->cqe.done = send_done;
842 send_wr.next = NULL;
843 send_wr.wr_cqe = &request->cqe;
844 send_wr.sg_list = request->sge;
845 send_wr.num_sge = request->num_sge;
846 send_wr.opcode = IB_WR_SEND;
847 send_wr.send_flags = IB_SEND_SIGNALED;
849 log_rdma_send(INFO, "sge addr=%llx length=%x lkey=%x\n",
850 request->sge[0].addr,
851 request->sge[0].length, request->sge[0].lkey);
853 request->has_payload = false;
854 atomic_inc(&info->send_pending);
855 rc = ib_post_send(info->id->qp, &send_wr, &send_wr_fail);
856 if (!rc)
857 return 0;
859 /* if we reach here, post send failed */
860 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
861 atomic_dec(&info->send_pending);
862 ib_dma_unmap_single(info->id->device, request->sge[0].addr,
863 request->sge[0].length, DMA_TO_DEVICE);
865 dma_mapping_failed:
866 mempool_free(request, info->request_mempool);
867 return rc;
871 * Extend the credits to remote peer
872 * This implements [MS-SMBD] 3.1.5.9
873 * The idea is that we should extend credits to remote peer as quickly as
874 * it's allowed, to maintain data flow. We allocate as much receive
875 * buffer as possible, and extend the receive credits to remote peer
876 * return value: the new credtis being granted.
878 static int manage_credits_prior_sending(struct smbd_connection *info)
880 int new_credits;
882 spin_lock(&info->lock_new_credits_offered);
883 new_credits = info->new_credits_offered;
884 info->new_credits_offered = 0;
885 spin_unlock(&info->lock_new_credits_offered);
887 return new_credits;
891 * Check if we need to send a KEEP_ALIVE message
892 * The idle connection timer triggers a KEEP_ALIVE message when expires
893 * SMB_DIRECT_RESPONSE_REQUESTED is set in the message flag to have peer send
894 * back a response.
895 * return value:
896 * 1 if SMB_DIRECT_RESPONSE_REQUESTED needs to be set
897 * 0: otherwise
899 static int manage_keep_alive_before_sending(struct smbd_connection *info)
901 if (info->keep_alive_requested == KEEP_ALIVE_PENDING) {
902 info->keep_alive_requested = KEEP_ALIVE_SENT;
903 return 1;
905 return 0;
909 * Build and prepare the SMBD packet header
910 * This function waits for avaialbe send credits and build a SMBD packet
911 * header. The caller then optional append payload to the packet after
912 * the header
913 * intput values
914 * size: the size of the payload
915 * remaining_data_length: remaining data to send if this is part of a
916 * fragmented packet
917 * output values
918 * request_out: the request allocated from this function
919 * return values: 0 on success, otherwise actual error code returned
921 static int smbd_create_header(struct smbd_connection *info,
922 int size, int remaining_data_length,
923 struct smbd_request **request_out)
925 struct smbd_request *request;
926 struct smbd_data_transfer *packet;
927 int header_length;
928 int rc;
930 /* Wait for send credits. A SMBD packet needs one credit */
931 rc = wait_event_interruptible(info->wait_send_queue,
932 atomic_read(&info->send_credits) > 0 ||
933 info->transport_status != SMBD_CONNECTED);
934 if (rc)
935 return rc;
937 if (info->transport_status != SMBD_CONNECTED) {
938 log_outgoing(ERR, "disconnected not sending\n");
939 return -ENOENT;
941 atomic_dec(&info->send_credits);
943 request = mempool_alloc(info->request_mempool, GFP_KERNEL);
944 if (!request) {
945 rc = -ENOMEM;
946 goto err;
949 request->info = info;
951 /* Fill in the packet header */
952 packet = smbd_request_payload(request);
953 packet->credits_requested = cpu_to_le16(info->send_credit_target);
954 packet->credits_granted =
955 cpu_to_le16(manage_credits_prior_sending(info));
956 info->send_immediate = false;
958 packet->flags = 0;
959 if (manage_keep_alive_before_sending(info))
960 packet->flags |= cpu_to_le16(SMB_DIRECT_RESPONSE_REQUESTED);
962 packet->reserved = 0;
963 if (!size)
964 packet->data_offset = 0;
965 else
966 packet->data_offset = cpu_to_le32(24);
967 packet->data_length = cpu_to_le32(size);
968 packet->remaining_data_length = cpu_to_le32(remaining_data_length);
969 packet->padding = 0;
971 log_outgoing(INFO, "credits_requested=%d credits_granted=%d "
972 "data_offset=%d data_length=%d remaining_data_length=%d\n",
973 le16_to_cpu(packet->credits_requested),
974 le16_to_cpu(packet->credits_granted),
975 le32_to_cpu(packet->data_offset),
976 le32_to_cpu(packet->data_length),
977 le32_to_cpu(packet->remaining_data_length));
979 /* Map the packet to DMA */
980 header_length = sizeof(struct smbd_data_transfer);
981 /* If this is a packet without payload, don't send padding */
982 if (!size)
983 header_length = offsetof(struct smbd_data_transfer, padding);
985 request->num_sge = 1;
986 request->sge[0].addr = ib_dma_map_single(info->id->device,
987 (void *)packet,
988 header_length,
989 DMA_BIDIRECTIONAL);
990 if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
991 mempool_free(request, info->request_mempool);
992 rc = -EIO;
993 goto err;
996 request->sge[0].length = header_length;
997 request->sge[0].lkey = info->pd->local_dma_lkey;
999 *request_out = request;
1000 return 0;
1002 err:
1003 atomic_inc(&info->send_credits);
1004 return rc;
1007 static void smbd_destroy_header(struct smbd_connection *info,
1008 struct smbd_request *request)
1011 ib_dma_unmap_single(info->id->device,
1012 request->sge[0].addr,
1013 request->sge[0].length,
1014 DMA_TO_DEVICE);
1015 mempool_free(request, info->request_mempool);
1016 atomic_inc(&info->send_credits);
1019 /* Post the send request */
1020 static int smbd_post_send(struct smbd_connection *info,
1021 struct smbd_request *request, bool has_payload)
1023 struct ib_send_wr send_wr, *send_wr_fail;
1024 int rc, i;
1026 for (i = 0; i < request->num_sge; i++) {
1027 log_rdma_send(INFO,
1028 "rdma_request sge[%d] addr=%llu legnth=%u\n",
1029 i, request->sge[0].addr, request->sge[0].length);
1030 ib_dma_sync_single_for_device(
1031 info->id->device,
1032 request->sge[i].addr,
1033 request->sge[i].length,
1034 DMA_TO_DEVICE);
1037 request->cqe.done = send_done;
1039 send_wr.next = NULL;
1040 send_wr.wr_cqe = &request->cqe;
1041 send_wr.sg_list = request->sge;
1042 send_wr.num_sge = request->num_sge;
1043 send_wr.opcode = IB_WR_SEND;
1044 send_wr.send_flags = IB_SEND_SIGNALED;
1046 if (has_payload) {
1047 request->has_payload = true;
1048 atomic_inc(&info->send_payload_pending);
1049 } else {
1050 request->has_payload = false;
1051 atomic_inc(&info->send_pending);
1054 rc = ib_post_send(info->id->qp, &send_wr, &send_wr_fail);
1055 if (rc) {
1056 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
1057 if (has_payload) {
1058 if (atomic_dec_and_test(&info->send_payload_pending))
1059 wake_up(&info->wait_send_payload_pending);
1060 } else {
1061 if (atomic_dec_and_test(&info->send_pending))
1062 wake_up(&info->wait_send_pending);
1064 } else
1065 /* Reset timer for idle connection after packet is sent */
1066 mod_delayed_work(info->workqueue, &info->idle_timer_work,
1067 info->keep_alive_interval*HZ);
1069 return rc;
1072 static int smbd_post_send_sgl(struct smbd_connection *info,
1073 struct scatterlist *sgl, int data_length, int remaining_data_length)
1075 int num_sgs;
1076 int i, rc;
1077 struct smbd_request *request;
1078 struct scatterlist *sg;
1080 rc = smbd_create_header(
1081 info, data_length, remaining_data_length, &request);
1082 if (rc)
1083 return rc;
1085 num_sgs = sgl ? sg_nents(sgl) : 0;
