2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Support for INET connection oriented protocols.
8 * Authors: See the TCP sources
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or(at your option) any later version.
16 #include <linux/module.h>
17 #include <linux/jhash.h>
19 #include <net/inet_connection_sock.h>
20 #include <net/inet_hashtables.h>
21 #include <net/inet_timewait_sock.h>
23 #include <net/route.h>
24 #include <net/tcp_states.h>
27 #include <net/sock_reuseport.h>
28 #include <net/addrconf.h>
31 const char inet_csk_timer_bug_msg
[] = "inet_csk BUG: unknown timer value\n";
32 EXPORT_SYMBOL(inet_csk_timer_bug_msg
);
35 #if IS_ENABLED(CONFIG_IPV6)
36 /* match_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses if IPv6
37 * only, and any IPv4 addresses if not IPv6 only
38 * match_wildcard == false: addresses must be exactly the same, i.e.
39 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
40 * and 0.0.0.0 equals to 0.0.0.0 only
42 static bool ipv6_rcv_saddr_equal(const struct in6_addr
*sk1_rcv_saddr6
,
43 const struct in6_addr
*sk2_rcv_saddr6
,
44 __be32 sk1_rcv_saddr
, __be32 sk2_rcv_saddr
,
45 bool sk1_ipv6only
, bool sk2_ipv6only
,
48 int addr_type
= ipv6_addr_type(sk1_rcv_saddr6
);
49 int addr_type2
= sk2_rcv_saddr6
? ipv6_addr_type(sk2_rcv_saddr6
) : IPV6_ADDR_MAPPED
;
51 /* if both are mapped, treat as IPv4 */
52 if (addr_type
== IPV6_ADDR_MAPPED
&& addr_type2
== IPV6_ADDR_MAPPED
) {
54 if (sk1_rcv_saddr
== sk2_rcv_saddr
)
56 if (!sk1_rcv_saddr
|| !sk2_rcv_saddr
)
57 return match_wildcard
;
62 if (addr_type
== IPV6_ADDR_ANY
&& addr_type2
== IPV6_ADDR_ANY
)
65 if (addr_type2
== IPV6_ADDR_ANY
&& match_wildcard
&&
66 !(sk2_ipv6only
&& addr_type
== IPV6_ADDR_MAPPED
))
69 if (addr_type
== IPV6_ADDR_ANY
&& match_wildcard
&&
70 !(sk1_ipv6only
&& addr_type2
== IPV6_ADDR_MAPPED
))
74 ipv6_addr_equal(sk1_rcv_saddr6
, sk2_rcv_saddr6
))
81 /* match_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
82 * match_wildcard == false: addresses must be exactly the same, i.e.
83 * 0.0.0.0 only equals to 0.0.0.0
85 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr
, __be32 sk2_rcv_saddr
,
86 bool sk2_ipv6only
, bool match_wildcard
)
89 if (sk1_rcv_saddr
== sk2_rcv_saddr
)
91 if (!sk1_rcv_saddr
|| !sk2_rcv_saddr
)
92 return match_wildcard
;
97 bool inet_rcv_saddr_equal(const struct sock
*sk
, const struct sock
*sk2
,
100 #if IS_ENABLED(CONFIG_IPV6)
101 if (sk
->sk_family
== AF_INET6
)
102 return ipv6_rcv_saddr_equal(&sk
->sk_v6_rcv_saddr
,
103 inet6_rcv_saddr(sk2
),
110 return ipv4_rcv_saddr_equal(sk
->sk_rcv_saddr
, sk2
->sk_rcv_saddr
,
111 ipv6_only_sock(sk2
), match_wildcard
);
113 EXPORT_SYMBOL(inet_rcv_saddr_equal
);
115 void inet_get_local_port_range(struct net
*net
, int *low
, int *high
)
120 seq
= read_seqbegin(&net
->ipv4
.ip_local_ports
.lock
);
122 *low
= net
->ipv4
.ip_local_ports
.range
[0];
123 *high
= net
->ipv4
.ip_local_ports
.range
[1];
124 } while (read_seqretry(&net
->ipv4
.ip_local_ports
.lock
, seq
));
126 EXPORT_SYMBOL(inet_get_local_port_range
);
128 static int inet_csk_bind_conflict(const struct sock
*sk
,
129 const struct inet_bind_bucket
*tb
,
130 bool relax
, bool reuseport_ok
)
133 bool reuse
= sk
->sk_reuse
;
134 bool reuseport
= !!sk
->sk_reuseport
&& reuseport_ok
;
135 kuid_t uid
= sock_i_uid((struct sock
*)sk
);
138 * Unlike other sk lookup places we do not check
139 * for sk_net here, since _all_ the socks listed
140 * in tb->owners list belong to the same net - the
141 * one this bucket belongs to.
