x86/topology: Update the 'cpu cores' field in /proc/cpuinfo correctly across CPU...
[cris-mirror.git] / fs / f2fs / segment.h
blobf11c4bc82c7863f7f64dfa67750c846b690078e9
1 /*
2 * fs/f2fs/segment.h
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/blkdev.h>
12 #include <linux/backing-dev.h>
14 /* constant macro */
15 #define NULL_SEGNO ((unsigned int)(~0))
16 #define NULL_SECNO ((unsigned int)(~0))
18 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
19 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */
21 #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
23 /* L: Logical segment # in volume, R: Relative segment # in main area */
24 #define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno)
25 #define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno)
27 #define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA)
28 #define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE)
30 #define IS_HOT(t) ((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
31 #define IS_WARM(t) ((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
32 #define IS_COLD(t) ((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
34 #define IS_CURSEG(sbi, seg) \
35 (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
36 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
37 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
38 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
39 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
40 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
42 #define IS_CURSEC(sbi, secno) \
43 (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
44 (sbi)->segs_per_sec) || \
45 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
46 (sbi)->segs_per_sec) || \
47 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
48 (sbi)->segs_per_sec) || \
49 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
50 (sbi)->segs_per_sec) || \
51 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
52 (sbi)->segs_per_sec) || \
53 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
54 (sbi)->segs_per_sec)) \
56 #define MAIN_BLKADDR(sbi) (SM_I(sbi)->main_blkaddr)
57 #define SEG0_BLKADDR(sbi) (SM_I(sbi)->seg0_blkaddr)
59 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
60 #define MAIN_SECS(sbi) ((sbi)->total_sections)
62 #define TOTAL_SEGS(sbi) (SM_I(sbi)->segment_count)
63 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
65 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
66 #define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \
67 (sbi)->log_blocks_per_seg))
69 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
70 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
72 #define NEXT_FREE_BLKADDR(sbi, curseg) \
73 (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
75 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
76 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
77 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
78 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
79 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
81 #define GET_SEGNO(sbi, blk_addr) \
82 ((((blk_addr) == NULL_ADDR) || ((blk_addr) == NEW_ADDR)) ? \
83 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
84 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
85 #define BLKS_PER_SEC(sbi) \
86 ((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
87 #define GET_SEC_FROM_SEG(sbi, segno) \
88 ((segno) / (sbi)->segs_per_sec)
89 #define GET_SEG_FROM_SEC(sbi, secno) \
90 ((secno) * (sbi)->segs_per_sec)
91 #define GET_ZONE_FROM_SEC(sbi, secno) \
92 ((secno) / (sbi)->secs_per_zone)
93 #define GET_ZONE_FROM_SEG(sbi, segno) \
94 GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
96 #define GET_SUM_BLOCK(sbi, segno) \
97 ((sbi)->sm_info->ssa_blkaddr + (segno))
99 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
100 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
102 #define SIT_ENTRY_OFFSET(sit_i, segno) \
103 ((segno) % (sit_i)->sents_per_block)
104 #define SIT_BLOCK_OFFSET(segno) \
105 ((segno) / SIT_ENTRY_PER_BLOCK)
106 #define START_SEGNO(segno) \
107 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
108 #define SIT_BLK_CNT(sbi) \
109 ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
110 #define f2fs_bitmap_size(nr) \
111 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
113 #define SECTOR_FROM_BLOCK(blk_addr) \
114 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
115 #define SECTOR_TO_BLOCK(sectors) \
116 ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
119 * indicate a block allocation direction: RIGHT and LEFT.
120 * RIGHT means allocating new sections towards the end of volume.
121 * LEFT means the opposite direction.
123 enum {
124 ALLOC_RIGHT = 0,
125 ALLOC_LEFT
129 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
130 * LFS writes data sequentially with cleaning operations.
131 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
133 enum {
134 LFS = 0,
139 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
140 * GC_CB is based on cost-benefit algorithm.
