Linux 4.16-rc3
[cris-mirror.git] / kernel / sched / core.c
blobe7c535eee0a6d493a2a43eba210c08c6858b63d1
1 /*
2 * kernel/sched/core.c
4 * Core kernel scheduler code and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
7 */
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <uapi/linux/sched/types.h>
11 #include <linux/sched/loadavg.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/wait_bit.h>
14 #include <linux/cpuset.h>
15 #include <linux/delayacct.h>
16 #include <linux/init_task.h>
17 #include <linux/context_tracking.h>
18 #include <linux/rcupdate_wait.h>
19 #include <linux/compat.h>
21 #include <linux/blkdev.h>
22 #include <linux/kprobes.h>
23 #include <linux/mmu_context.h>
24 #include <linux/module.h>
25 #include <linux/nmi.h>
26 #include <linux/prefetch.h>
27 #include <linux/profile.h>
28 #include <linux/security.h>
29 #include <linux/syscalls.h>
30 #include <linux/sched/isolation.h>
32 #include <asm/switch_to.h>
33 #include <asm/tlb.h>
34 #ifdef CONFIG_PARAVIRT
35 #include <asm/paravirt.h>
36 #endif
38 #include "sched.h"
39 #include "../workqueue_internal.h"
40 #include "../smpboot.h"
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/sched.h>
45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
47 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
49 * Debugging: various feature bits
51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52 * sysctl_sched_features, defined in sched.h, to allow constants propagation
53 * at compile time and compiler optimization based on features default.
55 #define SCHED_FEAT(name, enabled) \
56 (1UL << __SCHED_FEAT_##name) * enabled |
57 const_debug unsigned int sysctl_sched_features =
58 #include "features.h"
60 #undef SCHED_FEAT
61 #endif
64 * Number of tasks to iterate in a single balance run.
65 * Limited because this is done with IRQs disabled.
67 const_debug unsigned int sysctl_sched_nr_migrate = 32;
70 * period over which we average the RT time consumption, measured
71 * in ms.
73 * default: 1s
75 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
78 * period over which we measure -rt task CPU usage in us.
79 * default: 1s
81 unsigned int sysctl_sched_rt_period = 1000000;
83 __read_mostly int scheduler_running;
86 * part of the period that we allow rt tasks to run in us.
87 * default: 0.95s
89 int sysctl_sched_rt_runtime = 950000;
92 * __task_rq_lock - lock the rq @p resides on.
94 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
95 __acquires(rq->lock)
97 struct rq *rq;
99 lockdep_assert_held(&p->pi_lock);
101 for (;;) {
102 rq = task_rq(p);
103 raw_spin_lock(&rq->lock);
104 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
105 rq_pin_lock(rq, rf);
106 return rq;
108 raw_spin_unlock(&rq->lock);
110 while (unlikely(task_on_rq_migrating(p)))
111 cpu_relax();
116 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
118 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
119 __acquires(p->pi_lock)
120 __acquires(rq->lock)
122 struct rq *rq;
124 for (;;) {
125 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
126 rq = task_rq(p);
127 raw_spin_lock(&rq->lock);
129 * move_queued_task() task_rq_lock()
131 * ACQUIRE (rq->lock)
132 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
133 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
134 * [S] ->cpu = new_cpu [L] task_rq()
135 * [L] ->on_rq
136 * RELEASE (rq->lock)
138 * If we observe the old cpu in task_rq_lock, the acquire of
139 * the old rq->lock will fully serialize against the stores.
141 * If we observe the new CPU in task_rq_lock, the acquire will
142 * pair with the WMB to ensure we must then also see migrating.
144 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
145 rq_pin_lock(rq, rf);
146 return rq;
148 raw_spin_unlock(&rq->lock);
149 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
151 while (unlikely(task_on_rq_migrating(p)))
152 cpu_relax();
157 * RQ-clock updating methods:
160 static void update_rq_clock_task(struct rq *rq, s64 delta)
163 * In theory, the compile should just see 0 here, and optimize out the call
164 * to sched_rt_avg_update. But I don't trust it...
166 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
167 s64 steal = 0, irq_delta = 0;
168 #endif
169 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
170 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
173 * Since irq_time is only updated on {soft,}irq_exit, we might run into
174 * this case when a previous update_rq_clock() happened inside a
175 * {soft,}irq region.
177 * When this happens, we stop ->clock_task and only update the
178 * prev_irq_time stamp to account for the part that fit, so that a next
179 * update will consume the rest. This ensures ->clock_task is
180 * monotonic.
182 * It does however cause some slight miss-attribution of {soft,}irq
183 * time, a more accurate solution would be to update the irq_time using
184 * the current rq->clock timestamp, except that would require using
185 * atomic ops.
187 if (irq_delta > delta)
188 irq_delta = delta;
190 rq->prev_irq_time += irq_delta;
191 delta -= irq_delta;
192 #endif
193 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
194 if (static_key_false((&paravirt_steal_rq_enabled))) {
195 steal = paravirt_steal_clock(cpu_of(rq));
196 steal -= rq->prev_steal_time_rq;
198 if (unlikely(steal > delta))
199 steal = delta;
201 rq->prev_steal_time_rq += steal;
202 delta -= steal;
204 #endif
206 rq->clock_task += delta;
208 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
209 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
210 sched_rt_avg_update(rq, irq_delta + steal);
211 #endif
214 void update_rq_clock(struct rq *rq)
216 s64 delta;
218 lockdep_assert_held(&rq->lock);
220 if (rq->clock_update_flags & RQCF_ACT_SKIP)
221 return;
223 #ifdef CONFIG_SCHED_DEBUG
224 if (sched_feat(WARN_DOUBLE_CLOCK))
225 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
226 rq->clock_update_flags |= RQCF_UPDATED;
227 #endif
229 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
230 if (delta < 0)
231 return;
232 rq->clock += delta;
233 update_rq_clock_task(rq, delta);
237 #ifdef CONFIG_SCHED_HRTICK
239 * Use HR-timers to deliver accurate preemption points.
242 static void hrtick_clear(struct rq *rq)
244 if (hrtimer_active(&rq->hrtick_timer))
245 hrtimer_cancel(&rq->hrtick_timer);
249 * High-resolution timer tick.
250 * Runs from hardirq context with interrupts disabled.
252 static enum hrtimer_restart hrtick(struct hrtimer *timer)
254 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
255 struct rq_flags rf;
257 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
259 rq_lock(rq, &rf);
260 update_rq_clock(rq);
261 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
262 rq_unlock(rq, &rf);
264 return HRTIMER_NORESTART;
267 #ifdef CONFIG_SMP
269 static void __hrtick_restart(struct rq *rq)
271 struct hrtimer *timer = &rq->hrtick_timer;
273 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
277 * called from hardirq (IPI) context
279 static void __hrtick_start(void *arg)
281 struct rq *rq = arg;
282 struct rq_flags rf;
284 rq_lock(rq, &rf);
285 __hrtick_restart(rq);
286 rq->hrtick_csd_pending = 0;
287 rq_unlock(rq, &rf);
291 * Called to set the hrtick timer state.
293 * called with rq->lock held and irqs disabled
295 void hrtick_start(struct rq *rq, u64 delay)
297 struct hrtimer *timer = &rq->hrtick_timer;
298 ktime_t time;
299 s64 delta;
302 * Don't schedule slices shorter than 10000ns, that just
303 * doesn't make sense and can cause timer DoS.
305 delta = max_t(s64, delay, 10000LL);
306 time = ktime_add_ns(timer->base->get_time(), delta);
308 hrtimer_set_expires(timer, time);
310 if (rq == this_rq()) {
311 __hrtick_restart(rq);
312 } else if (!rq->hrtick_csd_pending) {
313 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
314 rq->hrtick_csd_pending = 1;
318 #else
320 * Called to set the hrtick timer state.
322 * called with rq->lock held and irqs disabled
324 void hrtick_start(struct rq *rq, u64 delay)
327 * Don't schedule slices shorter than 10000ns, that just
328 * doesn't make sense. Rely on vruntime for fairness.
330 delay = max_t(u64, delay, 10000LL);
331 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
332 HRTIMER_MODE_REL_PINNED);
334 #endif /* CONFIG_SMP */
336 static void init_rq_hrtick(struct rq *rq)
338 #ifdef CONFIG_SMP
339 rq->hrtick_csd_pending = 0;
341 rq->hrtick_csd.flags = 0;
342 rq->hrtick_csd.func = __hrtick_start;
343 rq->hrtick_csd.info = rq;
344 #endif
346 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
347 rq->hrtick_timer.function = hrtick;
349 #else /* CONFIG_SCHED_HRTICK */
350 static inline void hrtick_clear(struct rq *rq)
354 static inline void init_rq_hrtick(struct rq *rq)
357 #endif /* CONFIG_SCHED_HRTICK */
360 * cmpxchg based fetch_or, macro so it works for different integer types
362 #define fetch_or(ptr, mask) \
363 ({ \
364 typeof(ptr) _ptr = (ptr); \
365 typeof(mask) _mask = (mask); \
366 typeof(*_ptr) _old, _val = *_ptr; \
368 for (;;) { \
369 _old = cmpxchg(_ptr, _val, _val | _mask); \
370 if (_old == _val) \
371 break; \
372 _val = _old; \
374 _old; \
377 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
379 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
380 * this avoids any races wrt polling state changes and thereby avoids
381 * spurious IPIs.
383 static bool set_nr_and_not_polling(struct task_struct *p)
385 struct thread_info *ti = task_thread_info(p);
386 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
390 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
392 * If this returns true, then the idle task promises to call
393 * sched_ttwu_pending() and reschedule soon.
395 static bool set_nr_if_polling(struct task_struct *p)
397 struct thread_info *ti = task_thread_info(p);
398 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
400 for (;;) {
401 if (!(val & _TIF_POLLING_NRFLAG))
402 return false;
403 if (val & _TIF_NEED_RESCHED)
404 return true;
405 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
406 if (old == val)
407 break;
408 val = old;
410 return true;
413 #else
414 static bool set_nr_and_not_polling(struct task_struct *p)
416 set_tsk_need_resched(p);
417 return true;
420 #ifdef CONFIG_SMP
421 static bool set_nr_if_polling(struct task_struct *p)
423 return false;
425 #endif
426 #endif
428 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
430 struct wake_q_node *node = &task->wake_q;
433 * Atomically grab the task, if ->wake_q is !nil already it means
434 * its already queued (either by us or someone else) and will get the
435 * wakeup due to that.
437 * This cmpxchg() implies a full barrier, which pairs with the write
438 * barrier implied by the wakeup in wake_up_q().
440 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
441 return;
443 get_task_struct(task);
446 * The head is context local, there can be no concurrency.
448 *head->lastp = node;
449 head->lastp = &node->next;
452 void wake_up_q(struct wake_q_head *head)
454 struct wake_q_node *node = head->first;
456 while (node != WAKE_Q_TAIL) {
457 struct task_struct *task;
459 task = container_of(node, struct task_struct, wake_q);
460 BUG_ON(!task);
461 /* Task can safely be re-inserted now: */
462 node = node->next;
463 task->wake_q.next = NULL;
466 * wake_up_process() implies a wmb() to pair with the queueing
467 * in wake_q_add() so as not to miss wakeups.
469 wake_up_process(task);
470 put_task_struct(task);
475 * resched_curr - mark rq's current task 'to be rescheduled now'.
477 * On UP this means the setting of the need_resched flag, on SMP it
478 * might also involve a cross-CPU call to trigger the scheduler on
479 * the target CPU.
481 void resched_curr(struct rq *rq)
483 struct task_struct *curr = rq->curr;
484 int cpu;
486 lockdep_assert_held(&rq->lock);
488 if (test_tsk_need_resched(curr))
489 return;
491 cpu = cpu_of(rq);
493 if (cpu == smp_processor_id()) {
494 set_tsk_need_resched(curr);
495 set_preempt_need_resched();
496 return;
499 if (set_nr_and_not_polling(curr))
500 smp_send_reschedule(cpu);
501 else
502 trace_sched_wake_idle_without_ipi(cpu);
505 void resched_cpu(int cpu)
507 struct rq *rq = cpu_rq(cpu);
508 unsigned long flags;
510 raw_spin_lock_irqsave(&rq->lock, flags);
511 if (cpu_online(cpu) || cpu == smp_processor_id())
512 resched_curr(rq);
513 raw_spin_unlock_irqrestore(&rq->lock, flags);
516 #ifdef CONFIG_SMP
517 #ifdef CONFIG_NO_HZ_COMMON
519 * In the semi idle case, use the nearest busy CPU for migrating timers
520 * from an idle CPU. This is good for power-savings.
522 * We don't do similar optimization for completely idle system, as
523 * selecting an idle CPU will add more delays to the timers than intended
524 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
526 int get_nohz_timer_target(void)
528 int i, cpu = smp_processor_id();
529 struct sched_domain *sd;
531 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
532 return cpu;
534 rcu_read_lock();
535 for_each_domain(cpu, sd) {
536 for_each_cpu(i, sched_domain_span(sd)) {
537 if (cpu == i)
538 continue;
540 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
541 cpu = i;
542 goto unlock;
547 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
548 cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
549 unlock:
550 rcu_read_unlock();
551 return cpu;
555 * When add_timer_on() enqueues a timer into the timer wheel of an
556 * idle CPU then this timer might expire before the next timer event
557 * which is scheduled to wake up that CPU. In case of a completely
558 * idle system the next event might even be infinite time into the
559 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
560 * leaves the inner idle loop so the newly added timer is taken into
561 * account when the CPU goes back to idle and evaluates the timer
562 * wheel for the next timer event.
564 static void wake_up_idle_cpu(int cpu)
566 struct rq *rq = cpu_rq(cpu);
568 if (cpu == smp_processor_id())
569 return;
571 if (set_nr_and_not_polling(rq->idle))
572 smp_send_reschedule(cpu);
573 else
574 trace_sched_wake_idle_without_ipi(cpu);
577 static bool wake_up_full_nohz_cpu(int cpu)
580 * We just need the target to call irq_exit() and re-evaluate
581 * the next tick. The nohz full kick at least implies that.
582 * If needed we can still optimize that later with an
583 * empty IRQ.
585 if (cpu_is_offline(cpu))
586 return true; /* Don't try to wake offline CPUs. */
587 if (tick_nohz_full_cpu(cpu)) {
588 if (cpu != smp_processor_id() ||
589 tick_nohz_tick_stopped())
590 tick_nohz_full_kick_cpu(cpu);
591 return true;
594 return false;
598 * Wake up the specified CPU. If the CPU is going offline, it is the
599 * caller's responsibility to deal with the lost wakeup, for example,
600 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
602 void wake_up_nohz_cpu(int cpu)
604 if (!wake_up_full_nohz_cpu(cpu))
605 wake_up_idle_cpu(cpu);
608 static inline bool got_nohz_idle_kick(void)
610 int cpu = smp_processor_id();
612 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
613 return false;
615 if (idle_cpu(cpu) && !need_resched())
616 return true;
619 * We can't run Idle Load Balance on this CPU for this time so we
620 * cancel it and clear NOHZ_BALANCE_KICK
622 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
623 return false;
626 #else /* CONFIG_NO_HZ_COMMON */
628 static inline bool got_nohz_idle_kick(void)
630 return false;
633 #endif /* CONFIG_NO_HZ_COMMON */
635 #ifdef CONFIG_NO_HZ_FULL
636 bool sched_can_stop_tick(struct rq *rq)
638 int fifo_nr_running;
640 /* Deadline tasks, even if single, need the tick */
641 if (rq->dl.dl_nr_running)
642 return false;
645 * If there are more than one RR tasks, we need the tick to effect the
646 * actual RR behaviour.
648 if (rq->rt.rr_nr_running) {
649 if (rq->rt.rr_nr_running == 1)
650 return true;
651 else
652 return false;
656 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
657 * forced preemption between FIFO tasks.
659 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
660 if (fifo_nr_running)
661 return true;
664 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
665 * if there's more than one we need the tick for involuntary
666 * preemption.
668 if (rq->nr_running > 1)
669 return false;
671 return true;
673 #endif /* CONFIG_NO_HZ_FULL */
675 void sched_avg_update(struct rq *rq)
677 s64 period = sched_avg_period();
679 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
681 * Inline assembly required to prevent the compiler
682 * optimising this loop into a divmod call.
683 * See __iter_div_u64_rem() for another example of this.
685 asm("" : "+rm" (rq->age_stamp));
686 rq->age_stamp += period;
687 rq->rt_avg /= 2;
691 #endif /* CONFIG_SMP */
693 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
694 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
696 * Iterate task_group tree rooted at *from, calling @down when first entering a
697 * node and @up when leaving it for the final time.
699 * Caller must hold rcu_lock or sufficient equivalent.