144 sk_for_each_bound(sk2
, &tb
->owners
) {
146 (!sk
->sk_bound_dev_if
||
147 !sk2
->sk_bound_dev_if
||
148 sk
->sk_bound_dev_if
== sk2
->sk_bound_dev_if
)) {
149 if ((!reuse
|| !sk2
->sk_reuse
||
150 sk2
->sk_state
== TCP_LISTEN
) &&
151 (!reuseport
|| !sk2
->sk_reuseport
||
152 rcu_access_pointer(sk
->sk_reuseport_cb
) ||
153 (sk2
->sk_state
!= TCP_TIME_WAIT
&&
154 !uid_eq(uid
, sock_i_uid(sk2
))))) {
155 if (inet_rcv_saddr_equal(sk
, sk2
, true))
158 if (!relax
&& reuse
&& sk2
->sk_reuse
&&
159 sk2
->sk_state
!= TCP_LISTEN
) {
160 if (inet_rcv_saddr_equal(sk
, sk2
, true))
169 * Find an open port number for the socket. Returns with the
170 * inet_bind_hashbucket lock held.
172 static struct inet_bind_hashbucket
*
173 inet_csk_find_open_port(struct sock
*sk
, struct inet_bind_bucket
**tb_ret
, int *port_ret
)
175 struct inet_hashinfo
*hinfo
= sk
->sk_prot
->h
.hashinfo
;
177 struct inet_bind_hashbucket
*head
;
178 struct net
*net
= sock_net(sk
);
179 int i
, low
, high
, attempt_half
;
180 struct inet_bind_bucket
*tb
;
181 u32 remaining
, offset
;
183 attempt_half
= (sk
->sk_reuse
== SK_CAN_REUSE
) ? 1 : 0;
185 inet_get_local_port_range(net
, &low
, &high
);
186 high
++; /* [32768, 60999] -> [32768, 61000[ */
190 int half
= low
+ (((high
- low
) >> 2) << 1);
192 if (attempt_half
== 1)
197 remaining
= high
- low
;
198 if (likely(remaining
> 1))
201 offset
= prandom_u32() % remaining
;
202 /* __inet_hash_connect() favors ports having @low parity
203 * We do the opposite to not pollute connect() users.
209 for (i
= 0; i
< remaining
; i
+= 2, port
+= 2) {
210 if (unlikely(port
>= high
))
212 if (inet_is_local_reserved_port(net
, port
))
214 head
= &hinfo
->bhash
[inet_bhashfn(net
, port
,
216 spin_lock_bh(&head
->lock
);
217 inet_bind_bucket_for_each(tb
, &head
->chain
)
218 if (net_eq(ib_net(tb
), net
) && tb
->port
== port
) {
219 if (!inet_csk_bind_conflict(sk
, tb
, false, false))
226 spin_unlock_bh(&head
->lock
);
232 goto other_parity_scan
;
234 if (attempt_half
== 1) {
235 /* OK we now try the upper half of the range */
237 goto other_half_scan
;
246 static inline int sk_reuseport_match(struct inet_bind_bucket
*tb
,
249 kuid_t uid
= sock_i_uid(sk
);
251 if (tb
->fastreuseport
<= 0)
253 if (!sk
->sk_reuseport
)
255 if (rcu_access_pointer(sk
->sk_reuseport_cb
))
257 if (!uid_eq(tb
->fastuid
, uid
))
259 /* We only need to check the rcv_saddr if this tb was once marked
260 * without fastreuseport and then was reset, as we can only know that
261 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
264 if (tb
->fastreuseport
== FASTREUSEPORT_ANY
)
266 #if IS_ENABLED(CONFIG_IPV6)
267 if (tb
->fast_sk_family
== AF_INET6
)
268 return ipv6_rcv_saddr_equal(&tb
->fast_v6_rcv_saddr
,
273 ipv6_only_sock(sk
), true);
275 return ipv4_rcv_saddr_equal(tb
->fast_rcv_saddr
, sk
->sk_rcv_saddr
,
276 ipv6_only_sock(sk
), true);
279 /* Obtain a reference to a local port for the given sock,
280 * if snum is zero it means select any available local port.