1086 for_each_sg(sgl, sg, num_sgs, i) {
1087 request->sge[i+1].addr =
1088 ib_dma_map_page(info->id->device, sg_page(sg),
1089 sg->offset, sg->length, DMA_BIDIRECTIONAL);
1090 if (ib_dma_mapping_error(
1091 info->id->device, request->sge[i+1].addr)) {
1092 rc = -EIO;
1093 request->sge[i+1].addr = 0;
1094 goto dma_mapping_failure;
1096 request->sge[i+1].length = sg->length;
1097 request->sge[i+1].lkey = info->pd->local_dma_lkey;
1098 request->num_sge++;
1101 rc = smbd_post_send(info, request, data_length);
1102 if (!rc)
1103 return 0;
1105 dma_mapping_failure:
1106 for (i = 1; i < request->num_sge; i++)
1107 if (request->sge[i].addr)
1108 ib_dma_unmap_single(info->id->device,
1109 request->sge[i].addr,
1110 request->sge[i].length,
1111 DMA_TO_DEVICE);
1112 smbd_destroy_header(info, request);
1113 return rc;
1117 * Send a page
1118 * page: the page to send
1119 * offset: offset in the page to send
1120 * size: length in the page to send
1121 * remaining_data_length: remaining data to send in this payload
1123 static int smbd_post_send_page(struct smbd_connection *info, struct page *page,
1124 unsigned long offset, size_t size, int remaining_data_length)
1126 struct scatterlist sgl;
1128 sg_init_table(&sgl, 1);
1129 sg_set_page(&sgl, page, size, offset);
1131 return smbd_post_send_sgl(info, &sgl, size, remaining_data_length);
1135 * Send an empty message
1136 * Empty message is used to extend credits to peer to for keep live
1137 * while there is no upper layer payload to send at the time
1139 static int smbd_post_send_empty(struct smbd_connection *info)
1141 info->count_send_empty++;
1142 return smbd_post_send_sgl(info, NULL, 0, 0);
1146 * Send a data buffer
1147 * iov: the iov array describing the data buffers
1148 * n_vec: number of iov array
1149 * remaining_data_length: remaining data to send following this packet
1150 * in segmented SMBD packet
1152 static int smbd_post_send_data(
1153 struct smbd_connection *info, struct kvec *iov, int n_vec,
1154 int remaining_data_length)
1156 int i;
1157 u32 data_length = 0;
1158 struct scatterlist sgl[SMBDIRECT_MAX_SGE];
1160 if (n_vec > SMBDIRECT_MAX_SGE) {
1161 cifs_dbg(VFS, "Can't fit data to SGL, n_vec=%d\n", n_vec);
1162 return -ENOMEM;
1165 sg_init_table(sgl, n_vec);
1166 for (i = 0; i < n_vec; i++) {
1167 data_length += iov[i].iov_len;
1168 sg_set_buf(&sgl[i], iov[i].iov_base, iov[i].iov_len);
1171 return smbd_post_send_sgl(info, sgl, data_length, remaining_data_length);
1175 * Post a receive request to the transport
1176 * The remote peer can only send data when a receive request is posted
1177 * The interaction is controlled by send/receive credit system
1179 static int smbd_post_recv(
1180 struct smbd_connection *info, struct smbd_response *response)
1182 struct ib_recv_wr recv_wr, *recv_wr_fail = NULL;
1183 int rc = -EIO;
1185 response->sge.addr = ib_dma_map_single(
1186 info->id->device, response->packet,
1187 info->max_receive_size, DMA_FROM_DEVICE);
1188 if (ib_dma_mapping_error(info->id->device, response->sge.addr))
1189 return rc;
1191 response->sge.length = info->max_receive_size;
1192 response->sge.lkey = info->pd->local_dma_lkey;
1194 response->cqe.done = recv_done;
1196 recv_wr.wr_cqe = &response->cqe;
1197 recv_wr.next = NULL;
1198 recv_wr.sg_list = &response->sge;
1199 recv_wr.num_sge = 1;
1201 rc = ib_post_recv(info->id->qp, &recv_wr, &recv_wr_fail);
1202 if (rc) {
1203 ib_dma_unmap_single(info->id->device, response->sge.addr,
1204 response->sge.length, DMA_FROM_DEVICE);
1206 log_rdma_recv(ERR, "ib_post_recv failed rc=%d\n", rc);
1209 return rc;
1212 /* Perform SMBD negotiate according to [MS-SMBD] 3.1.5.2 */
1213 static int smbd_negotiate(struct smbd_connection *info)
1215 int rc;
1216 struct smbd_response *response = get_receive_buffer(info);
1218 response->type = SMBD_NEGOTIATE_RESP;
1219 rc = smbd_post_recv(info, response);
1220 log_rdma_event(INFO,
1221 "smbd_post_recv rc=%d iov.addr=%llx iov.length=%x "
1222 "iov.lkey=%x\n",
1223 rc, response->sge.addr,
1224 response->sge.length, response->sge.lkey);
1225 if (rc)
1226 return rc;
1228 init_completion(&info->negotiate_completion);
1229 info->negotiate_done = false;
1230 rc = smbd_post_send_negotiate_req(info);
1231 if (rc)
1232 return rc;
1234 rc = wait_for_completion_interruptible_timeout(
1235 &info->negotiate_completion, SMBD_NEGOTIATE_TIMEOUT * HZ);
1236 log_rdma_event(INFO, "wait_for_completion_timeout rc=%d\n", rc);
1238 if (info->negotiate_done)
1239 return 0;
1241 if (rc == 0)
1242 rc = -ETIMEDOUT;
1243 else if (rc == -ERESTARTSYS)
1244 rc = -EINTR;
1245 else
1246 rc = -ENOTCONN;
1248 return rc;
1251 static void put_empty_packet(
1252 struct smbd_connection *info, struct smbd_response *response)
1254 spin_lock(&info->empty_packet_queue_lock);
1255 list_add_tail(&response->list, &info->empty_packet_queue);
1256 info->count_empty_packet_queue++;
1257 spin_unlock(&info->empty_packet_queue_lock);
1259 queue_work(info->workqueue, &info->post_send_credits_work);
1263 * Implement Connection.FragmentReassemblyBuffer defined in [MS-SMBD] 3.1.1.1
1264 * This is a queue for reassembling upper layer payload and present to upper
1265 * layer. All the inncoming payload go to the reassembly queue, regardless of
1266 * if reassembly is required. The uuper layer code reads from the queue for all
1267 * incoming payloads.
1268 * Put a received packet to the reassembly queue
1269 * response: the packet received
1270 * data_length: the size of payload in this packet
1272 static void enqueue_reassembly(
1273 struct smbd_connection *info,
1274 struct smbd_response *response,
1275 int data_length)
1277 spin_lock(&info->reassembly_queue_lock);
1278 list_add_tail(&response->list, &info->reassembly_queue);
1279 info->reassembly_queue_length++;
1281 * Make sure reassembly_data_length is updated after list and
1282 * reassembly_queue_length are updated. On the dequeue side
1283 * reassembly_data_length is checked without a lock to determine
1284 * if reassembly_queue_length and list is up to date
1286 virt_wmb();
1287 info->reassembly_data_length += data_length;
1288 spin_unlock(&info->reassembly_queue_lock);
1289 info->count_reassembly_queue++;
1290 info->count_enqueue_reassembly_queue++;
1294 * Get the first entry at the front of reassembly queue
1295 * Caller is responsible for locking
1296 * return value: the first entry if any, NULL if queue is empty
1298 static struct smbd_response *_get_first_reassembly(struct smbd_connection *info)
1300 struct smbd_response *ret = NULL;
1302 if (!list_empty(&info->reassembly_queue)) {
1303 ret = list_first_entry(
1304 &info->reassembly_queue,
1305 struct smbd_response, list);
1307 return ret;
1310 static struct smbd_response *get_empty_queue_buffer(
1311 struct smbd_connection *info)
1313 struct smbd_response *ret = NULL;
1314 unsigned long flags;
1316 spin_lock_irqsave(&info->empty_packet_queue_lock, flags);
1317 if (!list_empty(&info->empty_packet_queue)) {
1318 ret = list_first_entry(
1319 &info->empty_packet_queue,
1320 struct smbd_response, list);
1321 list_del(&ret->list);
1322 info->count_empty_packet_queue--;
1324 spin_unlock_irqrestore(&info->empty_packet_queue_lock, flags);
1326 return ret;
1330 * Get a receive buffer
1331 * For each remote send, we need to post a receive. The receive buffers are
1332 * pre-allocated in advance.