701 int walk_tg_tree_from(struct task_group *from,
702 tg_visitor down, tg_visitor up, void *data)
704 struct task_group *parent, *child;
705 int ret;
707 parent = from;
709 down:
710 ret = (*down)(parent, data);
711 if (ret)
712 goto out;
713 list_for_each_entry_rcu(child, &parent->children, siblings) {
714 parent = child;
715 goto down;
718 continue;
720 ret = (*up)(parent, data);
721 if (ret || parent == from)
722 goto out;
724 child = parent;
725 parent = parent->parent;
726 if (parent)
727 goto up;
728 out:
729 return ret;
732 int tg_nop(struct task_group *tg, void *data)
734 return 0;
736 #endif
738 static void set_load_weight(struct task_struct *p, bool update_load)
740 int prio = p->static_prio - MAX_RT_PRIO;
741 struct load_weight *load = &p->se.load;
744 * SCHED_IDLE tasks get minimal weight:
746 if (idle_policy(p->policy)) {
747 load->weight = scale_load(WEIGHT_IDLEPRIO);
748 load->inv_weight = WMULT_IDLEPRIO;
749 return;
753 * SCHED_OTHER tasks have to update their load when changing their
754 * weight
756 if (update_load && p->sched_class == &fair_sched_class) {
757 reweight_task(p, prio);
758 } else {
759 load->weight = scale_load(sched_prio_to_weight[prio]);
760 load->inv_weight = sched_prio_to_wmult[prio];
764 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
766 if (!(flags & ENQUEUE_NOCLOCK))
767 update_rq_clock(rq);
769 if (!(flags & ENQUEUE_RESTORE))
770 sched_info_queued(rq, p);
772 p->sched_class->enqueue_task(rq, p, flags);
775 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
777 if (!(flags & DEQUEUE_NOCLOCK))
778 update_rq_clock(rq);
780 if (!(flags & DEQUEUE_SAVE))
781 sched_info_dequeued(rq, p);
783 p->sched_class->dequeue_task(rq, p, flags);
786 void activate_task(struct rq *rq, struct task_struct *p, int flags)
788 if (task_contributes_to_load(p))
789 rq->nr_uninterruptible--;
791 enqueue_task(rq, p, flags);
794 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
796 if (task_contributes_to_load(p))
797 rq->nr_uninterruptible++;
799 dequeue_task(rq, p, flags);
803 * __normal_prio - return the priority that is based on the static prio
805 static inline int __normal_prio(struct task_struct *p)
807 return p->static_prio;
811 * Calculate the expected normal priority: i.e. priority
812 * without taking RT-inheritance into account. Might be
813 * boosted by interactivity modifiers. Changes upon fork,
814 * setprio syscalls, and whenever the interactivity
815 * estimator recalculates.
817 static inline int normal_prio(struct task_struct *p)
819 int prio;
821 if (task_has_dl_policy(p))
822 prio = MAX_DL_PRIO-1;
823 else if (task_has_rt_policy(p))
824 prio = MAX_RT_PRIO-1 - p->rt_priority;
825 else
826 prio = __normal_prio(p);
827 return prio;
831 * Calculate the current priority, i.e. the priority
832 * taken into account by the scheduler. This value might
833 * be boosted by RT tasks, or might be boosted by
834 * interactivity modifiers. Will be RT if the task got
835 * RT-boosted. If not then it returns p->normal_prio.
837 static int effective_prio(struct task_struct *p)
839 p->normal_prio = normal_prio(p);
841 * If we are RT tasks or we were boosted to RT priority,
842 * keep the priority unchanged. Otherwise, update priority
843 * to the normal priority:
845 if (!rt_prio(p->prio))
846 return p->normal_prio;
847 return p->prio;
851 * task_curr - is this task currently executing on a CPU?
852 * @p: the task in question.
854 * Return: 1 if the task is currently executing. 0 otherwise.
856 inline int task_curr(const struct task_struct *p)
858 return cpu_curr(task_cpu(p)) == p;
862 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
863 * use the balance_callback list if you want balancing.
865 * this means any call to check_class_changed() must be followed by a call to
866 * balance_callback().
868 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
869 const struct sched_class *prev_class,
870 int oldprio)
872 if (prev_class != p->sched_class) {
873 if (prev_class->switched_from)
874 prev_class->switched_from(rq, p);
876 p->sched_class->switched_to(rq, p);
877 } else if (oldprio != p->prio || dl_task(p))
878 p->sched_class->prio_changed(rq, p, oldprio);
881 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
883 const struct sched_class *class;
885 if (p->sched_class == rq->curr->sched_class) {
886 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
887 } else {
888 for_each_class(class) {
889 if (class == rq->curr->sched_class)
890 break;
891 if (class == p->sched_class) {
892 resched_curr(rq);
893 break;
899 * A queue event has occurred, and we're going to schedule. In
900 * this case, we can save a useless back to back clock update.
902 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
903 rq_clock_skip_update(rq, true);
906 #ifdef CONFIG_SMP
908 * This is how migration works:
910 * 1) we invoke migration_cpu_stop() on the target CPU using
911 * stop_one_cpu().
912 * 2) stopper starts to run (implicitly forcing the migrated thread
913 * off the CPU)
914 * 3) it checks whether the migrated task is still in the wrong runqueue.
915 * 4) if it's in the wrong runqueue then the migration thread removes
916 * it and puts it into the right queue.
917 * 5) stopper completes and stop_one_cpu() returns and the migration
918 * is done.
922 * move_queued_task - move a queued task to new rq.
924 * Returns (locked) new rq. Old rq's lock is released.
926 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
927 struct task_struct *p, int new_cpu)
929 lockdep_assert_held(&rq->lock);
931 p->on_rq = TASK_ON_RQ_MIGRATING;
932 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
933 set_task_cpu(p, new_cpu);
934 rq_unlock(rq, rf);
936 rq = cpu_rq(new_cpu);
938 rq_lock(rq, rf);
939 BUG_ON(task_cpu(p) != new_cpu);
940 enqueue_task(rq, p, 0);
941 p->on_rq = TASK_ON_RQ_QUEUED;
942 check_preempt_curr(rq, p, 0);
944 return rq;
947 struct migration_arg {
948 struct task_struct *task;
949 int dest_cpu;
953 * Move (not current) task off this CPU, onto the destination CPU. We're doing
954 * this because either it can't run here any more (set_cpus_allowed()
955 * away from this CPU, or CPU going down), or because we're
956 * attempting to rebalance this task on exec (sched_exec).
958 * So we race with normal scheduler movements, but that's OK, as long
959 * as the task is no longer on this CPU.
961 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
962 struct task_struct *p, int dest_cpu)
964 if (p->flags & PF_KTHREAD) {
965 if (unlikely(!cpu_online(dest_cpu)))
966 return rq;
967 } else {
968 if (unlikely(!cpu_active(dest_cpu)))
969 return rq;
972 /* Affinity changed (again). */
973 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
974 return rq;
976 update_rq_clock(rq);
977 rq = move_queued_task(rq, rf, p, dest_cpu);
979 return rq;
983 * migration_cpu_stop - this will be executed by a highprio stopper thread
984 * and performs thread migration by bumping thread off CPU then
985 * 'pushing' onto another runqueue.
987 static int migration_cpu_stop(void *data)
989 struct migration_arg *arg = data;
990 struct task_struct *p = arg->task;
991 struct rq *rq = this_rq();
992 struct rq_flags rf;
995 * The original target CPU might have gone down and we might
996 * be on another CPU but it doesn't matter.
998 local_irq_disable();
1000 * We need to explicitly wake pending tasks before running
1001 * __migrate_task() such that we will not miss enforcing cpus_allowed
1002 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1004 sched_ttwu_pending();
1006 raw_spin_lock(&p->pi_lock);
1007 rq_lock(rq, &rf);
1009 * If task_rq(p) != rq, it cannot be migrated here, because we're
1010 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1011 * we're holding p->pi_lock.
1013 if (task_rq(p) == rq) {
1014 if (task_on_rq_queued(p))
1015 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1016 else
1017 p->wake_cpu = arg->dest_cpu;
1019 rq_unlock(rq, &rf);
1020 raw_spin_unlock(&p->pi_lock);
1022 local_irq_enable();
1023 return 0;
1027 * sched_class::set_cpus_allowed must do the below, but is not required to
1028 * actually call this function.
1030 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1032 cpumask_copy(&p->cpus_allowed, new_mask);
1033 p->nr_cpus_allowed = cpumask_weight(new_mask);
1036 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1038 struct rq *rq = task_rq(p);
1039 bool queued, running;
1041 lockdep_assert_held(&p->pi_lock);
1043 queued = task_on_rq_queued(p);
1044 running = task_current(rq, p);
1046 if (queued) {
1048 * Because __kthread_bind() calls this on blocked tasks without
1049 * holding rq->lock.
1051 lockdep_assert_held(&rq->lock);
1052 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1054 if (running)
1055 put_prev_task(rq, p);
1057 p->sched_class->set_cpus_allowed(p, new_mask);
1059 if (queued)
1060 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1061 if (running)
1062 set_curr_task(rq, p);
1066 * Change a given task's CPU affinity. Migrate the thread to a
1067 * proper CPU and schedule it away if the CPU it's executing on
1068 * is removed from the allowed bitmask.
1070 * NOTE: the caller must have a valid reference to the task, the
1071 * task must not exit() & deallocate itself prematurely. The
1072 * call is not atomic; no spinlocks may be held.
1074 static int __set_cpus_allowed_ptr(struct task_struct *p,
1075 const struct cpumask *new_mask, bool check)
1077 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1078 unsigned int dest_cpu;
1079 struct rq_flags rf;
1080 struct rq *rq;
1081 int ret = 0;
1083 rq = task_rq_lock(p, &rf);
1084 update_rq_clock(rq);
1086 if (p->flags & PF_KTHREAD) {
1088 * Kernel threads are allowed on online && !active CPUs
1090 cpu_valid_mask = cpu_online_mask;
1094 * Must re-check here, to close a race against __kthread_bind(),
1095 * sched_setaffinity() is not guaranteed to observe the flag.
1097 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1098 ret = -EINVAL;
1099 goto out;
1102 if (cpumask_equal(&p->cpus_allowed, new_mask))
1103 goto out;
1105 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1106 ret = -EINVAL;
1107 goto out;
1110 do_set_cpus_allowed(p, new_mask);
1112 if (p->flags & PF_KTHREAD) {
1114 * For kernel threads that do indeed end up on online &&
1115 * !active we want to ensure they are strict per-CPU threads.
1117 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1118 !cpumask_intersects(new_mask, cpu_active_mask) &&
1119 p->nr_cpus_allowed != 1);
1122 /* Can the task run on the task's current CPU? If so, we're done */
1123 if (cpumask_test_cpu(task_cpu(p), new_mask))
1124 goto out;
1126 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1127 if (task_running(rq, p) || p->state == TASK_WAKING) {
1128 struct migration_arg arg = { p, dest_cpu };
1129 /* Need help from migration thread: drop lock and wait. */
1130 task_rq_unlock(rq, p, &rf);
1131 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1132 tlb_migrate_finish(p->mm);
1133 return 0;
1134 } else if (task_on_rq_queued(p)) {
1136 * OK, since we're going to drop the lock immediately
1137 * afterwards anyway.
1139 rq = move_queued_task(rq, &rf, p, dest_cpu);
1141 out:
1142 task_rq_unlock(rq, p, &rf);
1144 return ret;
1147 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1149 return __set_cpus_allowed_ptr(p, new_mask, false);
1151 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1153 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1155 #ifdef CONFIG_SCHED_DEBUG
1157 * We should never call set_task_cpu() on a blocked task,
1158 * ttwu() will sort out the placement.
1160 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1161 !p->on_rq);
1164 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1165 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1166 * time relying on p->on_rq.
1168 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1169 p->sched_class == &fair_sched_class &&
1170 (p->on_rq && !task_on_rq_migrating(p)));
1172 #ifdef CONFIG_LOCKDEP
1174 * The caller should hold either p->pi_lock or rq->lock, when changing
1175 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1177 * sched_move_task() holds both and thus holding either pins the cgroup,
1178 * see task_group().
1180 * Furthermore, all task_rq users should acquire both locks, see
1181 * task_rq_lock().
1183 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1184 lockdep_is_held(&task_rq(p)->lock)));
1185 #endif
1187 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1189 WARN_ON_ONCE(!cpu_online(new_cpu));
1190 #endif
1192 trace_sched_migrate_task(p, new_cpu);
1194 if (task_cpu(p) != new_cpu) {
1195 if (p->sched_class->migrate_task_rq)
1196 p->sched_class->migrate_task_rq(p);
1197 p->se.nr_migrations++;
1198 perf_event_task_migrate(p);
1201 __set_task_cpu(p, new_cpu);
1204 static void __migrate_swap_task(struct task_struct *p, int cpu)
1206 if (task_on_rq_queued(p)) {
1207 struct rq *src_rq, *dst_rq;
1208 struct rq_flags srf, drf;
1210 src_rq = task_rq(p);
1211 dst_rq = cpu_rq(cpu);
1213 rq_pin_lock(src_rq, &srf);
1214 rq_pin_lock(dst_rq, &drf);
1216 p->on_rq = TASK_ON_RQ_MIGRATING;
1217 deactivate_task(src_rq, p, 0);
1218 set_task_cpu(p, cpu);
1219 activate_task(dst_rq, p, 0);
1220 p->on_rq = TASK_ON_RQ_QUEUED;
1221 check_preempt_curr(dst_rq, p, 0);
1223 rq_unpin_lock(dst_rq, &drf);
1224 rq_unpin_lock(src_rq, &srf);
1226 } else {
1228 * Task isn't running anymore; make it appear like we migrated
1229 * it before it went to sleep. This means on wakeup we make the
1230 * previous CPU our target instead of where it really is.
1232 p->wake_cpu = cpu;
1236 struct migration_swap_arg {
1237 struct task_struct *src_task, *dst_task;
1238 int src_cpu, dst_cpu;
1241 static int migrate_swap_stop(void *data)
1243 struct migration_swap_arg *arg = data;
1244 struct rq *src_rq, *dst_rq;
1245 int ret = -EAGAIN;
1247 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1248 return -EAGAIN;
1250 src_rq = cpu_rq(arg->src_cpu);
1251 dst_rq = cpu_rq(arg->dst_cpu);
1253 double_raw_lock(&arg->src_task->pi_lock,
1254 &arg->dst_task->pi_lock);
1255 double_rq_lock(src_rq, dst_rq);
1257 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1258 goto unlock;
1260 if (task_cpu(arg->src_task) != arg->src_cpu)
1261 goto unlock;
1263 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1264 goto unlock;
1266 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1267 goto unlock;
1269 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1270 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1272 ret = 0;
1274 unlock:
1275 double_rq_unlock(src_rq, dst_rq);
1276 raw_spin_unlock(&arg->dst_task->pi_lock);
1277 raw_spin_unlock(&arg->src_task->pi_lock);
1279 return ret;
1283 * Cross migrate two tasks
1285 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1287 struct migration_swap_arg arg;
1288 int ret = -EINVAL;
1290 arg = (struct migration_swap_arg){
1291 .src_task = cur,
1292 .src_cpu = task_cpu(cur),
1293 .dst_task = p,
1294 .dst_cpu = task_cpu(p),
1297 if (arg.src_cpu == arg.dst_cpu)
1298 goto out;
1301 * These three tests are all lockless; this is OK since all of them
1302 * will be re-checked with proper locks held further down the line.
1304 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1305 goto out;
1307 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1308 goto out;
1310 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1311 goto out;
1313 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1314 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1316 out:
1317 return ret;
1321 * wait_task_inactive - wait for a thread to unschedule.
1323 * If @match_state is nonzero, it's the @p->state value just checked and
1324 * not expected to change. If it changes, i.e. @p might have woken up,
1325 * then return zero. When we succeed in waiting for @p to be off its CPU,
1326 * we return a positive number (its total switch count). If a second call
1327 * a short while later returns the same number, the caller can be sure that
1328 * @p has remained unscheduled the whole time.
1330 * The caller must ensure that the task *will* unschedule sometime soon,
1331 * else this function might spin for a *long* time. This function can't
1332 * be called with interrupts off, or it may introduce deadlock with
1333 * smp_call_function() if an IPI is sent by the same process we are
1334 * waiting to become inactive.
1336 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1338 int running, queued;
1339 struct rq_flags rf;
1340 unsigned long ncsw;
1341 struct rq *rq;
1343 for (;;) {
1345 * We do the initial early heuristics without holding
1346 * any task-queue locks at all. We'll only try to get
1347 * the runqueue lock when things look like they will
1348 * work out!
1350 rq = task_rq(p);
1353 * If the task is actively running on another CPU
1354 * still, just relax and busy-wait without holding
1355 * any locks.
1357 * NOTE! Since we don't hold any locks, it's not
1358 * even sure that "rq" stays as the right runqueue!
1359 * But we don't care, since "task_running()" will
1360 * return false if the runqueue has changed and p
1361 * is actually now running somewhere else!
1363 while (task_running(rq, p)) {
1364 if (match_state && unlikely(p->state != match_state))
1365 return 0;
1366 cpu_relax();
1370 * Ok, time to look more closely! We need the rq
1371 * lock now, to be *sure*. If we're wrong, we'll
1372 * just go back and repeat.
1374 rq = task_rq_lock(p, &rf);
1375 trace_sched_wait_task(p);
1376 running = task_running(rq, p);
1377 queued = task_on_rq_queued(p);
1378 ncsw = 0;
1379 if (!match_state || p->state == match_state)
1380 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1381 task_rq_unlock(rq, p, &rf);
1384 * If it changed from the expected state, bail out now.
1386 if (unlikely(!ncsw))
1387 break;
1390 * Was it really running after all now that we
1391 * checked with the proper locks actually held?
1393 * Oops. Go back and try again..
1395 if (unlikely(running)) {
1396 cpu_relax();
1397 continue;
1401 * It's not enough that it's not actively running,
1402 * it must be off the runqueue _entirely_, and not
1403 * preempted!
