signal/powerpc: Remove unnecessary signal_code parameter of do_send_trap
[cris-mirror.git] / arch / powerpc / kernel / eeh_pe.c
blob2d4956e97aa9812fd93863322e1a1808e5a54cd7
1 /*
2 * The file intends to implement PE based on the information from
3 * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
4 * All the PEs should be organized as hierarchy tree. The first level
5 * of the tree will be associated to existing PHBs since the particular
6 * PE is only meaningful in one PHB domain.
8 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/gfp.h>
28 #include <linux/kernel.h>
29 #include <linux/pci.h>
30 #include <linux/string.h>
32 #include <asm/pci-bridge.h>
33 #include <asm/ppc-pci.h>
35 static int eeh_pe_aux_size = 0;
36 static LIST_HEAD(eeh_phb_pe);
38 /**
39 * eeh_set_pe_aux_size - Set PE auxillary data size
40 * @size: PE auxillary data size
42 * Set PE auxillary data size
44 void eeh_set_pe_aux_size(int size)
46 if (size < 0)
47 return;
49 eeh_pe_aux_size = size;
52 /**
53 * eeh_pe_alloc - Allocate PE
54 * @phb: PCI controller
55 * @type: PE type
57 * Allocate PE instance dynamically.
59 static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type)
61 struct eeh_pe *pe;
62 size_t alloc_size;
64 alloc_size = sizeof(struct eeh_pe);
65 if (eeh_pe_aux_size) {
66 alloc_size = ALIGN(alloc_size, cache_line_size());
67 alloc_size += eeh_pe_aux_size;
70 /* Allocate PHB PE */
71 pe = kzalloc(alloc_size, GFP_KERNEL);
72 if (!pe) return NULL;
74 /* Initialize PHB PE */
75 pe->type = type;
76 pe->phb = phb;
77 INIT_LIST_HEAD(&pe->child_list);
78 INIT_LIST_HEAD(&pe->child);
79 INIT_LIST_HEAD(&pe->edevs);
81 pe->data = (void *)pe + ALIGN(sizeof(struct eeh_pe),
82 cache_line_size());
83 return pe;
86 /**
87 * eeh_phb_pe_create - Create PHB PE
88 * @phb: PCI controller
90 * The function should be called while the PHB is detected during
91 * system boot or PCI hotplug in order to create PHB PE.
93 int eeh_phb_pe_create(struct pci_controller *phb)
95 struct eeh_pe *pe;
97 /* Allocate PHB PE */
98 pe = eeh_pe_alloc(phb, EEH_PE_PHB);
99 if (!pe) {
100 pr_err("%s: out of memory!\n", __func__);
101 return -ENOMEM;
104 /* Put it into the list */
105 list_add_tail(&pe->child, &eeh_phb_pe);
107 pr_debug("EEH: Add PE for PHB#%x\n", phb->global_number);
109 return 0;
113 * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB
114 * @phb: PCI controller
116 * The overall PEs form hierarchy tree. The first layer of the
117 * hierarchy tree is composed of PHB PEs. The function is used
118 * to retrieve the corresponding PHB PE according to the given PHB.
120 struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb)
122 struct eeh_pe *pe;
124 list_for_each_entry(pe, &eeh_phb_pe, child) {
126 * Actually, we needn't check the type since
127 * the PE for PHB has been determined when that
128 * was created.
130 if ((pe->type & EEH_PE_PHB) && pe->phb == phb)
131 return pe;
134 return NULL;
138 * eeh_pe_next - Retrieve the next PE in the tree
139 * @pe: current PE
140 * @root: root PE
142 * The function is used to retrieve the next PE in the
143 * hierarchy PE tree.
145 static struct eeh_pe *eeh_pe_next(struct eeh_pe *pe,
146 struct eeh_pe *root)
148 struct list_head *next = pe->child_list.next;
150 if (next == &pe->child_list) {
151 while (1) {
152 if (pe == root)
153 return NULL;
154 next = pe->child.next;
155 if (next != &pe->parent->child_list)
156 break;
157 pe = pe->parent;
161 return list_entry(next, struct eeh_pe, child);
165 * eeh_pe_traverse - Traverse PEs in the specified PHB
166 * @root: root PE
167 * @fn: callback
168 * @flag: extra parameter to callback
170 * The function is used to traverse the specified PE and its
171 * child PEs. The traversing is to be terminated once the
172 * callback returns something other than NULL, or no more PEs
173 * to be traversed.