141 * GC_GREEDY is based on greedy algorithm.
143 enum {
144 GC_CB = 0,
145 GC_GREEDY,
146 ALLOC_NEXT,
147 FLUSH_DEVICE,
148 MAX_GC_POLICY,
152 * BG_GC means the background cleaning job.
153 * FG_GC means the on-demand cleaning job.
154 * FORCE_FG_GC means on-demand cleaning job in background.
156 enum {
157 BG_GC = 0,
158 FG_GC,
159 FORCE_FG_GC,
162 /* for a function parameter to select a victim segment */
163 struct victim_sel_policy {
164 int alloc_mode; /* LFS or SSR */
165 int gc_mode; /* GC_CB or GC_GREEDY */
166 unsigned long *dirty_segmap; /* dirty segment bitmap */
167 unsigned int max_search; /* maximum # of segments to search */
168 unsigned int offset; /* last scanned bitmap offset */
169 unsigned int ofs_unit; /* bitmap search unit */
170 unsigned int min_cost; /* minimum cost */
171 unsigned int min_segno; /* segment # having min. cost */
174 struct seg_entry {
175 unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */
176 unsigned int valid_blocks:10; /* # of valid blocks */
177 unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */
178 unsigned int padding:6; /* padding */
179 unsigned char *cur_valid_map; /* validity bitmap of blocks */
180 #ifdef CONFIG_F2FS_CHECK_FS
181 unsigned char *cur_valid_map_mir; /* mirror of current valid bitmap */
182 #endif
184 * # of valid blocks and the validity bitmap stored in the the last
185 * checkpoint pack. This information is used by the SSR mode.
187 unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */
188 unsigned char *discard_map;
189 unsigned long long mtime; /* modification time of the segment */
192 struct sec_entry {
193 unsigned int valid_blocks; /* # of valid blocks in a section */
196 struct segment_allocation {
197 void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
201 * this value is set in page as a private data which indicate that
202 * the page is atomically written, and it is in inmem_pages list.
204 #define ATOMIC_WRITTEN_PAGE ((unsigned long)-1)
205 #define DUMMY_WRITTEN_PAGE ((unsigned long)-2)
207 #define IS_ATOMIC_WRITTEN_PAGE(page) \
208 (page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
209 #define IS_DUMMY_WRITTEN_PAGE(page) \
210 (page_private(page) == (unsigned long)DUMMY_WRITTEN_PAGE)
212 struct inmem_pages {
213 struct list_head list;
214 struct page *page;
215 block_t old_addr; /* for revoking when fail to commit */
218 struct sit_info {
219 const struct segment_allocation *s_ops;
221 block_t sit_base_addr; /* start block address of SIT area */
222 block_t sit_blocks; /* # of blocks used by SIT area */
223 block_t written_valid_blocks; /* # of valid blocks in main area */
224 char *sit_bitmap; /* SIT bitmap pointer */
225 #ifdef CONFIG_F2FS_CHECK_FS
226 char *sit_bitmap_mir; /* SIT bitmap mirror */
227 #endif
228 unsigned int bitmap_size; /* SIT bitmap size */
230 unsigned long *tmp_map; /* bitmap for temporal use */
231 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
232 unsigned int dirty_sentries; /* # of dirty sentries */
233 unsigned int sents_per_block; /* # of SIT entries per block */
234 struct rw_semaphore sentry_lock; /* to protect SIT cache */
235 struct seg_entry *sentries; /* SIT segment-level cache */
236 struct sec_entry *sec_entries; /* SIT section-level cache */
238 /* for cost-benefit algorithm in cleaning procedure */
239 unsigned long long elapsed_time; /* elapsed time after mount */
240 unsigned long long mounted_time; /* mount time */
241 unsigned long long min_mtime; /* min. modification time */
242 unsigned long long max_mtime; /* max. modification time */
244 unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
247 struct free_segmap_info {
248 unsigned int start_segno; /* start segment number logically */
249 unsigned int free_segments; /* # of free segments */
250 unsigned int free_sections; /* # of free sections */
251 spinlock_t segmap_lock; /* free segmap lock */
252 unsigned long *free_segmap; /* free segment bitmap */
253 unsigned long *free_secmap; /* free section bitmap */
256 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
257 enum dirty_type {
258 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
259 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
260 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
261 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
262 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
263 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
264 DIRTY, /* to count # of dirty segments */
265 PRE, /* to count # of entirely obsolete segments */
266 NR_DIRTY_TYPE
269 struct dirty_seglist_info {
270 const struct victim_selection *v_ops; /* victim selction operation */
