signal/powerpc: Remove unnecessary signal_code parameter of do_send_trap
[cris-mirror.git] / arch / powerpc / kernel / traps.c
blobc93f1e6a9fff9359749a429aca067a59b4edc5c8
1 /*
2 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
3 * Copyright 2007-2010 Freescale Semiconductor, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
10 * Modified by Cort Dougan (cort@cs.nmt.edu)
11 * and Paul Mackerras (paulus@samba.org)
15 * This file handles the architecture-dependent parts of hardware exceptions
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/stddef.h>
24 #include <linux/unistd.h>
25 #include <linux/ptrace.h>
26 #include <linux/user.h>
27 #include <linux/interrupt.h>
28 #include <linux/init.h>
29 #include <linux/extable.h>
30 #include <linux/module.h> /* print_modules */
31 #include <linux/prctl.h>
32 #include <linux/delay.h>
33 #include <linux/kprobes.h>
34 #include <linux/kexec.h>
35 #include <linux/backlight.h>
36 #include <linux/bug.h>
37 #include <linux/kdebug.h>
38 #include <linux/ratelimit.h>
39 #include <linux/context_tracking.h>
40 #include <linux/smp.h>
42 #include <asm/emulated_ops.h>
43 #include <asm/pgtable.h>
44 #include <linux/uaccess.h>
45 #include <asm/debugfs.h>
46 #include <asm/io.h>
47 #include <asm/machdep.h>
48 #include <asm/rtas.h>
49 #include <asm/pmc.h>
50 #include <asm/reg.h>
51 #ifdef CONFIG_PMAC_BACKLIGHT
52 #include <asm/backlight.h>
53 #endif
54 #ifdef CONFIG_PPC64
55 #include <asm/firmware.h>
56 #include <asm/processor.h>
57 #include <asm/tm.h>
58 #endif
59 #include <asm/kexec.h>
60 #include <asm/ppc-opcode.h>
61 #include <asm/rio.h>
62 #include <asm/fadump.h>
63 #include <asm/switch_to.h>
64 #include <asm/tm.h>
65 #include <asm/debug.h>
66 #include <asm/asm-prototypes.h>
67 #include <asm/hmi.h>
68 #include <sysdev/fsl_pci.h>
69 #include <asm/kprobes.h>
71 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
72 int (*__debugger)(struct pt_regs *regs) __read_mostly;
73 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
74 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
75 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
76 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
77 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
78 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
80 EXPORT_SYMBOL(__debugger);
81 EXPORT_SYMBOL(__debugger_ipi);
82 EXPORT_SYMBOL(__debugger_bpt);
83 EXPORT_SYMBOL(__debugger_sstep);
84 EXPORT_SYMBOL(__debugger_iabr_match);
85 EXPORT_SYMBOL(__debugger_break_match);
86 EXPORT_SYMBOL(__debugger_fault_handler);
87 #endif
89 /* Transactional Memory trap debug */
90 #ifdef TM_DEBUG_SW
91 #define TM_DEBUG(x...) printk(KERN_INFO x)
92 #else
93 #define TM_DEBUG(x...) do { } while(0)
94 #endif
97 * Trap & Exception support
100 #ifdef CONFIG_PMAC_BACKLIGHT
101 static void pmac_backlight_unblank(void)
103 mutex_lock(&pmac_backlight_mutex);
104 if (pmac_backlight) {
105 struct backlight_properties *props;
107 props = &pmac_backlight->props;
108 props->brightness = props->max_brightness;
109 props->power = FB_BLANK_UNBLANK;
110 backlight_update_status(pmac_backlight);
112 mutex_unlock(&pmac_backlight_mutex);
114 #else
115 static inline void pmac_backlight_unblank(void) { }
116 #endif
119 * If oops/die is expected to crash the machine, return true here.
121 * This should not be expected to be 100% accurate, there may be
122 * notifiers registered or other unexpected conditions that may bring
123 * down the kernel. Or if the current process in the kernel is holding
124 * locks or has other critical state, the kernel may become effectively
125 * unusable anyway.
127 bool die_will_crash(void)
129 if (should_fadump_crash())
130 return true;
131 if (kexec_should_crash(current))
132 return true;
133 if (in_interrupt() || panic_on_oops ||
134 !current->pid || is_global_init(current))
135 return true;
137 return false;
140 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
141 static int die_owner = -1;
142 static unsigned int die_nest_count;
143 static int die_counter;
145 static unsigned long oops_begin(struct pt_regs *regs)
147 int cpu;
148 unsigned long flags;
150 oops_enter();
152 /* racy, but better than risking deadlock. */
153 raw_local_irq_save(flags);
154 cpu = smp_processor_id();
155 if (!arch_spin_trylock(&die_lock)) {
156 if (cpu == die_owner)
157 /* nested oops. should stop eventually */;
158 else
159 arch_spin_lock(&die_lock);
161 die_nest_count++;
162 die_owner = cpu;
163 console_verbose();
164 bust_spinlocks(1);
165 if (machine_is(powermac))
166 pmac_backlight_unblank();
167 return flags;
169 NOKPROBE_SYMBOL(oops_begin);
171 static void oops_end(unsigned long flags, struct pt_regs *regs,
172 int signr)
174 bust_spinlocks(0);
175 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
176 die_nest_count--;
177 oops_exit();
178 printk("\n");
179 if (!die_nest_count) {
180 /* Nest count reaches zero, release the lock. */
181 die_owner = -1;
182 arch_spin_unlock(&die_lock);
184 raw_local_irq_restore(flags);
186 crash_fadump(regs, "die oops");
188 if (kexec_should_crash(current))
189 crash_kexec(regs);
191 if (!signr)
192 return;
195 * While our oops output is serialised by a spinlock, output
196 * from panic() called below can race and corrupt it. If we
197 * know we are going to panic, delay for 1 second so we have a
198 * chance to get clean backtraces from all CPUs that are oopsing.
200 if (in_interrupt() || panic_on_oops || !current->pid ||
201 is_global_init(current)) {
202 mdelay(MSEC_PER_SEC);
205 if (in_interrupt())
206 panic("Fatal exception in interrupt");
207 if (panic_on_oops)
208 panic("Fatal exception");
209 do_exit(signr);
211 NOKPROBE_SYMBOL(oops_end);
213 static int __die(const char *str, struct pt_regs *regs, long err)
215 printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
217 if (IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN))
218 printk("LE ");
219 else
220 printk("BE ");
222 if (IS_ENABLED(CONFIG_PREEMPT))
223 pr_cont("PREEMPT ");
225 if (IS_ENABLED(CONFIG_SMP))
226 pr_cont("SMP NR_CPUS=%d ", NR_CPUS);
228 if (debug_pagealloc_enabled())
229 pr_cont("DEBUG_PAGEALLOC ");
231 if (IS_ENABLED(CONFIG_NUMA))
232 pr_cont("NUMA ");
234 pr_cont("%s\n", ppc_md.name ? ppc_md.name : "");
236 if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
237 return 1;
239 print_modules();
240 show_regs(regs);
242 return 0;
244 NOKPROBE_SYMBOL(__die);
246 void die(const char *str, struct pt_regs *regs, long err)
248 unsigned long flags;
250 if (debugger(regs))
251 return;
253 flags = oops_begin(regs);
254 if (__die(str, regs, err))
255 err = 0;
256 oops_end(flags, regs, err);
258 NOKPROBE_SYMBOL(die);
260 void user_single_step_siginfo(struct task_struct *tsk,
261 struct pt_regs *regs, siginfo_t *info)
263 memset(info, 0, sizeof(*info));
264 info->si_signo = SIGTRAP;
265 info->si_code = TRAP_TRACE;
266 info->si_addr = (void __user *)regs->nip;
269 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
271 siginfo_t info;
272 const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
273 "at %08lx nip %08lx lr %08lx code %x\n";
274 const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
275 "at %016lx nip %016lx lr %016lx code %x\n";
277 if (!user_mode(regs)) {
278 die("Exception in kernel mode", regs, signr);
279 return;
282 if (show_unhandled_signals && unhandled_signal(current, signr)) {
283 printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
284 current->comm, current->pid, signr,
285 addr, regs->nip, regs->link, code);
288 if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
289 local_irq_enable();
291 current->thread.trap_nr = code;
292 memset(&info, 0, sizeof(info));
293 info.si_signo = signr;
294 info.si_code = code;
295 info.si_addr = (void __user *) addr;
296 force_sig_info(signr, &info, current);
299 void system_reset_exception(struct pt_regs *regs)
302 * Avoid crashes in case of nested NMI exceptions. Recoverability
303 * is determined by RI and in_nmi
305 bool nested = in_nmi();
306 if (!nested)
307 nmi_enter();
309 __this_cpu_inc(irq_stat.sreset_irqs);
311 /* See if any machine dependent calls */
312 if (ppc_md.system_reset_exception) {
313 if (ppc_md.system_reset_exception(regs))
314 goto out;
317 if (debugger(regs))
318 goto out;
321 * A system reset is a request to dump, so we always send
322 * it through the crashdump code (if fadump or kdump are
323 * registered).