1405 * So if it was still runnable (but just not actively
1406 * running right now), it's preempted, and we should
1407 * yield - it could be a while.
1409 if (unlikely(queued)) {
1410 ktime_t to = NSEC_PER_SEC / HZ;
1412 set_current_state(TASK_UNINTERRUPTIBLE);
1413 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1414 continue;
1418 * Ahh, all good. It wasn't running, and it wasn't
1419 * runnable, which means that it will never become
1420 * running in the future either. We're all done!
1422 break;
1425 return ncsw;
1428 /***
1429 * kick_process - kick a running thread to enter/exit the kernel
1430 * @p: the to-be-kicked thread
1432 * Cause a process which is running on another CPU to enter
1433 * kernel-mode, without any delay. (to get signals handled.)
1435 * NOTE: this function doesn't have to take the runqueue lock,
1436 * because all it wants to ensure is that the remote task enters
1437 * the kernel. If the IPI races and the task has been migrated
1438 * to another CPU then no harm is done and the purpose has been
1439 * achieved as well.
1441 void kick_process(struct task_struct *p)
1443 int cpu;
1445 preempt_disable();
1446 cpu = task_cpu(p);
1447 if ((cpu != smp_processor_id()) && task_curr(p))
1448 smp_send_reschedule(cpu);
1449 preempt_enable();
1451 EXPORT_SYMBOL_GPL(kick_process);
1454 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1456 * A few notes on cpu_active vs cpu_online:
1458 * - cpu_active must be a subset of cpu_online
1460 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1461 * see __set_cpus_allowed_ptr(). At this point the newly online
1462 * CPU isn't yet part of the sched domains, and balancing will not
1463 * see it.
1465 * - on CPU-down we clear cpu_active() to mask the sched domains and
1466 * avoid the load balancer to place new tasks on the to be removed
1467 * CPU. Existing tasks will remain running there and will be taken
1468 * off.
1470 * This means that fallback selection must not select !active CPUs.
1471 * And can assume that any active CPU must be online. Conversely
1472 * select_task_rq() below may allow selection of !active CPUs in order
1473 * to satisfy the above rules.
1475 static int select_fallback_rq(int cpu, struct task_struct *p)
1477 int nid = cpu_to_node(cpu);
1478 const struct cpumask *nodemask = NULL;
1479 enum { cpuset, possible, fail } state = cpuset;
1480 int dest_cpu;
1483 * If the node that the CPU is on has been offlined, cpu_to_node()
1484 * will return -1. There is no CPU on the node, and we should
1485 * select the CPU on the other node.
1487 if (nid != -1) {
1488 nodemask = cpumask_of_node(nid);
1490 /* Look for allowed, online CPU in same node. */
1491 for_each_cpu(dest_cpu, nodemask) {
1492 if (!cpu_active(dest_cpu))
1493 continue;
1494 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1495 return dest_cpu;
1499 for (;;) {
1500 /* Any allowed, online CPU? */
1501 for_each_cpu(dest_cpu, &p->cpus_allowed) {
1502 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1503 continue;
1504 if (!cpu_online(dest_cpu))
1505 continue;
1506 goto out;
1509 /* No more Mr. Nice Guy. */
1510 switch (state) {
1511 case cpuset:
1512 if (IS_ENABLED(CONFIG_CPUSETS)) {
1513 cpuset_cpus_allowed_fallback(p);
1514 state = possible;
1515 break;
1517 /* Fall-through */
1518 case possible:
1519 do_set_cpus_allowed(p, cpu_possible_mask);
1520 state = fail;
1521 break;
1523 case fail:
1524 BUG();
1525 break;
1529 out:
1530 if (state != cpuset) {
1532 * Don't tell them about moving exiting tasks or
1533 * kernel threads (both mm NULL), since they never
1534 * leave kernel.
1536 if (p->mm && printk_ratelimit()) {
1537 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1538 task_pid_nr(p), p->comm, cpu);
1542 return dest_cpu;
1546 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1548 static inline
1549 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1551 lockdep_assert_held(&p->pi_lock);
1553 if (p->nr_cpus_allowed > 1)
1554 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1555 else
1556 cpu = cpumask_any(&p->cpus_allowed);
1559 * In order not to call set_task_cpu() on a blocking task we need
1560 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1561 * CPU.
1563 * Since this is common to all placement strategies, this lives here.
1565 * [ this allows ->select_task() to simply return task_cpu(p) and
1566 * not worry about this generic constraint ]
1568 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
1569 !cpu_online(cpu)))
1570 cpu = select_fallback_rq(task_cpu(p), p);
1572 return cpu;
1575 static void update_avg(u64 *avg, u64 sample)
1577 s64 diff = sample - *avg;
1578 *avg += diff >> 3;
1581 void sched_set_stop_task(int cpu, struct task_struct *stop)
1583 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1584 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1586 if (stop) {
1588 * Make it appear like a SCHED_FIFO task, its something
1589 * userspace knows about and won't get confused about.
1591 * Also, it will make PI more or less work without too
1592 * much confusion -- but then, stop work should not
1593 * rely on PI working anyway.
1595 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1597 stop->sched_class = &stop_sched_class;
1600 cpu_rq(cpu)->stop = stop;
1602 if (old_stop) {
1604 * Reset it back to a normal scheduling class so that
1605 * it can die in pieces.
1607 old_stop->sched_class = &rt_sched_class;
1611 #else
1613 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1614 const struct cpumask *new_mask, bool check)
1616 return set_cpus_allowed_ptr(p, new_mask);
1619 #endif /* CONFIG_SMP */
1621 static void
1622 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1624 struct rq *rq;
1626 if (!schedstat_enabled())
1627 return;
1629 rq = this_rq();
1631 #ifdef CONFIG_SMP
1632 if (cpu == rq->cpu) {
1633 __schedstat_inc(rq->ttwu_local);
1634 __schedstat_inc(p->se.statistics.nr_wakeups_local);
1635 } else {
1636 struct sched_domain *sd;
1638 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
1639 rcu_read_lock();
1640 for_each_domain(rq->cpu, sd) {
1641 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1642 __schedstat_inc(sd->ttwu_wake_remote);
1643 break;
1646 rcu_read_unlock();
1649 if (wake_flags & WF_MIGRATED)
1650 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1651 #endif /* CONFIG_SMP */
1653 __schedstat_inc(rq->ttwu_count);
1654 __schedstat_inc(p->se.statistics.nr_wakeups);
1656 if (wake_flags & WF_SYNC)
1657 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
1660 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1662 activate_task(rq, p, en_flags);
1663 p->on_rq = TASK_ON_RQ_QUEUED;
1665 /* If a worker is waking up, notify the workqueue: */
1666 if (p->flags & PF_WQ_WORKER)
1667 wq_worker_waking_up(p, cpu_of(rq));
1671 * Mark the task runnable and perform wakeup-preemption.
1673 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1674 struct rq_flags *rf)
1676 check_preempt_curr(rq, p, wake_flags);
1677 p->state = TASK_RUNNING;
1678 trace_sched_wakeup(p);
1680 #ifdef CONFIG_SMP
1681 if (p->sched_class->task_woken) {
1683 * Our task @p is fully woken up and running; so its safe to
1684 * drop the rq->lock, hereafter rq is only used for statistics.
1686 rq_unpin_lock(rq, rf);
1687 p->sched_class->task_woken(rq, p);
1688 rq_repin_lock(rq, rf);
1691 if (rq->idle_stamp) {
1692 u64 delta = rq_clock(rq) - rq->idle_stamp;
1693 u64 max = 2*rq->max_idle_balance_cost;
1695 update_avg(&rq->avg_idle, delta);
1697 if (rq->avg_idle > max)
1698 rq->avg_idle = max;
1700 rq->idle_stamp = 0;
1702 #endif
1705 static void
1706 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1707 struct rq_flags *rf)
1709 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1711 lockdep_assert_held(&rq->lock);
1713 #ifdef CONFIG_SMP
1714 if (p->sched_contributes_to_load)
1715 rq->nr_uninterruptible--;
1717 if (wake_flags & WF_MIGRATED)
1718 en_flags |= ENQUEUE_MIGRATED;
1719 #endif
1721 ttwu_activate(rq, p, en_flags);
1722 ttwu_do_wakeup(rq, p, wake_flags, rf);
1726 * Called in case the task @p isn't fully descheduled from its runqueue,
1727 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1728 * since all we need to do is flip p->state to TASK_RUNNING, since
1729 * the task is still ->on_rq.
1731 static int ttwu_remote(struct task_struct *p, int wake_flags)
1733 struct rq_flags rf;
1734 struct rq *rq;
1735 int ret = 0;
1737 rq = __task_rq_lock(p, &rf);
1738 if (task_on_rq_queued(p)) {
1739 /* check_preempt_curr() may use rq clock */
1740 update_rq_clock(rq);
1741 ttwu_do_wakeup(rq, p, wake_flags, &rf);
1742 ret = 1;
1744 __task_rq_unlock(rq, &rf);
1746 return ret;
1749 #ifdef CONFIG_SMP
1750 void sched_ttwu_pending(void)
1752 struct rq *rq = this_rq();
1753 struct llist_node *llist = llist_del_all(&rq->wake_list);
1754 struct task_struct *p, *t;
1755 struct rq_flags rf;
1757 if (!llist)
1758 return;
1760 rq_lock_irqsave(rq, &rf);
1761 update_rq_clock(rq);
1763 llist_for_each_entry_safe(p, t, llist, wake_entry)
1764 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1766 rq_unlock_irqrestore(rq, &rf);
1769 void scheduler_ipi(void)
1772 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1773 * TIF_NEED_RESCHED remotely (for the first time) will also send
1774 * this IPI.
1776 preempt_fold_need_resched();
1778 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1779 return;
1782 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1783 * traditionally all their work was done from the interrupt return
1784 * path. Now that we actually do some work, we need to make sure
1785 * we do call them.
1787 * Some archs already do call them, luckily irq_enter/exit nest
1788 * properly.
1790 * Arguably we should visit all archs and update all handlers,
1791 * however a fair share of IPIs are still resched only so this would
1792 * somewhat pessimize the simple resched case.
1794 irq_enter();
1795 sched_ttwu_pending();
1798 * Check if someone kicked us for doing the nohz idle load balance.
1800 if (unlikely(got_nohz_idle_kick())) {
1801 this_rq()->idle_balance = 1;
1802 raise_softirq_irqoff(SCHED_SOFTIRQ);
1804 irq_exit();
1807 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1809 struct rq *rq = cpu_rq(cpu);
1811 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1813 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1814 if (!set_nr_if_polling(rq->idle))
1815 smp_send_reschedule(cpu);
1816 else
1817 trace_sched_wake_idle_without_ipi(cpu);
1821 void wake_up_if_idle(int cpu)
1823 struct rq *rq = cpu_rq(cpu);
1824 struct rq_flags rf;
1826 rcu_read_lock();
1828 if (!is_idle_task(rcu_dereference(rq->curr)))
1829 goto out;
1831 if (set_nr_if_polling(rq->idle)) {
1832 trace_sched_wake_idle_without_ipi(cpu);
1833 } else {
1834 rq_lock_irqsave(rq, &rf);
1835 if (is_idle_task(rq->curr))
1836 smp_send_reschedule(cpu);
1837 /* Else CPU is not idle, do nothing here: */
1838 rq_unlock_irqrestore(rq, &rf);
1841 out:
1842 rcu_read_unlock();
1845 bool cpus_share_cache(int this_cpu, int that_cpu)
1847 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1849 #endif /* CONFIG_SMP */
1851 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1853 struct rq *rq = cpu_rq(cpu);
1854 struct rq_flags rf;
1856 #if defined(CONFIG_SMP)
1857 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1858 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1859 ttwu_queue_remote(p, cpu, wake_flags);
1860 return;
1862 #endif
1864 rq_lock(rq, &rf);
1865 update_rq_clock(rq);
1866 ttwu_do_activate(rq, p, wake_flags, &rf);
1867 rq_unlock(rq, &rf);
1871 * Notes on Program-Order guarantees on SMP systems.
1873 * MIGRATION
1875 * The basic program-order guarantee on SMP systems is that when a task [t]
1876 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1877 * execution on its new CPU [c1].
1879 * For migration (of runnable tasks) this is provided by the following means:
1881 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1882 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1883 * rq(c1)->lock (if not at the same time, then in that order).
1884 * C) LOCK of the rq(c1)->lock scheduling in task
1886 * Transitivity guarantees that B happens after A and C after B.
1887 * Note: we only require RCpc transitivity.
1888 * Note: the CPU doing B need not be c0 or c1
1890 * Example:
1892 * CPU0 CPU1 CPU2
1894 * LOCK rq(0)->lock
1895 * sched-out X
1896 * sched-in Y
1897 * UNLOCK rq(0)->lock
1899 * LOCK rq(0)->lock // orders against CPU0
1900 * dequeue X
1901 * UNLOCK rq(0)->lock
1903 * LOCK rq(1)->lock
1904 * enqueue X
1905 * UNLOCK rq(1)->lock
1907 * LOCK rq(1)->lock // orders against CPU2
1908 * sched-out Z
1909 * sched-in X
1910 * UNLOCK rq(1)->lock
1913 * BLOCKING -- aka. SLEEP + WAKEUP
1915 * For blocking we (obviously) need to provide the same guarantee as for
1916 * migration. However the means are completely different as there is no lock
1917 * chain to provide order. Instead we do:
1919 * 1) smp_store_release(X->on_cpu, 0)
1920 * 2) smp_cond_load_acquire(!X->on_cpu)
1922 * Example:
1924 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1926 * LOCK rq(0)->lock LOCK X->pi_lock
1927 * dequeue X
1928 * sched-out X
1929 * smp_store_release(X->on_cpu, 0);
1931 * smp_cond_load_acquire(&X->on_cpu, !VAL);
1932 * X->state = WAKING
1933 * set_task_cpu(X,2)
1935 * LOCK rq(2)->lock
1936 * enqueue X
1937 * X->state = RUNNING
1938 * UNLOCK rq(2)->lock
1940 * LOCK rq(2)->lock // orders against CPU1
1941 * sched-out Z
1942 * sched-in X
1943 * UNLOCK rq(2)->lock
1945 * UNLOCK X->pi_lock
1946 * UNLOCK rq(0)->lock
1949 * However; for wakeups there is a second guarantee we must provide, namely we
1950 * must observe the state that lead to our wakeup. That is, not only must our
1951 * task observe its own prior state, it must also observe the stores prior to
1952 * its wakeup.
1954 * This means that any means of doing remote wakeups must order the CPU doing
1955 * the wakeup against the CPU the task is going to end up running on. This,
1956 * however, is already required for the regular Program-Order guarantee above,
1957 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1962 * try_to_wake_up - wake up a thread
1963 * @p: the thread to be awakened
1964 * @state: the mask of task states that can be woken
1965 * @wake_flags: wake modifier flags (WF_*)
1967 * If (@state & @p->state) @p->state = TASK_RUNNING.
1969 * If the task was not queued/runnable, also place it back on a runqueue.
1971 * Atomic against schedule() which would dequeue a task, also see
1972 * set_current_state().
1974 * Return: %true if @p->state changes (an actual wakeup was done),
1975 * %false otherwise.
1977 static int
1978 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1980 unsigned long flags;
1981 int cpu, success = 0;
1984 * If we are going to wake up a thread waiting for CONDITION we
1985 * need to ensure that CONDITION=1 done by the caller can not be
1986 * reordered with p->state check below. This pairs with mb() in
1987 * set_current_state() the waiting thread does.
1989 raw_spin_lock_irqsave(&p->pi_lock, flags);
1990 smp_mb__after_spinlock();
1991 if (!(p->state & state))
1992 goto out;
1994 trace_sched_waking(p);
1996 /* We're going to change ->state: */
1997 success = 1;
1998 cpu = task_cpu(p);
2001 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2002 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2003 * in smp_cond_load_acquire() below.
2005 * sched_ttwu_pending() try_to_wake_up()
2006 * [S] p->on_rq = 1; [L] P->state
2007 * UNLOCK rq->lock -----.
2009 * +--- RMB
2010 * schedule() /
2011 * LOCK rq->lock -----'
2012 * UNLOCK rq->lock
2014 * [task p]
2015 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2017 * Pairs with the UNLOCK+LOCK on rq->lock from the
2018 * last wakeup of our task and the schedule that got our task
2019 * current.
2021 smp_rmb();
2022 if (p->on_rq && ttwu_remote(p, wake_flags))
2023 goto stat;
2025 #ifdef CONFIG_SMP
2027 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2028 * possible to, falsely, observe p->on_cpu == 0.
2030 * One must be running (->on_cpu == 1) in order to remove oneself
2031 * from the runqueue.
2033 * [S] ->on_cpu = 1; [L] ->on_rq
2034 * UNLOCK rq->lock
2035 * RMB
2036 * LOCK rq->lock
2037 * [S] ->on_rq = 0; [L] ->on_cpu
2039 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2040 * from the consecutive calls to schedule(); the first switching to our
2041 * task, the second putting it to sleep.
2043 smp_rmb();
2046 * If the owning (remote) CPU is still in the middle of schedule() with
2047 * this task as prev, wait until its done referencing the task.
2049 * Pairs with the smp_store_release() in finish_task().
2051 * This ensures that tasks getting woken will be fully ordered against
2052 * their previous state and preserve Program Order.