281 * We try to allocate an odd port (and leave even ports for connect())
283 int inet_csk_get_port(struct sock
*sk
, unsigned short snum
)
285 bool reuse
= sk
->sk_reuse
&& sk
->sk_state
!= TCP_LISTEN
;
286 struct inet_hashinfo
*hinfo
= sk
->sk_prot
->h
.hashinfo
;
287 int ret
= 1, port
= snum
;
288 struct inet_bind_hashbucket
*head
;
289 struct net
*net
= sock_net(sk
);
290 struct inet_bind_bucket
*tb
= NULL
;
291 kuid_t uid
= sock_i_uid(sk
);
294 head
= inet_csk_find_open_port(sk
, &tb
, &port
);
301 head
= &hinfo
->bhash
[inet_bhashfn(net
, port
,
303 spin_lock_bh(&head
->lock
);
304 inet_bind_bucket_for_each(tb
, &head
->chain
)
305 if (net_eq(ib_net(tb
), net
) && tb
->port
== port
)
308 tb
= inet_bind_bucket_create(hinfo
->bind_bucket_cachep
,
313 if (!hlist_empty(&tb
->owners
)) {
314 if (sk
->sk_reuse
== SK_FORCE_REUSE
)
317 if ((tb
->fastreuse
> 0 && reuse
) ||
318 sk_reuseport_match(tb
, sk
))
320 if (inet_csk_bind_conflict(sk
, tb
, true, true))
324 if (hlist_empty(&tb
->owners
)) {
325 tb
->fastreuse
= reuse
;
326 if (sk
->sk_reuseport
) {
327 tb
->fastreuseport
= FASTREUSEPORT_ANY
;
329 tb
->fast_rcv_saddr
= sk
->sk_rcv_saddr
;
330 tb
->fast_ipv6_only
= ipv6_only_sock(sk
);
331 tb
->fast_sk_family
= sk
->sk_family
;
332 #if IS_ENABLED(CONFIG_IPV6)
333 tb
->fast_v6_rcv_saddr
= sk
->sk_v6_rcv_saddr
;
336 tb
->fastreuseport
= 0;
341 if (sk
->sk_reuseport
) {
342 /* We didn't match or we don't have fastreuseport set on
343 * the tb, but we have sk_reuseport set on this socket
344 * and we know that there are no bind conflicts with
345 * this socket in this tb, so reset our tb's reuseport
346 * settings so that any subsequent sockets that match
347 * our current socket will be put on the fast path.
349 * If we reset we need to set FASTREUSEPORT_STRICT so we
350 * do extra checking for all subsequent sk_reuseport
353 if (!sk_reuseport_match(tb
, sk
)) {
354 tb
->fastreuseport
= FASTREUSEPORT_STRICT
;
356 tb
->fast_rcv_saddr
= sk
->sk_rcv_saddr
;
357 tb
->fast_ipv6_only
= ipv6_only_sock(sk
);
358 tb
->fast_sk_family
= sk
->sk_family
;
359 #if IS_ENABLED(CONFIG_IPV6)
360 tb
->fast_v6_rcv_saddr
= sk
->sk_v6_rcv_saddr
;
364 tb
->fastreuseport
= 0;
367 if (!inet_csk(sk
)->icsk_bind_hash
)
368 inet_bind_hash(sk
, tb
, port
);
369 WARN_ON(inet_csk(sk
)->icsk_bind_hash
!= tb
);
373 spin_unlock_bh(&head
->lock
);
376 EXPORT_SYMBOL_GPL(inet_csk_get_port
);
379 * Wait for an incoming connection, avoid race conditions. This must be called
380 * with the socket locked.
382 static int inet_csk_wait_for_connect(struct sock
*sk
, long timeo
)
384 struct inet_connection_sock
*icsk
= inet_csk(sk
);
389 * True wake-one mechanism for incoming connections: only
390 * one process gets woken up, not the 'whole herd'.
391 * Since we do not 'race & poll' for established sockets
392 * anymore, the common case will execute the loop only once.
394 * Subtle issue: "add_wait_queue_exclusive()" will be added
395 * after any current non-exclusive waiters, and we know that
396 * it will always _stay_ after any new non-exclusive waiters
397 * because all non-exclusive waiters are added at the
398 * beginning of the wait-queue. As such, it's ok to "drop"
399 * our exclusiveness temporarily when we get woken up without
400 * having to remove and re-insert us on the wait queue.
403 prepare_to_wait_exclusive(sk_sleep(sk
), &wait
,
406 if (reqsk_queue_empty(&icsk
->icsk_accept_queue
))
407 timeo
= schedule_timeout(timeo
);
408 sched_annotate_sleep();
411 if (!reqsk_queue_empty(&icsk
->icsk_accept_queue
))
414 if (sk
->sk_state
!= TCP_LISTEN
)
416 err
= sock_intr_errno(timeo
);
417 if (signal_pending(current
))
423 finish_wait(sk_sleep(sk
), &wait
);
428 * This will accept the next outstanding connection.
430 struct sock
*inet_csk_accept(struct sock
*sk
, int flags
, int *err
, bool kern
)
432 struct inet_connection_sock
*icsk
= inet_csk(sk
);
433 struct request_sock_queue
*queue
= &icsk
->icsk_accept_queue
;
434 struct request_sock
*req
;
440 /* We need to make sure that this socket is listening,
441 * and that it has something pending.