175 void *eeh_pe_traverse(struct eeh_pe *root,
176 eeh_traverse_func fn, void *flag)
178 struct eeh_pe *pe;
179 void *ret;
181 for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
182 ret = fn(pe, flag);
183 if (ret) return ret;
186 return NULL;
190 * eeh_pe_dev_traverse - Traverse the devices from the PE
191 * @root: EEH PE
192 * @fn: function callback
193 * @flag: extra parameter to callback
195 * The function is used to traverse the devices of the specified
196 * PE and its child PEs.
198 void *eeh_pe_dev_traverse(struct eeh_pe *root,
199 eeh_traverse_func fn, void *flag)
201 struct eeh_pe *pe;
202 struct eeh_dev *edev, *tmp;
203 void *ret;
205 if (!root) {
206 pr_warn("%s: Invalid PE %p\n",
207 __func__, root);
208 return NULL;
211 /* Traverse root PE */
212 for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
213 eeh_pe_for_each_dev(pe, edev, tmp) {
214 ret = fn(edev, flag);
215 if (ret)
216 return ret;
220 return NULL;
224 * __eeh_pe_get - Check the PE address
225 * @data: EEH PE
226 * @flag: EEH device
228 * For one particular PE, it can be identified by PE address
229 * or tranditional BDF address. BDF address is composed of
230 * Bus/Device/Function number. The extra data referred by flag
231 * indicates which type of address should be used.
233 struct eeh_pe_get_flag {
234 int pe_no;
235 int config_addr;
238 static void *__eeh_pe_get(void *data, void *flag)
240 struct eeh_pe *pe = (struct eeh_pe *)data;
241 struct eeh_pe_get_flag *tmp = (struct eeh_pe_get_flag *) flag;
243 /* Unexpected PHB PE */
244 if (pe->type & EEH_PE_PHB)
245 return NULL;
248 * We prefer PE address. For most cases, we should
249 * have non-zero PE address
251 if (eeh_has_flag(EEH_VALID_PE_ZERO)) {
252 if (tmp->pe_no == pe->addr)
253 return pe;
254 } else {
255 if (tmp->pe_no &&
256 (tmp->pe_no == pe->addr))
257 return pe;
260 /* Try BDF address */
261 if (tmp->config_addr &&
262 (tmp->config_addr == pe->config_addr))
263 return pe;
265 return NULL;
269 * eeh_pe_get - Search PE based on the given address
270 * @phb: PCI controller
271 * @pe_no: PE number
272 * @config_addr: Config address
274 * Search the corresponding PE based on the specified address which
275 * is included in the eeh device. The function is used to check if
276 * the associated PE has been created against the PE address. It's
277 * notable that the PE address has 2 format: traditional PE address
278 * which is composed of PCI bus/device/function number, or unified
279 * PE address.
281 struct eeh_pe *eeh_pe_get(struct pci_controller *phb,
282 int pe_no, int config_addr)
284 struct eeh_pe *root = eeh_phb_pe_get(phb);
285 struct eeh_pe_get_flag tmp = { pe_no, config_addr };
286 struct eeh_pe *pe;
288 pe = eeh_pe_traverse(root, __eeh_pe_get, &tmp);
290 return pe;
294 * eeh_pe_get_parent - Retrieve the parent PE
295 * @edev: EEH device
297 * The whole PEs existing in the system are organized as hierarchy
298 * tree. The function is used to retrieve the parent PE according
299 * to the parent EEH device.
301 static struct eeh_pe *eeh_pe_get_parent(struct eeh_dev *edev)
303 struct eeh_dev *parent;
304 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
307 * It might have the case for the indirect parent
308 * EEH device already having associated PE, but
309 * the direct parent EEH device doesn't have yet.
