2 * kernel/locking/mutex.c
4 * Mutexes: blocking mutual exclusion locks
6 * Started by Ingo Molnar:
8 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11 * David Howells for suggestions and improvements.
13 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14 * from the -rt tree, where it was originally implemented for rtmutexes
15 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
18 * Also see Documentation/locking/mutex-design.txt.
20 #include <linux/mutex.h>
21 #include <linux/ww_mutex.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/rt.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/sched/debug.h>
26 #include <linux/export.h>
27 #include <linux/spinlock.h>
28 #include <linux/interrupt.h>
29 #include <linux/debug_locks.h>
30 #include <linux/osq_lock.h>
32 #ifdef CONFIG_DEBUG_MUTEXES
33 # include "mutex-debug.h"
39 __mutex_init(struct mutex
*lock
, const char *name
, struct lock_class_key
*key
)
41 atomic_long_set(&lock
->owner
, 0);
42 spin_lock_init(&lock
->wait_lock
);
43 INIT_LIST_HEAD(&lock
->wait_list
);
44 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
45 osq_lock_init(&lock
->osq
);
48 debug_mutex_init(lock
, name
, key
);
50 EXPORT_SYMBOL(__mutex_init
);
53 * @owner: contains: 'struct task_struct *' to the current lock owner,
54 * NULL means not owned. Since task_struct pointers are aligned at
55 * at least L1_CACHE_BYTES, we have low bits to store extra state.
57 * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
58 * Bit1 indicates unlock needs to hand the lock to the top-waiter
59 * Bit2 indicates handoff has been done and we're waiting for pickup.
61 #define MUTEX_FLAG_WAITERS 0x01
62 #define MUTEX_FLAG_HANDOFF 0x02
63 #define MUTEX_FLAG_PICKUP 0x04
65 #define MUTEX_FLAGS 0x07
67 static inline struct task_struct
*__owner_task(unsigned long owner
)
69 return (struct task_struct
*)(owner
& ~MUTEX_FLAGS
);
72 static inline unsigned long __owner_flags(unsigned long owner
)
74 return owner
& MUTEX_FLAGS
;
78 * Trylock variant that retuns the owning task on failure.
80 static inline struct task_struct
*__mutex_trylock_or_owner(struct mutex
*lock
)
82 unsigned long owner
, curr
= (unsigned long)current
;
84 owner
= atomic_long_read(&lock
->owner
);
85 for (;;) { /* must loop, can race against a flag */
86 unsigned long old
, flags
= __owner_flags(owner
);
87 unsigned long task
= owner
& ~MUTEX_FLAGS
;
90 if (likely(task
!= curr
))
93 if (likely(!(flags
& MUTEX_FLAG_PICKUP
)))
96 flags
&= ~MUTEX_FLAG_PICKUP
;
98 #ifdef CONFIG_DEBUG_MUTEXES
99 DEBUG_LOCKS_WARN_ON(flags
& MUTEX_FLAG_PICKUP
);
104 * We set the HANDOFF bit, we must make sure it doesn't live
105 * past the point where we acquire it. This would be possible
106 * if we (accidentally) set the bit on an unlocked mutex.
108 flags
&= ~MUTEX_FLAG_HANDOFF
;
110 old
= atomic_long_cmpxchg_acquire(&lock
->owner
, owner
, curr
| flags
);
117 return __owner_task(owner
);
121 * Actual trylock that will work on any unlocked state.
123 static inline bool __mutex_trylock(struct mutex
*lock
)
125 return !__mutex_trylock_or_owner(lock
);
128 #ifndef CONFIG_DEBUG_LOCK_ALLOC
130 * Lockdep annotations are contained to the slow paths for simplicity.
131 * There is nothing that would stop spreading the lockdep annotations outwards
136 * Optimistic trylock that only works in the uncontended case. Make sure to
137 * follow with a __mutex_trylock() before failing.
139 static __always_inline
bool __mutex_trylock_fast(struct mutex
*lock
)
141 unsigned long curr
= (unsigned long)current
;
143 if (!atomic_long_cmpxchg_acquire(&lock
->owner
, 0UL, curr
))
149 static __always_inline
bool __mutex_unlock_fast(struct mutex
*lock
)
151 unsigned long curr
= (unsigned long)current
;
153 if (atomic_long_cmpxchg_release(&lock
->owner
, curr
, 0UL) == curr
)
160 static inline void __mutex_set_flag(struct mutex
*lock
, unsigned long flag
)
162 atomic_long_or(flag
, &lock
->owner
);
165 static inline void __mutex_clear_flag(struct mutex
*lock
, unsigned long flag
)
167 atomic_long_andnot(flag
, &lock
->owner
);
170 static inline bool __mutex_waiter_is_first(struct mutex
*lock
, struct mutex_waiter
*waiter
)
172 return list_first_entry(&lock
->wait_list
, struct mutex_waiter
, list
) == waiter
;
176 * Give up ownership to a specific task, when @task = NULL, this is equivalent
177 * to a regular unlock. Sets PICKUP on a handoff, clears HANDOF, preserves
178 * WAITERS. Provides RELEASE semantics like a regular unlock, the
179 * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff.
