2 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
3 * Copyright 2007-2010 Freescale Semiconductor, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
10 * Modified by Cort Dougan (cort@cs.nmt.edu)
11 * and Paul Mackerras (paulus@samba.org)
15 * This file handles the architecture-dependent parts of hardware exceptions
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/kernel.h>
23 #include <linux/stddef.h>
24 #include <linux/unistd.h>
25 #include <linux/ptrace.h>
26 #include <linux/user.h>
27 #include <linux/interrupt.h>
28 #include <linux/init.h>
29 #include <linux/extable.h>
30 #include <linux/module.h> /* print_modules */
31 #include <linux/prctl.h>
32 #include <linux/delay.h>
33 #include <linux/kprobes.h>
34 #include <linux/kexec.h>
35 #include <linux/backlight.h>
36 #include <linux/bug.h>
37 #include <linux/kdebug.h>
38 #include <linux/ratelimit.h>
39 #include <linux/context_tracking.h>
40 #include <linux/smp.h>
42 #include <asm/emulated_ops.h>
43 #include <asm/pgtable.h>
44 #include <linux/uaccess.h>
45 #include <asm/debugfs.h>
47 #include <asm/machdep.h>
51 #ifdef CONFIG_PMAC_BACKLIGHT
52 #include <asm/backlight.h>
55 #include <asm/firmware.h>
56 #include <asm/processor.h>
59 #include <asm/kexec.h>
60 #include <asm/ppc-opcode.h>
62 #include <asm/fadump.h>
63 #include <asm/switch_to.h>
65 #include <asm/debug.h>
66 #include <asm/asm-prototypes.h>
68 #include <sysdev/fsl_pci.h>
69 #include <asm/kprobes.h>
71 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
72 int (*__debugger
)(struct pt_regs
*regs
) __read_mostly
;
73 int (*__debugger_ipi
)(struct pt_regs
*regs
) __read_mostly
;
74 int (*__debugger_bpt
)(struct pt_regs
*regs
) __read_mostly
;
75 int (*__debugger_sstep
)(struct pt_regs
*regs
) __read_mostly
;
76 int (*__debugger_iabr_match
)(struct pt_regs
*regs
) __read_mostly
;
77 int (*__debugger_break_match
)(struct pt_regs
*regs
) __read_mostly
;
78 int (*__debugger_fault_handler
)(struct pt_regs
*regs
) __read_mostly
;
80 EXPORT_SYMBOL(__debugger
);
81 EXPORT_SYMBOL(__debugger_ipi
);
82 EXPORT_SYMBOL(__debugger_bpt
);
83 EXPORT_SYMBOL(__debugger_sstep
);
84 EXPORT_SYMBOL(__debugger_iabr_match
);
85 EXPORT_SYMBOL(__debugger_break_match
);
86 EXPORT_SYMBOL(__debugger_fault_handler
);
89 /* Transactional Memory trap debug */
91 #define TM_DEBUG(x...) printk(KERN_INFO x)
93 #define TM_DEBUG(x...) do { } while(0)
97 * Trap & Exception support
100 #ifdef CONFIG_PMAC_BACKLIGHT
101 static void pmac_backlight_unblank(void)
103 mutex_lock(&pmac_backlight_mutex
);
104 if (pmac_backlight
) {
105 struct backlight_properties
*props
;
107 props
= &pmac_backlight
->props
;
108 props
->brightness
= props
->max_brightness
;
109 props
->power
= FB_BLANK_UNBLANK
;
110 backlight_update_status(pmac_backlight
);
112 mutex_unlock(&pmac_backlight_mutex
);
115 static inline void pmac_backlight_unblank(void) { }
119 * If oops/die is expected to crash the machine, return true here.
121 * This should not be expected to be 100% accurate, there may be
122 * notifiers registered or other unexpected conditions that may bring
123 * down the kernel. Or if the current process in the kernel is holding
124 * locks or has other critical state, the kernel may become effectively
127 bool die_will_crash(void)
129 if (should_fadump_crash())
131 if (kexec_should_crash(current
))
133 if (in_interrupt() || panic_on_oops
||
134 !current
->pid
|| is_global_init(current
))
140 static arch_spinlock_t die_lock
= __ARCH_SPIN_LOCK_UNLOCKED
;
141 static int die_owner
= -1;
142 static unsigned int die_nest_count
;
143 static int die_counter
;
145 static unsigned long oops_begin(struct pt_regs
*regs
)
152 /* racy, but better than risking deadlock. */
153 raw_local_irq_save(flags
);
154 cpu
= smp_processor_id();
155 if (!arch_spin_trylock(&die_lock
)) {
156 if (cpu
== die_owner
)
157 /* nested oops. should stop eventually */;
159 arch_spin_lock(&die_lock
);
165 if (machine_is(powermac
))
166 pmac_backlight_unblank();
169 NOKPROBE_SYMBOL(oops_begin
);
171 static void oops_end(unsigned long flags
, struct pt_regs
*regs
,
175 add_taint(TAINT_DIE
, LOCKDEP_NOW_UNRELIABLE
);
179 if (!die_nest_count
) {
180 /* Nest count reaches zero, release the lock. */
182 arch_spin_unlock(&die_lock
);
184 raw_local_irq_restore(flags
);
186 crash_fadump(regs
, "die oops");
188 if (kexec_should_crash(current
))
195 * While our oops output is serialised by a spinlock, output
196 * from panic() called below can race and corrupt it. If we
197 * know we are going to panic, delay for 1 second so we have a
198 * chance to get clean backtraces from all CPUs that are oopsing.
200 if (in_interrupt() || panic_on_oops
|| !current
->pid
||
201 is_global_init(current
)) {
202 mdelay(MSEC_PER_SEC
);
206 panic("Fatal exception in interrupt");
208 panic("Fatal exception");
211 NOKPROBE_SYMBOL(oops_end
);
213 static int __die(const char *str
, struct pt_regs
*regs
, long err
)
215 printk("Oops: %s, sig: %ld [#%d]\n", str
, err
, ++die_counter
);
217 if (IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN
))
222 if (IS_ENABLED(CONFIG_PREEMPT
))
225 if (IS_ENABLED(CONFIG_SMP
))
226 pr_cont("SMP NR_CPUS=%d ", NR_CPUS
);
228 if (debug_pagealloc_enabled())
229 pr_cont("DEBUG_PAGEALLOC ");
231 if (IS_ENABLED(CONFIG_NUMA
))
234 pr_cont("%s\n", ppc_md
.name
? ppc_md
.name
: "");
236 if (notify_die(DIE_OOPS
, str
, regs
, err
, 255, SIGSEGV
) == NOTIFY_STOP
)
244 NOKPROBE_SYMBOL(__die
);
246 void die(const char *str
, struct pt_regs
*regs
, long err
)
253 flags
= oops_begin(regs
);
254 if (__die(str
, regs
, err
))
256 oops_end(flags
, regs
, err
);
258 NOKPROBE_SYMBOL(die
);
260 void user_single_step_siginfo(struct task_struct
*tsk
,
261 struct pt_regs
*regs
, siginfo_t
*info
)
263 memset(info
, 0, sizeof(*info
));
264 info
->si_signo
= SIGTRAP
;
265 info
->si_code
= TRAP_TRACE
;
266 info
->si_addr
= (void __user
*)regs
->nip
;
269 void _exception(int signr
, struct pt_regs
*regs
, int code
, unsigned long addr
)
272 const char fmt32
[] = KERN_INFO
"%s[%d]: unhandled signal %d " \
273 "at %08lx nip %08lx lr %08lx code %x\n";
274 const char fmt64
[] = KERN_INFO
"%s[%d]: unhandled signal %d " \
275 "at %016lx nip %016lx lr %016lx code %x\n";
277 if (!user_mode(regs
)) {
278 die("Exception in kernel mode", regs
, signr
);
282 if (show_unhandled_signals
&& unhandled_signal(current
, signr
)) {
283 printk_ratelimited(regs
->msr
& MSR_64BIT
? fmt64
: fmt32
,
284 current
->comm
, current
->pid
, signr
,
285 addr
, regs
->nip
, regs
->link
, code
);
288 if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs
))
291 current
->thread
.trap_nr
= code
;
292 memset(&info
, 0, sizeof(info
));
293 info
.si_signo
= signr
;
295 info
.si_addr
= (void __user
*) addr
;
296 force_sig_info(signr
, &info
, current
);
299 void system_reset_exception(struct pt_regs
*regs
)
302 * Avoid crashes in case of nested NMI exceptions. Recoverability
303 * is determined by RI and in_nmi
305 bool nested
= in_nmi();
309 __this_cpu_inc(irq_stat
.sreset_irqs
);
311 /* See if any machine dependent calls */
312 if (ppc_md
.system_reset_exception
) {
313 if (ppc_md
.system_reset_exception(regs
))
321 * A system reset is a request to dump, so we always send
322 * it through the crashdump code (if fadump or kdump are
325 crash_fadump(regs
, "System Reset");
330 * We aren't the primary crash CPU. We need to send it
331 * to a holding pattern to avoid it ending up in the panic
334 crash_kexec_secondary(regs
);
337 * No debugger or crash dump registered, print logs then
340 __die("System Reset", regs
, SIGABRT
);
342 mdelay(2*MSEC_PER_SEC
); /* Wait a little while for others to print */
343 add_taint(TAINT_DIE
, LOCKDEP_NOW_UNRELIABLE
);
344 nmi_panic(regs
, "System Reset");
347 #ifdef CONFIG_PPC_BOOK3S_64
348 BUG_ON(get_paca()->in_nmi
== 0);
349 if (get_paca()->in_nmi
> 1)
350 nmi_panic(regs
, "Unrecoverable nested System Reset");
352 /* Must die if the interrupt is not recoverable */
353 if (!(regs
->msr
& MSR_RI
))
354 nmi_panic(regs
, "Unrecoverable System Reset");
359 /* What should we do here? We could issue a shutdown or hard reset. */
363 * I/O accesses can cause machine checks on powermacs.
