signal/powerpc: Remove unnecessary signal_code parameter of do_send_trap
[cris-mirror.git] / arch / powerpc / kernel / mce_power.c
blob644f7040b91c9c2f080ebe6236a9a9892e04ea16
1 /*
2 * Machine check exception handling CPU-side for power7 and power8
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright 2013 IBM Corporation
19 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
22 #undef DEBUG
23 #define pr_fmt(fmt) "mce_power: " fmt
25 #include <linux/types.h>
26 #include <linux/ptrace.h>
27 #include <asm/mmu.h>
28 #include <asm/mce.h>
29 #include <asm/machdep.h>
30 #include <asm/pgtable.h>
31 #include <asm/pte-walk.h>
32 #include <asm/sstep.h>
33 #include <asm/exception-64s.h>
36 * Convert an address related to an mm to a PFN. NOTE: we are in real
37 * mode, we could potentially race with page table updates.
39 static unsigned long addr_to_pfn(struct pt_regs *regs, unsigned long addr)
41 pte_t *ptep;
42 unsigned long flags;
43 struct mm_struct *mm;
45 if (user_mode(regs))
46 mm = current->mm;
47 else
48 mm = &init_mm;
50 local_irq_save(flags);
51 if (mm == current->mm)
52 ptep = find_current_mm_pte(mm->pgd, addr, NULL, NULL);
53 else
54 ptep = find_init_mm_pte(addr, NULL);
55 local_irq_restore(flags);
56 if (!ptep || pte_special(*ptep))
57 return ULONG_MAX;
58 return pte_pfn(*ptep);
61 static void flush_tlb_206(unsigned int num_sets, unsigned int action)
63 unsigned long rb;
64 unsigned int i;
66 switch (action) {
67 case TLB_INVAL_SCOPE_GLOBAL:
68 rb = TLBIEL_INVAL_SET;
69 break;
70 case TLB_INVAL_SCOPE_LPID:
71 rb = TLBIEL_INVAL_SET_LPID;
72 break;
73 default:
74 BUG();
75 break;
78 asm volatile("ptesync" : : : "memory");
79 for (i = 0; i < num_sets; i++) {
80 asm volatile("tlbiel %0" : : "r" (rb));
81 rb += 1 << TLBIEL_INVAL_SET_SHIFT;
83 asm volatile("ptesync" : : : "memory");
86 static void flush_tlb_300(unsigned int num_sets, unsigned int action)
88 unsigned long rb;
89 unsigned int i;
90 unsigned int r;
92 switch (action) {
93 case TLB_INVAL_SCOPE_GLOBAL:
94 rb = TLBIEL_INVAL_SET;
95 break;
96 case TLB_INVAL_SCOPE_LPID:
97 rb = TLBIEL_INVAL_SET_LPID;
98 break;
99 default:
100 BUG();
101 break;
104 asm volatile("ptesync" : : : "memory");
106 if (early_radix_enabled())
107 r = 1;
108 else
109 r = 0;
112 * First flush table/PWC caches with set 0, then flush the
113 * rest of the sets, partition scope. Radix must then do it
114 * all again with process scope. Hash just has to flush
115 * process table.
117 asm volatile(PPC_TLBIEL(%0, %1, %2, %3, %4) : :
118 "r"(rb), "r"(0), "i"(2), "i"(0), "r"(r));
119 for (i = 1; i < num_sets; i++) {
120 unsigned long set = i * (1<<TLBIEL_INVAL_SET_SHIFT);
122 asm volatile(PPC_TLBIEL(%0, %1, %2, %3, %4) : :
123 "r"(rb+set), "r"(0), "i"(2), "i"(0), "r"(r));
126 asm volatile(PPC_TLBIEL(%0, %1, %2, %3, %4) : :
127 "r"(rb), "r"(0), "i"(2), "i"(1), "r"(r));
128 if (early_radix_enabled()) {
129 for (i = 1; i < num_sets; i++) {
130 unsigned long set = i * (1<<TLBIEL_INVAL_SET_SHIFT);
132 asm volatile(PPC_TLBIEL(%0, %1, %2, %3, %4) : :
133 "r"(rb+set), "r"(0), "i"(2), "i"(1), "r"(r));
137 asm volatile("ptesync" : : : "memory");
141 * Generic routines to flush TLB on POWER processors. These routines
142 * are used as flush_tlb hook in the cpu_spec.