311 if (edev->physfn)
312 pdn = pci_get_pdn(edev->physfn);
313 else
314 pdn = pdn ? pdn->parent : NULL;
315 while (pdn) {
316 /* We're poking out of PCI territory */
317 parent = pdn_to_eeh_dev(pdn);
318 if (!parent)
319 return NULL;
321 if (parent->pe)
322 return parent->pe;
324 pdn = pdn->parent;
327 return NULL;
331 * eeh_add_to_parent_pe - Add EEH device to parent PE
332 * @edev: EEH device
334 * Add EEH device to the parent PE. If the parent PE already
335 * exists, the PE type will be changed to EEH_PE_BUS. Otherwise,
336 * we have to create new PE to hold the EEH device and the new
337 * PE will be linked to its parent PE as well.
339 int eeh_add_to_parent_pe(struct eeh_dev *edev)
341 struct eeh_pe *pe, *parent;
342 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
343 int config_addr = (pdn->busno << 8) | (pdn->devfn);
345 /* Check if the PE number is valid */
346 if (!eeh_has_flag(EEH_VALID_PE_ZERO) && !edev->pe_config_addr) {
347 pr_err("%s: Invalid PE#0 for edev 0x%x on PHB#%x\n",
348 __func__, config_addr, pdn->phb->global_number);
349 return -EINVAL;
353 * Search the PE has been existing or not according
354 * to the PE address. If that has been existing, the
355 * PE should be composed of PCI bus and its subordinate
356 * components.
358 pe = eeh_pe_get(pdn->phb, edev->pe_config_addr, config_addr);
359 if (pe && !(pe->type & EEH_PE_INVALID)) {
360 /* Mark the PE as type of PCI bus */
361 pe->type = EEH_PE_BUS;
362 edev->pe = pe;
364 /* Put the edev to PE */
365 list_add_tail(&edev->list, &pe->edevs);
366 pr_debug("EEH: Add %04x:%02x:%02x.%01x to Bus PE#%x\n",
367 pdn->phb->global_number,
368 pdn->busno,
369 PCI_SLOT(pdn->devfn),
370 PCI_FUNC(pdn->devfn),
371 pe->addr);
372 return 0;
373 } else if (pe && (pe->type & EEH_PE_INVALID)) {
374 list_add_tail(&edev->list, &pe->edevs);
375 edev->pe = pe;
377 * We're running to here because of PCI hotplug caused by
378 * EEH recovery. We need clear EEH_PE_INVALID until the top.
380 parent = pe;
381 while (parent) {
382 if (!(parent->type & EEH_PE_INVALID))
383 break;
384 parent->type &= ~(EEH_PE_INVALID | EEH_PE_KEEP);
385 parent = parent->parent;
388 pr_debug("EEH: Add %04x:%02x:%02x.%01x to Device "
389 "PE#%x, Parent PE#%x\n",
390 pdn->phb->global_number,
391 pdn->busno,
392 PCI_SLOT(pdn->devfn),
393 PCI_FUNC(pdn->devfn),
394 pe->addr, pe->parent->addr);
395 return 0;
398 /* Create a new EEH PE */
399 if (edev->physfn)
400 pe = eeh_pe_alloc(pdn->phb, EEH_PE_VF);
401 else
402 pe = eeh_pe_alloc(pdn->phb, EEH_PE_DEVICE);
403 if (!pe) {
404 pr_err("%s: out of memory!\n", __func__);
405 return -ENOMEM;
407 pe->addr = edev->pe_config_addr;
408 pe->config_addr = config_addr;
411 * Put the new EEH PE into hierarchy tree. If the parent
412 * can't be found, the newly created PE will be attached
413 * to PHB directly. Otherwise, we have to associate the
414 * PE with its parent.
416 parent = eeh_pe_get_parent(edev);
417 if (!parent) {
418 parent = eeh_phb_pe_get(pdn->phb);
419 if (!parent) {
420 pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
421 __func__, pdn->phb->global_number);
422 edev->pe = NULL;
423 kfree(pe);
424 return -EEXIST;
427 pe->parent = parent;
430 * Put the newly created PE into the child list and
431 * link the EEH device accordingly.