364 * Check if the NIP corresponds to the address of a sync
365 * instruction for which there is an entry in the exception
367 * Note that the 601 only takes a machine check on TEA
368 * (transfer error ack) signal assertion, and does not
369 * set any of the top 16 bits of SRR1.
372 static inline int check_io_access(struct pt_regs
*regs
)
375 unsigned long msr
= regs
->msr
;
376 const struct exception_table_entry
*entry
;
377 unsigned int *nip
= (unsigned int *)regs
->nip
;
379 if (((msr
& 0xffff0000) == 0 || (msr
& (0x80000 | 0x40000)))
380 && (entry
= search_exception_tables(regs
->nip
)) != NULL
) {
382 * Check that it's a sync instruction, or somewhere
383 * in the twi; isync; nop sequence that inb/inw/inl uses.
384 * As the address is in the exception table
385 * we should be able to read the instr there.
386 * For the debug message, we look at the preceding
389 if (*nip
== PPC_INST_NOP
)
391 else if (*nip
== PPC_INST_ISYNC
)
393 if (*nip
== PPC_INST_SYNC
|| (*nip
>> 26) == OP_TRAP
) {
397 rb
= (*nip
>> 11) & 0x1f;
398 printk(KERN_DEBUG
"%s bad port %lx at %p\n",
399 (*nip
& 0x100)? "OUT to": "IN from",
400 regs
->gpr
[rb
] - _IO_BASE
, nip
);
402 regs
->nip
= extable_fixup(entry
);
406 #endif /* CONFIG_PPC32 */
410 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
411 /* On 4xx, the reason for the machine check or program exception
413 #define get_reason(regs) ((regs)->dsisr)
414 #define REASON_FP ESR_FP
415 #define REASON_ILLEGAL (ESR_PIL | ESR_PUO)
416 #define REASON_PRIVILEGED ESR_PPR
417 #define REASON_TRAP ESR_PTR
419 /* single-step stuff */
420 #define single_stepping(regs) (current->thread.debug.dbcr0 & DBCR0_IC)
421 #define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC)
424 /* On non-4xx, the reason for the machine check or program
425 exception is in the MSR. */
426 #define get_reason(regs) ((regs)->msr)
427 #define REASON_TM SRR1_PROGTM
428 #define REASON_FP SRR1_PROGFPE
429 #define REASON_ILLEGAL SRR1_PROGILL
430 #define REASON_PRIVILEGED SRR1_PROGPRIV
431 #define REASON_TRAP SRR1_PROGTRAP
433 #define single_stepping(regs) ((regs)->msr & MSR_SE)
434 #define clear_single_step(regs) ((regs)->msr &= ~MSR_SE)
437 #if defined(CONFIG_E500)
438 int machine_check_e500mc(struct pt_regs
*regs
)
440 unsigned long mcsr
= mfspr(SPRN_MCSR
);
441 unsigned long pvr
= mfspr(SPRN_PVR
);
442 unsigned long reason
= mcsr
;
445 if (reason
& MCSR_LD
) {
446 recoverable
= fsl_rio_mcheck_exception(regs
);
447 if (recoverable
== 1)
451 printk("Machine check in kernel mode.\n");
452 printk("Caused by (from MCSR=%lx): ", reason
);
454 if (reason
& MCSR_MCP
)
455 printk("Machine Check Signal\n");
457 if (reason
& MCSR_ICPERR
) {
458 printk("Instruction Cache Parity Error\n");
461 * This is recoverable by invalidating the i-cache.
463 mtspr(SPRN_L1CSR1
, mfspr(SPRN_L1CSR1
) | L1CSR1_ICFI
);
464 while (mfspr(SPRN_L1CSR1
) & L1CSR1_ICFI
)
468 * This will generally be accompanied by an instruction
469 * fetch error report -- only treat MCSR_IF as fatal
470 * if it wasn't due to an L1 parity error.
475 if (reason
& MCSR_DCPERR_MC
) {
476 printk("Data Cache Parity Error\n");
479 * In write shadow mode we auto-recover from the error, but it
480 * may still get logged and cause a machine check. We should
481 * only treat the non-write shadow case as non-recoverable.
483 /* On e6500 core, L1 DCWS (Data cache write shadow mode) bit
484 * is not implemented but L1 data cache always runs in write
485 * shadow mode. Hence on data cache parity errors HW will
486 * automatically invalidate the L1 Data Cache.
488 if (PVR_VER(pvr
) != PVR_VER_E6500
) {
489 if (!(mfspr(SPRN_L1CSR2
) & L1CSR2_DCWS
))
494 if (reason
& MCSR_L2MMU_MHIT
) {
495 printk("Hit on multiple TLB entries\n");
499 if (reason
& MCSR_NMI
)
500 printk("Non-maskable interrupt\n");
502 if (reason
& MCSR_IF
) {
503 printk("Instruction Fetch Error Report\n");
507 if (reason
& MCSR_LD
) {
508 printk("Load Error Report\n");
512 if (reason
& MCSR_ST
) {
513 printk("Store Error Report\n");
517 if (reason
& MCSR_LDG
) {
518 printk("Guarded Load Error Report\n");
522 if (reason
& MCSR_TLBSYNC
)
523 printk("Simultaneous tlbsync operations\n");
525 if (reason
& MCSR_BSL2_ERR
) {
526 printk("Level 2 Cache Error\n");
530 if (reason
& MCSR_MAV
) {
533 addr
= mfspr(SPRN_MCAR
);
534 addr
|= (u64
)mfspr(SPRN_MCARU
) << 32;
536 printk("Machine Check %s Address: %#llx\n",
537 reason
& MCSR_MEA
? "Effective" : "Physical", addr
);
541 mtspr(SPRN_MCSR
, mcsr
);
542 return mfspr(SPRN_MCSR
) == 0 && recoverable
;
545 int machine_check_e500(struct pt_regs
*regs
)
547 unsigned long reason
= mfspr(SPRN_MCSR
);
549 if (reason
& MCSR_BUS_RBERR
) {
550 if (fsl_rio_mcheck_exception(regs
))
552 if (fsl_pci_mcheck_exception(regs
))
556 printk("Machine check in kernel mode.\n");
557 printk("Caused by (from MCSR=%lx): ", reason
);
559 if (reason
& MCSR_MCP
)
560 printk("Machine Check Signal\n");
561 if (reason
& MCSR_ICPERR
)
562 printk("Instruction Cache Parity Error\n");
563 if (reason
& MCSR_DCP_PERR
)
564 printk("Data Cache Push Parity Error\n");
565 if (reason
& MCSR_DCPERR
)
566 printk("Data Cache Parity Error\n");
567 if (reason
& MCSR_BUS_IAERR
)
568 printk("Bus - Instruction Address Error\n");
569 if (reason
& MCSR_BUS_RAERR
)
570 printk("Bus - Read Address Error\n");
571 if (reason
& MCSR_BUS_WAERR
)
572 printk("Bus - Write Address Error\n");
573 if (reason
& MCSR_BUS_IBERR
)
574 printk("Bus - Instruction Data Error\n");
575 if (reason
& MCSR_BUS_RBERR
)
576 printk("Bus - Read Data Bus Error\n");
577 if (reason
& MCSR_BUS_WBERR
)
578 printk("Bus - Write Data Bus Error\n");
579 if (reason
& MCSR_BUS_IPERR
)
580 printk("Bus - Instruction Parity Error\n");
581 if (reason
& MCSR_BUS_RPERR
)
582 printk("Bus - Read Parity Error\n");
587 int machine_check_generic(struct pt_regs
*regs
)
591 #elif defined(CONFIG_E200)
592 int machine_check_e200(struct pt_regs
*regs
)
594 unsigned long reason
= mfspr(SPRN_MCSR
);