144 * action => TLB_INVAL_SCOPE_GLOBAL: Invalidate all TLBs.
145 * TLB_INVAL_SCOPE_LPID: Invalidate TLB for current LPID.
147 void __flush_tlb_power7(unsigned int action)
149 flush_tlb_206(POWER7_TLB_SETS, action);
152 void __flush_tlb_power8(unsigned int action)
154 flush_tlb_206(POWER8_TLB_SETS, action);
157 void __flush_tlb_power9(unsigned int action)
159 unsigned int num_sets;
161 if (early_radix_enabled())
162 num_sets = POWER9_TLB_SETS_RADIX;
163 else
164 num_sets = POWER9_TLB_SETS_HASH;
166 flush_tlb_300(num_sets, action);
170 /* flush SLBs and reload */
171 #ifdef CONFIG_PPC_BOOK3S_64
172 static void flush_and_reload_slb(void)
174 struct slb_shadow *slb;
175 unsigned long i, n;
177 /* Invalidate all SLBs */
178 asm volatile("slbmte %0,%0; slbia" : : "r" (0));
180 #ifdef CONFIG_KVM_BOOK3S_HANDLER
182 * If machine check is hit when in guest or in transition, we will
183 * only flush the SLBs and continue.
185 if (get_paca()->kvm_hstate.in_guest)
186 return;
187 #endif
189 /* For host kernel, reload the SLBs from shadow SLB buffer. */
190 slb = get_slb_shadow();
191 if (!slb)
192 return;
194 n = min_t(u32, be32_to_cpu(slb->persistent), SLB_MIN_SIZE);
196 /* Load up the SLB entries from shadow SLB */
197 for (i = 0; i < n; i++) {
198 unsigned long rb = be64_to_cpu(slb->save_area[i].esid);
199 unsigned long rs = be64_to_cpu(slb->save_area[i].vsid);
201 rb = (rb & ~0xFFFul) | i;
202 asm volatile("slbmte %0,%1" : : "r" (rs), "r" (rb));
205 #endif
207 static void flush_erat(void)
209 asm volatile(PPC_INVALIDATE_ERAT : : :"memory");
212 #define MCE_FLUSH_SLB 1
213 #define MCE_FLUSH_TLB 2
214 #define MCE_FLUSH_ERAT 3
216 static int mce_flush(int what)
218 #ifdef CONFIG_PPC_BOOK3S_64
219 if (what == MCE_FLUSH_SLB) {
220 flush_and_reload_slb();
221 return 1;
223 #endif
224 if (what == MCE_FLUSH_ERAT) {
225 flush_erat();
226 return 1;
228 if (what == MCE_FLUSH_TLB) {
229 if (cur_cpu_spec && cur_cpu_spec->flush_tlb) {
230 cur_cpu_spec->flush_tlb(TLB_INVAL_SCOPE_GLOBAL);
231 return 1;
235 return 0;
238 #define SRR1_MC_LOADSTORE(srr1) ((srr1) & PPC_BIT(42))
240 struct mce_ierror_table {
241 unsigned long srr1_mask;
242 unsigned long srr1_value;
243 bool nip_valid; /* nip is a valid indicator of faulting address */
244 unsigned int error_type;
245 unsigned int error_subtype;
246 unsigned int initiator;
247 unsigned int severity;
250 static const struct mce_ierror_table mce_p7_ierror_table[] = {
251 { 0x00000000001c0000, 0x0000000000040000, true,
252 MCE_ERROR_TYPE_UE, MCE_UE_ERROR_IFETCH,
253 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
254 { 0x00000000001c0000, 0x0000000000080000, true,
255 MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_PARITY,
256 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
257 { 0x00000000001c0000, 0x00000000000c0000, true,
258 MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_MULTIHIT,
259 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
260 { 0x00000000001c0000, 0x0000000000100000, true,
261 MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_INDETERMINATE, /* BOTH */
262 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
263 { 0x00000000001c0000, 0x0000000000140000, true,
264 MCE_ERROR_TYPE_TLB, MCE_TLB_ERROR_MULTIHIT,