2054 smp_cond_load_acquire(&p->on_cpu, !VAL);
2056 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2057 p->state = TASK_WAKING;
2059 if (p->in_iowait) {
2060 delayacct_blkio_end(p);
2061 atomic_dec(&task_rq(p)->nr_iowait);
2064 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2065 if (task_cpu(p) != cpu) {
2066 wake_flags |= WF_MIGRATED;
2067 set_task_cpu(p, cpu);
2070 #else /* CONFIG_SMP */
2072 if (p->in_iowait) {
2073 delayacct_blkio_end(p);
2074 atomic_dec(&task_rq(p)->nr_iowait);
2077 #endif /* CONFIG_SMP */
2079 ttwu_queue(p, cpu, wake_flags);
2080 stat:
2081 ttwu_stat(p, cpu, wake_flags);
2082 out:
2083 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2085 return success;
2089 * try_to_wake_up_local - try to wake up a local task with rq lock held
2090 * @p: the thread to be awakened
2091 * @rf: request-queue flags for pinning
2093 * Put @p on the run-queue if it's not already there. The caller must
2094 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2095 * the current task.
2097 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2099 struct rq *rq = task_rq(p);
2101 if (WARN_ON_ONCE(rq != this_rq()) ||
2102 WARN_ON_ONCE(p == current))
2103 return;
2105 lockdep_assert_held(&rq->lock);
2107 if (!raw_spin_trylock(&p->pi_lock)) {
2109 * This is OK, because current is on_cpu, which avoids it being
2110 * picked for load-balance and preemption/IRQs are still
2111 * disabled avoiding further scheduler activity on it and we've
2112 * not yet picked a replacement task.
2114 rq_unlock(rq, rf);
2115 raw_spin_lock(&p->pi_lock);
2116 rq_relock(rq, rf);
2119 if (!(p->state & TASK_NORMAL))
2120 goto out;
2122 trace_sched_waking(p);
2124 if (!task_on_rq_queued(p)) {
2125 if (p->in_iowait) {
2126 delayacct_blkio_end(p);
2127 atomic_dec(&rq->nr_iowait);
2129 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2132 ttwu_do_wakeup(rq, p, 0, rf);
2133 ttwu_stat(p, smp_processor_id(), 0);
2134 out:
2135 raw_spin_unlock(&p->pi_lock);
2139 * wake_up_process - Wake up a specific process
2140 * @p: The process to be woken up.
2142 * Attempt to wake up the nominated process and move it to the set of runnable
2143 * processes.
2145 * Return: 1 if the process was woken up, 0 if it was already running.
2147 * It may be assumed that this function implies a write memory barrier before
2148 * changing the task state if and only if any tasks are woken up.
2150 int wake_up_process(struct task_struct *p)
2152 return try_to_wake_up(p, TASK_NORMAL, 0);
2154 EXPORT_SYMBOL(wake_up_process);
2156 int wake_up_state(struct task_struct *p, unsigned int state)
2158 return try_to_wake_up(p, state, 0);
2162 * Perform scheduler related setup for a newly forked process p.
2163 * p is forked by current.
2165 * __sched_fork() is basic setup used by init_idle() too:
2167 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2169 p->on_rq = 0;
2171 p->se.on_rq = 0;
2172 p->se.exec_start = 0;
2173 p->se.sum_exec_runtime = 0;
2174 p->se.prev_sum_exec_runtime = 0;
2175 p->se.nr_migrations = 0;
2176 p->se.vruntime = 0;
2177 INIT_LIST_HEAD(&p->se.group_node);
2179 #ifdef CONFIG_FAIR_GROUP_SCHED
2180 p->se.cfs_rq = NULL;
2181 #endif
2183 #ifdef CONFIG_SCHEDSTATS
2184 /* Even if schedstat is disabled, there should not be garbage */
2185 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2186 #endif
2188 RB_CLEAR_NODE(&p->dl.rb_node);
2189 init_dl_task_timer(&p->dl);
2190 init_dl_inactive_task_timer(&p->dl);
2191 __dl_clear_params(p);
2193 INIT_LIST_HEAD(&p->rt.run_list);
2194 p->rt.timeout = 0;
2195 p->rt.time_slice = sched_rr_timeslice;
2196 p->rt.on_rq = 0;
2197 p->rt.on_list = 0;
2199 #ifdef CONFIG_PREEMPT_NOTIFIERS
2200 INIT_HLIST_HEAD(&p->preempt_notifiers);
2201 #endif
2203 #ifdef CONFIG_NUMA_BALANCING
2204 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2205 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2206 p->mm->numa_scan_seq = 0;
2209 if (clone_flags & CLONE_VM)
2210 p->numa_preferred_nid = current->numa_preferred_nid;
2211 else
2212 p->numa_preferred_nid = -1;
2214 p->node_stamp = 0ULL;
2215 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2216 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2217 p->numa_work.next = &p->numa_work;
2218 p->numa_faults = NULL;
2219 p->last_task_numa_placement = 0;
2220 p->last_sum_exec_runtime = 0;
2222 p->numa_group = NULL;
2223 #endif /* CONFIG_NUMA_BALANCING */
2226 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2228 #ifdef CONFIG_NUMA_BALANCING
2230 void set_numabalancing_state(bool enabled)
2232 if (enabled)
2233 static_branch_enable(&sched_numa_balancing);
2234 else
2235 static_branch_disable(&sched_numa_balancing);
2238 #ifdef CONFIG_PROC_SYSCTL
2239 int sysctl_numa_balancing(struct ctl_table *table, int write,
2240 void __user *buffer, size_t *lenp, loff_t *ppos)
2242 struct ctl_table t;
2243 int err;
2244 int state = static_branch_likely(&sched_numa_balancing);
2246 if (write && !capable(CAP_SYS_ADMIN))
2247 return -EPERM;
2249 t = *table;
2250 t.data = &state;
2251 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2252 if (err < 0)
2253 return err;
2254 if (write)
2255 set_numabalancing_state(state);
2256 return err;
2258 #endif
2259 #endif
2261 #ifdef CONFIG_SCHEDSTATS
2263 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2264 static bool __initdata __sched_schedstats = false;
2266 static void set_schedstats(bool enabled)
2268 if (enabled)
2269 static_branch_enable(&sched_schedstats);
2270 else
2271 static_branch_disable(&sched_schedstats);
2274 void force_schedstat_enabled(void)
2276 if (!schedstat_enabled()) {
2277 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2278 static_branch_enable(&sched_schedstats);
2282 static int __init setup_schedstats(char *str)
2284 int ret = 0;
2285 if (!str)
2286 goto out;
2289 * This code is called before jump labels have been set up, so we can't
2290 * change the static branch directly just yet. Instead set a temporary
2291 * variable so init_schedstats() can do it later.
2293 if (!strcmp(str, "enable")) {
2294 __sched_schedstats = true;
2295 ret = 1;
2296 } else if (!strcmp(str, "disable")) {
2297 __sched_schedstats = false;
2298 ret = 1;
2300 out:
2301 if (!ret)
2302 pr_warn("Unable to parse schedstats=\n");
2304 return ret;
2306 __setup("schedstats=", setup_schedstats);
2308 static void __init init_schedstats(void)
2310 set_schedstats(__sched_schedstats);
2313 #ifdef CONFIG_PROC_SYSCTL
2314 int sysctl_schedstats(struct ctl_table *table, int write,
2315 void __user *buffer, size_t *lenp, loff_t *ppos)
2317 struct ctl_table t;
2318 int err;
2319 int state = static_branch_likely(&sched_schedstats);
2321 if (write && !capable(CAP_SYS_ADMIN))
2322 return -EPERM;
2324 t = *table;
2325 t.data = &state;
2326 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2327 if (err < 0)
2328 return err;
2329 if (write)
2330 set_schedstats(state);
2331 return err;
2333 #endif /* CONFIG_PROC_SYSCTL */
2334 #else /* !CONFIG_SCHEDSTATS */
2335 static inline void init_schedstats(void) {}
2336 #endif /* CONFIG_SCHEDSTATS */
2339 * fork()/clone()-time setup:
2341 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2343 unsigned long flags;
2344 int cpu = get_cpu();
2346 __sched_fork(clone_flags, p);
2348 * We mark the process as NEW here. This guarantees that
2349 * nobody will actually run it, and a signal or other external
2350 * event cannot wake it up and insert it on the runqueue either.
2352 p->state = TASK_NEW;
2355 * Make sure we do not leak PI boosting priority to the child.
2357 p->prio = current->normal_prio;
2360 * Revert to default priority/policy on fork if requested.
2362 if (unlikely(p->sched_reset_on_fork)) {
2363 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2364 p->policy = SCHED_NORMAL;
2365 p->static_prio = NICE_TO_PRIO(0);
2366 p->rt_priority = 0;
2367 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2368 p->static_prio = NICE_TO_PRIO(0);
2370 p->prio = p->normal_prio = __normal_prio(p);
2371 set_load_weight(p, false);
2374 * We don't need the reset flag anymore after the fork. It has
2375 * fulfilled its duty:
2377 p->sched_reset_on_fork = 0;
2380 if (dl_prio(p->prio)) {
2381 put_cpu();
2382 return -EAGAIN;
2383 } else if (rt_prio(p->prio)) {
2384 p->sched_class = &rt_sched_class;
2385 } else {
2386 p->sched_class = &fair_sched_class;
2389 init_entity_runnable_average(&p->se);
2392 * The child is not yet in the pid-hash so no cgroup attach races,
2393 * and the cgroup is pinned to this child due to cgroup_fork()
2394 * is ran before sched_fork().
2396 * Silence PROVE_RCU.
2398 raw_spin_lock_irqsave(&p->pi_lock, flags);
2400 * We're setting the CPU for the first time, we don't migrate,
2401 * so use __set_task_cpu().
2403 __set_task_cpu(p, cpu);
2404 if (p->sched_class->task_fork)
2405 p->sched_class->task_fork(p);
2406 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2408 #ifdef CONFIG_SCHED_INFO
2409 if (likely(sched_info_on()))
2410 memset(&p->sched_info, 0, sizeof(p->sched_info));
2411 #endif
2412 #if defined(CONFIG_SMP)
2413 p->on_cpu = 0;
2414 #endif
2415 init_task_preempt_count(p);
2416 #ifdef CONFIG_SMP
2417 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2418 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2419 #endif
2421 put_cpu();
2422 return 0;
2425 unsigned long to_ratio(u64 period, u64 runtime)
2427 if (runtime == RUNTIME_INF)
2428 return BW_UNIT;
2431 * Doing this here saves a lot of checks in all
2432 * the calling paths, and returning zero seems
2433 * safe for them anyway.
2435 if (period == 0)
2436 return 0;
2438 return div64_u64(runtime << BW_SHIFT, period);
2442 * wake_up_new_task - wake up a newly created task for the first time.
2444 * This function will do some initial scheduler statistics housekeeping
2445 * that must be done for every newly created context, then puts the task
2446 * on the runqueue and wakes it.
2448 void wake_up_new_task(struct task_struct *p)
2450 struct rq_flags rf;
2451 struct rq *rq;
2453 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2454 p->state = TASK_RUNNING;
2455 #ifdef CONFIG_SMP
2457 * Fork balancing, do it here and not earlier because:
2458 * - cpus_allowed can change in the fork path
2459 * - any previously selected CPU might disappear through hotplug
2461 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2462 * as we're not fully set-up yet.
2464 p->recent_used_cpu = task_cpu(p);
2465 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2466 #endif
2467 rq = __task_rq_lock(p, &rf);
2468 update_rq_clock(rq);
2469 post_init_entity_util_avg(&p->se);
2471 activate_task(rq, p, ENQUEUE_NOCLOCK);
2472 p->on_rq = TASK_ON_RQ_QUEUED;
2473 trace_sched_wakeup_new(p);
2474 check_preempt_curr(rq, p, WF_FORK);
2475 #ifdef CONFIG_SMP
2476 if (p->sched_class->task_woken) {
2478 * Nothing relies on rq->lock after this, so its fine to
2479 * drop it.
2481 rq_unpin_lock(rq, &rf);
2482 p->sched_class->task_woken(rq, p);
2483 rq_repin_lock(rq, &rf);
2485 #endif
2486 task_rq_unlock(rq, p, &rf);
2489 #ifdef CONFIG_PREEMPT_NOTIFIERS
2491 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2493 void preempt_notifier_inc(void)
2495 static_key_slow_inc(&preempt_notifier_key);
2497 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2499 void preempt_notifier_dec(void)
2501 static_key_slow_dec(&preempt_notifier_key);
2503 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2506 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2507 * @notifier: notifier struct to register
2509 void preempt_notifier_register(struct preempt_notifier *notifier)
2511 if (!static_key_false(&preempt_notifier_key))
2512 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2514 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2516 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2519 * preempt_notifier_unregister - no longer interested in preemption notifications
2520 * @notifier: notifier struct to unregister
2522 * This is *not* safe to call from within a preemption notifier.
2524 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2526 hlist_del(&notifier->link);
2528 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2530 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2532 struct preempt_notifier *notifier;
2534 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2535 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2538 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2540 if (static_key_false(&preempt_notifier_key))
2541 __fire_sched_in_preempt_notifiers(curr);
2544 static void
2545 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2546 struct task_struct *next)
2548 struct preempt_notifier *notifier;
2550 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2551 notifier->ops->sched_out(notifier, next);
2554 static __always_inline void
2555 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2556 struct task_struct *next)
2558 if (static_key_false(&preempt_notifier_key))
2559 __fire_sched_out_preempt_notifiers(curr, next);
2562 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2564 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2568 static inline void
2569 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2570 struct task_struct *next)
2574 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2576 static inline void prepare_task(struct task_struct *next)
2578 #ifdef CONFIG_SMP
2580 * Claim the task as running, we do this before switching to it
2581 * such that any running task will have this set.
2583 next->on_cpu = 1;
2584 #endif
2587 static inline void finish_task(struct task_struct *prev)
2589 #ifdef CONFIG_SMP
2591 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2592 * We must ensure this doesn't happen until the switch is completely
2593 * finished.
2595 * In particular, the load of prev->state in finish_task_switch() must
2596 * happen before this.
2598 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2600 smp_store_release(&prev->on_cpu, 0);
2601 #endif
2604 static inline void
2605 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
2608 * Since the runqueue lock will be released by the next
2609 * task (which is an invalid locking op but in the case
2610 * of the scheduler it's an obvious special-case), so we
2611 * do an early lockdep release here:
2613 rq_unpin_lock(rq, rf);
2614 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2615 #ifdef CONFIG_DEBUG_SPINLOCK
2616 /* this is a valid case when another task releases the spinlock */
2617 rq->lock.owner = next;
2618 #endif
2621 static inline void finish_lock_switch(struct rq *rq)
2624 * If we are tracking spinlock dependencies then we have to
2625 * fix up the runqueue lock - which gets 'carried over' from
2626 * prev into current:
2628 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
2629 raw_spin_unlock_irq(&rq->lock);
2633 * prepare_task_switch - prepare to switch tasks
2634 * @rq: the runqueue preparing to switch
2635 * @prev: the current task that is being switched out
2636 * @next: the task we are going to switch to.
2638 * This is called with the rq lock held and interrupts off. It must
2639 * be paired with a subsequent finish_task_switch after the context
2640 * switch.
2642 * prepare_task_switch sets up locking and calls architecture specific
2643 * hooks.
2645 static inline void
2646 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2647 struct task_struct *next)
2649 sched_info_switch(rq, prev, next);
2650 perf_event_task_sched_out(prev, next);
2651 fire_sched_out_preempt_notifiers(prev, next);
2652 prepare_task(next);
2653 prepare_arch_switch(next);
2657 * finish_task_switch - clean up after a task-switch
2658 * @prev: the thread we just switched away from.
2660 * finish_task_switch must be called after the context switch, paired
2661 * with a prepare_task_switch call before the context switch.
2662 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2663 * and do any other architecture-specific cleanup actions.
2665 * Note that we may have delayed dropping an mm in context_switch(). If
2666 * so, we finish that here outside of the runqueue lock. (Doing it
2667 * with the lock held can cause deadlocks; see schedule() for
2668 * details.)
2670 * The context switch have flipped the stack from under us and restored the
2671 * local variables which were saved when this task called schedule() in the
2672 * past. prev == current is still correct but we need to recalculate this_rq
2673 * because prev may have moved to another CPU.
2675 static struct rq *finish_task_switch(struct task_struct *prev)
2676 __releases(rq->lock)
2678 struct rq *rq = this_rq();
2679 struct mm_struct *mm = rq->prev_mm;
2680 long prev_state;
2683 * The previous task will have left us with a preempt_count of 2
2684 * because it left us after:
2686 * schedule()
2687 * preempt_disable(); // 1
2688 * __schedule()
2689 * raw_spin_lock_irq(&rq->lock) // 2
2691 * Also, see FORK_PREEMPT_COUNT.
2693 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2694 "corrupted preempt_count: %s/%d/0x%x\n",
2695 current->comm, current->pid, preempt_count()))
2696 preempt_count_set(FORK_PREEMPT_COUNT);
2698 rq->prev_mm = NULL;
2701 * A task struct has one reference for the use as "current".
2702 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2703 * schedule one last time. The schedule call will never return, and
2704 * the scheduled task must drop that reference.
2706 * We must observe prev->state before clearing prev->on_cpu (in
2707 * finish_task), otherwise a concurrent wakeup can get prev
2708 * running on another CPU and we could rave with its RUNNING -> DEAD
2709 * transition, resulting in a double drop.