596 printk("Machine check in kernel mode.\n");
597 printk("Caused by (from MCSR=%lx): ", reason
);
599 if (reason
& MCSR_MCP
)
600 printk("Machine Check Signal\n");
601 if (reason
& MCSR_CP_PERR
)
602 printk("Cache Push Parity Error\n");
603 if (reason
& MCSR_CPERR
)
604 printk("Cache Parity Error\n");
605 if (reason
& MCSR_EXCP_ERR
)
606 printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
607 if (reason
& MCSR_BUS_IRERR
)
608 printk("Bus - Read Bus Error on instruction fetch\n");
609 if (reason
& MCSR_BUS_DRERR
)
610 printk("Bus - Read Bus Error on data load\n");
611 if (reason
& MCSR_BUS_WRERR
)
612 printk("Bus - Write Bus Error on buffered store or cache line push\n");
616 #elif defined(CONFIG_PPC32)
617 int machine_check_generic(struct pt_regs
*regs
)
619 unsigned long reason
= regs
->msr
;
621 printk("Machine check in kernel mode.\n");
622 printk("Caused by (from SRR1=%lx): ", reason
);
623 switch (reason
& 0x601F0000) {
625 printk("Machine check signal\n");
627 case 0: /* for 601 */
629 case 0x140000: /* 7450 MSS error and TEA */
630 printk("Transfer error ack signal\n");
633 printk("Data parity error signal\n");
636 printk("Address parity error signal\n");
639 printk("L1 Data Cache error\n");
642 printk("L1 Instruction Cache error\n");
645 printk("L2 data cache parity error\n");
648 printk("Unknown values in msr\n");
652 #endif /* everything else */
654 void machine_check_exception(struct pt_regs
*regs
)
657 bool nested
= in_nmi();
661 /* 64s accounts the mce in machine_check_early when in HVMODE */
662 if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64
) || !cpu_has_feature(CPU_FTR_HVMODE
))
663 __this_cpu_inc(irq_stat
.mce_exceptions
);
665 add_taint(TAINT_MACHINE_CHECK
, LOCKDEP_NOW_UNRELIABLE
);
667 /* See if any machine dependent calls. In theory, we would want
668 * to call the CPU first, and call the ppc_md. one if the CPU
669 * one returns a positive number. However there is existing code
670 * that assumes the board gets a first chance, so let's keep it
671 * that way for now and fix things later. --BenH.
673 if (ppc_md
.machine_check_exception
)
674 recover
= ppc_md
.machine_check_exception(regs
);
675 else if (cur_cpu_spec
->machine_check
)
676 recover
= cur_cpu_spec
->machine_check(regs
);
681 if (debugger_fault_handler(regs
))
684 if (check_io_access(regs
))
687 die("Machine check", regs
, SIGBUS
);
689 /* Must die if the interrupt is not recoverable */
690 if (!(regs
->msr
& MSR_RI
))
691 nmi_panic(regs
, "Unrecoverable Machine check");
698 void SMIException(struct pt_regs
*regs
)
700 die("System Management Interrupt", regs
, SIGABRT
);
704 static void p9_hmi_special_emu(struct pt_regs
*regs
)
706 unsigned int ra
, rb
, t
, i
, sel
, instr
, rc
;
707 const void __user
*addr
;
709 unsigned long ea
, msr
, msr_mask
;
712 if (__get_user_inatomic(instr
, (unsigned int __user
*)regs
->nip
))
716 * lxvb16x opcode: 0x7c0006d8
717 * lxvd2x opcode: 0x7c000698
718 * lxvh8x opcode: 0x7c000658
719 * lxvw4x opcode: 0x7c000618
721 if ((instr
& 0xfc00073e) != 0x7c000618) {
722 pr_devel("HMI vec emu: not vector CI %i:%s[%d] nip=%016lx"
724 smp_processor_id(), current
->comm
, current
->pid
,
729 /* Grab vector registers into the task struct */
730 msr
= regs
->msr
; /* Grab msr before we flush the bits */
731 flush_vsx_to_thread(current
);
732 enable_kernel_altivec();
735 * Is userspace running with a different endian (this is rare but
738 swap
= (msr
& MSR_LE
) != (MSR_KERNEL
& MSR_LE
);
740 /* Decode the instruction */
741 ra
= (instr
>> 16) & 0x1f;
742 rb
= (instr
>> 11) & 0x1f;
743 t
= (instr
>> 21) & 0x1f;
745 vdst
= (u8
*)¤t
->thread
.vr_state
.vr
[t
];
747 vdst
= (u8
*)¤t
->thread
.fp_state
.fpr
[t
][0];
749 /* Grab the vector address */
750 ea
= regs
->gpr
[rb
] + (ra
? regs
->gpr
[ra
] : 0);
753 addr
= (__force
const void __user
*)ea
;
756 if (!access_ok(VERIFY_READ
, addr
, 16)) {
757 pr_devel("HMI vec emu: bad access %i:%s[%d] nip=%016lx"
758 " instr=%08x addr=%016lx\n",
759 smp_processor_id(), current
->comm
, current
->pid
,
760 regs
->nip
, instr
, (unsigned long)addr
);
764 /* Read the vector */
766 if ((unsigned long)addr
& 0xfUL
)
768 rc
= __copy_from_user_inatomic(vbuf
, addr
, 16);
770 __get_user_atomic_128_aligned(vbuf
, addr
, rc
);
772 pr_devel("HMI vec emu: page fault %i:%s[%d] nip=%016lx"
773 " instr=%08x addr=%016lx\n",
774 smp_processor_id(), current
->comm
, current
->pid
,
775 regs
->nip
, instr
, (unsigned long)addr
);
779 pr_devel("HMI vec emu: emulated vector CI %i:%s[%d] nip=%016lx"
780 " instr=%08x addr=%016lx\n",
781 smp_processor_id(), current
->comm
, current
->pid
, regs
->nip
,
782 instr
, (unsigned long) addr
);
784 /* Grab instruction "selector" */
785 sel
= (instr
>> 6) & 3;
788 * Check to make sure the facility is actually enabled. This
789 * could happen if we get a false positive hit.
791 * lxvd2x/lxvw4x always check MSR VSX sel = 0,2
792 * lxvh8x/lxvb16x check MSR VSX or VEC depending on VSR used sel = 1,3
795 if ((sel
& 1) && (instr
& 1)) /* lxvh8x & lxvb16x + VSR >= 32 */
797 if (!(msr
& msr_mask
)) {
798 pr_devel("HMI vec emu: MSR fac clear %i:%s[%d] nip=%016lx"
799 " instr=%08x msr:%016lx\n",
800 smp_processor_id(), current
->comm
, current
->pid
,
801 regs
->nip
, instr
, msr
);
805 /* Do logging here before we modify sel based on endian */
808 PPC_WARN_EMULATED(lxvw4x
, regs
);
811 PPC_WARN_EMULATED(lxvh8x
, regs
);
814 PPC_WARN_EMULATED(lxvd2x
, regs
);
816 case 3: /* lxvb16x */
817 PPC_WARN_EMULATED(lxvb16x
, regs
);
821 #ifdef __LITTLE_ENDIAN__
823 * An LE kernel stores the vector in the task struct as an LE
824 * byte array (effectively swapping both the components and
825 * the content of the components). Those instructions expect
826 * the components to remain in ascending address order, so we
829 * If we are running a BE user space, the expectation is that
830 * of a simple memcpy, so forcing the emulation to look like
831 * a lxvb16x should do the trick.