265 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
266 { 0x00000000001c0000, 0x0000000000180000, true,
267 MCE_ERROR_TYPE_UE, MCE_UE_ERROR_PAGE_TABLE_WALK_IFETCH,
268 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
269 { 0x00000000001c0000, 0x00000000001c0000, true,
270 MCE_ERROR_TYPE_UE, MCE_UE_ERROR_IFETCH,
271 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
272 { 0, 0, 0, 0, 0, 0 } };
274 static const struct mce_ierror_table mce_p8_ierror_table[] = {
275 { 0x00000000081c0000, 0x0000000000040000, true,
276 MCE_ERROR_TYPE_UE, MCE_UE_ERROR_IFETCH,
277 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
278 { 0x00000000081c0000, 0x0000000000080000, true,
279 MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_PARITY,
280 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
281 { 0x00000000081c0000, 0x00000000000c0000, true,
282 MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_MULTIHIT,
283 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
284 { 0x00000000081c0000, 0x0000000000100000, true,
285 MCE_ERROR_TYPE_ERAT,MCE_ERAT_ERROR_MULTIHIT,
286 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
287 { 0x00000000081c0000, 0x0000000000140000, true,
288 MCE_ERROR_TYPE_TLB, MCE_TLB_ERROR_MULTIHIT,
289 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
290 { 0x00000000081c0000, 0x0000000000180000, true,
291 MCE_ERROR_TYPE_UE, MCE_UE_ERROR_PAGE_TABLE_WALK_IFETCH,
292 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
293 { 0x00000000081c0000, 0x00000000001c0000, true,
294 MCE_ERROR_TYPE_UE, MCE_UE_ERROR_IFETCH,
295 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
296 { 0x00000000081c0000, 0x0000000008000000, true,
297 MCE_ERROR_TYPE_LINK,MCE_LINK_ERROR_IFETCH_TIMEOUT,
298 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
299 { 0x00000000081c0000, 0x0000000008040000, true,
300 MCE_ERROR_TYPE_LINK,MCE_LINK_ERROR_PAGE_TABLE_WALK_IFETCH_TIMEOUT,
301 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
302 { 0, 0, 0, 0, 0, 0 } };
304 static const struct mce_ierror_table mce_p9_ierror_table[] = {
305 { 0x00000000081c0000, 0x0000000000040000, true,
306 MCE_ERROR_TYPE_UE, MCE_UE_ERROR_IFETCH,
307 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
308 { 0x00000000081c0000, 0x0000000000080000, true,
309 MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_PARITY,
310 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
311 { 0x00000000081c0000, 0x00000000000c0000, true,
312 MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_MULTIHIT,
313 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
314 { 0x00000000081c0000, 0x0000000000100000, true,
315 MCE_ERROR_TYPE_ERAT,MCE_ERAT_ERROR_MULTIHIT,
316 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
317 { 0x00000000081c0000, 0x0000000000140000, true,
318 MCE_ERROR_TYPE_TLB, MCE_TLB_ERROR_MULTIHIT,
319 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
320 { 0x00000000081c0000, 0x0000000000180000, true,
321 MCE_ERROR_TYPE_UE, MCE_UE_ERROR_PAGE_TABLE_WALK_IFETCH,
322 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
323 { 0x00000000081c0000, 0x00000000001c0000, true,
324 MCE_ERROR_TYPE_RA, MCE_RA_ERROR_IFETCH_FOREIGN,
325 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