181 static void __mutex_handoff(struct mutex
*lock
, struct task_struct
*task
)
183 unsigned long owner
= atomic_long_read(&lock
->owner
);
186 unsigned long old
, new;
188 #ifdef CONFIG_DEBUG_MUTEXES
189 DEBUG_LOCKS_WARN_ON(__owner_task(owner
) != current
);
190 DEBUG_LOCKS_WARN_ON(owner
& MUTEX_FLAG_PICKUP
);
193 new = (owner
& MUTEX_FLAG_WAITERS
);
194 new |= (unsigned long)task
;
196 new |= MUTEX_FLAG_PICKUP
;
198 old
= atomic_long_cmpxchg_release(&lock
->owner
, owner
, new);
206 #ifndef CONFIG_DEBUG_LOCK_ALLOC
208 * We split the mutex lock/unlock logic into separate fastpath and
209 * slowpath functions, to reduce the register pressure on the fastpath.
210 * We also put the fastpath first in the kernel image, to make sure the
211 * branch is predicted by the CPU as default-untaken.
213 static void __sched
__mutex_lock_slowpath(struct mutex
*lock
);
216 * mutex_lock - acquire the mutex
217 * @lock: the mutex to be acquired
219 * Lock the mutex exclusively for this task. If the mutex is not
220 * available right now, it will sleep until it can get it.
222 * The mutex must later on be released by the same task that
223 * acquired it. Recursive locking is not allowed. The task
224 * may not exit without first unlocking the mutex. Also, kernel
225 * memory where the mutex resides must not be freed with
226 * the mutex still locked. The mutex must first be initialized
227 * (or statically defined) before it can be locked. memset()-ing
228 * the mutex to 0 is not allowed.
230 * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging
231 * checks that will enforce the restrictions and will also do
232 * deadlock debugging)
234 * This function is similar to (but not equivalent to) down().
236 void __sched
mutex_lock(struct mutex
*lock
)
240 if (!__mutex_trylock_fast(lock
))
241 __mutex_lock_slowpath(lock
);
243 EXPORT_SYMBOL(mutex_lock
);
246 static __always_inline
void
247 ww_mutex_lock_acquired(struct ww_mutex
*ww
, struct ww_acquire_ctx
*ww_ctx
)
249 #ifdef CONFIG_DEBUG_MUTEXES
251 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
252 * but released with a normal mutex_unlock in this call.
254 * This should never happen, always use ww_mutex_unlock.
256 DEBUG_LOCKS_WARN_ON(ww
->ctx
);
259 * Not quite done after calling ww_acquire_done() ?
261 DEBUG_LOCKS_WARN_ON(ww_ctx
->done_acquire
);
263 if (ww_ctx
->contending_lock
) {
265 * After -EDEADLK you tried to
266 * acquire a different ww_mutex? Bad!
268 DEBUG_LOCKS_WARN_ON(ww_ctx
->contending_lock
!= ww
);
271 * You called ww_mutex_lock after receiving -EDEADLK,
272 * but 'forgot' to unlock everything else first?
274 DEBUG_LOCKS_WARN_ON(ww_ctx
->acquired
> 0);
275 ww_ctx
->contending_lock
= NULL
;
279 * Naughty, using a different class will lead to undefined behavior!
281 DEBUG_LOCKS_WARN_ON(ww_ctx
->ww_class
!= ww
->ww_class
);
286 static inline bool __sched
287 __ww_ctx_stamp_after(struct ww_acquire_ctx
*a
, struct ww_acquire_ctx
*b
)
289 return a
->stamp
- b
->stamp
<= LONG_MAX
&&
290 (a
->stamp
!= b
->stamp
|| a
> b
);
294 * Wake up any waiters that may have to back off when the lock is held by the
297 * Due to the invariants on the wait list, this can only affect the first
298 * waiter with a context.
300 * The current task must not be on the wait list.