325 crash_fadump(regs, "System Reset");
327 crash_kexec(regs);
330 * We aren't the primary crash CPU. We need to send it
331 * to a holding pattern to avoid it ending up in the panic
332 * code.
334 crash_kexec_secondary(regs);
337 * No debugger or crash dump registered, print logs then
338 * panic.
340 __die("System Reset", regs, SIGABRT);
342 mdelay(2*MSEC_PER_SEC); /* Wait a little while for others to print */
343 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
344 nmi_panic(regs, "System Reset");
346 out:
347 #ifdef CONFIG_PPC_BOOK3S_64
348 BUG_ON(get_paca()->in_nmi == 0);
349 if (get_paca()->in_nmi > 1)
350 nmi_panic(regs, "Unrecoverable nested System Reset");
351 #endif
352 /* Must die if the interrupt is not recoverable */
353 if (!(regs->msr & MSR_RI))
354 nmi_panic(regs, "Unrecoverable System Reset");
356 if (!nested)
357 nmi_exit();
359 /* What should we do here? We could issue a shutdown or hard reset. */
363 * I/O accesses can cause machine checks on powermacs.
364 * Check if the NIP corresponds to the address of a sync
365 * instruction for which there is an entry in the exception
366 * table.
367 * Note that the 601 only takes a machine check on TEA
368 * (transfer error ack) signal assertion, and does not
369 * set any of the top 16 bits of SRR1.
370 * -- paulus.
372 static inline int check_io_access(struct pt_regs *regs)
374 #ifdef CONFIG_PPC32
375 unsigned long msr = regs->msr;
376 const struct exception_table_entry *entry;
377 unsigned int *nip = (unsigned int *)regs->nip;
379 if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
380 && (entry = search_exception_tables(regs->nip)) != NULL) {
382 * Check that it's a sync instruction, or somewhere
383 * in the twi; isync; nop sequence that inb/inw/inl uses.
384 * As the address is in the exception table
385 * we should be able to read the instr there.
386 * For the debug message, we look at the preceding
387 * load or store.
389 if (*nip == PPC_INST_NOP)
390 nip -= 2;
391 else if (*nip == PPC_INST_ISYNC)
392 --nip;
393 if (*nip == PPC_INST_SYNC || (*nip >> 26) == OP_TRAP) {
394 unsigned int rb;
396 --nip;
397 rb = (*nip >> 11) & 0x1f;
398 printk(KERN_DEBUG "%s bad port %lx at %p\n",
399 (*nip & 0x100)? "OUT to": "IN from",
400 regs->gpr[rb] - _IO_BASE, nip);
401 regs->msr |= MSR_RI;
402 regs->nip = extable_fixup(entry);
403 return 1;
406 #endif /* CONFIG_PPC32 */
407 return 0;
410 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
411 /* On 4xx, the reason for the machine check or program exception
412 is in the ESR. */
413 #define get_reason(regs) ((regs)->dsisr)
414 #define REASON_FP ESR_FP
415 #define REASON_ILLEGAL (ESR_PIL | ESR_PUO)
416 #define REASON_PRIVILEGED ESR_PPR
417 #define REASON_TRAP ESR_PTR
419 /* single-step stuff */
420 #define single_stepping(regs) (current->thread.debug.dbcr0 & DBCR0_IC)
421 #define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC)
423 #else
424 /* On non-4xx, the reason for the machine check or program
425 exception is in the MSR. */
426 #define get_reason(regs) ((regs)->msr)
427 #define REASON_TM SRR1_PROGTM
428 #define REASON_FP SRR1_PROGFPE
429 #define REASON_ILLEGAL SRR1_PROGILL
430 #define REASON_PRIVILEGED SRR1_PROGPRIV
431 #define REASON_TRAP SRR1_PROGTRAP
433 #define single_stepping(regs) ((regs)->msr & MSR_SE)
434 #define clear_single_step(regs) ((regs)->msr &= ~MSR_SE)
435 #endif
437 #if defined(CONFIG_E500)
438 int machine_check_e500mc(struct pt_regs *regs)
440 unsigned long mcsr = mfspr(SPRN_MCSR);
441 unsigned long pvr = mfspr(SPRN_PVR);
442 unsigned long reason = mcsr;
443 int recoverable = 1;
445 if (reason & MCSR_LD) {
446 recoverable = fsl_rio_mcheck_exception(regs);
447 if (recoverable == 1)
448 goto silent_out;
451 printk("Machine check in kernel mode.\n");
452 printk("Caused by (from MCSR=%lx): ", reason);
454 if (reason & MCSR_MCP)
455 printk("Machine Check Signal\n");
457 if (reason & MCSR_ICPERR) {
458 printk("Instruction Cache Parity Error\n");
461 * This is recoverable by invalidating the i-cache.
463 mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
464 while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
468 * This will generally be accompanied by an instruction
469 * fetch error report -- only treat MCSR_IF as fatal
470 * if it wasn't due to an L1 parity error.
472 reason &= ~MCSR_IF;
475 if (reason & MCSR_DCPERR_MC) {
476 printk("Data Cache Parity Error\n");
479 * In write shadow mode we auto-recover from the error, but it
480 * may still get logged and cause a machine check. We should
481 * only treat the non-write shadow case as non-recoverable.
483 /* On e6500 core, L1 DCWS (Data cache write shadow mode) bit
484 * is not implemented but L1 data cache always runs in write
485 * shadow mode. Hence on data cache parity errors HW will
486 * automatically invalidate the L1 Data Cache.