326 { 0x00000000081c0000, 0x0000000008000000, true,
327 MCE_ERROR_TYPE_LINK,MCE_LINK_ERROR_IFETCH_TIMEOUT,
328 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
329 { 0x00000000081c0000, 0x0000000008040000, true,
330 MCE_ERROR_TYPE_LINK,MCE_LINK_ERROR_PAGE_TABLE_WALK_IFETCH_TIMEOUT,
331 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
332 { 0x00000000081c0000, 0x00000000080c0000, true,
333 MCE_ERROR_TYPE_RA, MCE_RA_ERROR_IFETCH,
334 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
335 { 0x00000000081c0000, 0x0000000008100000, true,
336 MCE_ERROR_TYPE_RA, MCE_RA_ERROR_PAGE_TABLE_WALK_IFETCH,
337 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
338 { 0x00000000081c0000, 0x0000000008140000, false,
339 MCE_ERROR_TYPE_RA, MCE_RA_ERROR_STORE,
340 MCE_INITIATOR_CPU, MCE_SEV_FATAL, }, /* ASYNC is fatal */
341 { 0x00000000081c0000, 0x0000000008180000, false,
342 MCE_ERROR_TYPE_LINK,MCE_LINK_ERROR_STORE_TIMEOUT,
343 MCE_INITIATOR_CPU, MCE_SEV_FATAL, }, /* ASYNC is fatal */
344 { 0x00000000081c0000, 0x00000000081c0000, true,
345 MCE_ERROR_TYPE_RA, MCE_RA_ERROR_PAGE_TABLE_WALK_IFETCH_FOREIGN,
346 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
347 { 0, 0, 0, 0, 0, 0 } };
349 struct mce_derror_table {
350 unsigned long dsisr_value;
351 bool dar_valid; /* dar is a valid indicator of faulting address */
352 unsigned int error_type;
353 unsigned int error_subtype;
354 unsigned int initiator;
355 unsigned int severity;
358 static const struct mce_derror_table mce_p7_derror_table[] = {
359 { 0x00008000, false,
360 MCE_ERROR_TYPE_UE, MCE_UE_ERROR_LOAD_STORE,
361 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
362 { 0x00004000, true,
363 MCE_ERROR_TYPE_UE, MCE_UE_ERROR_PAGE_TABLE_WALK_LOAD_STORE,
364 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
365 { 0x00000800, true,
366 MCE_ERROR_TYPE_ERAT, MCE_ERAT_ERROR_MULTIHIT,
367 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
368 { 0x00000400, true,
369 MCE_ERROR_TYPE_TLB, MCE_TLB_ERROR_MULTIHIT,
370 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
371 { 0x00000100, true,
372 MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_PARITY,
373 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
374 { 0x00000080, true,
375 MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_MULTIHIT,
376 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
377 { 0x00000040, true,
378 MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_INDETERMINATE, /* BOTH */
379 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
380 { 0, false, 0, 0, 0, 0 } };
382 static const struct mce_derror_table mce_p8_derror_table[] = {
383 { 0x00008000, false,
384 MCE_ERROR_TYPE_UE, MCE_UE_ERROR_LOAD_STORE,
385 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
386 { 0x00004000, true,
387 MCE_ERROR_TYPE_UE, MCE_UE_ERROR_PAGE_TABLE_WALK_LOAD_STORE,
388 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
389 { 0x00002000, true,
390 MCE_ERROR_TYPE_LINK, MCE_LINK_ERROR_LOAD_TIMEOUT,
391 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
392 { 0x00001000, true,
393 MCE_ERROR_TYPE_LINK, MCE_LINK_ERROR_PAGE_TABLE_WALK_LOAD_STORE_TIMEOUT,
394 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
395 { 0x00000800, true,
396 MCE_ERROR_TYPE_ERAT, MCE_ERAT_ERROR_MULTIHIT,