838 for (i
= 0; i
< 4; i
++)
839 ((u32
*)vdst
)[i
] = ((u32
*)vbuf
)[3-i
];
842 for (i
= 0; i
< 8; i
++)
843 ((u16
*)vdst
)[i
] = ((u16
*)vbuf
)[7-i
];
846 for (i
= 0; i
< 2; i
++)
847 ((u64
*)vdst
)[i
] = ((u64
*)vbuf
)[1-i
];
849 case 3: /* lxvb16x */
850 for (i
= 0; i
< 16; i
++)
851 vdst
[i
] = vbuf
[15-i
];
854 #else /* __LITTLE_ENDIAN__ */
855 /* On a big endian kernel, a BE userspace only needs a memcpy */
859 /* Otherwise, we need to swap the content of the components */
862 for (i
= 0; i
< 4; i
++)
863 ((u32
*)vdst
)[i
] = cpu_to_le32(((u32
*)vbuf
)[i
]);
866 for (i
= 0; i
< 8; i
++)
867 ((u16
*)vdst
)[i
] = cpu_to_le16(((u16
*)vbuf
)[i
]);
870 for (i
= 0; i
< 2; i
++)
871 ((u64
*)vdst
)[i
] = cpu_to_le64(((u64
*)vbuf
)[i
]);
873 case 3: /* lxvb16x */
874 memcpy(vdst
, vbuf
, 16);
877 #endif /* !__LITTLE_ENDIAN__ */
879 /* Go to next instruction */
882 #endif /* CONFIG_VSX */
884 void handle_hmi_exception(struct pt_regs
*regs
)
886 struct pt_regs
*old_regs
;
888 old_regs
= set_irq_regs(regs
);
892 /* Real mode flagged P9 special emu is needed */
893 if (local_paca
->hmi_p9_special_emu
) {
894 local_paca
->hmi_p9_special_emu
= 0;
897 * We don't want to take page faults while doing the
898 * emulation, we just replay the instruction if necessary.
901 p9_hmi_special_emu(regs
);
904 #endif /* CONFIG_VSX */
906 if (ppc_md
.handle_hmi_exception
)
907 ppc_md
.handle_hmi_exception(regs
);
910 set_irq_regs(old_regs
);
913 void unknown_exception(struct pt_regs
*regs
)
915 enum ctx_state prev_state
= exception_enter();
917 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
918 regs
->nip
, regs
->msr
, regs
->trap
);
920 _exception(SIGTRAP
, regs
, TRAP_FIXME
, 0);
922 exception_exit(prev_state
);
925 void instruction_breakpoint_exception(struct pt_regs
*regs
)
927 enum ctx_state prev_state
= exception_enter();
929 if (notify_die(DIE_IABR_MATCH
, "iabr_match", regs
, 5,
930 5, SIGTRAP
) == NOTIFY_STOP
)
932 if (debugger_iabr_match(regs
))
934 _exception(SIGTRAP
, regs
, TRAP_BRKPT
, regs
->nip
);
937 exception_exit(prev_state
);
940 void RunModeException(struct pt_regs
*regs
)
942 _exception(SIGTRAP
, regs
, TRAP_FIXME
, 0);
945 void single_step_exception(struct pt_regs
*regs
)
947 enum ctx_state prev_state
= exception_enter();
949 clear_single_step(regs
);
951 if (kprobe_post_handler(regs
))
954 if (notify_die(DIE_SSTEP
, "single_step", regs
, 5,
955 5, SIGTRAP
) == NOTIFY_STOP
)
957 if (debugger_sstep(regs
))
960 _exception(SIGTRAP
, regs
, TRAP_TRACE
, regs
->nip
);
963 exception_exit(prev_state
);
965 NOKPROBE_SYMBOL(single_step_exception
);
968 * After we have successfully emulated an instruction, we have to
969 * check if the instruction was being single-stepped, and if so,
970 * pretend we got a single-step exception. This was pointed out
971 * by Kumar Gala. -- paulus
973 static void emulate_single_step(struct pt_regs
*regs
)
975 if (single_stepping(regs
))
976 single_step_exception(regs
);
979 static inline int __parse_fpscr(unsigned long fpscr
)
983 /* Invalid operation */
984 if ((fpscr
& FPSCR_VE
) && (fpscr
& FPSCR_VX
))
988 else if ((fpscr
& FPSCR_OE
) && (fpscr
& FPSCR_OX
))
992 else if ((fpscr
& FPSCR_UE
) && (fpscr
& FPSCR_UX
))
996 else if ((fpscr
& FPSCR_ZE
) && (fpscr
& FPSCR_ZX
))
1000 else if ((fpscr
& FPSCR_XE
) && (fpscr
& FPSCR_XX
))
1006 static void parse_fpe(struct pt_regs
*regs
)
1010 flush_fp_to_thread(current
);
1012 code
= __parse_fpscr(current
->thread
.fp_state
.fpscr
);
1014 _exception(SIGFPE
, regs
, code
, regs
->nip
);
1018 * Illegal instruction emulation support. Originally written to
1019 * provide the PVR to user applications using the mfspr rd, PVR.
1020 * Return non-zero if we can't emulate, or -EFAULT if the associated
1021 * memory access caused an access fault. Return zero on success.
1023 * There are a couple of ways to do this, either "decode" the instruction
1024 * or directly match lots of bits. In this case, matching lots of
1025 * bits is faster and easier.
1028 static int emulate_string_inst(struct pt_regs
*regs
, u32 instword
)
1030 u8 rT
= (instword
>> 21) & 0x1f;
1031 u8 rA
= (instword
>> 16) & 0x1f;
1032 u8 NB_RB
= (instword
>> 11) & 0x1f;
1037 /* Early out if we are an invalid form of lswx */
1038 if ((instword
& PPC_INST_STRING_MASK
) == PPC_INST_LSWX
)
1039 if ((rT
== rA
) || (rT
== NB_RB
))
1042 EA
= (rA
== 0) ? 0 : regs
->gpr
[rA
];
1044 switch (instword
& PPC_INST_STRING_MASK
) {
1046 case PPC_INST_STSWX
:
1048 num_bytes
= regs
->xer
& 0x7f;
1051 case PPC_INST_STSWI
:
1052 num_bytes
= (NB_RB
== 0) ? 32 : NB_RB
;
1058 while (num_bytes
!= 0)
1061 u32 shift
= 8 * (3 - (pos
& 0x3));
1063 /* if process is 32-bit, clear upper 32 bits of EA */
1064 if ((regs
->msr
& MSR_64BIT
) == 0)
1067 switch ((instword
& PPC_INST_STRING_MASK
)) {
1070 if (get_user(val
, (u8 __user
*)EA
))
1072 /* first time updating this reg,
1076 regs
->gpr
[rT
] |= val
<< shift
;
1078 case PPC_INST_STSWI
:
1079 case PPC_INST_STSWX
:
1080 val
= regs
->gpr
[rT
] >> shift
;
1081 if (put_user(val
, (u8 __user
*)EA
))
1085 /* move EA to next address */
1089 /* manage our position within the register */
1100 static int emulate_popcntb_inst(struct pt_regs
*regs
, u32 instword
)
1105 ra
= (instword
>> 16) & 0x1f;
1106 rs
= (instword
>> 21) & 0x1f;
1108 tmp
= regs
->gpr
[rs
];
1109 tmp
= tmp
- ((tmp
>> 1) & 0x5555555555555555ULL
);
1110 tmp
= (tmp
& 0x3333333333333333ULL
) + ((tmp
>> 2) & 0x3333333333333333ULL
);
1111 tmp
= (tmp
+ (tmp
>> 4)) & 0x0f0f0f0f0f0f0f0fULL
;
1112 regs
->gpr
[ra
] = tmp
;
1117 static int emulate_isel(struct pt_regs
*regs
, u32 instword
)
1119 u8 rT
= (instword
>> 21) & 0x1f;
1120 u8 rA
= (instword
>> 16) & 0x1f;
1121 u8 rB
= (instword
>> 11) & 0x1f;
1122 u8 BC
= (instword
>> 6) & 0x1f;
1126 tmp
= (rA
== 0) ? 0 : regs
->gpr
[rA
];
1127 bit
= (regs
->ccr
>> (31 - BC
)) & 0x1;
1129 regs
->gpr
[rT
] = bit
? tmp
: regs
->gpr
[rB
];
1134 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1135 static inline bool tm_abort_check(struct pt_regs
*regs
, int cause
)
1137 /* If we're emulating a load/store in an active transaction, we cannot
1138 * emulate it as the kernel operates in transaction suspended context.
1139 * We need to abort the transaction. This creates a persistent TM
1140 * abort so tell the user what caused it with a new code.