488 if (PVR_VER(pvr) != PVR_VER_E6500) {
489 if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
490 recoverable = 0;
494 if (reason & MCSR_L2MMU_MHIT) {
495 printk("Hit on multiple TLB entries\n");
496 recoverable = 0;
499 if (reason & MCSR_NMI)
500 printk("Non-maskable interrupt\n");
502 if (reason & MCSR_IF) {
503 printk("Instruction Fetch Error Report\n");
504 recoverable = 0;
507 if (reason & MCSR_LD) {
508 printk("Load Error Report\n");
509 recoverable = 0;
512 if (reason & MCSR_ST) {
513 printk("Store Error Report\n");
514 recoverable = 0;
517 if (reason & MCSR_LDG) {
518 printk("Guarded Load Error Report\n");
519 recoverable = 0;
522 if (reason & MCSR_TLBSYNC)
523 printk("Simultaneous tlbsync operations\n");
525 if (reason & MCSR_BSL2_ERR) {
526 printk("Level 2 Cache Error\n");
527 recoverable = 0;
530 if (reason & MCSR_MAV) {
531 u64 addr;
533 addr = mfspr(SPRN_MCAR);
534 addr |= (u64)mfspr(SPRN_MCARU) << 32;
536 printk("Machine Check %s Address: %#llx\n",
537 reason & MCSR_MEA ? "Effective" : "Physical", addr);
540 silent_out:
541 mtspr(SPRN_MCSR, mcsr);
542 return mfspr(SPRN_MCSR) == 0 && recoverable;
545 int machine_check_e500(struct pt_regs *regs)
547 unsigned long reason = mfspr(SPRN_MCSR);
549 if (reason & MCSR_BUS_RBERR) {
550 if (fsl_rio_mcheck_exception(regs))
551 return 1;
552 if (fsl_pci_mcheck_exception(regs))
553 return 1;
556 printk("Machine check in kernel mode.\n");
557 printk("Caused by (from MCSR=%lx): ", reason);
559 if (reason & MCSR_MCP)
560 printk("Machine Check Signal\n");
561 if (reason & MCSR_ICPERR)
562 printk("Instruction Cache Parity Error\n");
563 if (reason & MCSR_DCP_PERR)
564 printk("Data Cache Push Parity Error\n");
565 if (reason & MCSR_DCPERR)
566 printk("Data Cache Parity Error\n");
567 if (reason & MCSR_BUS_IAERR)
568 printk("Bus - Instruction Address Error\n");
569 if (reason & MCSR_BUS_RAERR)
570 printk("Bus - Read Address Error\n");
571 if (reason & MCSR_BUS_WAERR)
572 printk("Bus - Write Address Error\n");
573 if (reason & MCSR_BUS_IBERR)
574 printk("Bus - Instruction Data Error\n");
575 if (reason & MCSR_BUS_RBERR)
576 printk("Bus - Read Data Bus Error\n");
577 if (reason & MCSR_BUS_WBERR)
578 printk("Bus - Write Data Bus Error\n");
579 if (reason & MCSR_BUS_IPERR)
580 printk("Bus - Instruction Parity Error\n");
581 if (reason & MCSR_BUS_RPERR)
582 printk("Bus - Read Parity Error\n");
584 return 0;
587 int machine_check_generic(struct pt_regs *regs)
589 return 0;
591 #elif defined(CONFIG_E200)
592 int machine_check_e200(struct pt_regs *regs)
594 unsigned long reason = mfspr(SPRN_MCSR);
596 printk("Machine check in kernel mode.\n");
597 printk("Caused by (from MCSR=%lx): ", reason);
599 if (reason & MCSR_MCP)
600 printk("Machine Check Signal\n");
601 if (reason & MCSR_CP_PERR)
602 printk("Cache Push Parity Error\n");
603 if (reason & MCSR_CPERR)
604 printk("Cache Parity Error\n");
605 if (reason & MCSR_EXCP_ERR)
606 printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
607 if (reason & MCSR_BUS_IRERR)
608 printk("Bus - Read Bus Error on instruction fetch\n");
609 if (reason & MCSR_BUS_DRERR)
610 printk("Bus - Read Bus Error on data load\n");
611 if (reason & MCSR_BUS_WRERR)
612 printk("Bus - Write Bus Error on buffered store or cache line push\n");
614 return 0;
616 #elif defined(CONFIG_PPC32)
617 int machine_check_generic(struct pt_regs *regs)
619 unsigned long reason = regs->msr;
621 printk("Machine check in kernel mode.\n");
622 printk("Caused by (from SRR1=%lx): ", reason);
623 switch (reason & 0x601F0000) {
624 case 0x80000:
625 printk("Machine check signal\n");
626 break;
627 case 0: /* for 601 */
628 case 0x40000:
629 case 0x140000: /* 7450 MSS error and TEA */
630 printk("Transfer error ack signal\n");
631 break;
632 case 0x20000:
633 printk("Data parity error signal\n");
634 break;
635 case 0x10000:
636 printk("Address parity error signal\n");
637 break;
638 case 0x20000000:
639 printk("L1 Data Cache error\n");
640 break;
641 case 0x40000000:
642 printk("L1 Instruction Cache error\n");
643 break;
644 case 0x00100000:
645 printk("L2 data cache parity error\n");
646 break;
647 default:
648 printk("Unknown values in msr\n");
650 return 0;
652 #endif /* everything else */
654 void machine_check_exception(struct pt_regs *regs)
656 int recover = 0;
657 bool nested = in_nmi();
658 if (!nested)
659 nmi_enter();
661 /* 64s accounts the mce in machine_check_early when in HVMODE */
662 if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64) || !cpu_has_feature(CPU_FTR_HVMODE))
663 __this_cpu_inc(irq_stat.mce_exceptions);
665 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
667 /* See if any machine dependent calls. In theory, we would want
668 * to call the CPU first, and call the ppc_md. one if the CPU
669 * one returns a positive number. However there is existing code
670 * that assumes the board gets a first chance, so let's keep it
671 * that way for now and fix things later. --BenH.
673 if (ppc_md.machine_check_exception)
674 recover = ppc_md.machine_check_exception(regs);
675 else if (cur_cpu_spec->machine_check)
676 recover = cur_cpu_spec->machine_check(regs);
678 if (recover > 0)
679 goto bail;
681 if (debugger_fault_handler(regs))
682 goto bail;
684 if (check_io_access(regs))
685 goto bail;
687 die("Machine check", regs, SIGBUS);
689 /* Must die if the interrupt is not recoverable */
690 if (!(regs->msr & MSR_RI))
691 nmi_panic(regs, "Unrecoverable Machine check");
693 bail:
694 if (!nested)
695 nmi_exit();
698 void SMIException(struct pt_regs *regs)
700 die("System Management Interrupt", regs, SIGABRT);
703 #ifdef CONFIG_VSX
704 static void p9_hmi_special_emu(struct pt_regs *regs)
706 unsigned int ra, rb, t, i, sel, instr, rc;
707 const void __user *addr;
708 u8 vbuf[16], *vdst;
709 unsigned long ea, msr, msr_mask;
710 bool swap;
712 if (__get_user_inatomic(instr, (unsigned int __user *)regs->nip))
713 return;
716 * lxvb16x opcode: 0x7c0006d8
717 * lxvd2x opcode: 0x7c000698
718 * lxvh8x opcode: 0x7c000658
719 * lxvw4x opcode: 0x7c000618
721 if ((instr & 0xfc00073e) != 0x7c000618) {
722 pr_devel("HMI vec emu: not vector CI %i:%s[%d] nip=%016lx"
723 " instr=%08x\n",
724 smp_processor_id(), current->comm, current->pid,
725 regs->nip, instr);
726 return;
729 /* Grab vector registers into the task struct */
730 msr = regs->msr; /* Grab msr before we flush the bits */
731 flush_vsx_to_thread(current);
732 enable_kernel_altivec();
735 * Is userspace running with a different endian (this is rare but
736 * not impossible)
738 swap = (msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
740 /* Decode the instruction */
741 ra = (instr >> 16) & 0x1f;
742 rb = (instr >> 11) & 0x1f;
743 t = (instr >> 21) & 0x1f;
744 if (instr & 1)
745 vdst = (u8 *)&current->thread.vr_state.vr[t];
746 else
747 vdst = (u8 *)&current->thread.fp_state.fpr[t][0];
749 /* Grab the vector address */
750 ea = regs->gpr[rb] + (ra ? regs->gpr[ra] : 0);
751 if (is_32bit_task())
752 ea &= 0xfffffffful;
753 addr = (__force const void __user *)ea;
755 /* Check it */
756 if (!access_ok(VERIFY_READ, addr, 16)) {
757 pr_devel("HMI vec emu: bad access %i:%s[%d] nip=%016lx"
758 " instr=%08x addr=%016lx\n",
759 smp_processor_id(), current->comm, current->pid,
760 regs->nip, instr, (unsigned long)addr);
761 return;
764 /* Read the vector */
765 rc = 0;
766 if ((unsigned long)addr & 0xfUL)
767 /* unaligned case */
768 rc = __copy_from_user_inatomic(vbuf, addr, 16);
769 else
770 __get_user_atomic_128_aligned(vbuf, addr, rc);
771 if (rc) {
772 pr_devel("HMI vec emu: page fault %i:%s[%d] nip=%016lx"
773 " instr=%08x addr=%016lx\n",
774 smp_processor_id(), current->comm, current->pid,
775 regs->nip, instr, (unsigned long)addr);
776 return;
779 pr_devel("HMI vec emu: emulated vector CI %i:%s[%d] nip=%016lx"
780 " instr=%08x addr=%016lx\n",
781 smp_processor_id(), current->comm, current->pid, regs->nip,
782 instr, (unsigned long) addr);
784 /* Grab instruction "selector" */
785 sel = (instr >> 6) & 3;
788 * Check to make sure the facility is actually enabled. This
789 * could happen if we get a false positive hit.