1333 * return value: the receive buffer, NULL if none is available
1335 static struct smbd_response *get_receive_buffer(struct smbd_connection *info)
1337 struct smbd_response *ret = NULL;
1338 unsigned long flags;
1340 spin_lock_irqsave(&info->receive_queue_lock, flags);
1341 if (!list_empty(&info->receive_queue)) {
1342 ret = list_first_entry(
1343 &info->receive_queue,
1344 struct smbd_response, list);
1345 list_del(&ret->list);
1346 info->count_receive_queue--;
1347 info->count_get_receive_buffer++;
1349 spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1351 return ret;
1355 * Return a receive buffer
1356 * Upon returning of a receive buffer, we can post new receive and extend
1357 * more receive credits to remote peer. This is done immediately after a
1358 * receive buffer is returned.
1360 static void put_receive_buffer(
1361 struct smbd_connection *info, struct smbd_response *response)
1363 unsigned long flags;
1365 ib_dma_unmap_single(info->id->device, response->sge.addr,
1366 response->sge.length, DMA_FROM_DEVICE);
1368 spin_lock_irqsave(&info->receive_queue_lock, flags);
1369 list_add_tail(&response->list, &info->receive_queue);
1370 info->count_receive_queue++;
1371 info->count_put_receive_buffer++;
1372 spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1374 queue_work(info->workqueue, &info->post_send_credits_work);
1377 /* Preallocate all receive buffer on transport establishment */
1378 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf)
1380 int i;
1381 struct smbd_response *response;
1383 INIT_LIST_HEAD(&info->reassembly_queue);
1384 spin_lock_init(&info->reassembly_queue_lock);
1385 info->reassembly_data_length = 0;
1386 info->reassembly_queue_length = 0;
1388 INIT_LIST_HEAD(&info->receive_queue);
1389 spin_lock_init(&info->receive_queue_lock);
1390 info->count_receive_queue = 0;
1392 INIT_LIST_HEAD(&info->empty_packet_queue);
1393 spin_lock_init(&info->empty_packet_queue_lock);
1394 info->count_empty_packet_queue = 0;
1396 init_waitqueue_head(&info->wait_receive_queues);
1398 for (i = 0; i < num_buf; i++) {
1399 response = mempool_alloc(info->response_mempool, GFP_KERNEL);
1400 if (!response)
1401 goto allocate_failed;
1403 response->info = info;
1404 list_add_tail(&response->list, &info->receive_queue);
1405 info->count_receive_queue++;
1408 return 0;
1410 allocate_failed:
1411 while (!list_empty(&info->receive_queue)) {
1412 response = list_first_entry(
1413 &info->receive_queue,
1414 struct smbd_response, list);
1415 list_del(&response->list);
1416 info->count_receive_queue--;
1418 mempool_free(response, info->response_mempool);
1420 return -ENOMEM;
1423 static void destroy_receive_buffers(struct smbd_connection *info)
1425 struct smbd_response *response;
1427 while ((response = get_receive_buffer(info)))
1428 mempool_free(response, info->response_mempool);
1430 while ((response = get_empty_queue_buffer(info)))
1431 mempool_free(response, info->response_mempool);
1435 * Check and send an immediate or keep alive packet
1436 * The condition to send those packets are defined in [MS-SMBD] 3.1.1.1
1437 * Connection.KeepaliveRequested and Connection.SendImmediate
1438 * The idea is to extend credits to server as soon as it becomes available
1440 static void send_immediate_work(struct work_struct *work)
1442 struct smbd_connection *info = container_of(
1443 work, struct smbd_connection,
1444 send_immediate_work.work);
1446 if (info->keep_alive_requested == KEEP_ALIVE_PENDING ||
1447 info->send_immediate) {
1448 log_keep_alive(INFO, "send an empty message\n");
1449 smbd_post_send_empty(info);
1453 /* Implement idle connection timer [MS-SMBD] 3.1.6.2 */
1454 static void idle_connection_timer(struct work_struct *work)
1456 struct smbd_connection *info = container_of(
1457 work, struct smbd_connection,
1458 idle_timer_work.work);
1460 if (info->keep_alive_requested != KEEP_ALIVE_NONE) {
1461 log_keep_alive(ERR,
1462 "error status info->keep_alive_requested=%d\n",
1463 info->keep_alive_requested);
1464 smbd_disconnect_rdma_connection(info);
1465 return;
1468 log_keep_alive(INFO, "about to send an empty idle message\n");
1469 smbd_post_send_empty(info);
1471 /* Setup the next idle timeout work */
1472 queue_delayed_work(info->workqueue, &info->idle_timer_work,
1473 info->keep_alive_interval*HZ);
1476 /* Destroy this SMBD connection, called from upper layer */
1477 void smbd_destroy(struct smbd_connection *info)
1479 log_rdma_event(INFO, "destroying rdma session\n");
1481 /* Kick off the disconnection process */
1482 smbd_disconnect_rdma_connection(info);
1484 log_rdma_event(INFO, "wait for transport being destroyed\n");
1485 wait_event(info->wait_destroy,
1486 info->transport_status == SMBD_DESTROYED);
1488 destroy_workqueue(info->workqueue);
1489 kfree(info);
1493 * Reconnect this SMBD connection, called from upper layer
1494 * return value: 0 on success, or actual error code
1496 int smbd_reconnect(struct TCP_Server_Info *server)
1498 log_rdma_event(INFO, "reconnecting rdma session\n");
1500 if (!server->smbd_conn) {
1501 log_rdma_event(ERR, "rdma session already destroyed\n");
1502 return -EINVAL;
1506 * This is possible if transport is disconnected and we haven't received
1507 * notification from RDMA, but upper layer has detected timeout
1509 if (server->smbd_conn->transport_status == SMBD_CONNECTED) {
1510 log_rdma_event(INFO, "disconnecting transport\n");
1511 smbd_disconnect_rdma_connection(server->smbd_conn);
1514 /* wait until the transport is destroyed */
1515 wait_event(server->smbd_conn->wait_destroy,
1516 server->smbd_conn->transport_status == SMBD_DESTROYED);
1518 destroy_workqueue(server->smbd_conn->workqueue);
1519 kfree(server->smbd_conn);
1521 log_rdma_event(INFO, "creating rdma session\n");