1142 if (MSR_TM_TRANSACTIONAL(regs
->msr
)) {
1150 static inline bool tm_abort_check(struct pt_regs
*regs
, int reason
)
1156 static int emulate_instruction(struct pt_regs
*regs
)
1161 if (!user_mode(regs
))
1163 CHECK_FULL_REGS(regs
);
1165 if (get_user(instword
, (u32 __user
*)(regs
->nip
)))
1168 /* Emulate the mfspr rD, PVR. */
1169 if ((instword
& PPC_INST_MFSPR_PVR_MASK
) == PPC_INST_MFSPR_PVR
) {
1170 PPC_WARN_EMULATED(mfpvr
, regs
);
1171 rd
= (instword
>> 21) & 0x1f;
1172 regs
->gpr
[rd
] = mfspr(SPRN_PVR
);
1176 /* Emulating the dcba insn is just a no-op. */
1177 if ((instword
& PPC_INST_DCBA_MASK
) == PPC_INST_DCBA
) {
1178 PPC_WARN_EMULATED(dcba
, regs
);
1182 /* Emulate the mcrxr insn. */
1183 if ((instword
& PPC_INST_MCRXR_MASK
) == PPC_INST_MCRXR
) {
1184 int shift
= (instword
>> 21) & 0x1c;
1185 unsigned long msk
= 0xf0000000UL
>> shift
;
1187 PPC_WARN_EMULATED(mcrxr
, regs
);
1188 regs
->ccr
= (regs
->ccr
& ~msk
) | ((regs
->xer
>> shift
) & msk
);
1189 regs
->xer
&= ~0xf0000000UL
;
1193 /* Emulate load/store string insn. */
1194 if ((instword
& PPC_INST_STRING_GEN_MASK
) == PPC_INST_STRING
) {
1195 if (tm_abort_check(regs
,
1196 TM_CAUSE_EMULATE
| TM_CAUSE_PERSISTENT
))
1198 PPC_WARN_EMULATED(string
, regs
);
1199 return emulate_string_inst(regs
, instword
);
1202 /* Emulate the popcntb (Population Count Bytes) instruction. */
1203 if ((instword
& PPC_INST_POPCNTB_MASK
) == PPC_INST_POPCNTB
) {
1204 PPC_WARN_EMULATED(popcntb
, regs
);
1205 return emulate_popcntb_inst(regs
, instword
);
1208 /* Emulate isel (Integer Select) instruction */
1209 if ((instword
& PPC_INST_ISEL_MASK
) == PPC_INST_ISEL
) {
1210 PPC_WARN_EMULATED(isel
, regs
);
1211 return emulate_isel(regs
, instword
);
1214 /* Emulate sync instruction variants */
1215 if ((instword
& PPC_INST_SYNC_MASK
) == PPC_INST_SYNC
) {
1216 PPC_WARN_EMULATED(sync
, regs
);
1217 asm volatile("sync");
1222 /* Emulate the mfspr rD, DSCR. */
1223 if ((((instword
& PPC_INST_MFSPR_DSCR_USER_MASK
) ==
1224 PPC_INST_MFSPR_DSCR_USER
) ||
1225 ((instword
& PPC_INST_MFSPR_DSCR_MASK
) ==
1226 PPC_INST_MFSPR_DSCR
)) &&
1227 cpu_has_feature(CPU_FTR_DSCR
)) {
1228 PPC_WARN_EMULATED(mfdscr
, regs
);
1229 rd
= (instword
>> 21) & 0x1f;
1230 regs
->gpr
[rd
] = mfspr(SPRN_DSCR
);
1233 /* Emulate the mtspr DSCR, rD. */
1234 if ((((instword
& PPC_INST_MTSPR_DSCR_USER_MASK
) ==
1235 PPC_INST_MTSPR_DSCR_USER
) ||
1236 ((instword
& PPC_INST_MTSPR_DSCR_MASK
) ==
1237 PPC_INST_MTSPR_DSCR
)) &&
1238 cpu_has_feature(CPU_FTR_DSCR
)) {
1239 PPC_WARN_EMULATED(mtdscr
, regs
);
1240 rd
= (instword
>> 21) & 0x1f;
1241 current
->thread
.dscr
= regs
->gpr
[rd
];
1242 current
->thread
.dscr_inherit
= 1;
1243 mtspr(SPRN_DSCR
, current
->thread
.dscr
);
1251 int is_valid_bugaddr(unsigned long addr
)
1253 return is_kernel_addr(addr
);
1256 #ifdef CONFIG_MATH_EMULATION
1257 static int emulate_math(struct pt_regs
*regs
)
1260 extern int do_mathemu(struct pt_regs
*regs
);
1262 ret
= do_mathemu(regs
);
1264 PPC_WARN_EMULATED(math
, regs
);
1268 emulate_single_step(regs
);
1272 code
= __parse_fpscr(current
->thread
.fp_state
.fpscr
);
1273 _exception(SIGFPE
, regs
, code
, regs
->nip
);
1277 _exception(SIGSEGV
, regs
, SEGV_MAPERR
, regs
->nip
);
1284 static inline int emulate_math(struct pt_regs
*regs
) { return -1; }
1287 void program_check_exception(struct pt_regs
*regs
)
1289 enum ctx_state prev_state
= exception_enter();
1290 unsigned int reason
= get_reason(regs
);
1292 /* We can now get here via a FP Unavailable exception if the core
1293 * has no FPU, in that case the reason flags will be 0 */
1295 if (reason
& REASON_FP
) {
1296 /* IEEE FP exception */
1300 if (reason
& REASON_TRAP
) {
1301 unsigned long bugaddr
;
1302 /* Debugger is first in line to stop recursive faults in
1303 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1304 if (debugger_bpt(regs
))
1307 if (kprobe_handler(regs
))
1310 /* trap exception */
1311 if (notify_die(DIE_BPT
, "breakpoint", regs
, 5, 5, SIGTRAP
)
1315 bugaddr
= regs
->nip
;
1317 * Fixup bugaddr for BUG_ON() in real mode
1319 if (!is_kernel_addr(bugaddr
) && !(regs
->msr
& MSR_IR
))
1320 bugaddr
+= PAGE_OFFSET
;
1322 if (!(regs
->msr
& MSR_PR
) && /* not user-mode */
1323 report_bug(bugaddr
, regs
) == BUG_TRAP_TYPE_WARN
) {
1327 _exception(SIGTRAP
, regs
, TRAP_BRKPT
, regs
->nip
);
1330 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1331 if (reason
& REASON_TM
) {
1332 /* This is a TM "Bad Thing Exception" program check.
1334 * - An rfid/hrfid/mtmsrd attempts to cause an illegal
1335 * transition in TM states.
1336 * - A trechkpt is attempted when transactional.
1337 * - A treclaim is attempted when non transactional.
1338 * - A tend is illegally attempted.
1339 * - writing a TM SPR when transactional.
1341 * If usermode caused this, it's done something illegal and
1342 * gets a SIGILL slap on the wrist. We call it an illegal
1343 * operand to distinguish from the instruction just being bad
1344 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1345 * illegal /placement/ of a valid instruction.
1347 if (user_mode(regs
)) {
1348 _exception(SIGILL
, regs
, ILL_ILLOPN
, regs
->nip
);
1351 printk(KERN_EMERG
"Unexpected TM Bad Thing exception "
1352 "at %lx (msr 0x%x)\n", regs
->nip
, reason
);
1353 die("Unrecoverable exception", regs
, SIGABRT
);
1359 * If we took the program check in the kernel skip down to sending a
1360 * SIGILL. The subsequent cases all relate to emulating instructions
1361 * which we should only do for userspace. We also do not want to enable
1362 * interrupts for kernel faults because that might lead to further
1363 * faults, and loose the context of the original exception.
1365 if (!user_mode(regs
))
1368 /* We restore the interrupt state now */
1369 if (!arch_irq_disabled_regs(regs
))
1372 /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1373 * but there seems to be a hardware bug on the 405GP (RevD)
1374 * that means ESR is sometimes set incorrectly - either to
1375 * ESR_DST (!?) or 0. In the process of chasing this with the
1376 * hardware people - not sure if it can happen on any illegal
1377 * instruction or only on FP instructions, whether there is a
1378 * pattern to occurrences etc. -dgibson 31/Mar/2003
1380 if (!emulate_math(regs
))
1383 /* Try to emulate it if we should. */
1384 if (reason
& (REASON_ILLEGAL
| REASON_PRIVILEGED
)) {
1385 switch (emulate_instruction(regs
)) {
1388 emulate_single_step(regs
);
1391 _exception(SIGSEGV
, regs
, SEGV_MAPERR
, regs
->nip
);
1397 if (reason
& REASON_PRIVILEGED
)
1398 _exception(SIGILL
, regs
, ILL_PRVOPC
, regs
->nip
);
1400 _exception(SIGILL
, regs
, ILL_ILLOPC
, regs
->nip
);
1403 exception_exit(prev_state
);
1405 NOKPROBE_SYMBOL(program_check_exception
);
1408 * This occurs when running in hypervisor mode on POWER6 or later
1409 * and an illegal instruction is encountered.