433 list_add_tail(&pe->child, &parent->child_list);
434 list_add_tail(&edev->list, &pe->edevs);
435 edev->pe = pe;
436 pr_debug("EEH: Add %04x:%02x:%02x.%01x to "
437 "Device PE#%x, Parent PE#%x\n",
438 pdn->phb->global_number,
439 pdn->busno,
440 PCI_SLOT(pdn->devfn),
441 PCI_FUNC(pdn->devfn),
442 pe->addr, pe->parent->addr);
444 return 0;
448 * eeh_rmv_from_parent_pe - Remove one EEH device from the associated PE
449 * @edev: EEH device
451 * The PE hierarchy tree might be changed when doing PCI hotplug.
452 * Also, the PCI devices or buses could be removed from the system
453 * during EEH recovery. So we have to call the function remove the
454 * corresponding PE accordingly if necessary.
456 int eeh_rmv_from_parent_pe(struct eeh_dev *edev)
458 struct eeh_pe *pe, *parent, *child;
459 int cnt;
460 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
462 if (!edev->pe) {
463 pr_debug("%s: No PE found for device %04x:%02x:%02x.%01x\n",
464 __func__, pdn->phb->global_number,
465 pdn->busno,
466 PCI_SLOT(pdn->devfn),
467 PCI_FUNC(pdn->devfn));
468 return -EEXIST;
471 /* Remove the EEH device */
472 pe = eeh_dev_to_pe(edev);
473 edev->pe = NULL;
474 list_del(&edev->list);
477 * Check if the parent PE includes any EEH devices.
478 * If not, we should delete that. Also, we should
479 * delete the parent PE if it doesn't have associated
480 * child PEs and EEH devices.
482 while (1) {
483 parent = pe->parent;
484 if (pe->type & EEH_PE_PHB)
485 break;
487 if (!(pe->state & EEH_PE_KEEP)) {
488 if (list_empty(&pe->edevs) &&
489 list_empty(&pe->child_list)) {
490 list_del(&pe->child);
491 kfree(pe);
492 } else {
493 break;
495 } else {
496 if (list_empty(&pe->edevs)) {
497 cnt = 0;
498 list_for_each_entry(child, &pe->child_list, child) {
499 if (!(child->type & EEH_PE_INVALID)) {
500 cnt++;
501 break;
505 if (!cnt)
506 pe->type |= EEH_PE_INVALID;
507 else
508 break;
512 pe = parent;
515 return 0;
519 * eeh_pe_update_time_stamp - Update PE's frozen time stamp
520 * @pe: EEH PE
522 * We have time stamp for each PE to trace its time of getting
523 * frozen in last hour. The function should be called to update
524 * the time stamp on first error of the specific PE. On the other
525 * handle, we needn't account for errors happened in last hour.
527 void eeh_pe_update_time_stamp(struct eeh_pe *pe)
529 time64_t tstamp;
531 if (!pe) return;
533 if (pe->freeze_count <= 0) {
534 pe->freeze_count = 0;
535 pe->tstamp = ktime_get_seconds();
536 } else {
537 tstamp = ktime_get_seconds();
538 if (tstamp - pe->tstamp > 3600) {
539 pe->tstamp = tstamp;
540 pe->freeze_count = 0;
546 * __eeh_pe_state_mark - Mark the state for the PE
547 * @data: EEH PE
548 * @flag: state
550 * The function is used to mark the indicated state for the given
551 * PE. Also, the associated PCI devices will be put into IO frozen
552 * state as well.
554 static void *__eeh_pe_state_mark(void *data, void *flag)
556 struct eeh_pe *pe = (struct eeh_pe *)data;
557 int state = *((int *)flag);
558 struct eeh_dev *edev, *tmp;
559 struct pci_dev *pdev;
561 /* Keep the state of permanently removed PE intact */
562 if (pe->state & EEH_PE_REMOVED)
563 return NULL;
565 pe->state |= state;
567 /* Offline PCI devices if applicable */
568 if (!(state & EEH_PE_ISOLATED))
569 return NULL;
571 eeh_pe_for_each_dev(pe, edev, tmp) {
572 pdev = eeh_dev_to_pci_dev(edev);
573 if (pdev)
574 pdev->error_state = pci_channel_io_frozen;
577 /* Block PCI config access if required */
578 if (pe->state & EEH_PE_CFG_RESTRICTED)
579 pe->state |= EEH_PE_CFG_BLOCKED;
581 return NULL;
585 * eeh_pe_state_mark - Mark specified state for PE and its associated device
586 * @pe: EEH PE
588 * EEH error affects the current PE and its child PEs. The function
589 * is used to mark appropriate state for the affected PEs and the
590 * associated devices.