2711 prev_state = prev->state;
2712 vtime_task_switch(prev);
2713 perf_event_task_sched_in(prev, current);
2714 finish_task(prev);
2715 finish_lock_switch(rq);
2716 finish_arch_post_lock_switch();
2718 fire_sched_in_preempt_notifiers(current);
2720 * When switching through a kernel thread, the loop in
2721 * membarrier_{private,global}_expedited() may have observed that
2722 * kernel thread and not issued an IPI. It is therefore possible to
2723 * schedule between user->kernel->user threads without passing though
2724 * switch_mm(). Membarrier requires a barrier after storing to
2725 * rq->curr, before returning to userspace, so provide them here:
2727 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2728 * provided by mmdrop(),
2729 * - a sync_core for SYNC_CORE.
2731 if (mm) {
2732 membarrier_mm_sync_core_before_usermode(mm);
2733 mmdrop(mm);
2735 if (unlikely(prev_state == TASK_DEAD)) {
2736 if (prev->sched_class->task_dead)
2737 prev->sched_class->task_dead(prev);
2740 * Remove function-return probe instances associated with this
2741 * task and put them back on the free list.
2743 kprobe_flush_task(prev);
2745 /* Task is done with its stack. */
2746 put_task_stack(prev);
2748 put_task_struct(prev);
2751 tick_nohz_task_switch();
2752 return rq;
2755 #ifdef CONFIG_SMP
2757 /* rq->lock is NOT held, but preemption is disabled */
2758 static void __balance_callback(struct rq *rq)
2760 struct callback_head *head, *next;
2761 void (*func)(struct rq *rq);
2762 unsigned long flags;
2764 raw_spin_lock_irqsave(&rq->lock, flags);
2765 head = rq->balance_callback;
2766 rq->balance_callback = NULL;
2767 while (head) {
2768 func = (void (*)(struct rq *))head->func;
2769 next = head->next;
2770 head->next = NULL;
2771 head = next;
2773 func(rq);
2775 raw_spin_unlock_irqrestore(&rq->lock, flags);
2778 static inline void balance_callback(struct rq *rq)
2780 if (unlikely(rq->balance_callback))
2781 __balance_callback(rq);
2784 #else
2786 static inline void balance_callback(struct rq *rq)
2790 #endif
2793 * schedule_tail - first thing a freshly forked thread must call.
2794 * @prev: the thread we just switched away from.
2796 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2797 __releases(rq->lock)
2799 struct rq *rq;
2802 * New tasks start with FORK_PREEMPT_COUNT, see there and
2803 * finish_task_switch() for details.
2805 * finish_task_switch() will drop rq->lock() and lower preempt_count
2806 * and the preempt_enable() will end up enabling preemption (on
2807 * PREEMPT_COUNT kernels).
2810 rq = finish_task_switch(prev);
2811 balance_callback(rq);
2812 preempt_enable();
2814 if (current->set_child_tid)
2815 put_user(task_pid_vnr(current), current->set_child_tid);
2819 * context_switch - switch to the new MM and the new thread's register state.
2821 static __always_inline struct rq *
2822 context_switch(struct rq *rq, struct task_struct *prev,
2823 struct task_struct *next, struct rq_flags *rf)
2825 struct mm_struct *mm, *oldmm;
2827 prepare_task_switch(rq, prev, next);
2829 mm = next->mm;
2830 oldmm = prev->active_mm;
2832 * For paravirt, this is coupled with an exit in switch_to to
2833 * combine the page table reload and the switch backend into
2834 * one hypercall.
2836 arch_start_context_switch(prev);
2839 * If mm is non-NULL, we pass through switch_mm(). If mm is
2840 * NULL, we will pass through mmdrop() in finish_task_switch().
2841 * Both of these contain the full memory barrier required by
2842 * membarrier after storing to rq->curr, before returning to
2843 * user-space.
2845 if (!mm) {
2846 next->active_mm = oldmm;
2847 mmgrab(oldmm);
2848 enter_lazy_tlb(oldmm, next);
2849 } else
2850 switch_mm_irqs_off(oldmm, mm, next);
2852 if (!prev->mm) {
2853 prev->active_mm = NULL;
2854 rq->prev_mm = oldmm;
2857 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2859 prepare_lock_switch(rq, next, rf);
2861 /* Here we just switch the register state and the stack. */
2862 switch_to(prev, next, prev);
2863 barrier();
2865 return finish_task_switch(prev);
2869 * nr_running and nr_context_switches:
2871 * externally visible scheduler statistics: current number of runnable
2872 * threads, total number of context switches performed since bootup.
2874 unsigned long nr_running(void)
2876 unsigned long i, sum = 0;
2878 for_each_online_cpu(i)
2879 sum += cpu_rq(i)->nr_running;
2881 return sum;
2885 * Check if only the current task is running on the CPU.
2887 * Caution: this function does not check that the caller has disabled
2888 * preemption, thus the result might have a time-of-check-to-time-of-use
2889 * race. The caller is responsible to use it correctly, for example:
2891 * - from a non-preemptable section (of course)
2893 * - from a thread that is bound to a single CPU
2895 * - in a loop with very short iterations (e.g. a polling loop)
2897 bool single_task_running(void)
2899 return raw_rq()->nr_running == 1;
2901 EXPORT_SYMBOL(single_task_running);
2903 unsigned long long nr_context_switches(void)
2905 int i;
2906 unsigned long long sum = 0;
2908 for_each_possible_cpu(i)
2909 sum += cpu_rq(i)->nr_switches;
2911 return sum;
2915 * IO-wait accounting, and how its mostly bollocks (on SMP).
2917 * The idea behind IO-wait account is to account the idle time that we could
2918 * have spend running if it were not for IO. That is, if we were to improve the
2919 * storage performance, we'd have a proportional reduction in IO-wait time.
2921 * This all works nicely on UP, where, when a task blocks on IO, we account
2922 * idle time as IO-wait, because if the storage were faster, it could've been
2923 * running and we'd not be idle.
2925 * This has been extended to SMP, by doing the same for each CPU. This however
2926 * is broken.
2928 * Imagine for instance the case where two tasks block on one CPU, only the one
2929 * CPU will have IO-wait accounted, while the other has regular idle. Even
2930 * though, if the storage were faster, both could've ran at the same time,
2931 * utilising both CPUs.
2933 * This means, that when looking globally, the current IO-wait accounting on
2934 * SMP is a lower bound, by reason of under accounting.
2936 * Worse, since the numbers are provided per CPU, they are sometimes
2937 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2938 * associated with any one particular CPU, it can wake to another CPU than it
2939 * blocked on. This means the per CPU IO-wait number is meaningless.
2941 * Task CPU affinities can make all that even more 'interesting'.
2944 unsigned long nr_iowait(void)
2946 unsigned long i, sum = 0;
2948 for_each_possible_cpu(i)
2949 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2951 return sum;
2955 * Consumers of these two interfaces, like for example the cpufreq menu
2956 * governor are using nonsensical data. Boosting frequency for a CPU that has
2957 * IO-wait which might not even end up running the task when it does become
2958 * runnable.
2961 unsigned long nr_iowait_cpu(int cpu)
2963 struct rq *this = cpu_rq(cpu);
2964 return atomic_read(&this->nr_iowait);
2967 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2969 struct rq *rq = this_rq();
2970 *nr_waiters = atomic_read(&rq->nr_iowait);
2971 *load = rq->load.weight;
2974 #ifdef CONFIG_SMP
2977 * sched_exec - execve() is a valuable balancing opportunity, because at
2978 * this point the task has the smallest effective memory and cache footprint.
2980 void sched_exec(void)
2982 struct task_struct *p = current;
2983 unsigned long flags;
2984 int dest_cpu;
2986 raw_spin_lock_irqsave(&p->pi_lock, flags);
2987 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2988 if (dest_cpu == smp_processor_id())
2989 goto unlock;
2991 if (likely(cpu_active(dest_cpu))) {
2992 struct migration_arg arg = { p, dest_cpu };
2994 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2995 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2996 return;
2998 unlock:
2999 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3002 #endif
3004 DEFINE_PER_CPU(struct kernel_stat, kstat);
3005 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3007 EXPORT_PER_CPU_SYMBOL(kstat);
3008 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3011 * The function fair_sched_class.update_curr accesses the struct curr
3012 * and its field curr->exec_start; when called from task_sched_runtime(),
3013 * we observe a high rate of cache misses in practice.
3014 * Prefetching this data results in improved performance.
3016 static inline void prefetch_curr_exec_start(struct task_struct *p)
3018 #ifdef CONFIG_FAIR_GROUP_SCHED
3019 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3020 #else
3021 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3022 #endif
3023 prefetch(curr);
3024 prefetch(&curr->exec_start);
3028 * Return accounted runtime for the task.
3029 * In case the task is currently running, return the runtime plus current's
3030 * pending runtime that have not been accounted yet.
3032 unsigned long long task_sched_runtime(struct task_struct *p)
3034 struct rq_flags rf;
3035 struct rq *rq;
3036 u64 ns;
3038 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3040 * 64-bit doesn't need locks to atomically read a 64bit value.
3041 * So we have a optimization chance when the task's delta_exec is 0.
3042 * Reading ->on_cpu is racy, but this is ok.
3044 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3045 * If we race with it entering CPU, unaccounted time is 0. This is
3046 * indistinguishable from the read occurring a few cycles earlier.
3047 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3048 * been accounted, so we're correct here as well.
3050 if (!p->on_cpu || !task_on_rq_queued(p))
3051 return p->se.sum_exec_runtime;
3052 #endif
3054 rq = task_rq_lock(p, &rf);
3056 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3057 * project cycles that may never be accounted to this
3058 * thread, breaking clock_gettime().
3060 if (task_current(rq, p) && task_on_rq_queued(p)) {
3061 prefetch_curr_exec_start(p);
3062 update_rq_clock(rq);
3063 p->sched_class->update_curr(rq);
3065 ns = p->se.sum_exec_runtime;
3066 task_rq_unlock(rq, p, &rf);
3068 return ns;
3072 * This function gets called by the timer code, with HZ frequency.
3073 * We call it with interrupts disabled.
3075 void scheduler_tick(void)
3077 int cpu = smp_processor_id();
3078 struct rq *rq = cpu_rq(cpu);
3079 struct task_struct *curr = rq->curr;
3080 struct rq_flags rf;
3082 sched_clock_tick();
3084 rq_lock(rq, &rf);
3086 update_rq_clock(rq);
3087 curr->sched_class->task_tick(rq, curr, 0);
3088 cpu_load_update_active(rq);
3089 calc_global_load_tick(rq);
3091 rq_unlock(rq, &rf);
3093 perf_event_task_tick();
3095 #ifdef CONFIG_SMP
3096 rq->idle_balance = idle_cpu(cpu);
3097 trigger_load_balance(rq);
3098 #endif
3099 rq_last_tick_reset(rq);
3102 #ifdef CONFIG_NO_HZ_FULL
3104 * scheduler_tick_max_deferment
3106 * Keep at least one tick per second when a single
3107 * active task is running because the scheduler doesn't
3108 * yet completely support full dynticks environment.
3110 * This makes sure that uptime, CFS vruntime, load
3111 * balancing, etc... continue to move forward, even
3112 * with a very low granularity.
3114 * Return: Maximum deferment in nanoseconds.
3116 u64 scheduler_tick_max_deferment(void)
3118 struct rq *rq = this_rq();
3119 unsigned long next, now = READ_ONCE(jiffies);
3121 next = rq->last_sched_tick + HZ;
3123 if (time_before_eq(next, now))
3124 return 0;
3126 return jiffies_to_nsecs(next - now);
3128 #endif
3130 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3131 defined(CONFIG_PREEMPT_TRACER))
3133 * If the value passed in is equal to the current preempt count
3134 * then we just disabled preemption. Start timing the latency.
3136 static inline void preempt_latency_start(int val)
3138 if (preempt_count() == val) {
3139 unsigned long ip = get_lock_parent_ip();
3140 #ifdef CONFIG_DEBUG_PREEMPT
3141 current->preempt_disable_ip = ip;
3142 #endif
3143 trace_preempt_off(CALLER_ADDR0, ip);
3147 void preempt_count_add(int val)
3149 #ifdef CONFIG_DEBUG_PREEMPT
3151 * Underflow?
3153 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3154 return;
3155 #endif
3156 __preempt_count_add(val);
3157 #ifdef CONFIG_DEBUG_PREEMPT
3159 * Spinlock count overflowing soon?
3161 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3162 PREEMPT_MASK - 10);
3163 #endif
3164 preempt_latency_start(val);
3166 EXPORT_SYMBOL(preempt_count_add);
3167 NOKPROBE_SYMBOL(preempt_count_add);
3170 * If the value passed in equals to the current preempt count
3171 * then we just enabled preemption. Stop timing the latency.
3173 static inline void preempt_latency_stop(int val)
3175 if (preempt_count() == val)
3176 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3179 void preempt_count_sub(int val)
3181 #ifdef CONFIG_DEBUG_PREEMPT
3183 * Underflow?
3185 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3186 return;
3188 * Is the spinlock portion underflowing?
3190 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3191 !(preempt_count() & PREEMPT_MASK)))
3192 return;
3193 #endif
3195 preempt_latency_stop(val);
3196 __preempt_count_sub(val);
3198 EXPORT_SYMBOL(preempt_count_sub);
3199 NOKPROBE_SYMBOL(preempt_count_sub);
3201 #else
3202 static inline void preempt_latency_start(int val) { }
3203 static inline void preempt_latency_stop(int val) { }
3204 #endif
3206 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3208 #ifdef CONFIG_DEBUG_PREEMPT
3209 return p->preempt_disable_ip;
3210 #else
3211 return 0;
3212 #endif
3216 * Print scheduling while atomic bug:
3218 static noinline void __schedule_bug(struct task_struct *prev)
3220 /* Save this before calling printk(), since that will clobber it */
3221 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3223 if (oops_in_progress)
3224 return;
3226 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3227 prev->comm, prev->pid, preempt_count());
3229 debug_show_held_locks(prev);
3230 print_modules();
3231 if (irqs_disabled())
3232 print_irqtrace_events(prev);
3233 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3234 && in_atomic_preempt_off()) {
3235 pr_err("Preemption disabled at:");
3236 print_ip_sym(preempt_disable_ip);
3237 pr_cont("\n");
3239 if (panic_on_warn)
3240 panic("scheduling while atomic\n");
3242 dump_stack();
3243 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3247 * Various schedule()-time debugging checks and statistics:
3249 static inline void schedule_debug(struct task_struct *prev)
3251 #ifdef CONFIG_SCHED_STACK_END_CHECK
3252 if (task_stack_end_corrupted(prev))
3253 panic("corrupted stack end detected inside scheduler\n");
3254 #endif
3256 if (unlikely(in_atomic_preempt_off())) {
3257 __schedule_bug(prev);
3258 preempt_count_set(PREEMPT_DISABLED);
3260 rcu_sleep_check();
3262 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3264 schedstat_inc(this_rq()->sched_count);
3268 * Pick up the highest-prio task:
3270 static inline struct task_struct *
3271 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3273 const struct sched_class *class;
3274 struct task_struct *p;
3277 * Optimization: we know that if all tasks are in the fair class we can
3278 * call that function directly, but only if the @prev task wasn't of a
3279 * higher scheduling class, because otherwise those loose the
3280 * opportunity to pull in more work from other CPUs.
3282 if (likely((prev->sched_class == &idle_sched_class ||
3283 prev->sched_class == &fair_sched_class) &&
3284 rq->nr_running == rq->cfs.h_nr_running)) {
3286 p = fair_sched_class.pick_next_task(rq, prev, rf);
3287 if (unlikely(p == RETRY_TASK))
3288 goto again;
3290 /* Assumes fair_sched_class->next == idle_sched_class */
3291 if (unlikely(!p))
3292 p = idle_sched_class.pick_next_task(rq, prev, rf);
3294 return p;
3297 again:
3298 for_each_class(class) {
3299 p = class->pick_next_task(rq, prev, rf);
3300 if (p) {
3301 if (unlikely(p == RETRY_TASK))
3302 goto again;
3303 return p;
3307 /* The idle class should always have a runnable task: */
3308 BUG();
3312 * __schedule() is the main scheduler function.
3314 * The main means of driving the scheduler and thus entering this function are:
3316 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3318 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3319 * paths. For example, see arch/x86/entry_64.S.
3321 * To drive preemption between tasks, the scheduler sets the flag in timer
3322 * interrupt handler scheduler_tick().
3324 * 3. Wakeups don't really cause entry into schedule(). They add a
3325 * task to the run-queue and that's it.
3327 * Now, if the new task added to the run-queue preempts the current
3328 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3329 * called on the nearest possible occasion:
3331 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3333 * - in syscall or exception context, at the next outmost
3334 * preempt_enable(). (this might be as soon as the wake_up()'s
3335 * spin_unlock()!)
3337 * - in IRQ context, return from interrupt-handler to
3338 * preemptible context
3340 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3341 * then at the next:
3343 * - cond_resched() call
3344 * - explicit schedule() call
3345 * - return from syscall or exception to user-space
3346 * - return from interrupt-handler to user-space
3348 * WARNING: must be called with preemption disabled!