271 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
272 struct mutex seglist_lock; /* lock for segment bitmaps */
273 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
274 unsigned long *victim_secmap; /* background GC victims */
277 /* victim selection function for cleaning and SSR */
278 struct victim_selection {
279 int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
280 int, int, char);
283 /* for active log information */
284 struct curseg_info {
285 struct mutex curseg_mutex; /* lock for consistency */
286 struct f2fs_summary_block *sum_blk; /* cached summary block */
287 struct rw_semaphore journal_rwsem; /* protect journal area */
288 struct f2fs_journal *journal; /* cached journal info */
289 unsigned char alloc_type; /* current allocation type */
290 unsigned int segno; /* current segment number */
291 unsigned short next_blkoff; /* next block offset to write */
292 unsigned int zone; /* current zone number */
293 unsigned int next_segno; /* preallocated segment */
296 struct sit_entry_set {
297 struct list_head set_list; /* link with all sit sets */
298 unsigned int start_segno; /* start segno of sits in set */
299 unsigned int entry_cnt; /* the # of sit entries in set */
303 * inline functions
305 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
307 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
310 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
311 unsigned int segno)
313 struct sit_info *sit_i = SIT_I(sbi);
314 return &sit_i->sentries[segno];
317 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
318 unsigned int segno)
320 struct sit_info *sit_i = SIT_I(sbi);
321 return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
324 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
325 unsigned int segno, bool use_section)
328 * In order to get # of valid blocks in a section instantly from many
329 * segments, f2fs manages two counting structures separately.
331 if (use_section && sbi->segs_per_sec > 1)
332 return get_sec_entry(sbi, segno)->valid_blocks;
333 else
334 return get_seg_entry(sbi, segno)->valid_blocks;
337 static inline void seg_info_from_raw_sit(struct seg_entry *se,
338 struct f2fs_sit_entry *rs)
340 se->valid_blocks = GET_SIT_VBLOCKS(rs);
341 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
342 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
343 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
344 #ifdef CONFIG_F2FS_CHECK_FS
345 memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
346 #endif
347 se->type = GET_SIT_TYPE(rs);
348 se->mtime = le64_to_cpu(rs->mtime);
351 static inline void __seg_info_to_raw_sit(struct seg_entry *se,
352 struct f2fs_sit_entry *rs)
354 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
355 se->valid_blocks;
356 rs->vblocks = cpu_to_le16(raw_vblocks);
357 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
358 rs->mtime = cpu_to_le64(se->mtime);
361 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
362 struct page *page, unsigned int start)
364 struct f2fs_sit_block *raw_sit;
365 struct seg_entry *se;
366 struct f2fs_sit_entry *rs;
367 unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
368 (unsigned long)MAIN_SEGS(sbi));
369 int i;
371 raw_sit = (struct f2fs_sit_block *)page_address(page);
372 for (i = 0; i < end - start; i++) {
373 rs = &raw_sit->entries[i];
374 se = get_seg_entry(sbi, start + i);
375 __seg_info_to_raw_sit(se, rs);
379 static inline void seg_info_to_raw_sit(struct seg_entry *se,
380 struct f2fs_sit_entry *rs)
382 __seg_info_to_raw_sit(se, rs);
384 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
385 se->ckpt_valid_blocks = se->valid_blocks;
388 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
389 unsigned int max, unsigned int segno)
391 unsigned int ret;
392 spin_lock(&free_i->segmap_lock);
393 ret = find_next_bit(free_i->free_segmap, max, segno);
394 spin_unlock(&free_i->segmap_lock);
395 return ret;
398 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
400 struct free_segmap_info *free_i = FREE_I(sbi);
401 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
402 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
403 unsigned int next;
405 spin_lock(&free_i->segmap_lock);
406 clear_bit(segno, free_i->free_segmap);
407 free_i->free_segments++;
409 next = find_next_bit(free_i->free_segmap,
410 start_segno + sbi->segs_per_sec, start_segno);
411 if (next >= start_segno + sbi->segs_per_sec) {
412 clear_bit(secno, free_i->free_secmap);
413 free_i->free_sections++;
415 spin_unlock(&free_i->segmap_lock);
418 static inline void __set_inuse(struct f2fs_sb_info *sbi,