444 if (sk
->sk_state
!= TCP_LISTEN
)
447 /* Find already established connection */
448 if (reqsk_queue_empty(queue
)) {
449 long timeo
= sock_rcvtimeo(sk
, flags
& O_NONBLOCK
);
451 /* If this is a non blocking socket don't sleep */
456 error
= inet_csk_wait_for_connect(sk
, timeo
);
460 req
= reqsk_queue_remove(queue
, sk
);
463 if (sk
->sk_protocol
== IPPROTO_TCP
&&
464 tcp_rsk(req
)->tfo_listener
) {
465 spin_lock_bh(&queue
->fastopenq
.lock
);
466 if (tcp_rsk(req
)->tfo_listener
) {
467 /* We are still waiting for the final ACK from 3WHS
468 * so can't free req now. Instead, we set req->sk to
469 * NULL to signify that the child socket is taken
470 * so reqsk_fastopen_remove() will free the req
471 * when 3WHS finishes (or is aborted).
476 spin_unlock_bh(&queue
->fastopenq
.lock
);
489 EXPORT_SYMBOL(inet_csk_accept
);
492 * Using different timers for retransmit, delayed acks and probes
493 * We may wish use just one timer maintaining a list of expire jiffies
496 void inet_csk_init_xmit_timers(struct sock
*sk
,
497 void (*retransmit_handler
)(struct timer_list
*t
),
498 void (*delack_handler
)(struct timer_list
*t
),
499 void (*keepalive_handler
)(struct timer_list
*t
))
501 struct inet_connection_sock
*icsk
= inet_csk(sk
);
503 timer_setup(&icsk
->icsk_retransmit_timer
, retransmit_handler
, 0);
504 timer_setup(&icsk
->icsk_delack_timer
, delack_handler
, 0);
505 timer_setup(&sk
->sk_timer
, keepalive_handler
, 0);
506 icsk
->icsk_pending
= icsk
->icsk_ack
.pending
= 0;
508 EXPORT_SYMBOL(inet_csk_init_xmit_timers
);
510 void inet_csk_clear_xmit_timers(struct sock
*sk
)
512 struct inet_connection_sock
*icsk
= inet_csk(sk
);
514 icsk
->icsk_pending
= icsk
->icsk_ack
.pending
= icsk
->icsk_ack
.blocked
= 0;
516 sk_stop_timer(sk
, &icsk
->icsk_retransmit_timer
);
517 sk_stop_timer(sk
, &icsk
->icsk_delack_timer
);
518 sk_stop_timer(sk
, &sk
->sk_timer
);
520 EXPORT_SYMBOL(inet_csk_clear_xmit_timers
);
522 void inet_csk_delete_keepalive_timer(struct sock
*sk
)
524 sk_stop_timer(sk
, &sk
->sk_timer
);
526 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer
);
528 void inet_csk_reset_keepalive_timer(struct sock
*sk
, unsigned long len
)
530 sk_reset_timer(sk
, &sk
->sk_timer
, jiffies
+ len
);
532 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer
);
534 struct dst_entry
*inet_csk_route_req(const struct sock
*sk
,
536 const struct request_sock
*req
)
538 const struct inet_request_sock
*ireq
= inet_rsk(req
);
539 struct net
*net
= read_pnet(&ireq
->ireq_net
);
540 struct ip_options_rcu
*opt
;
543 opt
= ireq_opt_deref(ireq
);
545 flowi4_init_output(fl4
, ireq
->ir_iif
, ireq
->ir_mark
,
546 RT_CONN_FLAGS(sk
), RT_SCOPE_UNIVERSE
,
547 sk
->sk_protocol
, inet_sk_flowi_flags(sk
),
548 (opt
&& opt
->opt
.srr
) ? opt
->opt
.faddr
: ireq
->ir_rmt_addr
,
549 ireq
->ir_loc_addr
, ireq
->ir_rmt_port
,
550 htons(ireq
->ir_num
), sk
->sk_uid
);
551 security_req_classify_flow(req
, flowi4_to_flowi(fl4
));
552 rt
= ip_route_output_flow(net
, fl4
, sk
);
555 if (opt
&& opt
->opt
.is_strictroute
&& rt
->rt_uses_gateway
)
562 __IP_INC_STATS(net
, IPSTATS_MIB_OUTNOROUTES
);
565 EXPORT_SYMBOL_GPL(inet_csk_route_req
);
567 struct dst_entry
*inet_csk_route_child_sock(const struct sock
*sk
,
569 const struct request_sock
*req
)
571 const struct inet_request_sock
*ireq
= inet_rsk(req
);
572 struct net
*net
= read_pnet(&ireq
->ireq_net
);
573 struct inet_sock
*newinet