397 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
398 { 0x00000400, true,
399 MCE_ERROR_TYPE_TLB, MCE_TLB_ERROR_MULTIHIT,
400 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
401 { 0x00000200, true,
402 MCE_ERROR_TYPE_ERAT, MCE_ERAT_ERROR_MULTIHIT, /* SECONDARY ERAT */
403 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
404 { 0x00000100, true,
405 MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_PARITY,
406 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
407 { 0x00000080, true,
408 MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_MULTIHIT,
409 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
410 { 0, false, 0, 0, 0, 0 } };
412 static const struct mce_derror_table mce_p9_derror_table[] = {
413 { 0x00008000, false,
414 MCE_ERROR_TYPE_UE, MCE_UE_ERROR_LOAD_STORE,
415 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
416 { 0x00004000, true,
417 MCE_ERROR_TYPE_UE, MCE_UE_ERROR_PAGE_TABLE_WALK_LOAD_STORE,
418 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
419 { 0x00002000, true,
420 MCE_ERROR_TYPE_LINK, MCE_LINK_ERROR_LOAD_TIMEOUT,
421 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
422 { 0x00001000, true,
423 MCE_ERROR_TYPE_LINK, MCE_LINK_ERROR_PAGE_TABLE_WALK_LOAD_STORE_TIMEOUT,
424 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
425 { 0x00000800, true,
426 MCE_ERROR_TYPE_ERAT, MCE_ERAT_ERROR_MULTIHIT,
427 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
428 { 0x00000400, true,
429 MCE_ERROR_TYPE_TLB, MCE_TLB_ERROR_MULTIHIT,
430 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
431 { 0x00000200, false,
432 MCE_ERROR_TYPE_USER, MCE_USER_ERROR_TLBIE,
433 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
434 { 0x00000100, true,
435 MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_PARITY,
436 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
437 { 0x00000080, true,
438 MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_MULTIHIT,
439 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
440 { 0x00000040, true,
441 MCE_ERROR_TYPE_RA, MCE_RA_ERROR_LOAD,
442 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
443 { 0x00000020, false,
444 MCE_ERROR_TYPE_RA, MCE_RA_ERROR_PAGE_TABLE_WALK_LOAD_STORE,
445 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
446 { 0x00000010, false,
447 MCE_ERROR_TYPE_RA, MCE_RA_ERROR_PAGE_TABLE_WALK_LOAD_STORE_FOREIGN,
448 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
449 { 0x00000008, false,
450 MCE_ERROR_TYPE_RA, MCE_RA_ERROR_LOAD_STORE_FOREIGN,
451 MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, },
452 { 0, false, 0, 0, 0, 0 } };
454 static int mce_find_instr_ea_and_pfn(struct pt_regs *regs, uint64_t *addr,
455 uint64_t *phys_addr)
458 * Carefully look at the NIP to determine
459 * the instruction to analyse. Reading the NIP
460 * in real-mode is tricky and can lead to recursive
461 * faults
463 int instr;
464 unsigned long pfn, instr_addr;
465 struct instruction_op op;
466 struct pt_regs tmp = *regs;
468 pfn = addr_to_pfn(regs, regs->nip);
469 if (pfn != ULONG_MAX) {
470 instr_addr = (pfn << PAGE_SHIFT) + (regs->nip & ~PAGE_MASK);
471 instr = *(unsigned int *)(instr_addr);
472 if (!analyse_instr(&op, &tmp, instr)) {