592 void eeh_pe_state_mark(struct eeh_pe *pe, int state)
594 eeh_pe_traverse(pe, __eeh_pe_state_mark, &state);
596 EXPORT_SYMBOL_GPL(eeh_pe_state_mark);
598 static void *__eeh_pe_dev_mode_mark(void *data, void *flag)
600 struct eeh_dev *edev = data;
601 int mode = *((int *)flag);
603 edev->mode |= mode;
605 return NULL;
609 * eeh_pe_dev_state_mark - Mark state for all device under the PE
610 * @pe: EEH PE
612 * Mark specific state for all child devices of the PE.
614 void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode)
616 eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode);
620 * __eeh_pe_state_clear - Clear state for the PE
621 * @data: EEH PE
622 * @flag: state
624 * The function is used to clear the indicated state from the
625 * given PE. Besides, we also clear the check count of the PE
626 * as well.
628 static void *__eeh_pe_state_clear(void *data, void *flag)
630 struct eeh_pe *pe = (struct eeh_pe *)data;
631 int state = *((int *)flag);
632 struct eeh_dev *edev, *tmp;
633 struct pci_dev *pdev;
635 /* Keep the state of permanently removed PE intact */
636 if (pe->state & EEH_PE_REMOVED)
637 return NULL;
639 pe->state &= ~state;
642 * Special treatment on clearing isolated state. Clear
643 * check count since last isolation and put all affected
644 * devices to normal state.
646 if (!(state & EEH_PE_ISOLATED))
647 return NULL;
649 pe->check_count = 0;
650 eeh_pe_for_each_dev(pe, edev, tmp) {
651 pdev = eeh_dev_to_pci_dev(edev);
652 if (!pdev)
653 continue;
655 pdev->error_state = pci_channel_io_normal;
658 /* Unblock PCI config access if required */
659 if (pe->state & EEH_PE_CFG_RESTRICTED)
660 pe->state &= ~EEH_PE_CFG_BLOCKED;
662 return NULL;
666 * eeh_pe_state_clear - Clear state for the PE and its children
667 * @pe: PE
668 * @state: state to be cleared
670 * When the PE and its children has been recovered from error,
671 * we need clear the error state for that. The function is used
672 * for the purpose.
674 void eeh_pe_state_clear(struct eeh_pe *pe, int state)
676 eeh_pe_traverse(pe, __eeh_pe_state_clear, &state);
680 * eeh_pe_state_mark_with_cfg - Mark PE state with unblocked config space
681 * @pe: PE
682 * @state: PE state to be set
684 * Set specified flag to PE and its child PEs. The PCI config space
685 * of some PEs is blocked automatically when EEH_PE_ISOLATED is set,
686 * which isn't needed in some situations. The function allows to set
687 * the specified flag to indicated PEs without blocking their PCI
688 * config space.
690 void eeh_pe_state_mark_with_cfg(struct eeh_pe *pe, int state)
692 eeh_pe_traverse(pe, __eeh_pe_state_mark, &state);
693 if (!(state & EEH_PE_ISOLATED))
694 return;
696 /* Clear EEH_PE_CFG_BLOCKED, which might be set just now */
697 state = EEH_PE_CFG_BLOCKED;
698 eeh_pe_traverse(pe, __eeh_pe_state_clear, &state);
702 * Some PCI bridges (e.g. PLX bridges) have primary/secondary
703 * buses assigned explicitly by firmware, and we probably have
704 * lost that after reset. So we have to delay the check until
705 * the PCI-CFG registers have been restored for the parent
706 * bridge.
708 * Don't use normal PCI-CFG accessors, which probably has been
709 * blocked on normal path during the stage. So we need utilize
710 * eeh operations, which is always permitted.