1522 server->smbd_conn = smbd_get_connection(
1523 server, (struct sockaddr *) &server->dstaddr);
1525 return server->smbd_conn ? 0 : -ENOENT;
1528 static void destroy_caches_and_workqueue(struct smbd_connection *info)
1530 destroy_receive_buffers(info);
1531 destroy_workqueue(info->workqueue);
1532 mempool_destroy(info->response_mempool);
1533 kmem_cache_destroy(info->response_cache);
1534 mempool_destroy(info->request_mempool);
1535 kmem_cache_destroy(info->request_cache);
1538 #define MAX_NAME_LEN 80
1539 static int allocate_caches_and_workqueue(struct smbd_connection *info)
1541 char name[MAX_NAME_LEN];
1542 int rc;
1544 snprintf(name, MAX_NAME_LEN, "smbd_request_%p", info);
1545 info->request_cache =
1546 kmem_cache_create(
1547 name,
1548 sizeof(struct smbd_request) +
1549 sizeof(struct smbd_data_transfer),
1550 0, SLAB_HWCACHE_ALIGN, NULL);
1551 if (!info->request_cache)
1552 return -ENOMEM;
1554 info->request_mempool =
1555 mempool_create(info->send_credit_target, mempool_alloc_slab,
1556 mempool_free_slab, info->request_cache);
1557 if (!info->request_mempool)
1558 goto out1;
1560 snprintf(name, MAX_NAME_LEN, "smbd_response_%p", info);
1561 info->response_cache =
1562 kmem_cache_create(
1563 name,
1564 sizeof(struct smbd_response) +
1565 info->max_receive_size,
1566 0, SLAB_HWCACHE_ALIGN, NULL);
1567 if (!info->response_cache)
1568 goto out2;
1570 info->response_mempool =
1571 mempool_create(info->receive_credit_max, mempool_alloc_slab,
1572 mempool_free_slab, info->response_cache);
1573 if (!info->response_mempool)
1574 goto out3;
1576 snprintf(name, MAX_NAME_LEN, "smbd_%p", info);
1577 info->workqueue = create_workqueue(name);
1578 if (!info->workqueue)
1579 goto out4;
1581 rc = allocate_receive_buffers(info, info->receive_credit_max);
1582 if (rc) {
1583 log_rdma_event(ERR, "failed to allocate receive buffers\n");
1584 goto out5;
1587 return 0;
1589 out5:
1590 destroy_workqueue(info->workqueue);
1591 out4:
1592 mempool_destroy(info->response_mempool);
1593 out3:
1594 kmem_cache_destroy(info->response_cache);
1595 out2:
1596 mempool_destroy(info->request_mempool);
1597 out1:
1598 kmem_cache_destroy(info->request_cache);
1599 return -ENOMEM;
1602 /* Create a SMBD connection, called by upper layer */
1603 static struct smbd_connection *_smbd_get_connection(
1604 struct TCP_Server_Info *server, struct sockaddr *dstaddr, int port)
1606 int rc;
1607 struct smbd_connection *info;
1608 struct rdma_conn_param conn_param;
1609 struct ib_qp_init_attr qp_attr;
1610 struct sockaddr_in *addr_in = (struct sockaddr_in *) dstaddr;
1611 struct ib_port_immutable port_immutable;
1612 u32 ird_ord_hdr[2];
1614 info = kzalloc(sizeof(struct smbd_connection), GFP_KERNEL);
1615 if (!info)
1616 return NULL;
1618 info->transport_status = SMBD_CONNECTING;
1619 rc = smbd_ia_open(info, dstaddr, port);
1620 if (rc) {
1621 log_rdma_event(INFO, "smbd_ia_open rc=%d\n", rc);
1622 goto create_id_failed;
1625 if (smbd_send_credit_target > info->id->device->attrs.max_cqe ||
1626 smbd_send_credit_target > info->id->device->attrs.max_qp_wr) {
1627 log_rdma_event(ERR,
1628 "consider lowering send_credit_target = %d. "
1629 "Possible CQE overrun, device "
1630 "reporting max_cpe %d max_qp_wr %d\n",
1631 smbd_send_credit_target,
1632 info->id->device->attrs.max_cqe,
1633 info->id->device->attrs.max_qp_wr);
1634 goto config_failed;
1637 if (smbd_receive_credit_max > info->id->device->attrs.max_cqe ||
1638 smbd_receive_credit_max > info->id->device->attrs.max_qp_wr) {
1639 log_rdma_event(ERR,
1640 "consider lowering receive_credit_max = %d. "
1641 "Possible CQE overrun, device "
1642 "reporting max_cpe %d max_qp_wr %d\n",
1643 smbd_receive_credit_max,
1644 info->id->device->attrs.max_cqe,
1645 info->id->device->attrs.max_qp_wr);
1646 goto config_failed;
1649 info->receive_credit_max = smbd_receive_credit_max;
1650 info->send_credit_target = smbd_send_credit_target;
1651 info->max_send_size = smbd_max_send_size;
1652 info->max_fragmented_recv_size = smbd_max_fragmented_recv_size;
1653 info->max_receive_size = smbd_max_receive_size;
1654 info->keep_alive_interval = smbd_keep_alive_interval;
1656 if (info->id->device->attrs.max_sge < SMBDIRECT_MAX_SGE) {
1657 log_rdma_event(ERR, "warning: device max_sge = %d too small\n",
1658 info->id->device->attrs.max_sge);
1659 log_rdma_event(ERR, "Queue Pair creation may fail\n");
1662 info->send_cq = NULL;
1663 info->recv_cq = NULL;
1664 info->send_cq = ib_alloc_cq(info->id->device, info,
1665 info->send_credit_target, 0, IB_POLL_SOFTIRQ);
1666 if (IS_ERR(info->send_cq)) {
1667 info->send_cq = NULL;
1668 goto alloc_cq_failed;
1671 info->recv_cq = ib_alloc_cq(info->id->device, info,
1672 info->receive_credit_max, 0, IB_POLL_SOFTIRQ);
1673 if (IS_ERR(info->recv_cq)) {
1674 info->recv_cq = NULL;
1675 goto alloc_cq_failed;
1678 memset(&qp_attr, 0, sizeof(qp_attr));
1679 qp_attr.event_handler = smbd_qp_async_error_upcall;
1680 qp_attr.qp_context = info;
1681 qp_attr.cap.max_send_wr = info->send_credit_target;
1682 qp_attr.cap.max_recv_wr = info->receive_credit_max;
1683 qp_attr.cap.max_send_sge = SMBDIRECT_MAX_SGE;
1684 qp_attr.cap.max_recv_sge = SMBDIRECT_MAX_SGE;
1685 qp_attr.cap.max_inline_data = 0;
1686 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1687 qp_attr.qp_type = IB_QPT_RC;
1688 qp_attr.send_cq = info->send_cq;
1689 qp_attr.recv_cq = info->recv_cq;
1690 qp_attr.port_num = ~0;
1692 rc = rdma_create_qp(info->id, info->pd, &qp_attr);
1693 if (rc) {
1694 log_rdma_event(ERR, "rdma_create_qp failed %i\n", rc);
1695 goto create_qp_failed;
1698 memset(&conn_param, 0, sizeof(conn_param));
1699 conn_param.initiator_depth = 0;
1701 conn_param.responder_resources =
1702 info->id->device->attrs.max_qp_rd_atom
1703 < SMBD_CM_RESPONDER_RESOURCES ?