303 __ww_mutex_wakeup_for_backoff(struct mutex
*lock
, struct ww_acquire_ctx
*ww_ctx
)
305 struct mutex_waiter
*cur
;
307 lockdep_assert_held(&lock
->wait_lock
);
309 list_for_each_entry(cur
, &lock
->wait_list
, list
) {
313 if (cur
->ww_ctx
->acquired
> 0 &&
314 __ww_ctx_stamp_after(cur
->ww_ctx
, ww_ctx
)) {
315 debug_mutex_wake_waiter(lock
, cur
);
316 wake_up_process(cur
->task
);
324 * After acquiring lock with fastpath or when we lost out in contested
325 * slowpath, set ctx and wake up any waiters so they can recheck.
327 static __always_inline
void
328 ww_mutex_set_context_fastpath(struct ww_mutex
*lock
, struct ww_acquire_ctx
*ctx
)
330 ww_mutex_lock_acquired(lock
, ctx
);
335 * The lock->ctx update should be visible on all cores before
336 * the atomic read is done, otherwise contended waiters might be
337 * missed. The contended waiters will either see ww_ctx == NULL
338 * and keep spinning, or it will acquire wait_lock, add itself
339 * to waiter list and sleep.
344 * Check if lock is contended, if not there is nobody to wake up
346 if (likely(!(atomic_long_read(&lock
->base
.owner
) & MUTEX_FLAG_WAITERS
)))
350 * Uh oh, we raced in fastpath, wake up everyone in this case,
351 * so they can see the new lock->ctx.
353 spin_lock(&lock
->base
.wait_lock
);
354 __ww_mutex_wakeup_for_backoff(&lock
->base
, ctx
);
355 spin_unlock(&lock
->base
.wait_lock
);
359 * After acquiring lock in the slowpath set ctx.
361 * Unlike for the fast path, the caller ensures that waiters are woken up where
364 * Callers must hold the mutex wait_lock.
366 static __always_inline
void
367 ww_mutex_set_context_slowpath(struct ww_mutex
*lock
, struct ww_acquire_ctx
*ctx
)
369 ww_mutex_lock_acquired(lock
, ctx
);
373 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
376 bool ww_mutex_spin_on_owner(struct mutex
*lock
, struct ww_acquire_ctx
*ww_ctx
,
377 struct mutex_waiter
*waiter
)
381 ww
= container_of(lock
, struct ww_mutex
, base
);
384 * If ww->ctx is set the contents are undefined, only
385 * by acquiring wait_lock there is a guarantee that
386 * they are not invalid when reading.
388 * As such, when deadlock detection needs to be
389 * performed the optimistic spinning cannot be done.
391 * Check this in every inner iteration because we may
392 * be racing against another thread's ww_mutex_lock.
394 if (ww_ctx
->acquired
> 0 && READ_ONCE(ww
->ctx
))
398 * If we aren't on the wait list yet, cancel the spin
399 * if there are waiters. We want to avoid stealing the
400 * lock from a waiter with an earlier stamp, since the
401 * other thread may already own a lock that we also
404 if (!waiter
&& (atomic_long_read(&lock
->owner
) & MUTEX_FLAG_WAITERS
))
408 * Similarly, stop spinning if we are no longer the
411 if (waiter
&& !__mutex_waiter_is_first(lock
, waiter
))
418 * Look out! "owner" is an entirely speculative pointer access and not
421 * "noinline" so that this function shows up on perf profiles.
424 bool mutex_spin_on_owner(struct mutex
*lock
, struct task_struct
*owner
,
425 struct ww_acquire_ctx
*ww_ctx
, struct mutex_waiter
*waiter
)
430 while (__mutex_owner(lock
) == owner
) {
432 * Ensure we emit the owner->on_cpu, dereference _after_
433 * checking lock->owner still matches owner. If that fails,
434 * owner might point to freed memory. If it still matches,
435 * the rcu_read_lock() ensures the memory stays valid.
440 * Use vcpu_is_preempted to detect lock holder preemption issue.
442 if (!owner
->on_cpu
|| need_resched() ||
443 vcpu_is_preempted(task_cpu(owner
))) {
448 if (ww_ctx
&& !ww_mutex_spin_on_owner(lock
, ww_ctx
, waiter
)) {
461 * Initial check for entering the mutex spinning loop
463 static inline int mutex_can_spin_on_owner(struct mutex
*lock
)
465 struct task_struct
*owner
;
472 owner
= __mutex_owner(lock
);
475 * As lock holder preemption issue, we both skip spinning if task is not
476 * on cpu or its cpu is preempted
479 retval
= owner
->on_cpu
&& !vcpu_is_preempted(task_cpu(owner
));
483 * If lock->owner is not set, the mutex has been released. Return true
484 * such that we'll trylock in the spin path, which is a faster option
485 * than the blocking slow path.