419 unsigned int segno)
421 struct free_segmap_info *free_i = FREE_I(sbi);
422 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
424 set_bit(segno, free_i->free_segmap);
425 free_i->free_segments--;
426 if (!test_and_set_bit(secno, free_i->free_secmap))
427 free_i->free_sections--;
430 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
431 unsigned int segno)
433 struct free_segmap_info *free_i = FREE_I(sbi);
434 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
435 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
436 unsigned int next;
438 spin_lock(&free_i->segmap_lock);
439 if (test_and_clear_bit(segno, free_i->free_segmap)) {
440 free_i->free_segments++;
442 next = find_next_bit(free_i->free_segmap,
443 start_segno + sbi->segs_per_sec, start_segno);
444 if (next >= start_segno + sbi->segs_per_sec) {
445 if (test_and_clear_bit(secno, free_i->free_secmap))
446 free_i->free_sections++;
449 spin_unlock(&free_i->segmap_lock);
452 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
453 unsigned int segno)
455 struct free_segmap_info *free_i = FREE_I(sbi);
456 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
458 spin_lock(&free_i->segmap_lock);
459 if (!test_and_set_bit(segno, free_i->free_segmap)) {
460 free_i->free_segments--;
461 if (!test_and_set_bit(secno, free_i->free_secmap))
462 free_i->free_sections--;
464 spin_unlock(&free_i->segmap_lock);
467 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
468 void *dst_addr)
470 struct sit_info *sit_i = SIT_I(sbi);
472 #ifdef CONFIG_F2FS_CHECK_FS
473 if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
474 sit_i->bitmap_size))
475 f2fs_bug_on(sbi, 1);
476 #endif
477 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
480 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
482 return SIT_I(sbi)->written_valid_blocks;
485 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
487 return FREE_I(sbi)->free_segments;
490 static inline int reserved_segments(struct f2fs_sb_info *sbi)
492 return SM_I(sbi)->reserved_segments;
495 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
497 return FREE_I(sbi)->free_sections;
500 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
502 return DIRTY_I(sbi)->nr_dirty[PRE];
505 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
507 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
508 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
509 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
510 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
511 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
512 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
515 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
517 return SM_I(sbi)->ovp_segments;
520 static inline int reserved_sections(struct f2fs_sb_info *sbi)
522 return GET_SEC_FROM_SEG(sbi, (unsigned int)reserved_segments(sbi));
525 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi)
527 unsigned int node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
528 get_pages(sbi, F2FS_DIRTY_DENTS);
529 unsigned int dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
530 unsigned int segno, left_blocks;
531 int i;
533 /* check current node segment */
534 for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
535 segno = CURSEG_I(sbi, i)->segno;
536 left_blocks = sbi->blocks_per_seg -
537 get_seg_entry(sbi, segno)->ckpt_valid_blocks;
539 if (node_blocks > left_blocks)
540 return false;
543 /* check current data segment */
544 segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
545 left_blocks = sbi->blocks_per_seg -
546 get_seg_entry(sbi, segno)->ckpt_valid_blocks;
547 if (dent_blocks > left_blocks)
548 return false;
549 return true;
552 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
553 int freed, int needed)
555 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
556 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
557 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
559 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
560 return false;
562 if (free_sections(sbi) + freed == reserved_sections(sbi) + needed &&
563 has_curseg_enough_space(sbi))
564 return false;
565 return (free_sections(sbi) + freed) <=
566 (node_secs + 2 * dent_secs + imeta_secs +
567 reserved_sections(sbi) + needed);
570 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
572 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
575 static inline int utilization(struct f2fs_sb_info *sbi)
577 return div_u64((u64)valid_user_blocks(sbi) * 100,
578 sbi->user_block_count);
582 * Sometimes f2fs may be better to drop out-of-place update policy.