3350 static void __sched notrace __schedule(bool preempt)
3352 struct task_struct *prev, *next;
3353 unsigned long *switch_count;
3354 struct rq_flags rf;
3355 struct rq *rq;
3356 int cpu;
3358 cpu = smp_processor_id();
3359 rq = cpu_rq(cpu);
3360 prev = rq->curr;
3362 schedule_debug(prev);
3364 if (sched_feat(HRTICK))
3365 hrtick_clear(rq);
3367 local_irq_disable();
3368 rcu_note_context_switch(preempt);
3371 * Make sure that signal_pending_state()->signal_pending() below
3372 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3373 * done by the caller to avoid the race with signal_wake_up().
3375 * The membarrier system call requires a full memory barrier
3376 * after coming from user-space, before storing to rq->curr.
3378 rq_lock(rq, &rf);
3379 smp_mb__after_spinlock();
3381 /* Promote REQ to ACT */
3382 rq->clock_update_flags <<= 1;
3383 update_rq_clock(rq);
3385 switch_count = &prev->nivcsw;
3386 if (!preempt && prev->state) {
3387 if (unlikely(signal_pending_state(prev->state, prev))) {
3388 prev->state = TASK_RUNNING;
3389 } else {
3390 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3391 prev->on_rq = 0;
3393 if (prev->in_iowait) {
3394 atomic_inc(&rq->nr_iowait);
3395 delayacct_blkio_start();
3399 * If a worker went to sleep, notify and ask workqueue
3400 * whether it wants to wake up a task to maintain
3401 * concurrency.
3403 if (prev->flags & PF_WQ_WORKER) {
3404 struct task_struct *to_wakeup;
3406 to_wakeup = wq_worker_sleeping(prev);
3407 if (to_wakeup)
3408 try_to_wake_up_local(to_wakeup, &rf);
3411 switch_count = &prev->nvcsw;
3414 next = pick_next_task(rq, prev, &rf);
3415 clear_tsk_need_resched(prev);
3416 clear_preempt_need_resched();
3418 if (likely(prev != next)) {
3419 rq->nr_switches++;
3420 rq->curr = next;
3422 * The membarrier system call requires each architecture
3423 * to have a full memory barrier after updating
3424 * rq->curr, before returning to user-space.
3426 * Here are the schemes providing that barrier on the
3427 * various architectures:
3428 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3429 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3430 * - finish_lock_switch() for weakly-ordered
3431 * architectures where spin_unlock is a full barrier,
3432 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3433 * is a RELEASE barrier),
3435 ++*switch_count;
3437 trace_sched_switch(preempt, prev, next);
3439 /* Also unlocks the rq: */
3440 rq = context_switch(rq, prev, next, &rf);
3441 } else {
3442 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3443 rq_unlock_irq(rq, &rf);
3446 balance_callback(rq);
3449 void __noreturn do_task_dead(void)
3452 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3453 * when the following two conditions become true.
3454 * - There is race condition of mmap_sem (It is acquired by
3455 * exit_mm()), and
3456 * - SMI occurs before setting TASK_RUNINNG.
3457 * (or hypervisor of virtual machine switches to other guest)
3458 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3460 * To avoid it, we have to wait for releasing tsk->pi_lock which
3461 * is held by try_to_wake_up()
3463 raw_spin_lock_irq(&current->pi_lock);
3464 raw_spin_unlock_irq(&current->pi_lock);
3466 /* Causes final put_task_struct in finish_task_switch(): */
3467 __set_current_state(TASK_DEAD);
3469 /* Tell freezer to ignore us: */
3470 current->flags |= PF_NOFREEZE;
3472 __schedule(false);
3473 BUG();
3475 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3476 for (;;)
3477 cpu_relax();
3480 static inline void sched_submit_work(struct task_struct *tsk)
3482 if (!tsk->state || tsk_is_pi_blocked(tsk))
3483 return;
3485 * If we are going to sleep and we have plugged IO queued,
3486 * make sure to submit it to avoid deadlocks.
3488 if (blk_needs_flush_plug(tsk))
3489 blk_schedule_flush_plug(tsk);
3492 asmlinkage __visible void __sched schedule(void)
3494 struct task_struct *tsk = current;
3496 sched_submit_work(tsk);
3497 do {
3498 preempt_disable();
3499 __schedule(false);
3500 sched_preempt_enable_no_resched();
3501 } while (need_resched());
3503 EXPORT_SYMBOL(schedule);
3506 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3507 * state (have scheduled out non-voluntarily) by making sure that all
3508 * tasks have either left the run queue or have gone into user space.
3509 * As idle tasks do not do either, they must not ever be preempted
3510 * (schedule out non-voluntarily).
3512 * schedule_idle() is similar to schedule_preempt_disable() except that it
3513 * never enables preemption because it does not call sched_submit_work().
3515 void __sched schedule_idle(void)
3518 * As this skips calling sched_submit_work(), which the idle task does
3519 * regardless because that function is a nop when the task is in a
3520 * TASK_RUNNING state, make sure this isn't used someplace that the
3521 * current task can be in any other state. Note, idle is always in the
3522 * TASK_RUNNING state.
3524 WARN_ON_ONCE(current->state);
3525 do {
3526 __schedule(false);
3527 } while (need_resched());
3530 #ifdef CONFIG_CONTEXT_TRACKING
3531 asmlinkage __visible void __sched schedule_user(void)
3534 * If we come here after a random call to set_need_resched(),
3535 * or we have been woken up remotely but the IPI has not yet arrived,
3536 * we haven't yet exited the RCU idle mode. Do it here manually until
3537 * we find a better solution.
3539 * NB: There are buggy callers of this function. Ideally we
3540 * should warn if prev_state != CONTEXT_USER, but that will trigger
3541 * too frequently to make sense yet.
3543 enum ctx_state prev_state = exception_enter();
3544 schedule();
3545 exception_exit(prev_state);
3547 #endif
3550 * schedule_preempt_disabled - called with preemption disabled
3552 * Returns with preemption disabled. Note: preempt_count must be 1
3554 void __sched schedule_preempt_disabled(void)
3556 sched_preempt_enable_no_resched();
3557 schedule();
3558 preempt_disable();
3561 static void __sched notrace preempt_schedule_common(void)
3563 do {
3565 * Because the function tracer can trace preempt_count_sub()
3566 * and it also uses preempt_enable/disable_notrace(), if
3567 * NEED_RESCHED is set, the preempt_enable_notrace() called
3568 * by the function tracer will call this function again and
3569 * cause infinite recursion.
3571 * Preemption must be disabled here before the function
3572 * tracer can trace. Break up preempt_disable() into two
3573 * calls. One to disable preemption without fear of being
3574 * traced. The other to still record the preemption latency,
3575 * which can also be traced by the function tracer.
3577 preempt_disable_notrace();
3578 preempt_latency_start(1);
3579 __schedule(true);
3580 preempt_latency_stop(1);
3581 preempt_enable_no_resched_notrace();
3584 * Check again in case we missed a preemption opportunity
3585 * between schedule and now.
3587 } while (need_resched());
3590 #ifdef CONFIG_PREEMPT
3592 * this is the entry point to schedule() from in-kernel preemption
3593 * off of preempt_enable. Kernel preemptions off return from interrupt
3594 * occur there and call schedule directly.
3596 asmlinkage __visible void __sched notrace preempt_schedule(void)
3599 * If there is a non-zero preempt_count or interrupts are disabled,
3600 * we do not want to preempt the current task. Just return..
3602 if (likely(!preemptible()))
3603 return;
3605 preempt_schedule_common();
3607 NOKPROBE_SYMBOL(preempt_schedule);
3608 EXPORT_SYMBOL(preempt_schedule);
3611 * preempt_schedule_notrace - preempt_schedule called by tracing
3613 * The tracing infrastructure uses preempt_enable_notrace to prevent
3614 * recursion and tracing preempt enabling caused by the tracing
3615 * infrastructure itself. But as tracing can happen in areas coming
3616 * from userspace or just about to enter userspace, a preempt enable
3617 * can occur before user_exit() is called. This will cause the scheduler
3618 * to be called when the system is still in usermode.
3620 * To prevent this, the preempt_enable_notrace will use this function
3621 * instead of preempt_schedule() to exit user context if needed before
3622 * calling the scheduler.
3624 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3626 enum ctx_state prev_ctx;
3628 if (likely(!preemptible()))
3629 return;
3631 do {
3633 * Because the function tracer can trace preempt_count_sub()
3634 * and it also uses preempt_enable/disable_notrace(), if
3635 * NEED_RESCHED is set, the preempt_enable_notrace() called
3636 * by the function tracer will call this function again and
3637 * cause infinite recursion.
3639 * Preemption must be disabled here before the function
3640 * tracer can trace. Break up preempt_disable() into two
3641 * calls. One to disable preemption without fear of being
3642 * traced. The other to still record the preemption latency,
3643 * which can also be traced by the function tracer.
3645 preempt_disable_notrace();
3646 preempt_latency_start(1);
3648 * Needs preempt disabled in case user_exit() is traced
3649 * and the tracer calls preempt_enable_notrace() causing
3650 * an infinite recursion.
3652 prev_ctx = exception_enter();
3653 __schedule(true);
3654 exception_exit(prev_ctx);
3656 preempt_latency_stop(1);
3657 preempt_enable_no_resched_notrace();
3658 } while (need_resched());
3660 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3662 #endif /* CONFIG_PREEMPT */
3665 * this is the entry point to schedule() from kernel preemption
3666 * off of irq context.
3667 * Note, that this is called and return with irqs disabled. This will
3668 * protect us against recursive calling from irq.
3670 asmlinkage __visible void __sched preempt_schedule_irq(void)
3672 enum ctx_state prev_state;
3674 /* Catch callers which need to be fixed */
3675 BUG_ON(preempt_count() || !irqs_disabled());
3677 prev_state = exception_enter();
3679 do {
3680 preempt_disable();
3681 local_irq_enable();
3682 __schedule(true);
3683 local_irq_disable();
3684 sched_preempt_enable_no_resched();
3685 } while (need_resched());
3687 exception_exit(prev_state);
3690 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
3691 void *key)
3693 return try_to_wake_up(curr->private, mode, wake_flags);
3695 EXPORT_SYMBOL(default_wake_function);
3697 #ifdef CONFIG_RT_MUTEXES
3699 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3701 if (pi_task)
3702 prio = min(prio, pi_task->prio);
3704 return prio;
3707 static inline int rt_effective_prio(struct task_struct *p, int prio)
3709 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3711 return __rt_effective_prio(pi_task, prio);
3715 * rt_mutex_setprio - set the current priority of a task
3716 * @p: task to boost
3717 * @pi_task: donor task
3719 * This function changes the 'effective' priority of a task. It does
3720 * not touch ->normal_prio like __setscheduler().
3722 * Used by the rt_mutex code to implement priority inheritance
3723 * logic. Call site only calls if the priority of the task changed.
3725 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3727 int prio, oldprio, queued, running, queue_flag =
3728 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3729 const struct sched_class *prev_class;
3730 struct rq_flags rf;
3731 struct rq *rq;
3733 /* XXX used to be waiter->prio, not waiter->task->prio */
3734 prio = __rt_effective_prio(pi_task, p->normal_prio);
3737 * If nothing changed; bail early.
3739 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3740 return;
3742 rq = __task_rq_lock(p, &rf);
3743 update_rq_clock(rq);
3745 * Set under pi_lock && rq->lock, such that the value can be used under
3746 * either lock.
3748 * Note that there is loads of tricky to make this pointer cache work
3749 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3750 * ensure a task is de-boosted (pi_task is set to NULL) before the
3751 * task is allowed to run again (and can exit). This ensures the pointer
3752 * points to a blocked task -- which guaratees the task is present.
3754 p->pi_top_task = pi_task;
3757 * For FIFO/RR we only need to set prio, if that matches we're done.
3759 if (prio == p->prio && !dl_prio(prio))
3760 goto out_unlock;
3763 * Idle task boosting is a nono in general. There is one
3764 * exception, when PREEMPT_RT and NOHZ is active:
3766 * The idle task calls get_next_timer_interrupt() and holds
3767 * the timer wheel base->lock on the CPU and another CPU wants
3768 * to access the timer (probably to cancel it). We can safely
3769 * ignore the boosting request, as the idle CPU runs this code
3770 * with interrupts disabled and will complete the lock
3771 * protected section without being interrupted. So there is no
3772 * real need to boost.
3774 if (unlikely(p == rq->idle)) {
3775 WARN_ON(p != rq->curr);
3776 WARN_ON(p->pi_blocked_on);
3777 goto out_unlock;
3780 trace_sched_pi_setprio(p, pi_task);
3781 oldprio = p->prio;
3783 if (oldprio == prio)
3784 queue_flag &= ~DEQUEUE_MOVE;
3786 prev_class = p->sched_class;
3787 queued = task_on_rq_queued(p);
3788 running = task_current(rq, p);
3789 if (queued)
3790 dequeue_task(rq, p, queue_flag);
3791 if (running)
3792 put_prev_task(rq, p);
3795 * Boosting condition are:
3796 * 1. -rt task is running and holds mutex A
3797 * --> -dl task blocks on mutex A
3799 * 2. -dl task is running and holds mutex A
3800 * --> -dl task blocks on mutex A and could preempt the
3801 * running task
3803 if (dl_prio(prio)) {
3804 if (!dl_prio(p->normal_prio) ||
3805 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3806 p->dl.dl_boosted = 1;
3807 queue_flag |= ENQUEUE_REPLENISH;
3808 } else
3809 p->dl.dl_boosted = 0;
3810 p->sched_class = &dl_sched_class;
3811 } else if (rt_prio(prio)) {
3812 if (dl_prio(oldprio))
3813 p->dl.dl_boosted = 0;
3814 if (oldprio < prio)
3815 queue_flag |= ENQUEUE_HEAD;
3816 p->sched_class = &rt_sched_class;
3817 } else {
3818 if (dl_prio(oldprio))
3819 p->dl.dl_boosted = 0;
3820 if (rt_prio(oldprio))
3821 p->rt.timeout = 0;
3822 p->sched_class = &fair_sched_class;
3825 p->prio = prio;
3827 if (queued)
3828 enqueue_task(rq, p, queue_flag);
3829 if (running)
3830 set_curr_task(rq, p);
3832 check_class_changed(rq, p, prev_class, oldprio);
3833 out_unlock:
3834 /* Avoid rq from going away on us: */
3835 preempt_disable();
3836 __task_rq_unlock(rq, &rf);
3838 balance_callback(rq);
3839 preempt_enable();
3841 #else
3842 static inline int rt_effective_prio(struct task_struct *p, int prio)
3844 return prio;
3846 #endif
3848 void set_user_nice(struct task_struct *p, long nice)
3850 bool queued, running;
3851 int old_prio, delta;
3852 struct rq_flags rf;
3853 struct rq *rq;
3855 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3856 return;
3858 * We have to be careful, if called from sys_setpriority(),
3859 * the task might be in the middle of scheduling on another CPU.
3861 rq = task_rq_lock(p, &rf);
3862 update_rq_clock(rq);
3865 * The RT priorities are set via sched_setscheduler(), but we still
3866 * allow the 'normal' nice value to be set - but as expected
3867 * it wont have any effect on scheduling until the task is
3868 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3870 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3871 p->static_prio = NICE_TO_PRIO(nice);
3872 goto out_unlock;
3874 queued = task_on_rq_queued(p);
3875 running = task_current(rq, p);
3876 if (queued)
3877 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
3878 if (running)
3879 put_prev_task(rq, p);
3881 p->static_prio = NICE_TO_PRIO(nice);
3882 set_load_weight(p, true);
3883 old_prio = p->prio;
3884 p->prio = effective_prio(p);
3885 delta = p->prio - old_prio;
3887 if (queued) {
3888 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
3890 * If the task increased its priority or is running and
3891 * lowered its priority, then reschedule its CPU:
3893 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3894 resched_curr(rq);
3896 if (running)
3897 set_curr_task(rq, p);
3898 out_unlock:
3899 task_rq_unlock(rq, p, &rf);
3901 EXPORT_SYMBOL(set_user_nice);
3904 * can_nice - check if a task can reduce its nice value
3905 * @p: task
3906 * @nice: nice value
3908 int can_nice(const struct task_struct *p, const int nice)
3910 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
3911 int nice_rlim = nice_to_rlimit(nice);
3913 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3914 capable(CAP_SYS_NICE));
3917 #ifdef __ARCH_WANT_SYS_NICE
3920 * sys_nice - change the priority of the current process.
3921 * @increment: priority increment
3923 * sys_setpriority is a more generic, but much slower function that
3924 * does similar things.
3926 SYSCALL_DEFINE1(nice, int, increment)
3928 long nice, retval;
3931 * Setpriority might change our priority at the same moment.
3932 * We don't have to worry. Conceptually one call occurs first
3933 * and we have a single winner.
3935 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3936 nice = task_nice(current) + increment;
3938 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3939 if (increment < 0 && !can_nice(current, nice))
3940 return -EPERM;
3942 retval = security_task_setnice(current, nice);
3943 if (retval)
3944 return retval;
3946 set_user_nice(current, nice);
3947 return 0;
3950 #endif
3953 * task_prio - return the priority value of a given task.
3954 * @p: the task in question.
3956 * Return: The priority value as seen by users in /proc.
3957 * RT tasks are offset by -200. Normal tasks are centered
3958 * around 0, value goes from -16 to +15.
3960 int task_prio(const struct task_struct *p)
3962 return p->prio - MAX_RT_PRIO;
3966 * idle_cpu - is a given CPU idle currently?