491 * Optimistic spinning.
493 * We try to spin for acquisition when we find that the lock owner
494 * is currently running on a (different) CPU and while we don't
495 * need to reschedule. The rationale is that if the lock owner is
496 * running, it is likely to release the lock soon.
498 * The mutex spinners are queued up using MCS lock so that only one
499 * spinner can compete for the mutex. However, if mutex spinning isn't
500 * going to happen, there is no point in going through the lock/unlock
503 * Returns true when the lock was taken, otherwise false, indicating
504 * that we need to jump to the slowpath and sleep.
506 * The waiter flag is set to true if the spinner is a waiter in the wait
507 * queue. The waiter-spinner will spin on the lock directly and concurrently
508 * with the spinner at the head of the OSQ, if present, until the owner is
511 static __always_inline
bool
512 mutex_optimistic_spin(struct mutex
*lock
, struct ww_acquire_ctx
*ww_ctx
,
513 const bool use_ww_ctx
, struct mutex_waiter
*waiter
)
517 * The purpose of the mutex_can_spin_on_owner() function is
518 * to eliminate the overhead of osq_lock() and osq_unlock()
519 * in case spinning isn't possible. As a waiter-spinner
520 * is not going to take OSQ lock anyway, there is no need
521 * to call mutex_can_spin_on_owner().
523 if (!mutex_can_spin_on_owner(lock
))
527 * In order to avoid a stampede of mutex spinners trying to
528 * acquire the mutex all at once, the spinners need to take a
529 * MCS (queued) lock first before spinning on the owner field.
531 if (!osq_lock(&lock
->osq
))
536 struct task_struct
*owner
;
538 /* Try to acquire the mutex... */
539 owner
= __mutex_trylock_or_owner(lock
);
544 * There's an owner, wait for it to either
545 * release the lock or go to sleep.
547 if (!mutex_spin_on_owner(lock
, owner
, ww_ctx
, waiter
))
551 * The cpu_relax() call is a compiler barrier which forces
552 * everything in this loop to be re-loaded. We don't need
553 * memory barriers as we'll eventually observe the right
554 * values at the cost of a few extra spins.
560 osq_unlock(&lock
->osq
);
567 osq_unlock(&lock
->osq
);
571 * If we fell out of the spin path because of need_resched(),
572 * reschedule now, before we try-lock the mutex. This avoids getting
573 * scheduled out right after we obtained the mutex.
575 if (need_resched()) {
577 * We _should_ have TASK_RUNNING here, but just in case
578 * we do not, make it so, otherwise we might get stuck.
580 __set_current_state(TASK_RUNNING
);
581 schedule_preempt_disabled();
587 static __always_inline
bool
588 mutex_optimistic_spin(struct mutex
*lock
, struct ww_acquire_ctx
*ww_ctx
,
589 const bool use_ww_ctx
, struct mutex_waiter
*waiter
)
595 static noinline
void __sched
__mutex_unlock_slowpath(struct mutex
*lock
, unsigned long ip
);
598 * mutex_unlock - release the mutex
599 * @lock: the mutex to be released
601 * Unlock a mutex that has been locked by this task previously.
603 * This function must not be used in interrupt context. Unlocking
604 * of a not locked mutex is not allowed.
606 * This function is similar to (but not equivalent to) up().
608 void __sched
mutex_unlock(struct mutex
*lock
)
610 #ifndef CONFIG_DEBUG_LOCK_ALLOC
611 if (__mutex_unlock_fast(lock
))
614 __mutex_unlock_slowpath(lock
, _RET_IP_
);
616 EXPORT_SYMBOL(mutex_unlock
);
619 * ww_mutex_unlock - release the w/w mutex
620 * @lock: the mutex to be released
622 * Unlock a mutex that has been locked by this task previously with any of the
623 * ww_mutex_lock* functions (with or without an acquire context). It is
624 * forbidden to release the locks after releasing the acquire context.
626 * This function must not be used in interrupt context. Unlocking
627 * of a unlocked mutex is not allowed.