712 static void eeh_bridge_check_link(struct eeh_dev *edev)
714 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
715 int cap;
716 uint32_t val;
717 int timeout = 0;
720 * We only check root port and downstream ports of
721 * PCIe switches
723 if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT)))
724 return;
726 pr_debug("%s: Check PCIe link for %04x:%02x:%02x.%01x ...\n",
727 __func__, pdn->phb->global_number,
728 pdn->busno,
729 PCI_SLOT(pdn->devfn),
730 PCI_FUNC(pdn->devfn));
732 /* Check slot status */
733 cap = edev->pcie_cap;
734 eeh_ops->read_config(pdn, cap + PCI_EXP_SLTSTA, 2, &val);
735 if (!(val & PCI_EXP_SLTSTA_PDS)) {
736 pr_debug(" No card in the slot (0x%04x) !\n", val);
737 return;
740 /* Check power status if we have the capability */
741 eeh_ops->read_config(pdn, cap + PCI_EXP_SLTCAP, 2, &val);
742 if (val & PCI_EXP_SLTCAP_PCP) {
743 eeh_ops->read_config(pdn, cap + PCI_EXP_SLTCTL, 2, &val);
744 if (val & PCI_EXP_SLTCTL_PCC) {
745 pr_debug(" In power-off state, power it on ...\n");
746 val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC);
747 val |= (0x0100 & PCI_EXP_SLTCTL_PIC);
748 eeh_ops->write_config(pdn, cap + PCI_EXP_SLTCTL, 2, val);
749 msleep(2 * 1000);
753 /* Enable link */
754 eeh_ops->read_config(pdn, cap + PCI_EXP_LNKCTL, 2, &val);
755 val &= ~PCI_EXP_LNKCTL_LD;
756 eeh_ops->write_config(pdn, cap + PCI_EXP_LNKCTL, 2, val);
758 /* Check link */
759 eeh_ops->read_config(pdn, cap + PCI_EXP_LNKCAP, 4, &val);
760 if (!(val & PCI_EXP_LNKCAP_DLLLARC)) {
761 pr_debug(" No link reporting capability (0x%08x) \n", val);
762 msleep(1000);
763 return;
766 /* Wait the link is up until timeout (5s) */
767 timeout = 0;
768 while (timeout < 5000) {
769 msleep(20);
770 timeout += 20;
772 eeh_ops->read_config(pdn, cap + PCI_EXP_LNKSTA, 2, &val);
773 if (val & PCI_EXP_LNKSTA_DLLLA)
774 break;
777 if (val & PCI_EXP_LNKSTA_DLLLA)
778 pr_debug(" Link up (%s)\n",
779 (val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB");
780 else
781 pr_debug(" Link not ready (0x%04x)\n", val);
784 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
785 #define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
787 static void eeh_restore_bridge_bars(struct eeh_dev *edev)
789 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
790 int i;
793 * Device BARs: 0x10 - 0x18
794 * Bus numbers and windows: 0x18 - 0x30
796 for (i = 4; i < 13; i++)
797 eeh_ops->write_config(pdn, i*4, 4, edev->config_space[i]);
798 /* Rom: 0x38 */
799 eeh_ops->write_config(pdn, 14*4, 4, edev->config_space[14]);
801 /* Cache line & Latency timer: 0xC 0xD */
802 eeh_ops->write_config(pdn, PCI_CACHE_LINE_SIZE, 1,
803 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
804 eeh_ops->write_config(pdn, PCI_LATENCY_TIMER, 1,
805 SAVED_BYTE(PCI_LATENCY_TIMER));
806 /* Max latency, min grant, interrupt ping and line: 0x3C */
807 eeh_ops->write_config(pdn, 15*4, 4, edev->config_space[15]);
809 /* PCI Command: 0x4 */
810 eeh_ops->write_config(pdn, PCI_COMMAND, 4, edev->config_space[1]);
812 /* Check the PCIe link is ready */
813 eeh_bridge_check_link(edev);
816 static void eeh_restore_device_bars(struct eeh_dev *edev)
818 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
819 int i;
820 u32 cmd;
822 for (i = 4; i < 10; i++)
823 eeh_ops->write_config(pdn, i*4, 4, edev->config_space[i]);
824 /* 12 == Expansion ROM Address */
825 eeh_ops->write_config(pdn, 12*4, 4, edev->config_space[12]);
827 eeh_ops->write_config(pdn, PCI_CACHE_LINE_SIZE, 1,
828 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