473 pfn = addr_to_pfn(regs, op.ea);
474 *addr = op.ea;
475 *phys_addr = (pfn << PAGE_SHIFT);
476 return 0;
479 * analyse_instr() might fail if the instruction
480 * is not a load/store, although this is unexpected
481 * for load/store errors or if we got the NIP
482 * wrong
485 *addr = 0;
486 return -1;
489 static int mce_handle_ierror(struct pt_regs *regs,
490 const struct mce_ierror_table table[],
491 struct mce_error_info *mce_err, uint64_t *addr,
492 uint64_t *phys_addr)
494 uint64_t srr1 = regs->msr;
495 int handled = 0;
496 int i;
498 *addr = 0;
500 for (i = 0; table[i].srr1_mask; i++) {
501 if ((srr1 & table[i].srr1_mask) != table[i].srr1_value)
502 continue;
504 /* attempt to correct the error */
505 switch (table[i].error_type) {
506 case MCE_ERROR_TYPE_SLB:
507 handled = mce_flush(MCE_FLUSH_SLB);
508 break;
509 case MCE_ERROR_TYPE_ERAT:
510 handled = mce_flush(MCE_FLUSH_ERAT);
511 break;
512 case MCE_ERROR_TYPE_TLB:
513 handled = mce_flush(MCE_FLUSH_TLB);
514 break;
517 /* now fill in mce_error_info */
518 mce_err->error_type = table[i].error_type;
519 switch (table[i].error_type) {
520 case MCE_ERROR_TYPE_UE:
521 mce_err->u.ue_error_type = table[i].error_subtype;
522 break;
523 case MCE_ERROR_TYPE_SLB:
524 mce_err->u.slb_error_type = table[i].error_subtype;
525 break;
526 case MCE_ERROR_TYPE_ERAT:
527 mce_err->u.erat_error_type = table[i].error_subtype;
528 break;
529 case MCE_ERROR_TYPE_TLB:
530 mce_err->u.tlb_error_type = table[i].error_subtype;
531 break;
532 case MCE_ERROR_TYPE_USER:
533 mce_err->u.user_error_type = table[i].error_subtype;
534 break;
535 case MCE_ERROR_TYPE_RA:
536 mce_err->u.ra_error_type = table[i].error_subtype;
537 break;
538 case MCE_ERROR_TYPE_LINK:
539 mce_err->u.link_error_type = table[i].error_subtype;
540 break;
542 mce_err->severity = table[i].severity;
543 mce_err->initiator = table[i].initiator;
544 if (table[i].nip_valid) {
545 *addr = regs->nip;
546 if (mce_err->severity == MCE_SEV_ERROR_SYNC &&
547 table[i].error_type == MCE_ERROR_TYPE_UE) {
548 unsigned long pfn;
550 if (get_paca()->in_mce < MAX_MCE_DEPTH) {
551 pfn = addr_to_pfn(regs, regs->nip);
552 if (pfn != ULONG_MAX) {
553 *phys_addr =
554 (pfn << PAGE_SHIFT);
555 handled = 1;
560 return handled;
563 mce_err->error_type = MCE_ERROR_TYPE_UNKNOWN;
564 mce_err->severity = MCE_SEV_ERROR_SYNC;
565 mce_err->initiator = MCE_INITIATOR_CPU;
567 return 0;
570 static int mce_handle_derror(struct pt_regs *regs,
571 const struct mce_derror_table table[],
572 struct mce_error_info *mce_err, uint64_t *addr,
573 uint64_t *phys_addr)
575 uint64_t dsisr = regs->dsisr;
576 int handled = 0;
577 int found = 0;
578 int i;
580 *addr = 0;
582 for (i = 0; table[i].dsisr_value; i++) {
583 if (!(dsisr & table[i].dsisr_value))
584 continue;
586 /* attempt to correct the error */
587 switch (table[i].error_type) {
588 case MCE_ERROR_TYPE_SLB:
589 if (mce_flush(MCE_FLUSH_SLB))
590 handled = 1;
591 break;
592 case MCE_ERROR_TYPE_ERAT:
593 if (mce_flush(MCE_FLUSH_ERAT))
594 handled = 1;
595 break;
596 case MCE_ERROR_TYPE_TLB:
597 if (mce_flush(MCE_FLUSH_TLB))
598 handled = 1;
599 break;
603 * Attempt to handle multiple conditions, but only return
604 * one. Ensure uncorrectable errors are first in the table
605 * to match.