629 void __sched
ww_mutex_unlock(struct ww_mutex
*lock
)
632 * The unlocking fastpath is the 0->1 transition from 'locked'
633 * into 'unlocked' state:
636 #ifdef CONFIG_DEBUG_MUTEXES
637 DEBUG_LOCKS_WARN_ON(!lock
->ctx
->acquired
);
639 if (lock
->ctx
->acquired
> 0)
640 lock
->ctx
->acquired
--;
644 mutex_unlock(&lock
->base
);
646 EXPORT_SYMBOL(ww_mutex_unlock
);
648 static inline int __sched
649 __ww_mutex_lock_check_stamp(struct mutex
*lock
, struct mutex_waiter
*waiter
,
650 struct ww_acquire_ctx
*ctx
)
652 struct ww_mutex
*ww
= container_of(lock
, struct ww_mutex
, base
);
653 struct ww_acquire_ctx
*hold_ctx
= READ_ONCE(ww
->ctx
);
654 struct mutex_waiter
*cur
;
656 if (hold_ctx
&& __ww_ctx_stamp_after(ctx
, hold_ctx
))
660 * If there is a waiter in front of us that has a context, then its
661 * stamp is earlier than ours and we must back off.
664 list_for_each_entry_continue_reverse(cur
, &lock
->wait_list
, list
) {
672 #ifdef CONFIG_DEBUG_MUTEXES
673 DEBUG_LOCKS_WARN_ON(ctx
->contending_lock
);
674 ctx
->contending_lock
= ww
;
679 static inline int __sched
680 __ww_mutex_add_waiter(struct mutex_waiter
*waiter
,
682 struct ww_acquire_ctx
*ww_ctx
)
684 struct mutex_waiter
*cur
;
685 struct list_head
*pos
;
688 list_add_tail(&waiter
->list
, &lock
->wait_list
);
693 * Add the waiter before the first waiter with a higher stamp.
694 * Waiters without a context are skipped to avoid starving
697 pos
= &lock
->wait_list
;
698 list_for_each_entry_reverse(cur
, &lock
->wait_list
, list
) {
702 if (__ww_ctx_stamp_after(ww_ctx
, cur
->ww_ctx
)) {
703 /* Back off immediately if necessary. */
704 if (ww_ctx
->acquired
> 0) {
705 #ifdef CONFIG_DEBUG_MUTEXES
708 ww
= container_of(lock
, struct ww_mutex
, base
);
709 DEBUG_LOCKS_WARN_ON(ww_ctx
->contending_lock
);
710 ww_ctx
->contending_lock
= ww
;
721 * Wake up the waiter so that it gets a chance to back
724 if (cur
->ww_ctx
->acquired
> 0) {
725 debug_mutex_wake_waiter(lock
, cur
);
726 wake_up_process(cur
->task
);
730 list_add_tail(&waiter
->list
, pos
);
735 * Lock a mutex (possibly interruptible), slowpath:
737 static __always_inline
int __sched
738 __mutex_lock_common(struct mutex
*lock
, long state
, unsigned int subclass
,
739 struct lockdep_map
*nest_lock
, unsigned long ip
,
740 struct ww_acquire_ctx
*ww_ctx
, const bool use_ww_ctx
)
742 struct mutex_waiter waiter
;
749 ww
= container_of(lock
, struct ww_mutex
, base
);
750 if (use_ww_ctx
&& ww_ctx
) {
751 if (unlikely(ww_ctx
== READ_ONCE(ww
->ctx
)))
756 mutex_acquire_nest(&lock
->dep_map
, subclass
, 0, nest_lock
, ip
);
758 if (__mutex_trylock(lock
) ||
759 mutex_optimistic_spin(lock
, ww_ctx
, use_ww_ctx
, NULL
)) {
760 /* got the lock, yay! */
761 lock_acquired(&lock
->dep_map
, ip
);
762 if (use_ww_ctx
&& ww_ctx
)
763 ww_mutex_set_context_fastpath(ww
, ww_ctx
);
768 spin_lock(&lock
->wait_lock
);
770 * After waiting to acquire the wait_lock, try again.
772 if (__mutex_trylock(lock
)) {
773 if (use_ww_ctx
&& ww_ctx
)
774 __ww_mutex_wakeup_for_backoff(lock
, ww_ctx
);
779 debug_mutex_lock_common(lock
, &waiter
);
780 debug_mutex_add_waiter(lock
, &waiter
, current
);
782 lock_contended(&lock
->dep_map
, ip
);
785 /* add waiting tasks to the end of the waitqueue (FIFO): */
786 list_add_tail(&waiter
.list
, &lock
->wait_list
);
788 #ifdef CONFIG_DEBUG_MUTEXES
789 waiter
.ww_ctx
= MUTEX_POISON_WW_CTX
;
792 /* Add in stamp order, waking up waiters that must back off. */
793 ret
= __ww_mutex_add_waiter(&waiter
, lock
, ww_ctx
);
795 goto err_early_backoff
;
797 waiter
.ww_ctx
= ww_ctx
;
800 waiter
.task
= current
;
802 if (__mutex_waiter_is_first(lock
, &waiter
))
803 __mutex_set_flag(lock
, MUTEX_FLAG_WAITERS
);
805 set_current_state(state
);
808 * Once we hold wait_lock, we're serialized against
809 * mutex_unlock() handing the lock off to us, do a trylock
810 * before testing the error conditions to make sure we pick up
813 if (__mutex_trylock(lock
))
817 * Check for signals and wound conditions while holding
818 * wait_lock. This ensures the lock cancellation is ordered
819 * against mutex_unlock() and wake-ups do not go missing.