1411 void emulation_assist_interrupt(struct pt_regs
*regs
)
1413 regs
->msr
|= REASON_ILLEGAL
;
1414 program_check_exception(regs
);
1416 NOKPROBE_SYMBOL(emulation_assist_interrupt
);
1418 void alignment_exception(struct pt_regs
*regs
)
1420 enum ctx_state prev_state
= exception_enter();
1421 int sig
, code
, fixed
= 0;
1423 /* We restore the interrupt state now */
1424 if (!arch_irq_disabled_regs(regs
))
1427 if (tm_abort_check(regs
, TM_CAUSE_ALIGNMENT
| TM_CAUSE_PERSISTENT
))
1430 /* we don't implement logging of alignment exceptions */
1431 if (!(current
->thread
.align_ctl
& PR_UNALIGN_SIGBUS
))
1432 fixed
= fix_alignment(regs
);
1435 regs
->nip
+= 4; /* skip over emulated instruction */
1436 emulate_single_step(regs
);
1440 /* Operand address was bad */
1441 if (fixed
== -EFAULT
) {
1448 if (user_mode(regs
))
1449 _exception(sig
, regs
, code
, regs
->dar
);
1451 bad_page_fault(regs
, regs
->dar
, sig
);
1454 exception_exit(prev_state
);
1457 void slb_miss_bad_addr(struct pt_regs
*regs
)
1459 enum ctx_state prev_state
= exception_enter();
1461 if (user_mode(regs
))
1462 _exception(SIGSEGV
, regs
, SEGV_BNDERR
, regs
->dar
);
1464 bad_page_fault(regs
, regs
->dar
, SIGSEGV
);
1466 exception_exit(prev_state
);
1469 void StackOverflow(struct pt_regs
*regs
)
1471 printk(KERN_CRIT
"Kernel stack overflow in process %p, r1=%lx\n",
1472 current
, regs
->gpr
[1]);
1475 panic("kernel stack overflow");
1478 void nonrecoverable_exception(struct pt_regs
*regs
)
1480 printk(KERN_ERR
"Non-recoverable exception at PC=%lx MSR=%lx\n",
1481 regs
->nip
, regs
->msr
);
1483 die("nonrecoverable exception", regs
, SIGKILL
);
1486 void kernel_fp_unavailable_exception(struct pt_regs
*regs
)
1488 enum ctx_state prev_state
= exception_enter();
1490 printk(KERN_EMERG
"Unrecoverable FP Unavailable Exception "
1491 "%lx at %lx\n", regs
->trap
, regs
->nip
);
1492 die("Unrecoverable FP Unavailable Exception", regs
, SIGABRT
);
1494 exception_exit(prev_state
);
1497 void altivec_unavailable_exception(struct pt_regs
*regs
)
1499 enum ctx_state prev_state
= exception_enter();
1501 if (user_mode(regs
)) {
1502 /* A user program has executed an altivec instruction,
1503 but this kernel doesn't support altivec. */
1504 _exception(SIGILL
, regs
, ILL_ILLOPC
, regs
->nip
);
1508 printk(KERN_EMERG
"Unrecoverable VMX/Altivec Unavailable Exception "
1509 "%lx at %lx\n", regs
->trap
, regs
->nip
);
1510 die("Unrecoverable VMX/Altivec Unavailable Exception", regs
, SIGABRT
);
1513 exception_exit(prev_state
);
1516 void vsx_unavailable_exception(struct pt_regs
*regs
)
1518 if (user_mode(regs
)) {
1519 /* A user program has executed an vsx instruction,
1520 but this kernel doesn't support vsx. */
1521 _exception(SIGILL
, regs
, ILL_ILLOPC
, regs
->nip
);
1525 printk(KERN_EMERG
"Unrecoverable VSX Unavailable Exception "
1526 "%lx at %lx\n", regs
->trap
, regs
->nip
);
1527 die("Unrecoverable VSX Unavailable Exception", regs
, SIGABRT
);
1531 static void tm_unavailable(struct pt_regs
*regs
)
1533 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1534 if (user_mode(regs
)) {
1535 current
->thread
.load_tm
++;
1536 regs
->msr
|= MSR_TM
;
1538 tm_restore_sprs(¤t
->thread
);
1542 pr_emerg("Unrecoverable TM Unavailable Exception "
1543 "%lx at %lx\n", regs
->trap
, regs
->nip
);
1544 die("Unrecoverable TM Unavailable Exception", regs
, SIGABRT
);
1547 void facility_unavailable_exception(struct pt_regs
*regs
)
1549 static char *facility_strings
[] = {
1550 [FSCR_FP_LG
] = "FPU",
1551 [FSCR_VECVSX_LG
] = "VMX/VSX",
1552 [FSCR_DSCR_LG
] = "DSCR",
1553 [FSCR_PM_LG
] = "PMU SPRs",
1554 [FSCR_BHRB_LG
] = "BHRB",
1555 [FSCR_TM_LG
] = "TM",
1556 [FSCR_EBB_LG
] = "EBB",
1557 [FSCR_TAR_LG
] = "TAR",
1558 [FSCR_MSGP_LG
] = "MSGP",
1559 [FSCR_SCV_LG
] = "SCV",
1561 char *facility
= "unknown";
1567 hv
= (regs
->trap
== 0xf80);
1569 value
= mfspr(SPRN_HFSCR
);
1571 value
= mfspr(SPRN_FSCR
);
1573 status
= value
>> 56;
1574 if (status
== FSCR_DSCR_LG
) {
1576 * User is accessing the DSCR register using the problem
1577 * state only SPR number (0x03) either through a mfspr or
1578 * a mtspr instruction. If it is a write attempt through
1579 * a mtspr, then we set the inherit bit. This also allows
1580 * the user to write or read the register directly in the
1581 * future by setting via the FSCR DSCR bit. But in case it
1582 * is a read DSCR attempt through a mfspr instruction, we
1583 * just emulate the instruction instead. This code path will
1584 * always emulate all the mfspr instructions till the user
1585 * has attempted at least one mtspr instruction. This way it
1586 * preserves the same behaviour when the user is accessing
1587 * the DSCR through privilege level only SPR number (0x11)
1588 * which is emulated through illegal instruction exception.
1589 * We always leave HFSCR DSCR set.
1591 if (get_user(instword
, (u32 __user
*)(regs
->nip
))) {
1592 pr_err("Failed to fetch the user instruction\n");
1596 /* Write into DSCR (mtspr 0x03, RS) */
1597 if ((instword
& PPC_INST_MTSPR_DSCR_USER_MASK
)
1598 == PPC_INST_MTSPR_DSCR_USER
) {
1599 rd
= (instword
>> 21) & 0x1f;
1600 current
->thread
.dscr
= regs
->gpr
[rd
];
1601 current
->thread
.dscr_inherit
= 1;
1602 current
->thread
.fscr
|= FSCR_DSCR
;
1603 mtspr(SPRN_FSCR
, current
->thread
.fscr
);
1606 /* Read from DSCR (mfspr RT, 0x03) */
1607 if ((instword
& PPC_INST_MFSPR_DSCR_USER_MASK
)
1608 == PPC_INST_MFSPR_DSCR_USER
) {
1609 if (emulate_instruction(regs
)) {
1610 pr_err("DSCR based mfspr emulation failed\n");
1614 emulate_single_step(regs
);
1619 if (status
== FSCR_TM_LG
) {
1621 * If we're here then the hardware is TM aware because it
1622 * generated an exception with FSRM_TM set.
1624 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware
1625 * told us not to do TM, or the kernel is not built with TM
1628 * If both of those things are true, then userspace can spam the
1629 * console by triggering the printk() below just by continually
1630 * doing tbegin (or any TM instruction). So in that case just
1631 * send the process a SIGILL immediately.