1704 info->id->device->attrs.max_qp_rd_atom :
1705 SMBD_CM_RESPONDER_RESOURCES;
1706 info->responder_resources = conn_param.responder_resources;
1707 log_rdma_mr(INFO, "responder_resources=%d\n",
1708 info->responder_resources);
1710 /* Need to send IRD/ORD in private data for iWARP */
1711 info->id->device->get_port_immutable(
1712 info->id->device, info->id->port_num, &port_immutable);
1713 if (port_immutable.core_cap_flags & RDMA_CORE_PORT_IWARP) {
1714 ird_ord_hdr[0] = info->responder_resources;
1715 ird_ord_hdr[1] = 1;
1716 conn_param.private_data = ird_ord_hdr;
1717 conn_param.private_data_len = sizeof(ird_ord_hdr);
1718 } else {
1719 conn_param.private_data = NULL;
1720 conn_param.private_data_len = 0;
1723 conn_param.retry_count = SMBD_CM_RETRY;
1724 conn_param.rnr_retry_count = SMBD_CM_RNR_RETRY;
1725 conn_param.flow_control = 0;
1726 init_waitqueue_head(&info->wait_destroy);
1728 log_rdma_event(INFO, "connecting to IP %pI4 port %d\n",
1729 &addr_in->sin_addr, port);
1731 init_waitqueue_head(&info->conn_wait);
1732 rc = rdma_connect(info->id, &conn_param);
1733 if (rc) {
1734 log_rdma_event(ERR, "rdma_connect() failed with %i\n", rc);
1735 goto rdma_connect_failed;
1738 wait_event_interruptible(
1739 info->conn_wait, info->transport_status != SMBD_CONNECTING);
1741 if (info->transport_status != SMBD_CONNECTED) {
1742 log_rdma_event(ERR, "rdma_connect failed port=%d\n", port);
1743 goto rdma_connect_failed;
1746 log_rdma_event(INFO, "rdma_connect connected\n");
1748 rc = allocate_caches_and_workqueue(info);
1749 if (rc) {
1750 log_rdma_event(ERR, "cache allocation failed\n");
1751 goto allocate_cache_failed;
1754 init_waitqueue_head(&info->wait_send_queue);
1755 init_waitqueue_head(&info->wait_reassembly_queue);
1757 INIT_DELAYED_WORK(&info->idle_timer_work, idle_connection_timer);
1758 INIT_DELAYED_WORK(&info->send_immediate_work, send_immediate_work);
1759 queue_delayed_work(info->workqueue, &info->idle_timer_work,
1760 info->keep_alive_interval*HZ);
1762 init_waitqueue_head(&info->wait_smbd_send_pending);
1763 info->smbd_send_pending = 0;
1765 init_waitqueue_head(&info->wait_smbd_recv_pending);
1766 info->smbd_recv_pending = 0;
1768 init_waitqueue_head(&info->wait_send_pending);
1769 atomic_set(&info->send_pending, 0);
1771 init_waitqueue_head(&info->wait_send_payload_pending);
1772 atomic_set(&info->send_payload_pending, 0);
1774 INIT_WORK(&info->disconnect_work, smbd_disconnect_rdma_work);
1775 INIT_WORK(&info->destroy_work, smbd_destroy_rdma_work);
1776 INIT_WORK(&info->recv_done_work, smbd_recv_done_work);
1777 INIT_WORK(&info->post_send_credits_work, smbd_post_send_credits);
1778 info->new_credits_offered = 0;
1779 spin_lock_init(&info->lock_new_credits_offered);
1781 rc = smbd_negotiate(info);
1782 if (rc) {
1783 log_rdma_event(ERR, "smbd_negotiate rc=%d\n", rc);
1784 goto negotiation_failed;
1787 rc = allocate_mr_list(info);
1788 if (rc) {
1789 log_rdma_mr(ERR, "memory registration allocation failed\n");
1790 goto allocate_mr_failed;
1793 return info;
1795 allocate_mr_failed:
1796 /* At this point, need to a full transport shutdown */
1797 smbd_destroy(info);
1798 return NULL;
1800 negotiation_failed:
1801 cancel_delayed_work_sync(&info->idle_timer_work);
1802 destroy_caches_and_workqueue(info);
1803 info->transport_status = SMBD_NEGOTIATE_FAILED;
1804 init_waitqueue_head(&info->conn_wait);
1805 rdma_disconnect(info->id);
1806 wait_event(info->conn_wait,
1807 info->transport_status == SMBD_DISCONNECTED);
1809 allocate_cache_failed:
1810 rdma_connect_failed:
1811 rdma_destroy_qp(info->id);
1813 create_qp_failed:
1814 alloc_cq_failed:
1815 if (info->send_cq)
1816 ib_free_cq(info->send_cq);
1817 if (info->recv_cq)
1818 ib_free_cq(info->recv_cq);
1820 config_failed:
1821 ib_dealloc_pd(info->pd);
1822 rdma_destroy_id(info->id);
1824 create_id_failed:
1825 kfree(info);
1826 return NULL;
1829 struct smbd_connection *smbd_get_connection(
1830 struct TCP_Server_Info *server, struct sockaddr *dstaddr)
1832 struct smbd_connection *ret;
1833 int port = SMBD_PORT;
1835 try_again:
1836 ret = _smbd_get_connection(server, dstaddr, port);
1838 /* Try SMB_PORT if SMBD_PORT doesn't work */
1839 if (!ret && port == SMBD_PORT) {
1840 port = SMB_PORT;
1841 goto try_again;
1843 return ret;
1847 * Receive data from receive reassembly queue
1848 * All the incoming data packets are placed in reassembly queue
1849 * buf: the buffer to read data into
1850 * size: the length of data to read
1851 * return value: actual data read
1852 * Note: this implementation copies the data from reassebmly queue to receive
1853 * buffers used by upper layer. This is not the optimal code path. A better way
1854 * to do it is to not have upper layer allocate its receive buffers but rather
1855 * borrow the buffer from reassembly queue, and return it after data is
1856 * consumed. But this will require more changes to upper layer code, and also
1857 * need to consider packet boundaries while they still being reassembled.
1859 static int smbd_recv_buf(struct smbd_connection *info, char *buf,
1860 unsigned int size)
1862 struct smbd_response *response;
1863 struct smbd_data_transfer *data_transfer;
1864 int to_copy, to_read, data_read, offset;
1865 u32 data_length, remaining_data_length, data_offset;
1866 int rc;
1868 again:
1869 if (info->transport_status != SMBD_CONNECTED) {
1870 log_read(ERR, "disconnected\n");
1871 return -ENODEV;
1875 * No need to hold the reassembly queue lock all the time as we are
1876 * the only one reading from the front of the queue. The transport
1877 * may add more entries to the back of the queue at the same time
1879 log_read(INFO, "size=%d info->reassembly_data_length=%d\n", size,
1880 info->reassembly_data_length);
1881 if (info->reassembly_data_length >= size) {
1882 int queue_length;
1883 int queue_removed = 0;
1886 * Need to make sure reassembly_data_length is read before
1887 * reading reassembly_queue_length and calling
1888 * _get_first_reassembly. This call is lock free
1889 * as we never read at the end of the queue which are being
1890 * updated in SOFTIRQ as more data is received
1892 virt_rmb();
1893 queue_length = info->reassembly_queue_length;
1894 data_read = 0;
1895 to_read = size;
1896 offset = info->first_entry_offset;
1897 while (data_read < size) {
1898 response = _get_first_reassembly(info);
1899 data_transfer = smbd_response_payload(response);
1900 data_length = le32_to_cpu(data_transfer->data_length);
1901 remaining_data_length =
1902 le32_to_cpu(
1903 data_transfer->remaining_data_length);
1904 data_offset = le32_to_cpu(data_transfer->data_offset);
1907 * The upper layer expects RFC1002 length at the
1908 * beginning of the payload. Return it to indicate
1909 * the total length of the packet. This minimize the
1910 * change to upper layer packet processing logic. This
1911 * will be eventually remove when an intermediate
1912 * transport layer is added
1914 if (response->first_segment && size == 4) {
1915 unsigned int rfc1002_len =
1916 data_length + remaining_data_length;
1917 *((__be32 *)buf) = cpu_to_be32(rfc1002_len);
1918 data_read = 4;
1919 response->first_segment = false;
1920 log_read(INFO, "returning rfc1002 length %d\n",
1921 rfc1002_len);
1922 goto read_rfc1002_done;
1925 to_copy = min_t(int, data_length - offset, to_read);
1926 memcpy(
1927 buf + data_read,
1928 (char *)data_transfer + data_offset + offset,
1929 to_copy);
1931 /* move on to the next buffer? */
1932 if (to_copy == data_length - offset) {
1933 queue_length--;
1935 * No need to lock if we are not at the
1936 * end of the queue
1938 if (queue_length)
1939 list_del(&response->list);
1940 else {
1941 spin_lock_irq(
1942 &info->reassembly_queue_lock);
1943 list_del(&response->list);
1944 spin_unlock_irq(
1945 &info->reassembly_queue_lock);
1947 queue_removed++;
1948 info->count_reassembly_queue--;
1949 info->count_dequeue_reassembly_queue++;
1950 put_receive_buffer(info, response);
1951 offset = 0;
1952 log_read(INFO, "put_receive_buffer offset=0\n");
1953 } else
1954 offset += to_copy;
1956 to_read -= to_copy;
1957 data_read += to_copy;
1959 log_read(INFO, "_get_first_reassembly memcpy %d bytes "
1960 "data_transfer_length-offset=%d after that "
1961 "to_read=%d data_read=%d offset=%d\n",
1962 to_copy, data_length - offset,
1963 to_read, data_read, offset);
1966 spin_lock_irq(&info->reassembly_queue_lock);
1967 info->reassembly_data_length -= data_read;
1968 info->reassembly_queue_length -= queue_removed;
1969 spin_unlock_irq(&info->reassembly_queue_lock);
1971 info->first_entry_offset = offset;
1972 log_read(INFO, "returning to thread data_read=%d "
1973 "reassembly_data_length=%d first_entry_offset=%d\n",
1974 data_read, info->reassembly_data_length,
1975 info->first_entry_offset);
1976 read_rfc1002_done:
1977 return data_read;
1980 log_read(INFO, "wait_event on more data\n");
1981 rc = wait_event_interruptible(
1982 info->wait_reassembly_queue,
1983 info->reassembly_data_length >= size ||
1984 info->transport_status != SMBD_CONNECTED);
1985 /* Don't return any data if interrupted */
1986 if (rc)
1987 return -ENODEV;
1989 goto again;
1993 * Receive a page from receive reassembly queue
1994 * page: the page to read data into
1995 * to_read: the length of data to read
1996 * return value: actual data read
1998 static int smbd_recv_page(struct smbd_connection *info,
1999 struct page *page, unsigned int to_read)
2001 int ret;
2002 char *to_address;
2004 /* make sure we have the page ready for read */
2005 ret = wait_event_interruptible(
2006 info->wait_reassembly_queue,
2007 info->reassembly_data_length >= to_read ||
2008 info->transport_status != SMBD_CONNECTED);
2009 if (ret)
2010 return 0;
2012 /* now we can read from reassembly queue and not sleep */
2013 to_address = kmap_atomic(page);
2015 log_read(INFO, "reading from page=%p address=%p to_read=%d\n",
2016 page, to_address, to_read);
2018 ret = smbd_recv_buf(info, to_address, to_read);
2019 kunmap_atomic(to_address);
2021 return ret;
2025 * Receive data from transport
2026 * msg: a msghdr point to the buffer, can be ITER_KVEC or ITER_BVEC
2027 * return: total bytes read, or 0. SMB Direct will not do partial read.