821 if (unlikely(signal_pending_state(state
, current
))) {
826 if (use_ww_ctx
&& ww_ctx
&& ww_ctx
->acquired
> 0) {
827 ret
= __ww_mutex_lock_check_stamp(lock
, &waiter
, ww_ctx
);
832 spin_unlock(&lock
->wait_lock
);
833 schedule_preempt_disabled();
836 * ww_mutex needs to always recheck its position since its waiter
837 * list is not FIFO ordered.
839 if ((use_ww_ctx
&& ww_ctx
) || !first
) {
840 first
= __mutex_waiter_is_first(lock
, &waiter
);
842 __mutex_set_flag(lock
, MUTEX_FLAG_HANDOFF
);
845 set_current_state(state
);
847 * Here we order against unlock; we must either see it change
848 * state back to RUNNING and fall through the next schedule(),
849 * or we must see its unlock and acquire.
851 if (__mutex_trylock(lock
) ||
852 (first
&& mutex_optimistic_spin(lock
, ww_ctx
, use_ww_ctx
, &waiter
)))
855 spin_lock(&lock
->wait_lock
);
857 spin_lock(&lock
->wait_lock
);
859 __set_current_state(TASK_RUNNING
);
861 mutex_remove_waiter(lock
, &waiter
, current
);
862 if (likely(list_empty(&lock
->wait_list
)))
863 __mutex_clear_flag(lock
, MUTEX_FLAGS
);
865 debug_mutex_free_waiter(&waiter
);
868 /* got the lock - cleanup and rejoice! */
869 lock_acquired(&lock
->dep_map
, ip
);
871 if (use_ww_ctx
&& ww_ctx
)
872 ww_mutex_set_context_slowpath(ww
, ww_ctx
);
874 spin_unlock(&lock
->wait_lock
);
879 __set_current_state(TASK_RUNNING
);
880 mutex_remove_waiter(lock
, &waiter
, current
);
882 spin_unlock(&lock
->wait_lock
);
883 debug_mutex_free_waiter(&waiter
);
884 mutex_release(&lock
->dep_map
, 1, ip
);
890 __mutex_lock(struct mutex
*lock
, long state
, unsigned int subclass
,
891 struct lockdep_map
*nest_lock
, unsigned long ip
)
893 return __mutex_lock_common(lock
, state
, subclass
, nest_lock
, ip
, NULL
, false);
897 __ww_mutex_lock(struct mutex
*lock
, long state
, unsigned int subclass
,
898 struct lockdep_map
*nest_lock
, unsigned long ip
,
899 struct ww_acquire_ctx
*ww_ctx
)
901 return __mutex_lock_common(lock
, state
, subclass
, nest_lock
, ip
, ww_ctx
, true);
904 #ifdef CONFIG_DEBUG_LOCK_ALLOC
906 mutex_lock_nested(struct mutex
*lock
, unsigned int subclass
)
908 __mutex_lock(lock
, TASK_UNINTERRUPTIBLE
, subclass
, NULL
, _RET_IP_
);
911 EXPORT_SYMBOL_GPL(mutex_lock_nested
);
914 _mutex_lock_nest_lock(struct mutex
*lock
, struct lockdep_map
*nest
)
916 __mutex_lock(lock
, TASK_UNINTERRUPTIBLE
, 0, nest
, _RET_IP_
);
918 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock
);
921 mutex_lock_killable_nested(struct mutex
*lock
, unsigned int subclass
)
923 return __mutex_lock(lock
, TASK_KILLABLE
, subclass
, NULL
, _RET_IP_
);
925 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested
);
928 mutex_lock_interruptible_nested(struct mutex
*lock
, unsigned int subclass
)
930 return __mutex_lock(lock
, TASK_INTERRUPTIBLE
, subclass
, NULL
, _RET_IP_
);
932 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested
);
935 mutex_lock_io_nested(struct mutex
*lock
, unsigned int subclass
)
941 token
= io_schedule_prepare();
942 __mutex_lock_common(lock
, TASK_UNINTERRUPTIBLE
,
943 subclass
, NULL
, _RET_IP_
, NULL
, 0);
944 io_schedule_finish(token
);
946 EXPORT_SYMBOL_GPL(mutex_lock_io_nested
);
949 ww_mutex_deadlock_injection(struct ww_mutex