829 eeh_ops->write_config(pdn, PCI_LATENCY_TIMER, 1,
830 SAVED_BYTE(PCI_LATENCY_TIMER));
832 /* max latency, min grant, interrupt pin and line */
833 eeh_ops->write_config(pdn, 15*4, 4, edev->config_space[15]);
836 * Restore PERR & SERR bits, some devices require it,
837 * don't touch the other command bits
839 eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cmd);
840 if (edev->config_space[1] & PCI_COMMAND_PARITY)
841 cmd |= PCI_COMMAND_PARITY;
842 else
843 cmd &= ~PCI_COMMAND_PARITY;
844 if (edev->config_space[1] & PCI_COMMAND_SERR)
845 cmd |= PCI_COMMAND_SERR;
846 else
847 cmd &= ~PCI_COMMAND_SERR;
848 eeh_ops->write_config(pdn, PCI_COMMAND, 4, cmd);
852 * eeh_restore_one_device_bars - Restore the Base Address Registers for one device
853 * @data: EEH device
854 * @flag: Unused
856 * Loads the PCI configuration space base address registers,
857 * the expansion ROM base address, the latency timer, and etc.
858 * from the saved values in the device node.
860 static void *eeh_restore_one_device_bars(void *data, void *flag)
862 struct eeh_dev *edev = (struct eeh_dev *)data;
863 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
865 /* Do special restore for bridges */
866 if (edev->mode & EEH_DEV_BRIDGE)
867 eeh_restore_bridge_bars(edev);
868 else
869 eeh_restore_device_bars(edev);
871 if (eeh_ops->restore_config && pdn)
872 eeh_ops->restore_config(pdn);
874 return NULL;
878 * eeh_pe_restore_bars - Restore the PCI config space info
879 * @pe: EEH PE
881 * This routine performs a recursive walk to the children
882 * of this device as well.
884 void eeh_pe_restore_bars(struct eeh_pe *pe)
887 * We needn't take the EEH lock since eeh_pe_dev_traverse()
888 * will take that.
890 eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL);
894 * eeh_pe_loc_get - Retrieve location code binding to the given PE
895 * @pe: EEH PE
897 * Retrieve the location code of the given PE. If the primary PE bus
898 * is root bus, we will grab location code from PHB device tree node
899 * or root port. Otherwise, the upstream bridge's device tree node
900 * of the primary PE bus will be checked for the location code.
902 const char *eeh_pe_loc_get(struct eeh_pe *pe)
904 struct pci_bus *bus = eeh_pe_bus_get(pe);
905 struct device_node *dn;
906 const char *loc = NULL;
908 while (bus) {
909 dn = pci_bus_to_OF_node(bus);
910 if (!dn) {
911 bus = bus->parent;
912 continue;
915 if (pci_is_root_bus(bus))
916 loc = of_get_property(dn, "ibm,io-base-loc-code", NULL);
917 else
918 loc = of_get_property(dn, "ibm,slot-location-code",
919 NULL);
921 if (loc)
922 return loc;
924 bus = bus->parent;
927 return "N/A";
931 * eeh_pe_bus_get - Retrieve PCI bus according to the given PE
932 * @pe: EEH PE
934 * Retrieve the PCI bus according to the given PE. Basically,
935 * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the
936 * primary PCI bus will be retrieved. The parent bus will be
937 * returned for BUS PE. However, we don't have associated PCI
938 * bus for DEVICE PE.
940 struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe)
942 struct eeh_dev *edev;
943 struct pci_dev *pdev;
945 if (pe->type & EEH_PE_PHB)
946 return pe->phb->bus;
948 /* The primary bus might be cached during probe time */
949 if (pe->state & EEH_PE_PRI_BUS)
950 return pe->bus;
952 /* Retrieve the parent PCI bus of first (top) PCI device */
953 edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, list);
954 pdev = eeh_dev_to_pci_dev(edev);
955 if (pdev)
956 return pdev->bus;
958 return NULL;