2029 int smbd_recv(struct smbd_connection *info, struct msghdr *msg)
2031 char *buf;
2032 struct page *page;
2033 unsigned int to_read;
2034 int rc;
2036 info->smbd_recv_pending++;
2038 switch (msg->msg_iter.type) {
2039 case READ | ITER_KVEC:
2040 buf = msg->msg_iter.kvec->iov_base;
2041 to_read = msg->msg_iter.kvec->iov_len;
2042 rc = smbd_recv_buf(info, buf, to_read);
2043 break;
2045 case READ | ITER_BVEC:
2046 page = msg->msg_iter.bvec->bv_page;
2047 to_read = msg->msg_iter.bvec->bv_len;
2048 rc = smbd_recv_page(info, page, to_read);
2049 break;
2051 default:
2052 /* It's a bug in upper layer to get there */
2053 cifs_dbg(VFS, "CIFS: invalid msg type %d\n",
2054 msg->msg_iter.type);
2055 rc = -EIO;
2058 info->smbd_recv_pending--;
2059 wake_up(&info->wait_smbd_recv_pending);
2061 /* SMBDirect will read it all or nothing */
2062 if (rc > 0)
2063 msg->msg_iter.count = 0;
2064 return rc;
2068 * Send data to transport
2069 * Each rqst is transported as a SMBDirect payload
2070 * rqst: the data to write
2071 * return value: 0 if successfully write, otherwise error code
2073 int smbd_send(struct smbd_connection *info, struct smb_rqst *rqst)
2075 struct kvec vec;
2076 int nvecs;
2077 int size;
2078 int buflen = 0, remaining_data_length;
2079 int start, i, j;
2080 int max_iov_size =
2081 info->max_send_size - sizeof(struct smbd_data_transfer);
2082 struct kvec iov[SMBDIRECT_MAX_SGE];
2083 int rc;
2085 info->smbd_send_pending++;
2086 if (info->transport_status != SMBD_CONNECTED) {
2087 rc = -ENODEV;
2088 goto done;
2092 * This usually means a configuration error
2093 * We use RDMA read/write for packet size > rdma_readwrite_threshold
2094 * as long as it's properly configured we should never get into this
2095 * situation
2097 if (rqst->rq_nvec + rqst->rq_npages > SMBDIRECT_MAX_SGE) {
2098 log_write(ERR, "maximum send segment %x exceeding %x\n",
2099 rqst->rq_nvec + rqst->rq_npages, SMBDIRECT_MAX_SGE);
2100 rc = -EINVAL;
2101 goto done;
2105 * Remove the RFC1002 length defined in MS-SMB2 section 2.1
2106 * It is used only for TCP transport
2107 * In future we may want to add a transport layer under protocol
2108 * layer so this will only be issued to TCP transport
2110 iov[0].iov_base = (char *)rqst->rq_iov[0].iov_base + 4;
2111 iov[0].iov_len = rqst->rq_iov[0].iov_len - 4;
2112 buflen += iov[0].iov_len;
2114 /* total up iov array first */
2115 for (i = 1; i < rqst->rq_nvec; i++) {
2116 iov[i].iov_base = rqst->rq_iov[i].iov_base;
2117 iov[i].iov_len = rqst->rq_iov[i].iov_len;
2118 buflen += iov[i].iov_len;
2121 /* add in the page array if there is one */
2122 if (rqst->rq_npages) {
2123 buflen += rqst->rq_pagesz * (rqst->rq_npages - 1);
2124 buflen += rqst->rq_tailsz;
2127 if (buflen + sizeof(struct smbd_data_transfer) >
2128 info->max_fragmented_send_size) {
2129 log_write(ERR, "payload size %d > max size %d\n",
2130 buflen, info->max_fragmented_send_size);
2131 rc = -EINVAL;
2132 goto done;
2135 remaining_data_length = buflen;
2137 log_write(INFO, "rqst->rq_nvec=%d rqst->rq_npages=%d rq_pagesz=%d "
2138 "rq_tailsz=%d buflen=%d\n",
2139 rqst->rq_nvec, rqst->rq_npages, rqst->rq_pagesz,
2140 rqst->rq_tailsz, buflen);
2142 start = i = iov[0].iov_len ? 0 : 1;
2143 buflen = 0;
2144 while (true) {
2145 buflen += iov[i].iov_len;
2146 if (buflen > max_iov_size) {
2147 if (i > start) {
2148 remaining_data_length -=
2149 (buflen-iov[i].iov_len);
2150 log_write(INFO, "sending iov[] from start=%d "
2151 "i=%d nvecs=%d "
2152 "remaining_data_length=%d\n",
2153 start, i, i-start,
2154 remaining_data_length);
2155 rc = smbd_post_send_data(
2156 info, &iov[start], i-start,
2157 remaining_data_length);
2158 if (rc)
2159 goto done;
2160 } else {
2161 /* iov[start] is too big, break it */
2162 nvecs = (buflen+max_iov_size-1)/max_iov_size;
2163 log_write(INFO, "iov[%d] iov_base=%p buflen=%d"
2164 " break to %d vectors\n",
2165 start, iov[start].iov_base,
2166 buflen, nvecs);
2167 for (j = 0; j < nvecs; j++) {
2168 vec.iov_base =
2169 (char *)iov[start].iov_base +
2170 j*max_iov_size;
2171 vec.iov_len = max_iov_size;
2172 if (j == nvecs-1)
2173 vec.iov_len =
2174 buflen -
2175 max_iov_size*(nvecs-1);
2176 remaining_data_length -= vec.iov_len;
2177 log_write(INFO,
2178 "sending vec j=%d iov_base=%p"
2179 " iov_len=%zu "
2180 "remaining_data_length=%d\n",
2181 j, vec.iov_base, vec.iov_len,
2182 remaining_data_length);
2183 rc = smbd_post_send_data(
2184 info, &vec, 1,
2185 remaining_data_length);
2186 if (rc)
2187 goto done;
2189 i++;
2191 start = i;
2192 buflen = 0;
2193 } else {
2194 i++;
2195 if (i == rqst->rq_nvec) {
2196 /* send out all remaining vecs */
2197 remaining_data_length -= buflen;
2198 log_write(INFO,
2199 "sending iov[] from start=%d i=%d "
2200 "nvecs=%d remaining_data_length=%d\n",
2201 start, i, i-start,
2202 remaining_data_length);
2203 rc = smbd_post_send_data(info, &iov[start],
2204 i-start, remaining_data_length);
2205 if (rc)
2206 goto done;
2207 break;
2210 log_write(INFO, "looping i=%d buflen=%d\n", i, buflen);
2213 /* now sending pages if there are any */
2214 for (i = 0; i < rqst->rq_npages; i++) {
2215 buflen = (i == rqst->rq_npages-1) ?