= inet_sk(newsk
);
574 struct ip_options_rcu
*opt
;
578 opt
= rcu_dereference(ireq
->ireq_opt
);
579 fl4
= &newinet
->cork
.fl
.u
.ip4
;
581 flowi4_init_output(fl4
, ireq
->ir_iif
, ireq
->ir_mark
,
582 RT_CONN_FLAGS(sk
), RT_SCOPE_UNIVERSE
,
583 sk
->sk_protocol
, inet_sk_flowi_flags(sk
),
584 (opt
&& opt
->opt
.srr
) ? opt
->opt
.faddr
: ireq
->ir_rmt_addr
,
585 ireq
->ir_loc_addr
, ireq
->ir_rmt_port
,
586 htons(ireq
->ir_num
), sk
->sk_uid
);
587 security_req_classify_flow(req
, flowi4_to_flowi(fl4
));
588 rt
= ip_route_output_flow(net
, fl4
, sk
);
591 if (opt
&& opt
->opt
.is_strictroute
&& rt
->rt_uses_gateway
)
598 __IP_INC_STATS(net
, IPSTATS_MIB_OUTNOROUTES
);
601 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock
);
603 #if IS_ENABLED(CONFIG_IPV6)
604 #define AF_INET_FAMILY(fam) ((fam) == AF_INET)
606 #define AF_INET_FAMILY(fam) true
609 /* Decide when to expire the request and when to resend SYN-ACK */
610 static inline void syn_ack_recalc(struct request_sock
*req
, const int thresh
,
611 const int max_retries
,
612 const u8 rskq_defer_accept
,
613 int *expire
, int *resend
)
615 if (!rskq_defer_accept
) {
616 *expire
= req
->num_timeout
>= thresh
;
620 *expire
= req
->num_timeout
>= thresh
&&
621 (!inet_rsk(req
)->acked
|| req
->num_timeout
>= max_retries
);
623 * Do not resend while waiting for data after ACK,
624 * start to resend on end of deferring period to give
625 * last chance for data or ACK to create established socket.
627 *resend
= !inet_rsk(req
)->acked
||
628 req
->num_timeout
>= rskq_defer_accept
- 1;
631 int inet_rtx_syn_ack(const struct sock
*parent
, struct request_sock
*req
)
633 int err
= req
->rsk_ops
->rtx_syn_ack(parent
, req
);
639 EXPORT_SYMBOL(inet_rtx_syn_ack
);
641 /* return true if req was found in the ehash table */
642 static bool reqsk_queue_unlink(struct request_sock_queue
*queue
,
643 struct request_sock
*req
)
645 struct inet_hashinfo
*hashinfo
= req_to_sk(req
)->sk_prot
->h
.hashinfo
;
648 if (sk_hashed(req_to_sk(req
))) {
649 spinlock_t
*lock
= inet_ehash_lockp(hashinfo
, req
->rsk_hash
);
652 found
= __sk_nulls_del_node_init_rcu(req_to_sk(req
));
655 if (timer_pending(&req
->rsk_timer
) && del_timer_sync(&req
->rsk_timer
))
660 void inet_csk_reqsk_queue_drop(struct sock
*sk
, struct request_sock
*req
)
662 if (reqsk_queue_unlink(&inet_csk(sk
)->icsk_accept_queue
, req
)) {
663 reqsk_queue_removed(&inet_csk(sk
)->icsk_accept_queue
, req
);
667 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop
);
669 void inet_csk_reqsk_queue_drop_and_put(struct sock
*sk
, struct request_sock
*req
)
671 inet_csk_reqsk_queue_drop(sk
, req
);
674 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put
);
676 static void reqsk_timer_handler(struct timer_list
*t
)
678 struct request_sock
*req
= from_timer(req
, t
, rsk_timer
);
679 struct sock
*sk_listener
= req
->rsk_listener
;
680 struct net
*net
= sock_net(sk_listener
);
681 struct inet_connection_sock
*icsk
= inet_csk(sk_listener
);
682 struct request_sock_queue
*queue
= &icsk
->icsk_accept_queue
;
683 int qlen
, expire
= 0, resend
= 0;
684 int max_retries
, thresh
;
687 if (inet_sk_state_load(sk_listener
) != TCP_LISTEN
)
690 max_retries
= icsk
->icsk_syn_retries
? : net
->ipv4
.sysctl_tcp_synack_retries
;
691 thresh
= max_retries
;
692 /* Normally all the openreqs are young and become mature
693 * (i.e. converted to established socket) for first timeout.