791 * lxvd2x/lxvw4x always check MSR VSX sel = 0,2
792 * lxvh8x/lxvb16x check MSR VSX or VEC depending on VSR used sel = 1,3
794 msr_mask = MSR_VSX;
795 if ((sel & 1) && (instr & 1)) /* lxvh8x & lxvb16x + VSR >= 32 */
796 msr_mask = MSR_VEC;
797 if (!(msr & msr_mask)) {
798 pr_devel("HMI vec emu: MSR fac clear %i:%s[%d] nip=%016lx"
799 " instr=%08x msr:%016lx\n",
800 smp_processor_id(), current->comm, current->pid,
801 regs->nip, instr, msr);
802 return;
805 /* Do logging here before we modify sel based on endian */
806 switch (sel) {
807 case 0: /* lxvw4x */
808 PPC_WARN_EMULATED(lxvw4x, regs);
809 break;
810 case 1: /* lxvh8x */
811 PPC_WARN_EMULATED(lxvh8x, regs);
812 break;
813 case 2: /* lxvd2x */
814 PPC_WARN_EMULATED(lxvd2x, regs);
815 break;
816 case 3: /* lxvb16x */
817 PPC_WARN_EMULATED(lxvb16x, regs);
818 break;
821 #ifdef __LITTLE_ENDIAN__
823 * An LE kernel stores the vector in the task struct as an LE
824 * byte array (effectively swapping both the components and
825 * the content of the components). Those instructions expect
826 * the components to remain in ascending address order, so we
827 * swap them back.
829 * If we are running a BE user space, the expectation is that
830 * of a simple memcpy, so forcing the emulation to look like
831 * a lxvb16x should do the trick.
833 if (swap)
834 sel = 3;
836 switch (sel) {
837 case 0: /* lxvw4x */
838 for (i = 0; i < 4; i++)
839 ((u32 *)vdst)[i] = ((u32 *)vbuf)[3-i];
840 break;
841 case 1: /* lxvh8x */
842 for (i = 0; i < 8; i++)
843 ((u16 *)vdst)[i] = ((u16 *)vbuf)[7-i];
844 break;
845 case 2: /* lxvd2x */
846 for (i = 0; i < 2; i++)
847 ((u64 *)vdst)[i] = ((u64 *)vbuf)[1-i];
848 break;
849 case 3: /* lxvb16x */
850 for (i = 0; i < 16; i++)
851 vdst[i] = vbuf[15-i];
852 break;
854 #else /* __LITTLE_ENDIAN__ */
855 /* On a big endian kernel, a BE userspace only needs a memcpy */
856 if (!swap)
857 sel = 3;
859 /* Otherwise, we need to swap the content of the components */
860 switch (sel) {
861 case 0: /* lxvw4x */
862 for (i = 0; i < 4; i++)
863 ((u32 *)vdst)[i] = cpu_to_le32(((u32 *)vbuf)[i]);
864 break;
865 case 1: /* lxvh8x */
866 for (i = 0; i < 8; i++)
867 ((u16 *)vdst)[i] = cpu_to_le16(((u16 *)vbuf)[i]);
868 break;
869 case 2: /* lxvd2x */
870 for (i = 0; i < 2; i++)
871 ((u64 *)vdst)[i] = cpu_to_le64(((u64 *)vbuf)[i]);
872 break;
873 case 3: /* lxvb16x */
874 memcpy(vdst, vbuf, 16);
875 break;
877 #endif /* !__LITTLE_ENDIAN__ */
879 /* Go to next instruction */
880 regs->nip += 4;
882 #endif /* CONFIG_VSX */
884 void handle_hmi_exception(struct pt_regs *regs)
886 struct pt_regs *old_regs;
888 old_regs = set_irq_regs(regs);
889 irq_enter();
891 #ifdef CONFIG_VSX
892 /* Real mode flagged P9 special emu is needed */
893 if (local_paca->hmi_p9_special_emu) {
894 local_paca->hmi_p9_special_emu = 0;
897 * We don't want to take page faults while doing the
898 * emulation, we just replay the instruction if necessary.
900 pagefault_disable();
901 p9_hmi_special_emu(regs);
902 pagefault_enable();
904 #endif /* CONFIG_VSX */
906 if (ppc_md.handle_hmi_exception)
907 ppc_md.handle_hmi_exception(regs);
909 irq_exit();
910 set_irq_regs(old_regs);
913 void unknown_exception(struct pt_regs *regs)
915 enum ctx_state prev_state = exception_enter();
917 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
918 regs->nip, regs->msr, regs->trap);
920 _exception(SIGTRAP, regs, TRAP_FIXME, 0);
922 exception_exit(prev_state);
925 void instruction_breakpoint_exception(struct pt_regs *regs)
927 enum ctx_state prev_state = exception_enter();
929 if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
930 5, SIGTRAP) == NOTIFY_STOP)
931 goto bail;
932 if (debugger_iabr_match(regs))
933 goto bail;
934 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
936 bail:
937 exception_exit(prev_state);
940 void RunModeException(struct pt_regs *regs)
942 _exception(SIGTRAP, regs, TRAP_FIXME, 0);
945 void single_step_exception(struct pt_regs *regs)
947 enum ctx_state prev_state = exception_enter();
949 clear_single_step(regs);
951 if (kprobe_post_handler(regs))
952 return;
954 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
955 5, SIGTRAP) == NOTIFY_STOP)
956 goto bail;
957 if (debugger_sstep(regs))
958 goto bail;
960 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
962 bail:
963 exception_exit(prev_state);
965 NOKPROBE_SYMBOL(single_step_exception);
968 * After we have successfully emulated an instruction, we have to
969 * check if the instruction was being single-stepped, and if so,
970 * pretend we got a single-step exception. This was pointed out
971 * by Kumar Gala. -- paulus
973 static void emulate_single_step(struct pt_regs *regs)
975 if (single_stepping(regs))
976 single_step_exception(regs);
979 static inline int __parse_fpscr(unsigned long fpscr)
981 int ret = FPE_FIXME;
983 /* Invalid operation */
984 if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
985 ret = FPE_FLTINV;
987 /* Overflow */
988 else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
989 ret = FPE_FLTOVF;
991 /* Underflow */
992 else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
993 ret = FPE_FLTUND;
995 /* Divide by zero */
996 else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
997 ret = FPE_FLTDIV;
999 /* Inexact result */
1000 else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
1001 ret = FPE_FLTRES;
1003 return ret;
1006 static void parse_fpe(struct pt_regs *regs)
1008 int code = 0;
1010 flush_fp_to_thread(current);
1012 code = __parse_fpscr(current->thread.fp_state.fpscr);
1014 _exception(SIGFPE, regs, code, regs->nip);
1018 * Illegal instruction emulation support. Originally written to
1019 * provide the PVR to user applications using the mfspr rd, PVR.
1020 * Return non-zero if we can't emulate, or -EFAULT if the associated
1021 * memory access caused an access fault. Return zero on success.
1023 * There are a couple of ways to do this, either "decode" the instruction
1024 * or directly match lots of bits. In this case, matching lots of
1025 * bits is faster and easier.