*lock
, struct ww_acquire_ctx
*ctx
)
951 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
954 if (ctx
->deadlock_inject_countdown
-- == 0) {
955 tmp
= ctx
->deadlock_inject_interval
;
956 if (tmp
> UINT_MAX
/4)
959 tmp
= tmp
*2 + tmp
+ tmp
/2;
961 ctx
->deadlock_inject_interval
= tmp
;
962 ctx
->deadlock_inject_countdown
= tmp
;
963 ctx
->contending_lock
= lock
;
965 ww_mutex_unlock(lock
);
975 ww_mutex_lock(struct ww_mutex
*lock
, struct ww_acquire_ctx
*ctx
)
980 ret
= __ww_mutex_lock(&lock
->base
, TASK_UNINTERRUPTIBLE
,
981 0, ctx
? &ctx
->dep_map
: NULL
, _RET_IP_
,
983 if (!ret
&& ctx
&& ctx
->acquired
> 1)
984 return ww_mutex_deadlock_injection(lock
, ctx
);
988 EXPORT_SYMBOL_GPL(ww_mutex_lock
);
991 ww_mutex_lock_interruptible(struct ww_mutex
*lock
, struct ww_acquire_ctx
*ctx
)
996 ret
= __ww_mutex_lock(&lock
->base
, TASK_INTERRUPTIBLE
,
997 0, ctx
? &ctx
->dep_map
: NULL
, _RET_IP_
,
1000 if (!ret
&& ctx
&& ctx
->acquired
> 1)
1001 return ww_mutex_deadlock_injection(lock
, ctx
);
1005 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible
);
1010 * Release the lock, slowpath:
1012 static noinline
void __sched
__mutex_unlock_slowpath(struct mutex
*lock
, unsigned long ip
)
1014 struct task_struct
*next
= NULL
;
1015 DEFINE_WAKE_Q(wake_q
);
1016 unsigned long owner
;
1018 mutex_release(&lock
->dep_map
, 1, ip
);
1021 * Release the lock before (potentially) taking the spinlock such that
1022 * other contenders can get on with things ASAP.
1024 * Except when HANDOFF, in that case we must not clear the owner field,
1025 * but instead set it to the top waiter.
1027 owner
= atomic_long_read(&lock
->owner
);
1031 #ifdef CONFIG_DEBUG_MUTEXES
1032 DEBUG_LOCKS_WARN_ON(__owner_task(owner
) != current
);
1033 DEBUG_LOCKS_WARN_ON(owner
& MUTEX_FLAG_PICKUP
);
1036 if (owner
& MUTEX_FLAG_HANDOFF
)
1039 old
= atomic_long_cmpxchg_release(&lock
->owner
, owner
,
1040 __owner_flags(owner
));
1042 if (owner
& MUTEX_FLAG_WAITERS
)
1051 spin_lock(&lock
->wait_lock
);
1052 debug_mutex_unlock(lock
);
1053 if (!list_empty(&lock
->wait_list
)) {
1054 /* get the first entry from the wait-list: */
1055 struct mutex_waiter
*waiter
=
1056 list_first_entry(&lock
->wait_list
,
1057 struct mutex_waiter
, list
);
1059 next
= waiter
->task
;
1061 debug_mutex_wake_waiter(lock
, waiter
);
1062 wake_q_add(&wake_q
, next
);
1065 if (owner
& MUTEX_FLAG_HANDOFF
)
1066 __mutex_handoff(lock
, next
);
1068 spin_unlock(&lock
->wait_lock
);
1073 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1075 * Here come the less common (and hence less performance-critical) APIs:
1076 * mutex_lock_interruptible() and mutex_trylock().
1078 static noinline
int __sched
1079 __mutex_lock_killable_slowpath(struct mutex
*lock
);
1081 static noinline
int __sched
1082 __mutex_lock_interruptible_slowpath(struct mutex
*lock
);
1085 * mutex_lock_interruptible - acquire the mutex, interruptible
1086 * @lock: the mutex to be acquired
1088 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
1089 * been acquired or sleep until the mutex becomes available. If a
1090 * signal arrives while waiting for the lock then this function
1093 * This function is similar to (but not equivalent to) down_interruptible().