583 * And, users can control the policy through sysfs entries.
584 * There are five policies with triggering conditions as follows.
585 * F2FS_IPU_FORCE - all the time,
586 * F2FS_IPU_SSR - if SSR mode is activated,
587 * F2FS_IPU_UTIL - if FS utilization is over threashold,
588 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
589 * threashold,
590 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
591 * storages. IPU will be triggered only if the # of dirty
592 * pages over min_fsync_blocks.
593 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
595 #define DEF_MIN_IPU_UTIL 70
596 #define DEF_MIN_FSYNC_BLOCKS 8
597 #define DEF_MIN_HOT_BLOCKS 16
599 enum {
600 F2FS_IPU_FORCE,
601 F2FS_IPU_SSR,
602 F2FS_IPU_UTIL,
603 F2FS_IPU_SSR_UTIL,
604 F2FS_IPU_FSYNC,
605 F2FS_IPU_ASYNC,
608 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
609 int type)
611 struct curseg_info *curseg = CURSEG_I(sbi, type);
612 return curseg->segno;
615 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
616 int type)
618 struct curseg_info *curseg = CURSEG_I(sbi, type);
619 return curseg->alloc_type;
622 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
624 struct curseg_info *curseg = CURSEG_I(sbi, type);
625 return curseg->next_blkoff;
628 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
630 f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
633 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
635 BUG_ON(blk_addr < SEG0_BLKADDR(sbi)
636 || blk_addr >= MAX_BLKADDR(sbi));
640 * Summary block is always treated as an invalid block
642 static inline int check_block_count(struct f2fs_sb_info *sbi,
643 int segno, struct f2fs_sit_entry *raw_sit)
645 #ifdef CONFIG_F2FS_CHECK_FS
646 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
647 int valid_blocks = 0;
648 int cur_pos = 0, next_pos;
650 /* check bitmap with valid block count */
651 do {
652 if (is_valid) {
653 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
654 sbi->blocks_per_seg,
655 cur_pos);
656 valid_blocks += next_pos - cur_pos;
657 } else
658 next_pos = find_next_bit_le(&raw_sit->valid_map,
659 sbi->blocks_per_seg,
660 cur_pos);
661 cur_pos = next_pos;
662 is_valid = !is_valid;
663 } while (cur_pos < sbi->blocks_per_seg);
665 if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
666 f2fs_msg(sbi->sb, KERN_ERR,
667 "Mismatch valid blocks %d vs. %d",
668 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
669 set_sbi_flag(sbi, SBI_NEED_FSCK);
670 return -EINVAL;
672 #endif
673 /* check segment usage, and check boundary of a given segment number */
674 if (unlikely(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
675 || segno > TOTAL_SEGS(sbi) - 1)) {
676 f2fs_msg(sbi->sb, KERN_ERR,
677 "Wrong valid blocks %d or segno %u",
678 GET_SIT_VBLOCKS(raw_sit), segno);
679 set_sbi_flag(sbi, SBI_NEED_FSCK);
680 return -EINVAL;
682 return 0;
685 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
686 unsigned int start)
688 struct sit_info *sit_i = SIT_I(sbi);
689 unsigned int offset = SIT_BLOCK_OFFSET(start);
690 block_t blk_addr = sit_i->sit_base_addr + offset;
692 check_seg_range(sbi, start);
694 #ifdef CONFIG_F2FS_CHECK_FS
695 if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
696 f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
697 f2fs_bug_on(sbi, 1);
698 #endif
700 /* calculate sit block address */
701 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