1028 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
1030 u8 rT = (instword >> 21) & 0x1f;
1031 u8 rA = (instword >> 16) & 0x1f;
1032 u8 NB_RB = (instword >> 11) & 0x1f;
1033 u32 num_bytes;
1034 unsigned long EA;
1035 int pos = 0;
1037 /* Early out if we are an invalid form of lswx */
1038 if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
1039 if ((rT == rA) || (rT == NB_RB))
1040 return -EINVAL;
1042 EA = (rA == 0) ? 0 : regs->gpr[rA];
1044 switch (instword & PPC_INST_STRING_MASK) {
1045 case PPC_INST_LSWX:
1046 case PPC_INST_STSWX:
1047 EA += NB_RB;
1048 num_bytes = regs->xer & 0x7f;
1049 break;
1050 case PPC_INST_LSWI:
1051 case PPC_INST_STSWI:
1052 num_bytes = (NB_RB == 0) ? 32 : NB_RB;
1053 break;
1054 default:
1055 return -EINVAL;
1058 while (num_bytes != 0)
1060 u8 val;
1061 u32 shift = 8 * (3 - (pos & 0x3));
1063 /* if process is 32-bit, clear upper 32 bits of EA */
1064 if ((regs->msr & MSR_64BIT) == 0)
1065 EA &= 0xFFFFFFFF;
1067 switch ((instword & PPC_INST_STRING_MASK)) {
1068 case PPC_INST_LSWX:
1069 case PPC_INST_LSWI:
1070 if (get_user(val, (u8 __user *)EA))
1071 return -EFAULT;
1072 /* first time updating this reg,
1073 * zero it out */
1074 if (pos == 0)
1075 regs->gpr[rT] = 0;
1076 regs->gpr[rT] |= val << shift;
1077 break;
1078 case PPC_INST_STSWI:
1079 case PPC_INST_STSWX:
1080 val = regs->gpr[rT] >> shift;
1081 if (put_user(val, (u8 __user *)EA))
1082 return -EFAULT;
1083 break;
1085 /* move EA to next address */
1086 EA += 1;
1087 num_bytes--;
1089 /* manage our position within the register */
1090 if (++pos == 4) {
1091 pos = 0;
1092 if (++rT == 32)
1093 rT = 0;
1097 return 0;
1100 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
1102 u32 ra,rs;
1103 unsigned long tmp;
1105 ra = (instword >> 16) & 0x1f;
1106 rs = (instword >> 21) & 0x1f;
1108 tmp = regs->gpr[rs];
1109 tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
1110 tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
1111 tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1112 regs->gpr[ra] = tmp;
1114 return 0;
1117 static int emulate_isel(struct pt_regs *regs, u32 instword)
1119 u8 rT = (instword >> 21) & 0x1f;
1120 u8 rA = (instword >> 16) & 0x1f;
1121 u8 rB = (instword >> 11) & 0x1f;
1122 u8 BC = (instword >> 6) & 0x1f;
1123 u8 bit;
1124 unsigned long tmp;
1126 tmp = (rA == 0) ? 0 : regs->gpr[rA];
1127 bit = (regs->ccr >> (31 - BC)) & 0x1;
1129 regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
1131 return 0;
1134 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1135 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
1137 /* If we're emulating a load/store in an active transaction, we cannot
1138 * emulate it as the kernel operates in transaction suspended context.
1139 * We need to abort the transaction. This creates a persistent TM
1140 * abort so tell the user what caused it with a new code.
1142 if (MSR_TM_TRANSACTIONAL(regs->msr)) {
1143 tm_enable();
1144 tm_abort(cause);
1145 return true;
1147 return false;
1149 #else
1150 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
1152 return false;
1154 #endif
1156 static int emulate_instruction(struct pt_regs *regs)
1158 u32 instword;
1159 u32 rd;
1161 if (!user_mode(regs))
1162 return -EINVAL;
1163 CHECK_FULL_REGS(regs);
1165 if (get_user(instword, (u32 __user *)(regs->nip)))
1166 return -EFAULT;
1168 /* Emulate the mfspr rD, PVR. */
1169 if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1170 PPC_WARN_EMULATED(mfpvr, regs);
1171 rd = (instword >> 21) & 0x1f;
1172 regs->gpr[rd] = mfspr(SPRN_PVR);
1173 return 0;
1176 /* Emulating the dcba insn is just a no-op. */
1177 if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1178 PPC_WARN_EMULATED(dcba, regs);
1179 return 0;
1182 /* Emulate the mcrxr insn. */
1183 if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1184 int shift = (instword >> 21) & 0x1c;
1185 unsigned long msk = 0xf0000000UL >> shift;
1187 PPC_WARN_EMULATED(mcrxr, regs);
1188 regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1189 regs->xer &= ~0xf0000000UL;
1190 return 0;
1193 /* Emulate load/store string insn. */
1194 if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1195 if (tm_abort_check(regs,
1196 TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1197 return -EINVAL;
1198 PPC_WARN_EMULATED(string, regs);
1199 return emulate_string_inst(regs, instword);
1202 /* Emulate the popcntb (Population Count Bytes) instruction. */
1203 if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1204 PPC_WARN_EMULATED(popcntb, regs);
1205 return emulate_popcntb_inst(regs, instword);
1208 /* Emulate isel (Integer Select) instruction */
1209 if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1210 PPC_WARN_EMULATED(isel, regs);
1211 return emulate_isel(regs, instword);
1214 /* Emulate sync instruction variants */
1215 if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1216 PPC_WARN_EMULATED(sync, regs);
1217 asm volatile("sync");
1218 return 0;
1221 #ifdef CONFIG_PPC64
1222 /* Emulate the mfspr rD, DSCR. */
1223 if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1224 PPC_INST_MFSPR_DSCR_USER) ||
1225 ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1226 PPC_INST_MFSPR_DSCR)) &&
1227 cpu_has_feature(CPU_FTR_DSCR)) {
1228 PPC_WARN_EMULATED(mfdscr, regs);
1229 rd = (instword >> 21) & 0x1f;
1230 regs->gpr[rd] = mfspr(SPRN_DSCR);
1231 return 0;
1233 /* Emulate the mtspr DSCR, rD. */
1234 if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1235 PPC_INST_MTSPR_DSCR_USER) ||
1236 ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1237 PPC_INST_MTSPR_DSCR)) &&
1238 cpu_has_feature(CPU_FTR_DSCR)) {
1239 PPC_WARN_EMULATED(mtdscr, regs);
1240 rd = (instword >> 21) & 0x1f;
1241 current->thread.dscr = regs->gpr[rd];
1242 current->thread.dscr_inherit = 1;
1243 mtspr(SPRN_DSCR, current->thread.dscr);
1244 return 0;
1246 #endif
1248 return -EINVAL;
1251 int is_valid_bugaddr(unsigned long addr)
1253 return is_kernel_addr(addr);
1256 #ifdef CONFIG_MATH_EMULATION
1257 static int emulate_math(struct pt_regs *regs)
1259 int ret;
1260 extern int do_mathemu(struct pt_regs *regs);
1262 ret = do_mathemu(regs);
1263 if (ret >= 0)
1264 PPC_WARN_EMULATED(math, regs);
1266 switch (ret) {
1267 case 0:
1268 emulate_single_step(regs);
1269 return 0;
1270 case 1: {
1271 int code = 0;
1272 code = __parse_fpscr(current->thread.fp_state.fpscr);
1273 _exception(SIGFPE, regs, code, regs->nip);
1274 return 0;
1276 case -EFAULT:
1277 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1278 return 0;
1281 return -1;
1283 #else
1284 static inline int emulate_math(struct pt_regs *regs) { return -1; }
1285 #endif
1287 void program_check_exception(struct pt_regs *regs)
1289 enum ctx_state prev_state = exception_enter();
1290 unsigned int reason = get_reason(regs);
1292 /* We can now get here via a FP Unavailable exception if the core
1293 * has no FPU, in that case the reason flags will be 0 */
1295 if (reason & REASON_FP) {
1296 /* IEEE FP exception */
1297 parse_fpe(regs);
1298 goto bail;
1300 if (reason & REASON_TRAP) {
1301 unsigned long bugaddr;
1302 /* Debugger is first in line to stop recursive faults in
1303 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1304 if (debugger_bpt(regs))
1305 goto bail;
1307 if (kprobe_handler(regs))
1308 goto bail;
1310 /* trap exception */
1311 if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1312 == NOTIFY_STOP)
1313 goto bail;
1315 bugaddr = regs->nip;
1317 * Fixup bugaddr for BUG_ON() in real mode
1319 if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
1320 bugaddr += PAGE_OFFSET;
1322 if (!(regs->msr & MSR_PR) && /* not user-mode */
1323 report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
1324 regs->nip += 4;
1325 goto bail;
1327 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1328 goto bail;
1330 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1331 if (reason & REASON_TM) {
1332 /* This is a TM "Bad Thing Exception" program check.