694 * If synack was not acknowledged for 1 second, it means
695 * one of the following things: synack was lost, ack was lost,
696 * rtt is high or nobody planned to ack (i.e. synflood).
697 * When server is a bit loaded, queue is populated with old
698 * open requests, reducing effective size of queue.
699 * When server is well loaded, queue size reduces to zero
700 * after several minutes of work. It is not synflood,
701 * it is normal operation. The solution is pruning
702 * too old entries overriding normal timeout, when
703 * situation becomes dangerous.
705 * Essentially, we reserve half of room for young
706 * embrions; and abort old ones without pity, if old
707 * ones are about to clog our table.
709 qlen
= reqsk_queue_len(queue
);
710 if ((qlen
<< 1) > max(8U, sk_listener
->sk_max_ack_backlog
)) {
711 int young
= reqsk_queue_len_young(queue
) << 1;
720 defer_accept
= READ_ONCE(queue
->rskq_defer_accept
);
722 max_retries
= defer_accept
;
723 syn_ack_recalc(req
, thresh
, max_retries
, defer_accept
,
725 req
->rsk_ops
->syn_ack_timeout(req
);
728 !inet_rtx_syn_ack(sk_listener
, req
) ||
729 inet_rsk(req
)->acked
)) {
732 if (req
->num_timeout
++ == 0)
733 atomic_dec(&queue
->young
);
734 timeo
= min(TCP_TIMEOUT_INIT
<< req
->num_timeout
, TCP_RTO_MAX
);
735 mod_timer(&req
->rsk_timer
, jiffies
+ timeo
);
739 inet_csk_reqsk_queue_drop_and_put(sk_listener
, req
);
742 static void reqsk_queue_hash_req(struct request_sock
*req
,
743 unsigned long timeout
)
745 req
->num_retrans
= 0;
746 req
->num_timeout
= 0;
749 timer_setup(&req
->rsk_timer
, reqsk_timer_handler
, TIMER_PINNED
);
750 mod_timer(&req
->rsk_timer
, jiffies
+ timeout
);
752 inet_ehash_insert(req_to_sk(req
), NULL
);
753 /* before letting lookups find us, make sure all req fields
754 * are committed to memory and refcnt initialized.
757 refcount_set(&req
->rsk_refcnt
, 2 + 1);
760 void inet_csk_reqsk_queue_hash_add(struct sock
*sk
, struct request_sock
*req
,
761 unsigned long timeout
)
763 reqsk_queue_hash_req(req
, timeout
);
764 inet_csk_reqsk_queue_added(sk
);
766 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add
);
769 * inet_csk_clone_lock - clone an inet socket, and lock its clone
770 * @sk: the socket to clone
772 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
774 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
776 struct sock
*inet_csk_clone_lock(const struct sock
*sk
,
777 const struct request_sock
*req
,
778 const gfp_t priority
)
780 struct sock
*newsk
= sk_clone_lock(sk
, priority
);
783 struct inet_connection_sock
*newicsk
= inet_csk(newsk
);
785 inet_sk_set_state(newsk
, TCP_SYN_RECV
);
786 newicsk
->icsk_bind_hash
= NULL
;
788 inet_sk(newsk
)->inet_dport
= inet_rsk(req
)->ir_rmt_port
;
789 inet_sk(newsk
)->inet_num
= inet_rsk(req
)->ir_num
;
790 inet_sk(newsk
)->inet_sport
= htons(inet_rsk(req
)->ir_num
);
792 /* listeners have SOCK_RCU_FREE, not the children */
793 sock_reset_flag(newsk
, SOCK_RCU_FREE
);
795 inet_sk(newsk
)->mc_list
= NULL
;
797 newsk
->sk_mark
= inet_rsk(req
)->ir_mark
;
798 atomic64_set(&newsk
->sk_cookie
,
799 atomic64_read(&inet_rsk(req
)->ir_cookie
));
801 newicsk
->icsk_retransmits
= 0;
802 newicsk
->icsk_backoff
= 0;
803 newicsk
->icsk_probes_out
= 0;
805 /* Deinitialize accept_queue to trap illegal accesses. */
806 memset(&newicsk
->icsk_accept_queue
, 0, sizeof(newicsk
->icsk_accept_queue
));
808 security_inet_csk_clone(newsk
, req
);
812 EXPORT_SYMBOL_GPL(inet_csk_clone_lock
);
815 * At this point, there should be no process reference to this
816 * socket, and thus no user references at all. Therefore we
817 * can assume the socket waitqueue is inactive and nobody will
818 * try to jump onto it.