1095 int __sched
mutex_lock_interruptible(struct mutex
*lock
)
1099 if (__mutex_trylock_fast(lock
))
1102 return __mutex_lock_interruptible_slowpath(lock
);
1105 EXPORT_SYMBOL(mutex_lock_interruptible
);
1107 int __sched
mutex_lock_killable(struct mutex
*lock
)
1111 if (__mutex_trylock_fast(lock
))
1114 return __mutex_lock_killable_slowpath(lock
);
1116 EXPORT_SYMBOL(mutex_lock_killable
);
1118 void __sched
mutex_lock_io(struct mutex
*lock
)
1122 token
= io_schedule_prepare();
1124 io_schedule_finish(token
);
1126 EXPORT_SYMBOL_GPL(mutex_lock_io
);
1128 static noinline
void __sched
1129 __mutex_lock_slowpath(struct mutex
*lock
)
1131 __mutex_lock(lock
, TASK_UNINTERRUPTIBLE
, 0, NULL
, _RET_IP_
);
1134 static noinline
int __sched
1135 __mutex_lock_killable_slowpath(struct mutex
*lock
)
1137 return __mutex_lock(lock
, TASK_KILLABLE
, 0, NULL
, _RET_IP_
);
1140 static noinline
int __sched
1141 __mutex_lock_interruptible_slowpath(struct mutex
*lock
)
1143 return __mutex_lock(lock
, TASK_INTERRUPTIBLE
, 0, NULL
, _RET_IP_
);
1146 static noinline
int __sched
1147 __ww_mutex_lock_slowpath(struct ww_mutex
*lock
, struct ww_acquire_ctx
*ctx
)
1149 return __ww_mutex_lock(&lock
->base
, TASK_UNINTERRUPTIBLE
, 0, NULL
,
1153 static noinline
int __sched
1154 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex
*lock
,
1155 struct ww_acquire_ctx
*ctx
)
1157 return __ww_mutex_lock(&lock
->base
, TASK_INTERRUPTIBLE
, 0, NULL
,
1164 * mutex_trylock - try to acquire the mutex, without waiting
1165 * @lock: the mutex to be acquired
1167 * Try to acquire the mutex atomically. Returns 1 if the mutex
1168 * has been acquired successfully, and 0 on contention.
1170 * NOTE: this function follows the spin_trylock() convention, so
1171 * it is negated from the down_trylock() return values! Be careful
1172 * about this when converting semaphore users to mutexes.
1174 * This function must not be used in interrupt context. The
1175 * mutex must be released by the same task that acquired it.
1177 int __sched
mutex_trylock(struct mutex
*lock
)
1179 bool locked
= __mutex_trylock(lock
);
1182 mutex_acquire(&lock
->dep_map
, 0, 1, _RET_IP_
);
1186 EXPORT_SYMBOL(mutex_trylock
);
1188 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1190 ww_mutex_lock(struct ww_mutex
*lock
, struct ww_acquire_ctx
*ctx
)
1194 if (__mutex_trylock_fast(&lock
->base
)) {
1196 ww_mutex_set_context_fastpath(lock
, ctx
);
1200 return __ww_mutex_lock_slowpath(lock
, ctx
);
1202 EXPORT_SYMBOL(ww_mutex_lock
);
1205 ww_mutex_lock_interruptible(struct ww_mutex
*lock
, struct ww_acquire_ctx
*ctx
)
1209 if (__mutex_trylock_fast(&lock
->base
)) {
1211 ww_mutex_set_context_fastpath(lock
, ctx
);
1215 return __ww_mutex_lock_interruptible_slowpath(lock
, ctx
);
1217 EXPORT_SYMBOL(ww_mutex_lock_interruptible
);
1222 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1223 * @cnt: the atomic which we are to dec
1224 * @lock: the mutex to return holding if we dec to 0
1226 * return true and hold lock if we dec to 0, return false otherwise
1228 int atomic_dec_and_mutex_lock(atomic_t
*cnt
, struct mutex
*lock
)
1230 /* dec if we can't possibly hit 0 */
1231 if (atomic_add_unless(cnt
, -1, 1))
1233 /* we might hit 0, so take the lock */
1235 if (!atomic_dec_and_test(cnt
)) {
1236 /* when we actually did the dec, we didn't hit 0 */
1240 /* we hit 0, and we hold the lock */
1243 EXPORT_SYMBOL(atomic_dec_and_mutex_lock
);