1333 * This occurs when:
1334 * - An rfid/hrfid/mtmsrd attempts to cause an illegal
1335 * transition in TM states.
1336 * - A trechkpt is attempted when transactional.
1337 * - A treclaim is attempted when non transactional.
1338 * - A tend is illegally attempted.
1339 * - writing a TM SPR when transactional.
1341 * If usermode caused this, it's done something illegal and
1342 * gets a SIGILL slap on the wrist. We call it an illegal
1343 * operand to distinguish from the instruction just being bad
1344 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1345 * illegal /placement/ of a valid instruction.
1347 if (user_mode(regs)) {
1348 _exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1349 goto bail;
1350 } else {
1351 printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1352 "at %lx (msr 0x%x)\n", regs->nip, reason);
1353 die("Unrecoverable exception", regs, SIGABRT);
1356 #endif
1359 * If we took the program check in the kernel skip down to sending a
1360 * SIGILL. The subsequent cases all relate to emulating instructions
1361 * which we should only do for userspace. We also do not want to enable
1362 * interrupts for kernel faults because that might lead to further
1363 * faults, and loose the context of the original exception.
1365 if (!user_mode(regs))
1366 goto sigill;
1368 /* We restore the interrupt state now */
1369 if (!arch_irq_disabled_regs(regs))
1370 local_irq_enable();
1372 /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1373 * but there seems to be a hardware bug on the 405GP (RevD)
1374 * that means ESR is sometimes set incorrectly - either to
1375 * ESR_DST (!?) or 0. In the process of chasing this with the
1376 * hardware people - not sure if it can happen on any illegal
1377 * instruction or only on FP instructions, whether there is a
1378 * pattern to occurrences etc. -dgibson 31/Mar/2003
1380 if (!emulate_math(regs))
1381 goto bail;
1383 /* Try to emulate it if we should. */
1384 if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1385 switch (emulate_instruction(regs)) {
1386 case 0:
1387 regs->nip += 4;
1388 emulate_single_step(regs);
1389 goto bail;
1390 case -EFAULT:
1391 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1392 goto bail;
1396 sigill:
1397 if (reason & REASON_PRIVILEGED)
1398 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1399 else
1400 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1402 bail:
1403 exception_exit(prev_state);
1405 NOKPROBE_SYMBOL(program_check_exception);
1408 * This occurs when running in hypervisor mode on POWER6 or later
1409 * and an illegal instruction is encountered.
1411 void emulation_assist_interrupt(struct pt_regs *regs)
1413 regs->msr |= REASON_ILLEGAL;
1414 program_check_exception(regs);
1416 NOKPROBE_SYMBOL(emulation_assist_interrupt);
1418 void alignment_exception(struct pt_regs *regs)
1420 enum ctx_state prev_state = exception_enter();
1421 int sig, code, fixed = 0;
1423 /* We restore the interrupt state now */
1424 if (!arch_irq_disabled_regs(regs))
1425 local_irq_enable();
1427 if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1428 goto bail;
1430 /* we don't implement logging of alignment exceptions */
1431 if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1432 fixed = fix_alignment(regs);
1434 if (fixed == 1) {
1435 regs->nip += 4; /* skip over emulated instruction */
1436 emulate_single_step(regs);
1437 goto bail;
1440 /* Operand address was bad */
1441 if (fixed == -EFAULT) {
1442 sig = SIGSEGV;
1443 code = SEGV_ACCERR;
1444 } else {
1445 sig = SIGBUS;
1446 code = BUS_ADRALN;
1448 if (user_mode(regs))
1449 _exception(sig, regs, code, regs->dar);
1450 else
1451 bad_page_fault(regs, regs->dar, sig);
1453 bail:
1454 exception_exit(prev_state);
1457 void slb_miss_bad_addr(struct pt_regs *regs)
1459 enum ctx_state prev_state = exception_enter();
1461 if (user_mode(regs))
1462 _exception(SIGSEGV, regs, SEGV_BNDERR, regs->dar);
1463 else
1464 bad_page_fault(regs, regs->dar, SIGSEGV);
1466 exception_exit(prev_state);
1469 void StackOverflow(struct pt_regs *regs)
1471 printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1472 current, regs->gpr[1]);
1473 debugger(regs);
1474 show_regs(regs);
1475 panic("kernel stack overflow");
1478 void nonrecoverable_exception(struct pt_regs *regs)
1480 printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1481 regs->nip, regs->msr);
1482 debugger(regs);
1483 die("nonrecoverable exception", regs, SIGKILL);
1486 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1488 enum ctx_state prev_state = exception_enter();
1490 printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1491 "%lx at %lx\n", regs->trap, regs->nip);
1492 die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1494 exception_exit(prev_state);
1497 void altivec_unavailable_exception(struct pt_regs *regs)
1499 enum ctx_state prev_state = exception_enter();
1501 if (user_mode(regs)) {
1502 /* A user program has executed an altivec instruction,
1503 but this kernel doesn't support altivec. */
1504 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1505 goto bail;
1508 printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1509 "%lx at %lx\n", regs->trap, regs->nip);
1510 die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1512 bail:
1513 exception_exit(prev_state);
1516 void vsx_unavailable_exception(struct pt_regs *regs)
1518 if (user_mode(regs)) {
1519 /* A user program has executed an vsx instruction,
1520 but this kernel doesn't support vsx. */
1521 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1522 return;
1525 printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1526 "%lx at %lx\n", regs->trap, regs->nip);
1527 die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1530 #ifdef CONFIG_PPC64
1531 static void tm_unavailable(struct pt_regs *regs)
1533 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1534 if (user_mode(regs)) {
1535 current->thread.load_tm++;
1536 regs->msr |= MSR_TM;
1537 tm_enable();
1538 tm_restore_sprs(&current->thread);
1539 return;
1541 #endif
1542 pr_emerg("Unrecoverable TM Unavailable Exception "
1543 "%lx at %lx\n", regs->trap, regs->nip);
1544 die("Unrecoverable TM Unavailable Exception", regs, SIGABRT);
1547 void facility_unavailable_exception(struct pt_regs *regs)
1549 static char *facility_strings[] = {
1550 [FSCR_FP_LG] = "FPU",
1551 [FSCR_VECVSX_LG] = "VMX/VSX",
1552 [FSCR_DSCR_LG] = "DSCR",
1553 [FSCR_PM_LG] = "PMU SPRs",
1554 [FSCR_BHRB_LG] = "BHRB",
1555 [FSCR_TM_LG] = "TM",
1556 [FSCR_EBB_LG] = "EBB",
1557 [FSCR_TAR_LG] = "TAR",
1558 [FSCR_MSGP_LG] = "MSGP",
1559 [FSCR_SCV_LG] = "SCV",
1561 char *facility = "unknown";
1562 u64 value;
1563 u32 instword, rd;
1564 u8 status;
1565 bool hv;
1567 hv = (regs->trap == 0xf80);
1568 if (hv)
1569 value = mfspr(SPRN_HFSCR);
1570 else
1571 value = mfspr(SPRN_FSCR);
1573 status = value >> 56;
1574 if (status == FSCR_DSCR_LG) {
1576 * User is accessing the DSCR register using the problem
1577 * state only SPR number (0x03) either through a mfspr or
1578 * a mtspr instruction. If it is a write attempt through
1579 * a mtspr, then we set the inherit bit. This also allows
1580 * the user to write or read the register directly in the
1581 * future by setting via the FSCR DSCR bit. But in case it
1582 * is a read DSCR attempt through a mfspr instruction, we
1583 * just emulate the instruction instead. This code path will
1584 * always emulate all the mfspr instructions till the user
1585 * has attempted at least one mtspr instruction. This way it
1586 * preserves the same behaviour when the user is accessing
1587 * the DSCR through privilege level only SPR number (0x11)
1588 * which is emulated through illegal instruction exception.