820 void inet_csk_destroy_sock(struct sock
*sk
)
822 WARN_ON(sk
->sk_state
!= TCP_CLOSE
);
823 WARN_ON(!sock_flag(sk
, SOCK_DEAD
));
825 /* It cannot be in hash table! */
826 WARN_ON(!sk_unhashed(sk
));
828 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
829 WARN_ON(inet_sk(sk
)->inet_num
&& !inet_csk(sk
)->icsk_bind_hash
);
831 sk
->sk_prot
->destroy(sk
);
833 sk_stream_kill_queues(sk
);
835 xfrm_sk_free_policy(sk
);
837 sk_refcnt_debug_release(sk
);
839 percpu_counter_dec(sk
->sk_prot
->orphan_count
);
843 EXPORT_SYMBOL(inet_csk_destroy_sock
);
845 /* This function allows to force a closure of a socket after the call to
846 * tcp/dccp_create_openreq_child().
848 void inet_csk_prepare_forced_close(struct sock
*sk
)
849 __releases(&sk
->sk_lock
.slock
)
851 /* sk_clone_lock locked the socket and set refcnt to 2 */
855 /* The below has to be done to allow calling inet_csk_destroy_sock */
856 sock_set_flag(sk
, SOCK_DEAD
);
857 percpu_counter_inc(sk
->sk_prot
->orphan_count
);
858 inet_sk(sk
)->inet_num
= 0;
860 EXPORT_SYMBOL(inet_csk_prepare_forced_close
);
862 int inet_csk_listen_start(struct sock
*sk
, int backlog
)
864 struct inet_connection_sock
*icsk
= inet_csk(sk
);
865 struct inet_sock
*inet
= inet_sk(sk
);
866 int err
= -EADDRINUSE
;
868 reqsk_queue_alloc(&icsk
->icsk_accept_queue
);
870 sk
->sk_max_ack_backlog
= backlog
;
871 sk
->sk_ack_backlog
= 0;
872 inet_csk_delack_init(sk
);
874 /* There is race window here: we announce ourselves listening,
875 * but this transition is still not validated by get_port().
876 * It is OK, because this socket enters to hash table only
877 * after validation is complete.
879 inet_sk_state_store(sk
, TCP_LISTEN
);
880 if (!sk
->sk_prot
->get_port(sk
, inet
->inet_num
)) {
881 inet
->inet_sport
= htons(inet
->inet_num
);
884 err
= sk
->sk_prot
->hash(sk
);
890 inet_sk_set_state(sk
, TCP_CLOSE
);
893 EXPORT_SYMBOL_GPL(inet_csk_listen_start
);
895 static void inet_child_forget(struct sock
*sk
, struct request_sock
*req
,
898 sk
->sk_prot
->disconnect(child
, O_NONBLOCK
);
902 percpu_counter_inc(sk
->sk_prot
->orphan_count
);
904 if (sk
->sk_protocol
== IPPROTO_TCP
&& tcp_rsk(req
)->tfo_listener
) {
905 BUG_ON(tcp_sk(child
)->fastopen_rsk
!= req
);
906 BUG_ON(sk
!= req
->rsk_listener
);
908 /* Paranoid, to prevent race condition if
909 * an inbound pkt destined for child is
910 * blocked by sock lock in tcp_v4_rcv().
911 * Also to satisfy an assertion in
912 * tcp_v4_destroy_sock().
914 tcp_sk(child
)->fastopen_rsk
= NULL
;
916 inet_csk_destroy_sock(child
);
919 struct sock
*inet_csk_reqsk_queue_add(struct sock
*sk
,
920 struct request_sock
*req
,
923 struct request_sock_queue
*queue
= &inet_csk(sk
)->icsk_accept_queue
;
925 spin_lock(&queue
->rskq_lock
);
926 if (unlikely(sk
->sk_state
!= TCP_LISTEN
)) {
927 inet_child_forget(sk
, req
, child
);
932 if (queue
->rskq_accept_head
== NULL
)
933 queue
->rskq_accept_head
= req
;
935 queue
->rskq_accept_tail
->dl_next
= req
;
936 queue
->rskq_accept_tail
= req
;
937 sk_acceptq_added(sk
);
939 spin_unlock(&queue
->rskq_lock
);
942 EXPORT_SYMBOL(inet_csk_reqsk_queue_add
);
944 struct sock
*inet_csk_complete_hashdance(struct sock
*sk
, struct sock
*child
,
945 struct request_sock
*req
, bool own_req
)
948 inet_csk_reqsk_queue_drop(sk
, req
);
949 reqsk_queue_removed(&inet_csk(sk
)->icsk_accept_queue
, req
);
950 if (inet_csk_reqsk_queue_add(sk
, req
, child
))
953 /* Too bad, another child took ownership of the request, undo. */
954 bh_unlock_sock(child
);
958 EXPORT_SYMBOL(inet_csk_complete_hashdance
);
961 * This routine closes sockets which have been at least partially
962 * opened, but not yet accepted.