702 blk_addr += sit_i->sit_blocks;
704 return blk_addr;
707 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
708 pgoff_t block_addr)
710 struct sit_info *sit_i = SIT_I(sbi);
711 block_addr -= sit_i->sit_base_addr;
712 if (block_addr < sit_i->sit_blocks)
713 block_addr += sit_i->sit_blocks;
714 else
715 block_addr -= sit_i->sit_blocks;
717 return block_addr + sit_i->sit_base_addr;
720 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
722 unsigned int block_off = SIT_BLOCK_OFFSET(start);
724 f2fs_change_bit(block_off, sit_i->sit_bitmap);
725 #ifdef CONFIG_F2FS_CHECK_FS
726 f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
727 #endif
730 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
732 struct sit_info *sit_i = SIT_I(sbi);
733 time64_t now = ktime_get_real_seconds();
735 return sit_i->elapsed_time + now - sit_i->mounted_time;
738 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
739 unsigned int ofs_in_node, unsigned char version)
741 sum->nid = cpu_to_le32(nid);
742 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
743 sum->version = version;
746 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
748 return __start_cp_addr(sbi) +
749 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
752 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
754 return __start_cp_addr(sbi) +
755 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
756 - (base + 1) + type;
759 static inline bool no_fggc_candidate(struct f2fs_sb_info *sbi,
760 unsigned int secno)
762 if (get_valid_blocks(sbi, GET_SEG_FROM_SEC(sbi, secno), true) >
763 sbi->fggc_threshold)
764 return true;
765 return false;
768 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
770 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
771 return true;
772 return false;
776 * It is very important to gather dirty pages and write at once, so that we can
777 * submit a big bio without interfering other data writes.
778 * By default, 512 pages for directory data,
779 * 512 pages (2MB) * 8 for nodes, and
780 * 256 pages * 8 for meta are set.
782 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
784 if (sbi->sb->s_bdi->wb.dirty_exceeded)
785 return 0;
787 if (type == DATA)
788 return sbi->blocks_per_seg;
789 else if (type == NODE)
790 return 8 * sbi->blocks_per_seg;
791 else if (type == META)
792 return 8 * BIO_MAX_PAGES;
793 else
794 return 0;
798 * When writing pages, it'd better align nr_to_write for segment size.
800 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
801 struct writeback_control *wbc)
803 long nr_to_write, desired;
805 if (wbc->sync_mode != WB_SYNC_NONE)
806 return 0;
808 nr_to_write = wbc->nr_to_write;
809 desired = BIO_MAX_PAGES;
810 if (type == NODE)
811 desired <<= 1;
813 wbc->nr_to_write = desired;
814 return desired - nr_to_write;
817 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
819 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
820 bool wakeup = false;
821 int i;
823 if (force)
824 goto wake_up;
826 mutex_lock(&dcc->cmd_lock);
827 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
828 if (i + 1 < dcc->discard_granularity)
829 break;
830 if (!list_empty(&dcc->pend_list[i])) {
831 wakeup = true;
832 break;
835 mutex_unlock(&dcc->cmd_lock);
836 if (!wakeup)
837 return;
838 wake_up:
839 dcc->discard_wake = 1;
840 wake_up_interruptible_all(&dcc->discard_wait_queue);