1589 * We always leave HFSCR DSCR set.
1591 if (get_user(instword, (u32 __user *)(regs->nip))) {
1592 pr_err("Failed to fetch the user instruction\n");
1593 return;
1596 /* Write into DSCR (mtspr 0x03, RS) */
1597 if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1598 == PPC_INST_MTSPR_DSCR_USER) {
1599 rd = (instword >> 21) & 0x1f;
1600 current->thread.dscr = regs->gpr[rd];
1601 current->thread.dscr_inherit = 1;
1602 current->thread.fscr |= FSCR_DSCR;
1603 mtspr(SPRN_FSCR, current->thread.fscr);
1606 /* Read from DSCR (mfspr RT, 0x03) */
1607 if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1608 == PPC_INST_MFSPR_DSCR_USER) {
1609 if (emulate_instruction(regs)) {
1610 pr_err("DSCR based mfspr emulation failed\n");
1611 return;
1613 regs->nip += 4;
1614 emulate_single_step(regs);
1616 return;
1619 if (status == FSCR_TM_LG) {
1621 * If we're here then the hardware is TM aware because it
1622 * generated an exception with FSRM_TM set.
1624 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware
1625 * told us not to do TM, or the kernel is not built with TM
1626 * support.
1628 * If both of those things are true, then userspace can spam the
1629 * console by triggering the printk() below just by continually
1630 * doing tbegin (or any TM instruction). So in that case just
1631 * send the process a SIGILL immediately.
1633 if (!cpu_has_feature(CPU_FTR_TM))
1634 goto out;
1636 tm_unavailable(regs);
1637 return;
1640 if ((hv || status >= 2) &&
1641 (status < ARRAY_SIZE(facility_strings)) &&
1642 facility_strings[status])
1643 facility = facility_strings[status];
1645 /* We restore the interrupt state now */
1646 if (!arch_irq_disabled_regs(regs))
1647 local_irq_enable();
1649 pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n",
1650 hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr);
1652 out:
1653 if (user_mode(regs)) {
1654 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1655 return;
1658 die("Unexpected facility unavailable exception", regs, SIGABRT);
1660 #endif
1662 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1664 void fp_unavailable_tm(struct pt_regs *regs)
1666 /* Note: This does not handle any kind of FP laziness. */
1668 TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1669 regs->nip, regs->msr);
1671 /* We can only have got here if the task started using FP after
1672 * beginning the transaction. So, the transactional regs are just a
1673 * copy of the checkpointed ones. But, we still need to recheckpoint
1674 * as we're enabling FP for the process; it will return, abort the
1675 * transaction, and probably retry but now with FP enabled. So the
1676 * checkpointed FP registers need to be loaded.
1678 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1679 /* Reclaim didn't save out any FPRs to transact_fprs. */
1681 /* Enable FP for the task: */
1682 current->thread.load_fp = 1;
1684 /* This loads and recheckpoints the FP registers from
1685 * thread.fpr[]. They will remain in registers after the
1686 * checkpoint so we don't need to reload them after.
1687 * If VMX is in use, the VRs now hold checkpointed values,
1688 * so we don't want to load the VRs from the thread_struct.
1690 tm_recheckpoint(&current->thread);
1693 void altivec_unavailable_tm(struct pt_regs *regs)
1695 /* See the comments in fp_unavailable_tm(). This function operates
1696 * the same way.
1699 TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1700 "MSR=%lx\n",
1701 regs->nip, regs->msr);
1702 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1703 current->thread.load_vec = 1;
1704 tm_recheckpoint(&current->thread);
1705 current->thread.used_vr = 1;
1708 void vsx_unavailable_tm(struct pt_regs *regs)
1710 /* See the comments in fp_unavailable_tm(). This works similarly,
1711 * though we're loading both FP and VEC registers in here.
1713 * If FP isn't in use, load FP regs. If VEC isn't in use, load VEC
1714 * regs. Either way, set MSR_VSX.
1717 TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1718 "MSR=%lx\n",
1719 regs->nip, regs->msr);
1721 current->thread.used_vsr = 1;
1723 /* This reclaims FP and/or VR regs if they're already enabled */
1724 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1726 current->thread.load_vec = 1;
1727 current->thread.load_fp = 1;
1729 tm_recheckpoint(&current->thread);
1731 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1733 void performance_monitor_exception(struct pt_regs *regs)
1735 __this_cpu_inc(irq_stat.pmu_irqs);
1737 perf_irq(regs);
1740 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1741 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1743 int changed = 0;
1745 * Determine the cause of the debug event, clear the
1746 * event flags and send a trap to the handler. Torez
1748 if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1749 dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1750 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1751 current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1752 #endif
1753 do_send_trap(regs, mfspr(SPRN_DAC1), debug_status,
1755 changed |= 0x01;
1756 } else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1757 dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1758 do_send_trap(regs, mfspr(SPRN_DAC2), debug_status,
1760 changed |= 0x01;
1761 } else if (debug_status & DBSR_IAC1) {
1762 current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1763 dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1764 do_send_trap(regs, mfspr(SPRN_IAC1), debug_status,
1766 changed |= 0x01;
1767 } else if (debug_status & DBSR_IAC2) {
1768 current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1769 do_send_trap(regs, mfspr(SPRN_IAC2), debug_status,
1771 changed |= 0x01;
1772 } else if (debug_status & DBSR_IAC3) {
1773 current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1774 dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1775 do_send_trap(regs, mfspr(SPRN_IAC3), debug_status,
1777 changed |= 0x01;
1778 } else if (debug_status & DBSR_IAC4) {
1779 current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1780 do_send_trap(regs, mfspr(SPRN_IAC4), debug_status,
1782 changed |= 0x01;
1785 * At the point this routine was called, the MSR(DE) was turned off.
1786 * Check all other debug flags and see if that bit needs to be turned
1787 * back on or not.