3967 * @cpu: the processor in question.
3969 * Return: 1 if the CPU is currently idle. 0 otherwise.
3971 int idle_cpu(int cpu)
3973 struct rq *rq = cpu_rq(cpu);
3975 if (rq->curr != rq->idle)
3976 return 0;
3978 if (rq->nr_running)
3979 return 0;
3981 #ifdef CONFIG_SMP
3982 if (!llist_empty(&rq->wake_list))
3983 return 0;
3984 #endif
3986 return 1;
3990 * idle_task - return the idle task for a given CPU.
3991 * @cpu: the processor in question.
3993 * Return: The idle task for the CPU @cpu.
3995 struct task_struct *idle_task(int cpu)
3997 return cpu_rq(cpu)->idle;
4001 * find_process_by_pid - find a process with a matching PID value.
4002 * @pid: the pid in question.
4004 * The task of @pid, if found. %NULL otherwise.
4006 static struct task_struct *find_process_by_pid(pid_t pid)
4008 return pid ? find_task_by_vpid(pid) : current;
4012 * sched_setparam() passes in -1 for its policy, to let the functions
4013 * it calls know not to change it.
4015 #define SETPARAM_POLICY -1
4017 static void __setscheduler_params(struct task_struct *p,
4018 const struct sched_attr *attr)
4020 int policy = attr->sched_policy;
4022 if (policy == SETPARAM_POLICY)
4023 policy = p->policy;
4025 p->policy = policy;
4027 if (dl_policy(policy))
4028 __setparam_dl(p, attr);
4029 else if (fair_policy(policy))
4030 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4033 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4034 * !rt_policy. Always setting this ensures that things like
4035 * getparam()/getattr() don't report silly values for !rt tasks.
4037 p->rt_priority = attr->sched_priority;
4038 p->normal_prio = normal_prio(p);
4039 set_load_weight(p, true);
4042 /* Actually do priority change: must hold pi & rq lock. */
4043 static void __setscheduler(struct rq *rq, struct task_struct *p,
4044 const struct sched_attr *attr, bool keep_boost)
4046 __setscheduler_params(p, attr);
4049 * Keep a potential priority boosting if called from
4050 * sched_setscheduler().
4052 p->prio = normal_prio(p);
4053 if (keep_boost)
4054 p->prio = rt_effective_prio(p, p->prio);
4056 if (dl_prio(p->prio))
4057 p->sched_class = &dl_sched_class;
4058 else if (rt_prio(p->prio))
4059 p->sched_class = &rt_sched_class;
4060 else
4061 p->sched_class = &fair_sched_class;
4065 * Check the target process has a UID that matches the current process's:
4067 static bool check_same_owner(struct task_struct *p)
4069 const struct cred *cred = current_cred(), *pcred;
4070 bool match;
4072 rcu_read_lock();
4073 pcred = __task_cred(p);
4074 match = (uid_eq(cred->euid, pcred->euid) ||
4075 uid_eq(cred->euid, pcred->uid));
4076 rcu_read_unlock();
4077 return match;
4080 static int __sched_setscheduler(struct task_struct *p,
4081 const struct sched_attr *attr,
4082 bool user, bool pi)
4084 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4085 MAX_RT_PRIO - 1 - attr->sched_priority;
4086 int retval, oldprio, oldpolicy = -1, queued, running;
4087 int new_effective_prio, policy = attr->sched_policy;
4088 const struct sched_class *prev_class;
4089 struct rq_flags rf;
4090 int reset_on_fork;
4091 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4092 struct rq *rq;
4094 /* The pi code expects interrupts enabled */
4095 BUG_ON(pi && in_interrupt());
4096 recheck:
4097 /* Double check policy once rq lock held: */
4098 if (policy < 0) {
4099 reset_on_fork = p->sched_reset_on_fork;
4100 policy = oldpolicy = p->policy;
4101 } else {
4102 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4104 if (!valid_policy(policy))
4105 return -EINVAL;
4108 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4109 return -EINVAL;
4112 * Valid priorities for SCHED_FIFO and SCHED_RR are
4113 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4114 * SCHED_BATCH and SCHED_IDLE is 0.
4116 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4117 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4118 return -EINVAL;
4119 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4120 (rt_policy(policy) != (attr->sched_priority != 0)))
4121 return -EINVAL;
4124 * Allow unprivileged RT tasks to decrease priority:
4126 if (user && !capable(CAP_SYS_NICE)) {
4127 if (fair_policy(policy)) {
4128 if (attr->sched_nice < task_nice(p) &&
4129 !can_nice(p, attr->sched_nice))
4130 return -EPERM;
4133 if (rt_policy(policy)) {
4134 unsigned long rlim_rtprio =
4135 task_rlimit(p, RLIMIT_RTPRIO);
4137 /* Can't set/change the rt policy: */
4138 if (policy != p->policy && !rlim_rtprio)
4139 return -EPERM;
4141 /* Can't increase priority: */
4142 if (attr->sched_priority > p->rt_priority &&
4143 attr->sched_priority > rlim_rtprio)
4144 return -EPERM;
4148 * Can't set/change SCHED_DEADLINE policy at all for now
4149 * (safest behavior); in the future we would like to allow
4150 * unprivileged DL tasks to increase their relative deadline
4151 * or reduce their runtime (both ways reducing utilization)
4153 if (dl_policy(policy))
4154 return -EPERM;
4157 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4158 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4160 if (idle_policy(p->policy) && !idle_policy(policy)) {
4161 if (!can_nice(p, task_nice(p)))
4162 return -EPERM;
4165 /* Can't change other user's priorities: */
4166 if (!check_same_owner(p))
4167 return -EPERM;
4169 /* Normal users shall not reset the sched_reset_on_fork flag: */
4170 if (p->sched_reset_on_fork && !reset_on_fork)
4171 return -EPERM;
4174 if (user) {
4175 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4176 return -EINVAL;
4178 retval = security_task_setscheduler(p);
4179 if (retval)
4180 return retval;
4184 * Make sure no PI-waiters arrive (or leave) while we are
4185 * changing the priority of the task:
4187 * To be able to change p->policy safely, the appropriate
4188 * runqueue lock must be held.
4190 rq = task_rq_lock(p, &rf);
4191 update_rq_clock(rq);
4194 * Changing the policy of the stop threads its a very bad idea:
4196 if (p == rq->stop) {
4197 task_rq_unlock(rq, p, &rf);
4198 return -EINVAL;
4202 * If not changing anything there's no need to proceed further,
4203 * but store a possible modification of reset_on_fork.
4205 if (unlikely(policy == p->policy)) {
4206 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4207 goto change;
4208 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4209 goto change;
4210 if (dl_policy(policy) && dl_param_changed(p, attr))
4211 goto change;
4213 p->sched_reset_on_fork = reset_on_fork;
4214 task_rq_unlock(rq, p, &rf);
4215 return 0;
4217 change:
4219 if (user) {
4220 #ifdef CONFIG_RT_GROUP_SCHED
4222 * Do not allow realtime tasks into groups that have no runtime
4223 * assigned.
4225 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4226 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4227 !task_group_is_autogroup(task_group(p))) {
4228 task_rq_unlock(rq, p, &rf);
4229 return -EPERM;
4231 #endif
4232 #ifdef CONFIG_SMP
4233 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4234 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4235 cpumask_t *span = rq->rd->span;
4238 * Don't allow tasks with an affinity mask smaller than
4239 * the entire root_domain to become SCHED_DEADLINE. We
4240 * will also fail if there's no bandwidth available.
4242 if (!cpumask_subset(span, &p->cpus_allowed) ||
4243 rq->rd->dl_bw.bw == 0) {
4244 task_rq_unlock(rq, p, &rf);
4245 return -EPERM;
4248 #endif
4251 /* Re-check policy now with rq lock held: */
4252 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4253 policy = oldpolicy = -1;
4254 task_rq_unlock(rq, p, &rf);
4255 goto recheck;
4259 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4260 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4261 * is available.
4263 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4264 task_rq_unlock(rq, p, &rf);
4265 return -EBUSY;
4268 p->sched_reset_on_fork = reset_on_fork;
4269 oldprio = p->prio;
4271 if (pi) {
4273 * Take priority boosted tasks into account. If the new
4274 * effective priority is unchanged, we just store the new
4275 * normal parameters and do not touch the scheduler class and
4276 * the runqueue. This will be done when the task deboost
4277 * itself.
4279 new_effective_prio = rt_effective_prio(p, newprio);
4280 if (new_effective_prio == oldprio)
4281 queue_flags &= ~DEQUEUE_MOVE;
4284 queued = task_on_rq_queued(p);
4285 running = task_current(rq, p);
4286 if (queued)
4287 dequeue_task(rq, p, queue_flags);
4288 if (running)
4289 put_prev_task(rq, p);
4291 prev_class = p->sched_class;
4292 __setscheduler(rq, p, attr, pi);
4294 if (queued) {
4296 * We enqueue to tail when the priority of a task is
4297 * increased (user space view).
4299 if (oldprio < p->prio)
4300 queue_flags |= ENQUEUE_HEAD;
4302 enqueue_task(rq, p, queue_flags);
4304 if (running)
4305 set_curr_task(rq, p);
4307 check_class_changed(rq, p, prev_class, oldprio);
4309 /* Avoid rq from going away on us: */
4310 preempt_disable();
4311 task_rq_unlock(rq, p, &rf);
4313 if (pi)
4314 rt_mutex_adjust_pi(p);
4316 /* Run balance callbacks after we've adjusted the PI chain: */
4317 balance_callback(rq);
4318 preempt_enable();
4320 return 0;
4323 static int _sched_setscheduler(struct task_struct *p, int policy,
4324 const struct sched_param *param, bool check)
4326 struct sched_attr attr = {
4327 .sched_policy = policy,
4328 .sched_priority = param->sched_priority,
4329 .sched_nice = PRIO_TO_NICE(p->static_prio),
4332 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4333 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4334 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4335 policy &= ~SCHED_RESET_ON_FORK;
4336 attr.sched_policy = policy;
4339 return __sched_setscheduler(p, &attr, check, true);
4342 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4343 * @p: the task in question.
4344 * @policy: new policy.
4345 * @param: structure containing the new RT priority.
4347 * Return: 0 on success. An error code otherwise.
4349 * NOTE that the task may be already dead.
4351 int sched_setscheduler(struct task_struct *p, int policy,
4352 const struct sched_param *param)
4354 return _sched_setscheduler(p, policy, param, true);
4356 EXPORT_SYMBOL_GPL(sched_setscheduler);
4358 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4360 return __sched_setscheduler(p, attr, true, true);
4362 EXPORT_SYMBOL_GPL(sched_setattr);
4364 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4366 return __sched_setscheduler(p, attr, false, true);
4370 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4371 * @p: the task in question.
4372 * @policy: new policy.
4373 * @param: structure containing the new RT priority.
4375 * Just like sched_setscheduler, only don't bother checking if the
4376 * current context has permission. For example, this is needed in
4377 * stop_machine(): we create temporary high priority worker threads,
4378 * but our caller might not have that capability.
4380 * Return: 0 on success. An error code otherwise.
4382 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4383 const struct sched_param *param)
4385 return _sched_setscheduler(p, policy, param, false);
4387 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4389 static int
4390 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4392 struct sched_param lparam;
4393 struct task_struct *p;
4394 int retval;
4396 if (!param || pid < 0)
4397 return -EINVAL;
4398 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4399 return -EFAULT;
4401 rcu_read_lock();
4402 retval = -ESRCH;
4403 p = find_process_by_pid(pid);
4404 if (p != NULL)
4405 retval = sched_setscheduler(p, policy, &lparam);
4406 rcu_read_unlock();
4408 return retval;
4412 * Mimics kernel/events/core.c perf_copy_attr().
4414 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4416 u32 size;
4417 int ret;
4419 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4420 return -EFAULT;
4422 /* Zero the full structure, so that a short copy will be nice: */
4423 memset(attr, 0, sizeof(*attr));
4425 ret = get_user(size, &uattr->size);
4426 if (ret)
4427 return ret;
4429 /* Bail out on silly large: */
4430 if (size > PAGE_SIZE)
4431 goto err_size;
4433 /* ABI compatibility quirk: */
4434 if (!size)
4435 size = SCHED_ATTR_SIZE_VER0;
4437 if (size < SCHED_ATTR_SIZE_VER0)
4438 goto err_size;
4441 * If we're handed a bigger struct than we know of,
4442 * ensure all the unknown bits are 0 - i.e. new
4443 * user-space does not rely on any kernel feature
4444 * extensions we dont know about yet.
4446 if (size > sizeof(*attr)) {
4447 unsigned char __user *addr;
4448 unsigned char __user *end;
4449 unsigned char val;
4451 addr = (void __user *)uattr + sizeof(*attr);
4452 end = (void __user *)uattr + size;
4454 for (; addr < end; addr++) {
4455 ret = get_user(val, addr);
4456 if (ret)
4457 return ret;
4458 if (val)
4459 goto err_size;
4461 size = sizeof(*attr);
4464 ret = copy_from_user(attr, uattr, size);
4465 if (ret)
4466 return -EFAULT;
4469 * XXX: Do we want to be lenient like existing syscalls; or do we want
4470 * to be strict and return an error on out-of-bounds values?
4472 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4474 return 0;
4476 err_size:
4477 put_user(sizeof(*attr), &uattr->size);
4478 return -E2BIG;
4482 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4483 * @pid: the pid in question.
4484 * @policy: new policy.
4485 * @param: structure containing the new RT priority.
4487 * Return: 0 on success. An error code otherwise.
4489 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4491 if (policy < 0)
4492 return -EINVAL;
4494 return do_sched_setscheduler(pid, policy, param);
4498 * sys_sched_setparam - set/change the RT priority of a thread
4499 * @pid: the pid in question.
4500 * @param: structure containing the new RT priority.
4502 * Return: 0 on success. An error code otherwise.
4504 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4506 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4510 * sys_sched_setattr - same as above, but with extended sched_attr
4511 * @pid: the pid in question.
4512 * @uattr: structure containing the extended parameters.
4513 * @flags: for future extension.
4515 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4516 unsigned int, flags)
4518 struct sched_attr attr;
4519 struct task_struct *p;
4520 int retval;
4522 if (!uattr || pid < 0 || flags)
4523 return -EINVAL;
4525 retval = sched_copy_attr(uattr, &attr);
4526 if (retval)
4527 return retval;
4529 if ((int)attr.sched_policy < 0)
4530 return -EINVAL;
4532 rcu_read_lock();
4533 retval = -ESRCH;
4534 p = find_process_by_pid(pid);
4535 if (p != NULL)
4536 retval = sched_setattr(p, &attr);
4537 rcu_read_unlock();
4539 return retval;
4543 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4544 * @pid: the pid in question.
4546 * Return: On success, the policy of the thread. Otherwise, a negative error
4547 * code.
4549 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4551 struct task_struct *p;
4552 int retval;
4554 if (pid < 0)
4555 return -EINVAL;
4557 retval = -ESRCH;
4558 rcu_read_lock();
4559 p = find_process_by_pid(pid);
4560 if (p) {
4561 retval = security_task_getscheduler(p);
4562 if (!retval)
4563 retval = p->policy
4564 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4566 rcu_read_unlock();
4567 return retval;
4571 * sys_sched_getparam - get the RT priority of a thread
4572 * @pid: the pid in question.
4573 * @param: structure containing the RT priority.
4575 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4576 * code.
4578 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4580 struct sched_param lp = { .sched_priority = 0 };
4581 struct task_struct *p;
4582 int retval;
4584 if (!param || pid < 0)
4585 return -EINVAL;
4587 rcu_read_lock();
4588 p = find_process_by_pid(pid);
4589 retval = -ESRCH;
4590 if (!p)
4591 goto out_unlock;
4593 retval = security_task_getscheduler(p);
4594 if (retval)
4595 goto out_unlock;
4597 if (task_has_rt_policy(p))
4598 lp.sched_priority = p->rt_priority;
4599 rcu_read_unlock();
4602 * This one might sleep, we cannot do it with a spinlock held ...
4604 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4606 return retval;
4608 out_unlock:
4609 rcu_read_unlock();
4610 return retval;
4613 static int sched_read_attr(struct sched_attr __user *uattr,
4614 struct sched_attr *attr,
4615 unsigned int usize)
4617 int ret;
4619 if (!access_ok(VERIFY_WRITE, uattr, usize))
4620 return -EFAULT;
4623 * If we're handed a smaller struct than we know of,
4624 * ensure all the unknown bits are 0 - i.e. old
4625 * user-space does not get uncomplete information.
4627 if (usize < sizeof(*attr)) {
4628 unsigned char *addr;
4629 unsigned char *end;
4631 addr = (void *)attr + usize;
4632 end = (void *)attr + sizeof(*attr);
4634 for (; addr < end; addr++) {
4635 if (*addr)
4636 return -EFBIG;
4639 attr->size = usize;
4642 ret = copy_to_user(uattr, attr, attr->size);
4643 if (ret)
4644 return -EFAULT;
4646 return 0;
4650 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4651 * @pid: the pid in question.
4652 * @uattr: structure containing the extended parameters.
4653 * @size: sizeof(attr) for fwd/bwd comp.
4654 * @flags: for future extension.