607 if (found)
608 continue;
610 /* now fill in mce_error_info */
611 mce_err->error_type = table[i].error_type;
612 switch (table[i].error_type) {
613 case MCE_ERROR_TYPE_UE:
614 mce_err->u.ue_error_type = table[i].error_subtype;
615 break;
616 case MCE_ERROR_TYPE_SLB:
617 mce_err->u.slb_error_type = table[i].error_subtype;
618 break;
619 case MCE_ERROR_TYPE_ERAT:
620 mce_err->u.erat_error_type = table[i].error_subtype;
621 break;
622 case MCE_ERROR_TYPE_TLB:
623 mce_err->u.tlb_error_type = table[i].error_subtype;
624 break;
625 case MCE_ERROR_TYPE_USER:
626 mce_err->u.user_error_type = table[i].error_subtype;
627 break;
628 case MCE_ERROR_TYPE_RA:
629 mce_err->u.ra_error_type = table[i].error_subtype;
630 break;
631 case MCE_ERROR_TYPE_LINK:
632 mce_err->u.link_error_type = table[i].error_subtype;
633 break;
635 mce_err->severity = table[i].severity;
636 mce_err->initiator = table[i].initiator;
637 if (table[i].dar_valid)
638 *addr = regs->dar;
639 else if (mce_err->severity == MCE_SEV_ERROR_SYNC &&
640 table[i].error_type == MCE_ERROR_TYPE_UE) {
642 * We do a maximum of 4 nested MCE calls, see
643 * kernel/exception-64s.h
645 if (get_paca()->in_mce < MAX_MCE_DEPTH)
646 if (!mce_find_instr_ea_and_pfn(regs, addr,
647 phys_addr))
648 handled = 1;
650 found = 1;
653 if (found)
654 return handled;
656 mce_err->error_type = MCE_ERROR_TYPE_UNKNOWN;
657 mce_err->severity = MCE_SEV_ERROR_SYNC;
658 mce_err->initiator = MCE_INITIATOR_CPU;
660 return 0;
663 static long mce_handle_ue_error(struct pt_regs *regs)
665 long handled = 0;
668 * On specific SCOM read via MMIO we may get a machine check
669 * exception with SRR0 pointing inside opal. If that is the
670 * case OPAL may have recovery address to re-read SCOM data in
671 * different way and hence we can recover from this MC.
674 if (ppc_md.mce_check_early_recovery) {
675 if (ppc_md.mce_check_early_recovery(regs))
676 handled = 1;
678 return handled;
681 static long mce_handle_error(struct pt_regs *regs,
682 const struct mce_derror_table dtable[],
683 const struct mce_ierror_table itable[])
685 struct mce_error_info mce_err = { 0 };
686 uint64_t addr, phys_addr;
687 uint64_t srr1 = regs->msr;
688 long handled;
690 if (SRR1_MC_LOADSTORE(srr1))
691 handled = mce_handle_derror(regs, dtable, &mce_err, &addr,
692 &phys_addr);
693 else
694 handled = mce_handle_ierror(regs, itable, &mce_err, &addr,
695 &phys_addr);
697 if (!handled && mce_err.error_type == MCE_ERROR_TYPE_UE)
698 handled = mce_handle_ue_error(regs);
700 save_mce_event(regs, handled, &mce_err, regs->nip, addr, phys_addr);
702 return handled;
705 long __machine_check_early_realmode_p7(struct pt_regs *regs)
707 /* P7 DD1 leaves top bits of DSISR undefined */
708 regs->dsisr &= 0x0000ffff;
710 return mce_handle_error(regs, mce_p7_derror_table, mce_p7_ierror_table);
713 long __machine_check_early_realmode_p8(struct pt_regs *regs)
715 return mce_handle_error(regs, mce_p8_derror_table, mce_p8_ierror_table);
718 long __machine_check_early_realmode_p9(struct pt_regs *regs)
721 * On POWER9 DD2.1 and below, it's possible to get a machine check
722 * caused by a paste instruction where only DSISR bit 25 is set. This
723 * will result in the MCE handler seeing an unknown event and the kernel
724 * crashing. An MCE that occurs like this is spurious, so we don't need
725 * to do anything in terms of servicing it. If there is something that
726 * needs to be serviced, the CPU will raise the MCE again with the
727 * correct DSISR so that it can be serviced properly. So detect this
728 * case and mark it as handled.
730 if (SRR1_MC_LOADSTORE(regs->msr) && regs->dsisr == 0x02000000)
731 return 1;
733 return mce_handle_error(regs, mce_p9_derror_table, mce_p9_ierror_table);