1633 if (!cpu_has_feature(CPU_FTR_TM
))
1636 tm_unavailable(regs
);
1640 if ((hv
|| status
>= 2) &&
1641 (status
< ARRAY_SIZE(facility_strings
)) &&
1642 facility_strings
[status
])
1643 facility
= facility_strings
[status
];
1645 /* We restore the interrupt state now */
1646 if (!arch_irq_disabled_regs(regs
))
1649 pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n",
1650 hv
? "Hypervisor " : "", facility
, status
, regs
->nip
, regs
->msr
);
1653 if (user_mode(regs
)) {
1654 _exception(SIGILL
, regs
, ILL_ILLOPC
, regs
->nip
);
1658 die("Unexpected facility unavailable exception", regs
, SIGABRT
);
1662 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1664 void fp_unavailable_tm(struct pt_regs
*regs
)
1666 /* Note: This does not handle any kind of FP laziness. */
1668 TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1669 regs
->nip
, regs
->msr
);
1671 /* We can only have got here if the task started using FP after
1672 * beginning the transaction. So, the transactional regs are just a
1673 * copy of the checkpointed ones. But, we still need to recheckpoint
1674 * as we're enabling FP for the process; it will return, abort the
1675 * transaction, and probably retry but now with FP enabled. So the
1676 * checkpointed FP registers need to be loaded.
1678 tm_reclaim_current(TM_CAUSE_FAC_UNAV
);
1679 /* Reclaim didn't save out any FPRs to transact_fprs. */
1681 /* Enable FP for the task: */
1682 current
->thread
.load_fp
= 1;
1684 /* This loads and recheckpoints the FP registers from
1685 * thread.fpr[]. They will remain in registers after the
1686 * checkpoint so we don't need to reload them after.
1687 * If VMX is in use, the VRs now hold checkpointed values,
1688 * so we don't want to load the VRs from the thread_struct.
1690 tm_recheckpoint(¤t
->thread
);
1693 void altivec_unavailable_tm(struct pt_regs
*regs
)
1695 /* See the comments in fp_unavailable_tm(). This function operates
1699 TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1701 regs
->nip
, regs
->msr
);
1702 tm_reclaim_current(TM_CAUSE_FAC_UNAV
);
1703 current
->thread
.load_vec
= 1;
1704 tm_recheckpoint(¤t
->thread
);
1705 current
->thread
.used_vr
= 1;
1708 void vsx_unavailable_tm(struct pt_regs
*regs
)
1710 /* See the comments in fp_unavailable_tm(). This works similarly,
1711 * though we're loading both FP and VEC registers in here.
1713 * If FP isn't in use, load FP regs. If VEC isn't in use, load VEC
1714 * regs. Either way, set MSR_VSX.
1717 TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1719 regs
->nip
, regs
->msr
);
1721 current
->thread
.used_vsr
= 1;
1723 /* This reclaims FP and/or VR regs if they're already enabled */
1724 tm_reclaim_current(TM_CAUSE_FAC_UNAV
);
1726 current
->thread
.load_vec
= 1;
1727 current
->thread
.load_fp
= 1;
1729 tm_recheckpoint(¤t
->thread
);
1731 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1733 void performance_monitor_exception(struct pt_regs
*regs
)
1735 __this_cpu_inc(irq_stat
.pmu_irqs
);
1740 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1741 static void handle_debug(struct pt_regs
*regs
, unsigned long debug_status
)
1745 * Determine the cause of the debug event, clear the
1746 * event flags and send a trap to the handler. Torez
1748 if (debug_status
& (DBSR_DAC1R
| DBSR_DAC1W
)) {
1749 dbcr_dac(current
) &= ~(DBCR_DAC1R
| DBCR_DAC1W
);
1750 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1751 current
->thread
.debug
.dbcr2
&= ~DBCR2_DAC12MODE
;
1753 do_send_trap(regs
, mfspr(SPRN_DAC1
), debug_status
,
1756 } else if (debug_status
& (DBSR_DAC2R
| DBSR_DAC2W
)) {
1757 dbcr_dac(current
) &= ~(DBCR_DAC2R
| DBCR_DAC2W
);
1758 do_send_trap(regs
, mfspr(SPRN_DAC2
), debug_status
,
1761 } else if (debug_status
& DBSR_IAC1
) {
1762 current
->thread
.debug
.dbcr0
&= ~DBCR0_IAC1
;
1763 dbcr_iac_range(current
) &= ~DBCR_IAC12MODE
;
1764 do_send_trap(regs
, mfspr(SPRN_IAC1
), debug_status
,
1767 } else if (debug_status
& DBSR_IAC2
) {
1768 current
->thread
.debug
.dbcr0
&= ~DBCR0_IAC2
;
1769 do_send_trap(regs
, mfspr(SPRN_IAC2
), debug_status
,
1772 } else if (debug_status
& DBSR_IAC3
) {
1773 current
->thread
.debug
.dbcr0
&= ~DBCR0_IAC3
;
1774 dbcr_iac_range(current
) &= ~DBCR_IAC34MODE
;
1775 do_send_trap(regs
, mfspr(SPRN_IAC3
), debug_status
,
1778 } else if (debug_status
& DBSR_IAC4
) {
1779 current
->thread
.debug
.dbcr0
&= ~DBCR0_IAC4
;
1780 do_send_trap(regs
, mfspr(SPRN_IAC4
), debug_status
,
1785 * At the point this routine was called, the MSR(DE) was turned off.
1786 * Check all other debug flags and see if that bit needs to be turned
1789 if (DBCR_ACTIVE_EVENTS(current
->thread
.debug
.dbcr0
,
1790 current
->thread
.debug
.dbcr1
))
1791 regs
->msr
|= MSR_DE
;
1793 /* Make sure the IDM flag is off */
1794 current
->thread
.debug
.dbcr0
&= ~DBCR0_IDM
;
1797 mtspr(SPRN_DBCR0
, current
->thread
.debug
.dbcr0
);
1800 void DebugException(struct pt_regs
*regs
, unsigned long debug_status
)
1802 current
->thread
.debug
.dbsr
= debug_status
;
1804 /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1805 * on server, it stops on the target of the branch. In order to simulate
1806 * the server behaviour, we thus restart right away with a single step
1807 * instead of stopping here when hitting a BT
1809 if (debug_status
& DBSR_BT
) {
1810 regs
->msr
&= ~MSR_DE
;
1813 mtspr(SPRN_DBCR0
, mfspr(SPRN_DBCR0
) & ~DBCR0_BT
);
1814 /* Clear the BT event */
1815 mtspr(SPRN_DBSR
, DBSR_BT
);
1817 /* Do the single step trick only when coming from userspace */
1818 if (user_mode(regs
)) {
1819 current
->thread
.debug
.dbcr0
&= ~DBCR0_BT
;
1820 current
->thread
.debug
.dbcr0
|= DBCR0_IDM
| DBCR0_IC
;
1821 regs
->msr
|= MSR_DE
;
1825 if (kprobe_post_handler(regs
))
1828 if (notify_die(DIE_SSTEP
, "block_step", regs
, 5,
1829 5, SIGTRAP
) == NOTIFY_STOP
) {
1832 if (debugger_sstep(regs
))
1834 } else if (debug_status
& DBSR_IC
) { /* Instruction complete */
1835 regs
->msr
&= ~MSR_DE
;
1837 /* Disable instruction completion */
1838 mtspr(SPRN_DBCR0
, mfspr(SPRN_DBCR0
) & ~DBCR0_IC
);
1839 /* Clear the instruction completion event */
1840 mtspr(SPRN_DBSR
, DBSR_IC
);
1842 if (kprobe_post_handler(regs
))
1845 if (notify_die(DIE_SSTEP
, "single_step", regs
, 5,
1846 5, SIGTRAP
) == NOTIFY_STOP
) {
1850 if (debugger_sstep(regs
))
1853 if (user_mode(regs
)) {
1854 current
->thread
.debug
.dbcr0
&= ~DBCR0_IC
;
1855 if (DBCR_ACTIVE_EVENTS(current
->thread
.debug
.dbcr0
,
1856 current
->thread
.debug
.dbcr1
))
1857 regs
->msr
|= MSR_DE
;
1859 /* Make sure the IDM bit is off */
1860 current
->thread
.debug
.dbcr0
&= ~DBCR0_IDM
;
1863 _exception(SIGTRAP
, regs
, TRAP_TRACE
, regs
->nip
);
1865 handle_debug(regs
, debug_status
);
1867 NOKPROBE_SYMBOL(DebugException
);