964 void inet_csk_listen_stop(struct sock
*sk
)
966 struct inet_connection_sock
*icsk
= inet_csk(sk
);
967 struct request_sock_queue
*queue
= &icsk
->icsk_accept_queue
;
968 struct request_sock
*next
, *req
;
970 /* Following specs, it would be better either to send FIN
971 * (and enter FIN-WAIT-1, it is normal close)
972 * or to send active reset (abort).
973 * Certainly, it is pretty dangerous while synflood, but it is
974 * bad justification for our negligence 8)
975 * To be honest, we are not able to make either
976 * of the variants now. --ANK
978 while ((req
= reqsk_queue_remove(queue
, sk
)) != NULL
) {
979 struct sock
*child
= req
->sk
;
983 WARN_ON(sock_owned_by_user(child
));
986 inet_child_forget(sk
, req
, child
);
988 bh_unlock_sock(child
);
994 if (queue
->fastopenq
.rskq_rst_head
) {
995 /* Free all the reqs queued in rskq_rst_head. */
996 spin_lock_bh(&queue
->fastopenq
.lock
);
997 req
= queue
->fastopenq
.rskq_rst_head
;
998 queue
->fastopenq
.rskq_rst_head
= NULL
;
999 spin_unlock_bh(&queue
->fastopenq
.lock
);
1000 while (req
!= NULL
) {
1001 next
= req
->dl_next
;
1006 WARN_ON_ONCE(sk
->sk_ack_backlog
);
1008 EXPORT_SYMBOL_GPL(inet_csk_listen_stop
);
1010 void inet_csk_addr2sockaddr(struct sock
*sk
, struct sockaddr
*uaddr
)
1012 struct sockaddr_in
*sin
= (struct sockaddr_in
*)uaddr
;
1013 const struct inet_sock
*inet
= inet_sk(sk
);
1015 sin
->sin_family
= AF_INET
;
1016 sin
->sin_addr
.s_addr
= inet
->inet_daddr
;
1017 sin
->sin_port
= inet
->inet_dport
;
1019 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr
);
1021 #ifdef CONFIG_COMPAT
1022 int inet_csk_compat_getsockopt(struct sock
*sk
, int level
, int optname
,
1023 char __user
*optval
, int __user
*optlen
)
1025 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1027 if (icsk
->icsk_af_ops
->compat_getsockopt
)
1028 return icsk
->icsk_af_ops
->compat_getsockopt(sk
, level
, optname
,
1030 return icsk
->icsk_af_ops
->getsockopt(sk
, level
, optname
,
1033 EXPORT_SYMBOL_GPL(inet_csk_compat_getsockopt
);
1035 int inet_csk_compat_setsockopt(struct sock
*sk
, int level
, int optname
,
1036 char __user
*optval
, unsigned int optlen
)
1038 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1040 if (icsk
->icsk_af_ops
->compat_setsockopt
)
1041 return icsk
->icsk_af_ops
->compat_setsockopt(sk
, level
, optname
,
1043 return icsk
->icsk_af_ops
->setsockopt(sk
, level
, optname
,
1046 EXPORT_SYMBOL_GPL(inet_csk_compat_setsockopt
);
1049 static struct dst_entry
*inet_csk_rebuild_route(struct sock
*sk
, struct flowi
*fl
)
1051 const struct inet_sock
*inet
= inet_sk(sk
);
1052 const struct ip_options_rcu
*inet_opt
;
1053 __be32 daddr
= inet
->inet_daddr
;
1058 inet_opt
= rcu_dereference(inet
->inet_opt
);
1059 if (inet_opt
&& inet_opt
->opt
.srr
)
1060 daddr
= inet_opt
->opt
.faddr
;
1062 rt
= ip_route_output_ports(sock_net(sk
), fl4
, sk
, daddr
,
1063 inet
->inet_saddr
, inet
->inet_dport
,
1064 inet
->inet_sport
, sk
->sk_protocol
,
1065 RT_CONN_FLAGS(sk
), sk
->sk_bound_dev_if
);
1069 sk_setup_caps(sk
, &rt
->dst
);
1075 struct dst_entry
*inet_csk_update_pmtu(struct sock
*sk
, u32 mtu
)
1077 struct dst_entry
*dst
= __sk_dst_check(sk
, 0);
1078 struct inet_sock
*inet
= inet_sk(sk
);
1081 dst
= inet_csk_rebuild_route(sk
, &inet
->cork
.fl
);
1085 dst
->ops
->update_pmtu(dst
, sk
, NULL
, mtu
);
1087 dst
= __sk_dst_check(sk
, 0);
1089 dst
= inet_csk_rebuild_route(sk
, &inet
->cork
.fl
);
1093 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu
);