2216 rqst->rq_tailsz : rqst->rq_pagesz;
2217 nvecs = (buflen + max_iov_size - 1) / max_iov_size;
2218 log_write(INFO, "sending pages buflen=%d nvecs=%d\n",
2219 buflen, nvecs);
2220 for (j = 0; j < nvecs; j++) {
2221 size = max_iov_size;
2222 if (j == nvecs-1)
2223 size = buflen - j*max_iov_size;
2224 remaining_data_length -= size;
2225 log_write(INFO, "sending pages i=%d offset=%d size=%d"
2226 " remaining_data_length=%d\n",
2227 i, j*max_iov_size, size, remaining_data_length);
2228 rc = smbd_post_send_page(
2229 info, rqst->rq_pages[i], j*max_iov_size,
2230 size, remaining_data_length);
2231 if (rc)
2232 goto done;
2236 done:
2238 * As an optimization, we don't wait for individual I/O to finish
2239 * before sending the next one.
2240 * Send them all and wait for pending send count to get to 0
2241 * that means all the I/Os have been out and we are good to return
2244 wait_event(info->wait_send_payload_pending,
2245 atomic_read(&info->send_payload_pending) == 0);
2247 info->smbd_send_pending--;
2248 wake_up(&info->wait_smbd_send_pending);
2250 return rc;
2253 static void register_mr_done(struct ib_cq *cq, struct ib_wc *wc)
2255 struct smbd_mr *mr;
2256 struct ib_cqe *cqe;
2258 if (wc->status) {
2259 log_rdma_mr(ERR, "status=%d\n", wc->status);
2260 cqe = wc->wr_cqe;
2261 mr = container_of(cqe, struct smbd_mr, cqe);
2262 smbd_disconnect_rdma_connection(mr->conn);
2267 * The work queue function that recovers MRs
2268 * We need to call ib_dereg_mr() and ib_alloc_mr() before this MR can be used
2269 * again. Both calls are slow, so finish them in a workqueue. This will not
2270 * block I/O path.
2271 * There is one workqueue that recovers MRs, there is no need to lock as the
2272 * I/O requests calling smbd_register_mr will never update the links in the
2273 * mr_list.
2275 static void smbd_mr_recovery_work(struct work_struct *work)
2277 struct smbd_connection *info =
2278 container_of(work, struct smbd_connection, mr_recovery_work);
2279 struct smbd_mr *smbdirect_mr;
2280 int rc;
2282 list_for_each_entry(smbdirect_mr, &info->mr_list, list) {
2283 if (smbdirect_mr->state == MR_INVALIDATED ||
2284 smbdirect_mr->state == MR_ERROR) {
2286 if (smbdirect_mr->state == MR_INVALIDATED) {
2287 ib_dma_unmap_sg(
2288 info->id->device, smbdirect_mr->sgl,
2289 smbdirect_mr->sgl_count,
2290 smbdirect_mr->dir);
2291 smbdirect_mr->state = MR_READY;
2292 } else if (smbdirect_mr->state == MR_ERROR) {
2294 /* recover this MR entry */
2295 rc = ib_dereg_mr(smbdirect_mr->mr);
2296 if (rc) {
2297 log_rdma_mr(ERR,
2298 "ib_dereg_mr faield rc=%x\n",
2299 rc);
2300 smbd_disconnect_rdma_connection(info);
2303 smbdirect_mr->mr = ib_alloc_mr(
2304 info->pd, info->mr_type,
2305 info->max_frmr_depth);
2306 if (IS_ERR(smbdirect_mr->mr)) {
2307 log_rdma_mr(ERR,
2308 "ib_alloc_mr failed mr_type=%x "
2309 "max_frmr_depth=%x\n",
2310 info->mr_type,
2311 info->max_frmr_depth);
2312 smbd_disconnect_rdma_connection(info);
2315 smbdirect_mr->state = MR_READY;
2317 /* smbdirect_mr->state is updated by this function
2318 * and is read and updated by I/O issuing CPUs trying
2319 * to get a MR, the call to atomic_inc_return
2320 * implicates a memory barrier and guarantees this
2321 * value is updated before waking up any calls to
2322 * get_mr() from the I/O issuing CPUs
2324 if (atomic_inc_return(&info->mr_ready_count) == 1)
2325 wake_up_interruptible(&info->wait_mr);
2330 static void destroy_mr_list(struct smbd_connection *info)
2332 struct smbd_mr *mr, *tmp;
2334 cancel_work_sync(&info->mr_recovery_work);
2335 list_for_each_entry_safe(mr, tmp, &info->mr_list, list) {
2336 if (mr->state == MR_INVALIDATED)
2337 ib_dma_unmap_sg(info->id->device, mr->sgl,
2338 mr->sgl_count, mr->dir);
2339 ib_dereg_mr(mr->mr);
2340 kfree(mr->sgl);
2341 kfree(mr);
2346 * Allocate MRs used for RDMA read/write
2347 * The number of MRs will not exceed hardware capability in responder_resources
2348 * All MRs are kept in mr_list. The MR can be recovered after it's used
2349 * Recovery is done in smbd_mr_recovery_work. The content of list entry changes
2350 * as MRs are used and recovered for I/O, but the list links will not change
2352 static int allocate_mr_list(struct smbd_connection *info)
2354 int i;
2355 struct smbd_mr *smbdirect_mr, *tmp;
2357 INIT_LIST_HEAD(&info->mr_list);
2358 init_waitqueue_head(&info->wait_mr);
2359 spin_lock_init(&info->mr_list_lock);
2360 atomic_set(&info->mr_ready_count, 0);
2361 atomic_set(&info->mr_used_count, 0);
2362 init_waitqueue_head(&info->wait_for_mr_cleanup);
2363 /* Allocate more MRs (2x) than hardware responder_resources */
2364 for (i = 0; i < info->responder_resources * 2; i++) {
2365 smbdirect_mr = kzalloc(sizeof(*smbdirect_mr), GFP_KERNEL);
2366 if (!smbdirect_mr)
2367 goto out;
2368 smbdirect_mr->mr = ib_alloc_mr(info->pd, info->mr_type,
2369 info->max_frmr_depth);
2370 if (IS_ERR(smbdirect_mr->mr)) {
2371 log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x "
2372 "max_frmr_depth=%x\n",
2373 info->mr_type, info->max_frmr_depth);
2374 goto out;
2376 smbdirect_mr->sgl = kcalloc(
2377 info->max_frmr_depth,
2378 sizeof(struct scatterlist),
2379 GFP_KERNEL);
2380 if (!smbdirect_mr->sgl) {
2381 log_rdma_mr(ERR, "failed to allocate sgl\n");
2382 ib_dereg_mr(smbdirect_mr->mr);
2383 goto out;
2385 smbdirect_mr->state = MR_READY;
2386 smbdirect_mr->conn = info;
2388 list_add_tail(&smbdirect_mr->list, &info->mr_list);
2389 atomic_inc(&info->mr_ready_count);
2391 INIT_WORK(&info->mr_recovery_work, smbd_mr_recovery_work);
2392 return 0;
2394 out:
2395 kfree(smbdirect_mr);
2397 list_for_each_entry_safe(smbdirect_mr, tmp, &info->mr_list, list) {
2398 ib_dereg_mr(smbdirect_mr->mr);
2399 kfree(smbdirect_mr->sgl);
2400 kfree(smbdirect_mr);
2402 return -ENOMEM;
2406 * Get a MR from mr_list. This function waits until there is at least one
2407 * MR available in the list. It may access the list while the
2408 * smbd_mr_recovery_work is recovering the MR list. This doesn't need a lock
2409 * as they never modify the same places. However, there may be several CPUs
2410 * issueing I/O trying to get MR at the same time, mr_list_lock is used to
2411 * protect this situation.