1789 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1790 current->thread.debug.dbcr1))
1791 regs->msr |= MSR_DE;
1792 else
1793 /* Make sure the IDM flag is off */
1794 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1796 if (changed & 0x01)
1797 mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1800 void DebugException(struct pt_regs *regs, unsigned long debug_status)
1802 current->thread.debug.dbsr = debug_status;
1804 /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1805 * on server, it stops on the target of the branch. In order to simulate
1806 * the server behaviour, we thus restart right away with a single step
1807 * instead of stopping here when hitting a BT
1809 if (debug_status & DBSR_BT) {
1810 regs->msr &= ~MSR_DE;
1812 /* Disable BT */
1813 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1814 /* Clear the BT event */
1815 mtspr(SPRN_DBSR, DBSR_BT);
1817 /* Do the single step trick only when coming from userspace */
1818 if (user_mode(regs)) {
1819 current->thread.debug.dbcr0 &= ~DBCR0_BT;
1820 current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1821 regs->msr |= MSR_DE;
1822 return;
1825 if (kprobe_post_handler(regs))
1826 return;
1828 if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1829 5, SIGTRAP) == NOTIFY_STOP) {
1830 return;
1832 if (debugger_sstep(regs))
1833 return;
1834 } else if (debug_status & DBSR_IC) { /* Instruction complete */
1835 regs->msr &= ~MSR_DE;
1837 /* Disable instruction completion */
1838 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1839 /* Clear the instruction completion event */
1840 mtspr(SPRN_DBSR, DBSR_IC);
1842 if (kprobe_post_handler(regs))
1843 return;
1845 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1846 5, SIGTRAP) == NOTIFY_STOP) {
1847 return;
1850 if (debugger_sstep(regs))
1851 return;
1853 if (user_mode(regs)) {
1854 current->thread.debug.dbcr0 &= ~DBCR0_IC;
1855 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1856 current->thread.debug.dbcr1))
1857 regs->msr |= MSR_DE;
1858 else
1859 /* Make sure the IDM bit is off */
1860 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1863 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1864 } else
1865 handle_debug(regs, debug_status);
1867 NOKPROBE_SYMBOL(DebugException);
1868 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1870 #if !defined(CONFIG_TAU_INT)
1871 void TAUException(struct pt_regs *regs)
1873 printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx %s\n",
1874 regs->nip, regs->msr, regs->trap, print_tainted());
1876 #endif /* CONFIG_INT_TAU */
1878 #ifdef CONFIG_ALTIVEC
1879 void altivec_assist_exception(struct pt_regs *regs)
1881 int err;
1883 if (!user_mode(regs)) {
1884 printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1885 " at %lx\n", regs->nip);
1886 die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1889 flush_altivec_to_thread(current);
1891 PPC_WARN_EMULATED(altivec, regs);
1892 err = emulate_altivec(regs);
1893 if (err == 0) {
1894 regs->nip += 4; /* skip emulated instruction */
1895 emulate_single_step(regs);
1896 return;
1899 if (err == -EFAULT) {
1900 /* got an error reading the instruction */
1901 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1902 } else {
1903 /* didn't recognize the instruction */
1904 /* XXX quick hack for now: set the non-Java bit in the VSCR */
1905 printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1906 "in %s at %lx\n", current->comm, regs->nip);
1907 current->thread.vr_state.vscr.u[3] |= 0x10000;
1910 #endif /* CONFIG_ALTIVEC */
1912 #ifdef CONFIG_FSL_BOOKE
1913 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1914 unsigned long error_code)
1916 /* We treat cache locking instructions from the user
1917 * as priv ops, in the future we could try to do
1918 * something smarter
1920 if (error_code & (ESR_DLK|ESR_ILK))
1921 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1922 return;
1924 #endif /* CONFIG_FSL_BOOKE */
1926 #ifdef CONFIG_SPE
1927 void SPEFloatingPointException(struct pt_regs *regs)
1929 extern int do_spe_mathemu(struct pt_regs *regs);
1930 unsigned long spefscr;
1931 int fpexc_mode;
1932 int code = FPE_FIXME;
1933 int err;
1935 flush_spe_to_thread(current);
1937 spefscr = current->thread.spefscr;
1938 fpexc_mode = current->thread.fpexc_mode;
1940 if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1941 code = FPE_FLTOVF;
1943 else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1944 code = FPE_FLTUND;
1946 else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1947 code = FPE_FLTDIV;
1948 else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1949 code = FPE_FLTINV;
1951 else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1952 code = FPE_FLTRES;
1954 err = do_spe_mathemu(regs);
1955 if (err == 0) {
1956 regs->nip += 4; /* skip emulated instruction */
1957 emulate_single_step(regs);
1958 return;
1961 if (err == -EFAULT) {
1962 /* got an error reading the instruction */
1963 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1964 } else if (err == -EINVAL) {
1965 /* didn't recognize the instruction */
1966 printk(KERN_ERR "unrecognized spe instruction "
1967 "in %s at %lx\n", current->comm, regs->nip);
1968 } else {
1969 _exception(SIGFPE, regs, code, regs->nip);
1972 return;
1975 void SPEFloatingPointRoundException(struct pt_regs *regs)
1977 extern int speround_handler(struct pt_regs *regs);
1978 int err;
1980 preempt_disable();
1981 if (regs->msr & MSR_SPE)
1982 giveup_spe(current);
1983 preempt_enable();
1985 regs->nip -= 4;
1986 err = speround_handler(regs);
1987 if (err == 0) {
1988 regs->nip += 4; /* skip emulated instruction */
1989 emulate_single_step(regs);
1990 return;
1993 if (err == -EFAULT) {
1994 /* got an error reading the instruction */
1995 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1996 } else if (err == -EINVAL) {
1997 /* didn't recognize the instruction */
1998 printk(KERN_ERR "unrecognized spe instruction "
1999 "in %s at %lx\n", current->comm, regs->nip);
2000 } else {
2001 _exception(SIGFPE, regs, FPE_FIXME, regs->nip);
2002 return;
2005 #endif
2008 * We enter here if we get an unrecoverable exception, that is, one
2009 * that happened at a point where the RI (recoverable interrupt) bit
2010 * in the MSR is 0. This indicates that SRR0/1 are live, and that
2011 * we therefore lost state by taking this exception.
2013 void unrecoverable_exception(struct pt_regs *regs)
2015 printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
2016 regs->trap, regs->nip);
2017 die("Unrecoverable exception", regs, SIGABRT);
2019 NOKPROBE_SYMBOL(unrecoverable_exception);
2021 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
2023 * Default handler for a Watchdog exception,
2024 * spins until a reboot occurs
2026 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
2028 /* Generic WatchdogHandler, implement your own */
2029 mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
2030 return;
2033 void WatchdogException(struct pt_regs *regs)
2035 printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
2036 WatchdogHandler(regs);
2038 #endif
2041 * We enter here if we discover during exception entry that we are
2042 * running in supervisor mode with a userspace value in the stack pointer.
2044 void kernel_bad_stack(struct pt_regs *regs)
2046 printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
2047 regs->gpr[1], regs->nip);
2048 die("Bad kernel stack pointer", regs, SIGABRT);
2050 NOKPROBE_SYMBOL(kernel_bad_stack);
2052 void __init trap_init(void)
2057 #ifdef CONFIG_PPC_EMULATED_STATS
2059 #define WARN_EMULATED_SETUP(type) .type = { .name = #type }
2061 struct ppc_emulated ppc_emulated = {
2062 #ifdef CONFIG_ALTIVEC
2063 WARN_EMULATED_SETUP(altivec),
2064 #endif
2065 WARN_EMULATED_SETUP(dcba),
2066 WARN_EMULATED_SETUP(dcbz),
2067 WARN_EMULATED_SETUP(fp_pair),
2068 WARN_EMULATED_SETUP(isel),
2069 WARN_EMULATED_SETUP(mcrxr),
2070 WARN_EMULATED_SETUP(mfpvr),
2071 WARN_EMULATED_SETUP(multiple),
2072 WARN_EMULATED_SETUP(popcntb),
2073 WARN_EMULATED_SETUP(spe),
2074 WARN_EMULATED_SETUP(string),
2075 WARN_EMULATED_SETUP(sync),
2076 WARN_EMULATED_SETUP(unaligned),
2077 #ifdef CONFIG_MATH_EMULATION
2078 WARN_EMULATED_SETUP(math),
2079 #endif
2080 #ifdef CONFIG_VSX
2081 WARN_EMULATED_SETUP(vsx),
2082 #endif
2083 #ifdef CONFIG_PPC64
2084 WARN_EMULATED_SETUP(mfdscr),
2085 WARN_EMULATED_SETUP(mtdscr),
2086 WARN_EMULATED_SETUP(lq_stq),
2087 WARN_EMULATED_SETUP(lxvw4x),
2088 WARN_EMULATED_SETUP(lxvh8x),
2089 WARN_EMULATED_SETUP(lxvd2x),
2090 WARN_EMULATED_SETUP(lxvb16x),
2091 #endif
2094 u32 ppc_warn_emulated;
2096 void ppc_warn_emulated_print(const char *type)
2098 pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
2099 type);
2102 static int __init ppc_warn_emulated_init(void)
2104 struct dentry *dir, *d;
2105 unsigned int i;
2106 struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
2108 if (!powerpc_debugfs_root)
2109 return -ENODEV;
2111 dir = debugfs_create_dir("emulated_instructions",
2112 powerpc_debugfs_root);
2113 if (!dir)
2114 return -ENOMEM;
2116 d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
2117 &ppc_warn_emulated);
2118 if (!d)
2119 goto fail;
2121 for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
2122 d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
2123 (u32 *)&entries[i].val.counter);
2124 if (!d)
2125 goto fail;
2128 return 0;
2130 fail:
2131 debugfs_remove_recursive(dir);
2132 return -ENOMEM;
2135 device_initcall(ppc_warn_emulated_init);
2137 #endif /* CONFIG_PPC_EMULATED_STATS */