1868 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1870 #if !defined(CONFIG_TAU_INT)
1871 void TAUException(struct pt_regs
*regs
)
1873 printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx %s\n",
1874 regs
->nip
, regs
->msr
, regs
->trap
, print_tainted());
1876 #endif /* CONFIG_INT_TAU */
1878 #ifdef CONFIG_ALTIVEC
1879 void altivec_assist_exception(struct pt_regs
*regs
)
1883 if (!user_mode(regs
)) {
1884 printk(KERN_EMERG
"VMX/Altivec assist exception in kernel mode"
1885 " at %lx\n", regs
->nip
);
1886 die("Kernel VMX/Altivec assist exception", regs
, SIGILL
);
1889 flush_altivec_to_thread(current
);
1891 PPC_WARN_EMULATED(altivec
, regs
);
1892 err
= emulate_altivec(regs
);
1894 regs
->nip
+= 4; /* skip emulated instruction */
1895 emulate_single_step(regs
);
1899 if (err
== -EFAULT
) {
1900 /* got an error reading the instruction */
1901 _exception(SIGSEGV
, regs
, SEGV_ACCERR
, regs
->nip
);
1903 /* didn't recognize the instruction */
1904 /* XXX quick hack for now: set the non-Java bit in the VSCR */
1905 printk_ratelimited(KERN_ERR
"Unrecognized altivec instruction "
1906 "in %s at %lx\n", current
->comm
, regs
->nip
);
1907 current
->thread
.vr_state
.vscr
.u
[3] |= 0x10000;
1910 #endif /* CONFIG_ALTIVEC */
1912 #ifdef CONFIG_FSL_BOOKE
1913 void CacheLockingException(struct pt_regs
*regs
, unsigned long address
,
1914 unsigned long error_code
)
1916 /* We treat cache locking instructions from the user
1917 * as priv ops, in the future we could try to do
1920 if (error_code
& (ESR_DLK
|ESR_ILK
))
1921 _exception(SIGILL
, regs
, ILL_PRVOPC
, regs
->nip
);
1924 #endif /* CONFIG_FSL_BOOKE */
1927 void SPEFloatingPointException(struct pt_regs
*regs
)
1929 extern int do_spe_mathemu(struct pt_regs
*regs
);
1930 unsigned long spefscr
;
1932 int code
= FPE_FIXME
;
1935 flush_spe_to_thread(current
);
1937 spefscr
= current
->thread
.spefscr
;
1938 fpexc_mode
= current
->thread
.fpexc_mode
;
1940 if ((spefscr
& SPEFSCR_FOVF
) && (fpexc_mode
& PR_FP_EXC_OVF
)) {
1943 else if ((spefscr
& SPEFSCR_FUNF
) && (fpexc_mode
& PR_FP_EXC_UND
)) {
1946 else if ((spefscr
& SPEFSCR_FDBZ
) && (fpexc_mode
& PR_FP_EXC_DIV
))
1948 else if ((spefscr
& SPEFSCR_FINV
) && (fpexc_mode
& PR_FP_EXC_INV
)) {
1951 else if ((spefscr
& (SPEFSCR_FG
| SPEFSCR_FX
)) && (fpexc_mode
& PR_FP_EXC_RES
))
1954 err
= do_spe_mathemu(regs
);
1956 regs
->nip
+= 4; /* skip emulated instruction */
1957 emulate_single_step(regs
);
1961 if (err
== -EFAULT
) {
1962 /* got an error reading the instruction */
1963 _exception(SIGSEGV
, regs
, SEGV_ACCERR
, regs
->nip
);
1964 } else if (err
== -EINVAL
) {
1965 /* didn't recognize the instruction */
1966 printk(KERN_ERR
"unrecognized spe instruction "
1967 "in %s at %lx\n", current
->comm
, regs
->nip
);
1969 _exception(SIGFPE
, regs
, code
, regs
->nip
);
1975 void SPEFloatingPointRoundException(struct pt_regs
*regs
)
1977 extern int speround_handler(struct pt_regs
*regs
);
1981 if (regs
->msr
& MSR_SPE
)
1982 giveup_spe(current
);
1986 err
= speround_handler(regs
);
1988 regs
->nip
+= 4; /* skip emulated instruction */
1989 emulate_single_step(regs
);
1993 if (err
== -EFAULT
) {
1994 /* got an error reading the instruction */
1995 _exception(SIGSEGV
, regs
, SEGV_ACCERR
, regs
->nip
);
1996 } else if (err
== -EINVAL
) {
1997 /* didn't recognize the instruction */
1998 printk(KERN_ERR
"unrecognized spe instruction "
1999 "in %s at %lx\n", current
->comm
, regs
->nip
);
2001 _exception(SIGFPE
, regs
, FPE_FIXME
, regs
->nip
);
2008 * We enter here if we get an unrecoverable exception, that is, one
2009 * that happened at a point where the RI (recoverable interrupt) bit
2010 * in the MSR is 0. This indicates that SRR0/1 are live, and that
2011 * we therefore lost state by taking this exception.
2013 void unrecoverable_exception(struct pt_regs
*regs
)
2015 printk(KERN_EMERG
"Unrecoverable exception %lx at %lx\n",
2016 regs
->trap
, regs
->nip
);
2017 die("Unrecoverable exception", regs
, SIGABRT
);
2019 NOKPROBE_SYMBOL(unrecoverable_exception
);
2021 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
2023 * Default handler for a Watchdog exception,
2024 * spins until a reboot occurs
2026 void __attribute__ ((weak
)) WatchdogHandler(struct pt_regs
*regs
)
2028 /* Generic WatchdogHandler, implement your own */
2029 mtspr(SPRN_TCR
, mfspr(SPRN_TCR
)&(~TCR_WIE
));
2033 void WatchdogException(struct pt_regs
*regs
)
2035 printk (KERN_EMERG
"PowerPC Book-E Watchdog Exception\n");
2036 WatchdogHandler(regs
);
2041 * We enter here if we discover during exception entry that we are
2042 * running in supervisor mode with a userspace value in the stack pointer.
2044 void kernel_bad_stack(struct pt_regs
*regs
)
2046 printk(KERN_EMERG
"Bad kernel stack pointer %lx at %lx\n",
2047 regs
->gpr
[1], regs
->nip
);
2048 die("Bad kernel stack pointer", regs
, SIGABRT
);
2050 NOKPROBE_SYMBOL(kernel_bad_stack
);
2052 void __init
trap_init(void)
2057 #ifdef CONFIG_PPC_EMULATED_STATS
2059 #define WARN_EMULATED_SETUP(type) .type = { .name = #type }
2061 struct ppc_emulated ppc_emulated
= {
2062 #ifdef CONFIG_ALTIVEC
2063 WARN_EMULATED_SETUP(altivec
),
2065 WARN_EMULATED_SETUP(dcba
),
2066 WARN_EMULATED_SETUP(dcbz
),
2067 WARN_EMULATED_SETUP(fp_pair
),
2068 WARN_EMULATED_SETUP(isel
),
2069 WARN_EMULATED_SETUP(mcrxr
),
2070 WARN_EMULATED_SETUP(mfpvr
),
2071 WARN_EMULATED_SETUP(multiple
),
2072 WARN_EMULATED_SETUP(popcntb
),
2073 WARN_EMULATED_SETUP(spe
),
2074 WARN_EMULATED_SETUP(string
),
2075 WARN_EMULATED_SETUP(sync
),
2076 WARN_EMULATED_SETUP(unaligned
),
2077 #ifdef CONFIG_MATH_EMULATION
2078 WARN_EMULATED_SETUP(math
),
2081 WARN_EMULATED_SETUP(vsx
),
2084 WARN_EMULATED_SETUP(mfdscr
),
2085 WARN_EMULATED_SETUP(mtdscr
),
2086 WARN_EMULATED_SETUP(lq_stq
),
2087 WARN_EMULATED_SETUP(lxvw4x
),
2088 WARN_EMULATED_SETUP(lxvh8x
),
2089 WARN_EMULATED_SETUP(lxvd2x
),
2090 WARN_EMULATED_SETUP(lxvb16x
),
2094 u32 ppc_warn_emulated
;
2096 void ppc_warn_emulated_print(const char *type
)
2098 pr_warn_ratelimited("%s used emulated %s instruction\n", current
->comm
,
2102 static int __init
ppc_warn_emulated_init(void)
2104 struct dentry
*dir
, *d
;
2106 struct ppc_emulated_entry
*entries
= (void *)&ppc_emulated
;
2108 if (!powerpc_debugfs_root
)
2111 dir
= debugfs_create_dir("emulated_instructions",
2112 powerpc_debugfs_root
);
2116 d
= debugfs_create_u32("do_warn", S_IRUGO
| S_IWUSR
, dir
,
2117 &ppc_warn_emulated
);
2121 for (i
= 0; i
< sizeof(ppc_emulated
)/sizeof(*entries
); i
++) {
2122 d
= debugfs_create_u32(entries
[i
].name
, S_IRUGO
| S_IWUSR
, dir
,
2123 (u32
*)&entries
[i
].val
.counter
);
2131 debugfs_remove_recursive(dir
);
2135 device_initcall(ppc_warn_emulated_init
);
2137 #endif /* CONFIG_PPC_EMULATED_STATS */