2413 static struct smbd_mr *get_mr(struct smbd_connection *info)
2415 struct smbd_mr *ret;
2416 int rc;
2417 again:
2418 rc = wait_event_interruptible(info->wait_mr,
2419 atomic_read(&info->mr_ready_count) ||
2420 info->transport_status != SMBD_CONNECTED);
2421 if (rc) {
2422 log_rdma_mr(ERR, "wait_event_interruptible rc=%x\n", rc);
2423 return NULL;
2426 if (info->transport_status != SMBD_CONNECTED) {
2427 log_rdma_mr(ERR, "info->transport_status=%x\n",
2428 info->transport_status);
2429 return NULL;
2432 spin_lock(&info->mr_list_lock);
2433 list_for_each_entry(ret, &info->mr_list, list) {
2434 if (ret->state == MR_READY) {
2435 ret->state = MR_REGISTERED;
2436 spin_unlock(&info->mr_list_lock);
2437 atomic_dec(&info->mr_ready_count);
2438 atomic_inc(&info->mr_used_count);
2439 return ret;
2443 spin_unlock(&info->mr_list_lock);
2445 * It is possible that we could fail to get MR because other processes may
2446 * try to acquire a MR at the same time. If this is the case, retry it.
2448 goto again;
2452 * Register memory for RDMA read/write
2453 * pages[]: the list of pages to register memory with
2454 * num_pages: the number of pages to register
2455 * tailsz: if non-zero, the bytes to register in the last page
2456 * writing: true if this is a RDMA write (SMB read), false for RDMA read
2457 * need_invalidate: true if this MR needs to be locally invalidated after I/O
2458 * return value: the MR registered, NULL if failed.
2460 struct smbd_mr *smbd_register_mr(
2461 struct smbd_connection *info, struct page *pages[], int num_pages,
2462 int tailsz, bool writing, bool need_invalidate)
2464 struct smbd_mr *smbdirect_mr;
2465 int rc, i;
2466 enum dma_data_direction dir;
2467 struct ib_reg_wr *reg_wr;
2468 struct ib_send_wr *bad_wr;
2470 if (num_pages > info->max_frmr_depth) {
2471 log_rdma_mr(ERR, "num_pages=%d max_frmr_depth=%d\n",
2472 num_pages, info->max_frmr_depth);
2473 return NULL;
2476 smbdirect_mr = get_mr(info);
2477 if (!smbdirect_mr) {
2478 log_rdma_mr(ERR, "get_mr returning NULL\n");
2479 return NULL;
2481 smbdirect_mr->need_invalidate = need_invalidate;
2482 smbdirect_mr->sgl_count = num_pages;
2483 sg_init_table(smbdirect_mr->sgl, num_pages);
2485 for (i = 0; i < num_pages - 1; i++)
2486 sg_set_page(&smbdirect_mr->sgl[i], pages[i], PAGE_SIZE, 0);
2488 sg_set_page(&smbdirect_mr->sgl[i], pages[i],
2489 tailsz ? tailsz : PAGE_SIZE, 0);
2491 dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2492 smbdirect_mr->dir = dir;
2493 rc = ib_dma_map_sg(info->id->device, smbdirect_mr->sgl, num_pages, dir);
2494 if (!rc) {
2495 log_rdma_mr(INFO, "ib_dma_map_sg num_pages=%x dir=%x rc=%x\n",
2496 num_pages, dir, rc);
2497 goto dma_map_error;
2500 rc = ib_map_mr_sg(smbdirect_mr->mr, smbdirect_mr->sgl, num_pages,
2501 NULL, PAGE_SIZE);
2502 if (rc != num_pages) {
2503 log_rdma_mr(INFO,
2504 "ib_map_mr_sg failed rc = %x num_pages = %x\n",
2505 rc, num_pages);
2506 goto map_mr_error;
2509 ib_update_fast_reg_key(smbdirect_mr->mr,
2510 ib_inc_rkey(smbdirect_mr->mr->rkey));
2511 reg_wr = &smbdirect_mr->wr;
2512 reg_wr->wr.opcode = IB_WR_REG_MR;
2513 smbdirect_mr->cqe.done = register_mr_done;
2514 reg_wr->wr.wr_cqe = &smbdirect_mr->cqe;
2515 reg_wr->wr.num_sge = 0;
2516 reg_wr->wr.send_flags = IB_SEND_SIGNALED;
2517 reg_wr->mr = smbdirect_mr->mr;
2518 reg_wr->key = smbdirect_mr->mr->rkey;
2519 reg_wr->access = writing ?
2520 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
2521 IB_ACCESS_REMOTE_READ;
2524 * There is no need for waiting for complemtion on ib_post_send
2525 * on IB_WR_REG_MR. Hardware enforces a barrier and order of execution
2526 * on the next ib_post_send when we actaully send I/O to remote peer
2528 rc = ib_post_send(info->id->qp, &reg_wr->wr, &bad_wr);
2529 if (!rc)
2530 return smbdirect_mr;
2532 log_rdma_mr(ERR, "ib_post_send failed rc=%x reg_wr->key=%x\n",
2533 rc, reg_wr->key);
2535 /* If all failed, attempt to recover this MR by setting it MR_ERROR*/
2536 map_mr_error:
2537 ib_dma_unmap_sg(info->id->device, smbdirect_mr->sgl,
2538 smbdirect_mr->sgl_count, smbdirect_mr->dir);
2540 dma_map_error:
2541 smbdirect_mr->state = MR_ERROR;
2542 if (atomic_dec_and_test(&info->mr_used_count))
2543 wake_up(&info->wait_for_mr_cleanup);
2545 return NULL;
2548 static void local_inv_done(struct ib_cq *cq, struct ib_wc *wc)
2550 struct smbd_mr *smbdirect_mr;
2551 struct ib_cqe *cqe;
2553 cqe = wc->wr_cqe;
2554 smbdirect_mr = container_of(cqe, struct smbd_mr, cqe);
2555 smbdirect_mr->state = MR_INVALIDATED;
2556 if (wc->status != IB_WC_SUCCESS) {
2557 log_rdma_mr(ERR, "invalidate failed status=%x\n", wc->status);
2558 smbdirect_mr->state = MR_ERROR;
2560 complete(&smbdirect_mr->invalidate_done);
2564 * Deregister a MR after I/O is done
2565 * This function may wait if remote invalidation is not used
2566 * and we have to locally invalidate the buffer to prevent data is being
2567 * modified by remote peer after upper layer consumes it
2569 int smbd_deregister_mr(struct smbd_mr *smbdirect_mr)
2571 struct ib_send_wr *wr, *bad_wr;
2572 struct smbd_connection *info = smbdirect_mr->conn;
2573 int rc = 0;
2575 if (smbdirect_mr->need_invalidate) {
2576 /* Need to finish local invalidation before returning */
2577 wr = &smbdirect_mr->inv_wr;
2578 wr->opcode = IB_WR_LOCAL_INV;
2579 smbdirect_mr->cqe.done = local_inv_done;
2580 wr->wr_cqe = &smbdirect_mr->cqe;
2581 wr->num_sge = 0;
2582 wr->ex.invalidate_rkey = smbdirect_mr->mr->rkey;
2583 wr->send_flags = IB_SEND_SIGNALED;
2585 init_completion(&smbdirect_mr->invalidate_done);
2586 rc = ib_post_send(info->id->qp, wr, &bad_wr);
2587 if (rc) {
2588 log_rdma_mr(ERR, "ib_post_send failed rc=%x\n", rc);
2589 smbd_disconnect_rdma_connection(info);
2590 goto done;
2592 wait_for_completion(&smbdirect_mr->invalidate_done);
2593 smbdirect_mr->need_invalidate = false;
2594 } else
2596 * For remote invalidation, just set it to MR_INVALIDATED
2597 * and defer to mr_recovery_work to recover the MR for next use
2599 smbdirect_mr->state = MR_INVALIDATED;
2602 * Schedule the work to do MR recovery for future I/Os
2603 * MR recovery is slow and we don't want it to block the current I/O
2605 queue_work(info->workqueue, &info->mr_recovery_work);
2607 done:
2608 if (atomic_dec_and_test(&info->mr_used_count))
2609 wake_up(&info->wait_for_mr_cleanup);
2611 return rc;