4656 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4657 unsigned int, size, unsigned int, flags)
4659 struct sched_attr attr = {
4660 .size = sizeof(struct sched_attr),
4662 struct task_struct *p;
4663 int retval;
4665 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4666 size < SCHED_ATTR_SIZE_VER0 || flags)
4667 return -EINVAL;
4669 rcu_read_lock();
4670 p = find_process_by_pid(pid);
4671 retval = -ESRCH;
4672 if (!p)
4673 goto out_unlock;
4675 retval = security_task_getscheduler(p);
4676 if (retval)
4677 goto out_unlock;
4679 attr.sched_policy = p->policy;
4680 if (p->sched_reset_on_fork)
4681 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4682 if (task_has_dl_policy(p))
4683 __getparam_dl(p, &attr);
4684 else if (task_has_rt_policy(p))
4685 attr.sched_priority = p->rt_priority;
4686 else
4687 attr.sched_nice = task_nice(p);
4689 rcu_read_unlock();
4691 retval = sched_read_attr(uattr, &attr, size);
4692 return retval;
4694 out_unlock:
4695 rcu_read_unlock();
4696 return retval;
4699 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4701 cpumask_var_t cpus_allowed, new_mask;
4702 struct task_struct *p;
4703 int retval;
4705 rcu_read_lock();
4707 p = find_process_by_pid(pid);
4708 if (!p) {
4709 rcu_read_unlock();
4710 return -ESRCH;
4713 /* Prevent p going away */
4714 get_task_struct(p);
4715 rcu_read_unlock();
4717 if (p->flags & PF_NO_SETAFFINITY) {
4718 retval = -EINVAL;
4719 goto out_put_task;
4721 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4722 retval = -ENOMEM;
4723 goto out_put_task;
4725 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4726 retval = -ENOMEM;
4727 goto out_free_cpus_allowed;
4729 retval = -EPERM;
4730 if (!check_same_owner(p)) {
4731 rcu_read_lock();
4732 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4733 rcu_read_unlock();
4734 goto out_free_new_mask;
4736 rcu_read_unlock();
4739 retval = security_task_setscheduler(p);
4740 if (retval)
4741 goto out_free_new_mask;
4744 cpuset_cpus_allowed(p, cpus_allowed);
4745 cpumask_and(new_mask, in_mask, cpus_allowed);
4748 * Since bandwidth control happens on root_domain basis,
4749 * if admission test is enabled, we only admit -deadline
4750 * tasks allowed to run on all the CPUs in the task's
4751 * root_domain.
4753 #ifdef CONFIG_SMP
4754 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4755 rcu_read_lock();
4756 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4757 retval = -EBUSY;
4758 rcu_read_unlock();
4759 goto out_free_new_mask;
4761 rcu_read_unlock();
4763 #endif
4764 again:
4765 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4767 if (!retval) {
4768 cpuset_cpus_allowed(p, cpus_allowed);
4769 if (!cpumask_subset(new_mask, cpus_allowed)) {
4771 * We must have raced with a concurrent cpuset
4772 * update. Just reset the cpus_allowed to the
4773 * cpuset's cpus_allowed
4775 cpumask_copy(new_mask, cpus_allowed);
4776 goto again;
4779 out_free_new_mask:
4780 free_cpumask_var(new_mask);
4781 out_free_cpus_allowed:
4782 free_cpumask_var(cpus_allowed);
4783 out_put_task:
4784 put_task_struct(p);
4785 return retval;
4788 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4789 struct cpumask *new_mask)
4791 if (len < cpumask_size())
4792 cpumask_clear(new_mask);
4793 else if (len > cpumask_size())
4794 len = cpumask_size();
4796 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4800 * sys_sched_setaffinity - set the CPU affinity of a process
4801 * @pid: pid of the process
4802 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4803 * @user_mask_ptr: user-space pointer to the new CPU mask
4805 * Return: 0 on success. An error code otherwise.
4807 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4808 unsigned long __user *, user_mask_ptr)
4810 cpumask_var_t new_mask;
4811 int retval;
4813 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4814 return -ENOMEM;
4816 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4817 if (retval == 0)
4818 retval = sched_setaffinity(pid, new_mask);
4819 free_cpumask_var(new_mask);
4820 return retval;
4823 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4825 struct task_struct *p;
4826 unsigned long flags;
4827 int retval;
4829 rcu_read_lock();
4831 retval = -ESRCH;
4832 p = find_process_by_pid(pid);
4833 if (!p)
4834 goto out_unlock;
4836 retval = security_task_getscheduler(p);
4837 if (retval)
4838 goto out_unlock;
4840 raw_spin_lock_irqsave(&p->pi_lock, flags);
4841 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4842 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4844 out_unlock:
4845 rcu_read_unlock();
4847 return retval;
4851 * sys_sched_getaffinity - get the CPU affinity of a process
4852 * @pid: pid of the process
4853 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4854 * @user_mask_ptr: user-space pointer to hold the current CPU mask
4856 * Return: size of CPU mask copied to user_mask_ptr on success. An
4857 * error code otherwise.
4859 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4860 unsigned long __user *, user_mask_ptr)
4862 int ret;
4863 cpumask_var_t mask;
4865 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4866 return -EINVAL;
4867 if (len & (sizeof(unsigned long)-1))
4868 return -EINVAL;
4870 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4871 return -ENOMEM;
4873 ret = sched_getaffinity(pid, mask);
4874 if (ret == 0) {
4875 unsigned int retlen = min(len, cpumask_size());
4877 if (copy_to_user(user_mask_ptr, mask, retlen))
4878 ret = -EFAULT;
4879 else
4880 ret = retlen;
4882 free_cpumask_var(mask);
4884 return ret;
4888 * sys_sched_yield - yield the current processor to other threads.
4890 * This function yields the current CPU to other tasks. If there are no
4891 * other threads running on this CPU then this function will return.
4893 * Return: 0.
4895 SYSCALL_DEFINE0(sched_yield)
4897 struct rq_flags rf;
4898 struct rq *rq;
4900 local_irq_disable();
4901 rq = this_rq();
4902 rq_lock(rq, &rf);
4904 schedstat_inc(rq->yld_count);
4905 current->sched_class->yield_task(rq);
4908 * Since we are going to call schedule() anyway, there's
4909 * no need to preempt or enable interrupts:
4911 preempt_disable();
4912 rq_unlock(rq, &rf);
4913 sched_preempt_enable_no_resched();
4915 schedule();
4917 return 0;
4920 #ifndef CONFIG_PREEMPT
4921 int __sched _cond_resched(void)
4923 if (should_resched(0)) {
4924 preempt_schedule_common();
4925 return 1;
4927 rcu_all_qs();
4928 return 0;
4930 EXPORT_SYMBOL(_cond_resched);
4931 #endif
4934 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4935 * call schedule, and on return reacquire the lock.
4937 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4938 * operations here to prevent schedule() from being called twice (once via
4939 * spin_unlock(), once by hand).
4941 int __cond_resched_lock(spinlock_t *lock)
4943 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4944 int ret = 0;
4946 lockdep_assert_held(lock);
4948 if (spin_needbreak(lock) || resched) {
4949 spin_unlock(lock);
4950 if (resched)
4951 preempt_schedule_common();
4952 else
4953 cpu_relax();
4954 ret = 1;
4955 spin_lock(lock);
4957 return ret;
4959 EXPORT_SYMBOL(__cond_resched_lock);
4961 int __sched __cond_resched_softirq(void)
4963 BUG_ON(!in_softirq());
4965 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4966 local_bh_enable();
4967 preempt_schedule_common();
4968 local_bh_disable();
4969 return 1;
4971 return 0;
4973 EXPORT_SYMBOL(__cond_resched_softirq);
4976 * yield - yield the current processor to other threads.
4978 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4980 * The scheduler is at all times free to pick the calling task as the most
4981 * eligible task to run, if removing the yield() call from your code breaks
4982 * it, its already broken.
4984 * Typical broken usage is:
4986 * while (!event)
4987 * yield();
4989 * where one assumes that yield() will let 'the other' process run that will
4990 * make event true. If the current task is a SCHED_FIFO task that will never
4991 * happen. Never use yield() as a progress guarantee!!
4993 * If you want to use yield() to wait for something, use wait_event().
4994 * If you want to use yield() to be 'nice' for others, use cond_resched().
4995 * If you still want to use yield(), do not!
4997 void __sched yield(void)
4999 set_current_state(TASK_RUNNING);
5000 sys_sched_yield();
5002 EXPORT_SYMBOL(yield);
5005 * yield_to - yield the current processor to another thread in
5006 * your thread group, or accelerate that thread toward the
5007 * processor it's on.
5008 * @p: target task
5009 * @preempt: whether task preemption is allowed or not
5011 * It's the caller's job to ensure that the target task struct
5012 * can't go away on us before we can do any checks.
5014 * Return:
5015 * true (>0) if we indeed boosted the target task.
5016 * false (0) if we failed to boost the target.
5017 * -ESRCH if there's no task to yield to.
5019 int __sched yield_to(struct task_struct *p, bool preempt)
5021 struct task_struct *curr = current;
5022 struct rq *rq, *p_rq;
5023 unsigned long flags;
5024 int yielded = 0;
5026 local_irq_save(flags);
5027 rq = this_rq();
5029 again:
5030 p_rq = task_rq(p);
5032 * If we're the only runnable task on the rq and target rq also
5033 * has only one task, there's absolutely no point in yielding.
5035 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5036 yielded = -ESRCH;
5037 goto out_irq;
5040 double_rq_lock(rq, p_rq);
5041 if (task_rq(p) != p_rq) {
5042 double_rq_unlock(rq, p_rq);
5043 goto again;
5046 if (!curr->sched_class->yield_to_task)
5047 goto out_unlock;
5049 if (curr->sched_class != p->sched_class)
5050 goto out_unlock;
5052 if (task_running(p_rq, p) || p->state)
5053 goto out_unlock;
5055 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5056 if (yielded) {
5057 schedstat_inc(rq->yld_count);
5059 * Make p's CPU reschedule; pick_next_entity takes care of
5060 * fairness.
5062 if (preempt && rq != p_rq)
5063 resched_curr(p_rq);
5066 out_unlock:
5067 double_rq_unlock(rq, p_rq);
5068 out_irq:
5069 local_irq_restore(flags);
5071 if (yielded > 0)
5072 schedule();
5074 return yielded;
5076 EXPORT_SYMBOL_GPL(yield_to);
5078 int io_schedule_prepare(void)
5080 int old_iowait = current->in_iowait;
5082 current->in_iowait = 1;
5083 blk_schedule_flush_plug(current);
5085 return old_iowait;
5088 void io_schedule_finish(int token)
5090 current->in_iowait = token;
5094 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5095 * that process accounting knows that this is a task in IO wait state.
5097 long __sched io_schedule_timeout(long timeout)
5099 int token;
5100 long ret;
5102 token = io_schedule_prepare();
5103 ret = schedule_timeout(timeout);
5104 io_schedule_finish(token);
5106 return ret;
5108 EXPORT_SYMBOL(io_schedule_timeout);
5110 void io_schedule(void)
5112 int token;
5114 token = io_schedule_prepare();
5115 schedule();
5116 io_schedule_finish(token);
5118 EXPORT_SYMBOL(io_schedule);
5121 * sys_sched_get_priority_max - return maximum RT priority.
5122 * @policy: scheduling class.
5124 * Return: On success, this syscall returns the maximum
5125 * rt_priority that can be used by a given scheduling class.
5126 * On failure, a negative error code is returned.
5128 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5130 int ret = -EINVAL;
5132 switch (policy) {
5133 case SCHED_FIFO:
5134 case SCHED_RR:
5135 ret = MAX_USER_RT_PRIO-1;
5136 break;
5137 case SCHED_DEADLINE:
5138 case SCHED_NORMAL:
5139 case SCHED_BATCH:
5140 case SCHED_IDLE:
5141 ret = 0;
5142 break;
5144 return ret;
5148 * sys_sched_get_priority_min - return minimum RT priority.
5149 * @policy: scheduling class.
5151 * Return: On success, this syscall returns the minimum
5152 * rt_priority that can be used by a given scheduling class.
5153 * On failure, a negative error code is returned.
5155 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5157 int ret = -EINVAL;
5159 switch (policy) {
5160 case SCHED_FIFO:
5161 case SCHED_RR:
5162 ret = 1;
5163 break;
5164 case SCHED_DEADLINE:
5165 case SCHED_NORMAL:
5166 case SCHED_BATCH:
5167 case SCHED_IDLE:
5168 ret = 0;
5170 return ret;
5173 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5175 struct task_struct *p;
5176 unsigned int time_slice;
5177 struct rq_flags rf;
5178 struct rq *rq;
5179 int retval;
5181 if (pid < 0)
5182 return -EINVAL;
5184 retval = -ESRCH;
5185 rcu_read_lock();
5186 p = find_process_by_pid(pid);
5187 if (!p)
5188 goto out_unlock;
5190 retval = security_task_getscheduler(p);
5191 if (retval)
5192 goto out_unlock;
5194 rq = task_rq_lock(p, &rf);
5195 time_slice = 0;
5196 if (p->sched_class->get_rr_interval)
5197 time_slice = p->sched_class->get_rr_interval(rq, p);
5198 task_rq_unlock(rq, p, &rf);
5200 rcu_read_unlock();
5201 jiffies_to_timespec64(time_slice, t);
5202 return 0;
5204 out_unlock:
5205 rcu_read_unlock();
5206 return retval;
5210 * sys_sched_rr_get_interval - return the default timeslice of a process.
5211 * @pid: pid of the process.
5212 * @interval: userspace pointer to the timeslice value.
5214 * this syscall writes the default timeslice value of a given process
5215 * into the user-space timespec buffer. A value of '0' means infinity.
5217 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5218 * an error code.
5220 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5221 struct timespec __user *, interval)
5223 struct timespec64 t;
5224 int retval = sched_rr_get_interval(pid, &t);
5226 if (retval == 0)
5227 retval = put_timespec64(&t, interval);
5229 return retval;
5232 #ifdef CONFIG_COMPAT
5233 COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval,
5234 compat_pid_t, pid,
5235 struct compat_timespec __user *, interval)
5237 struct timespec64 t;
5238 int retval = sched_rr_get_interval(pid, &t);
5240 if (retval == 0)
5241 retval = compat_put_timespec64(&t, interval);
5242 return retval;
5244 #endif
5246 void sched_show_task(struct task_struct *p)
5248 unsigned long free = 0;
5249 int ppid;
5251 if (!try_get_task_stack(p))
5252 return;
5254 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5256 if (p->state == TASK_RUNNING)
5257 printk(KERN_CONT " running task ");
5258 #ifdef CONFIG_DEBUG_STACK_USAGE
5259 free = stack_not_used(p);
5260 #endif
5261 ppid = 0;
5262 rcu_read_lock();
5263 if (pid_alive(p))
5264 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5265 rcu_read_unlock();
5266 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5267 task_pid_nr(p), ppid,
5268 (unsigned long)task_thread_info(p)->flags);
5270 print_worker_info(KERN_INFO, p);
5271 show_stack(p, NULL);
5272 put_task_stack(p);
5274 EXPORT_SYMBOL_GPL(sched_show_task);
5276 static inline bool
5277 state_filter_match(unsigned long state_filter, struct task_struct *p)
5279 /* no filter, everything matches */
5280 if (!state_filter)
5281 return true;
5283 /* filter, but doesn't match */
5284 if (!(p->state & state_filter))
5285 return false;
5288 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5289 * TASK_KILLABLE).
5291 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5292 return false;
5294 return true;
5298 void show_state_filter(unsigned long state_filter)
5300 struct task_struct *g, *p;
5302 #if BITS_PER_LONG == 32
5303 printk(KERN_INFO
5304 " task PC stack pid father\n");
5305 #else
5306 printk(KERN_INFO
5307 " task PC stack pid father\n");
5308 #endif
5309 rcu_read_lock();
5310 for_each_process_thread(g, p) {
5312 * reset the NMI-timeout, listing all files on a slow
5313 * console might take a lot of time:
5314 * Also, reset softlockup watchdogs on all CPUs, because
5315 * another CPU might be blocked waiting for us to process
5316 * an IPI.
5318 touch_nmi_watchdog();
5319 touch_all_softlockup_watchdogs();
5320 if (state_filter_match(state_filter, p))
5321 sched_show_task(p);
5324 #ifdef CONFIG_SCHED_DEBUG
5325 if (!state_filter)
5326 sysrq_sched_debug_show();
5327 #endif
5328 rcu_read_unlock();
5330 * Only show locks if all tasks are dumped:
5332 if (!state_filter)
5333 debug_show_all_locks();
5337 * init_idle - set up an idle thread for a given CPU
5338 * @idle: task in question
5339 * @cpu: CPU the idle task belongs to
5341 * NOTE: this function does not set the idle thread's NEED_RESCHED
5342 * flag, to make booting more robust.
5344 void init_idle(struct task_struct *idle, int cpu)
5346 struct rq *rq = cpu_rq(cpu);
5347 unsigned long flags;
5349 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5350 raw_spin_lock(&rq->lock);
5352 __sched_fork(0, idle);
5353 idle->state = TASK_RUNNING;
5354 idle->se.exec_start = sched_clock();
5355 idle->flags |= PF_IDLE;
5357 kasan_unpoison_task_stack(idle);
5359 #ifdef CONFIG_SMP
5361 * Its possible that init_idle() gets called multiple times on a task,
5362 * in that case do_set_cpus_allowed() will not do the right thing.
5364 * And since this is boot we can forgo the serialization.
5366 set_cpus_allowed_common(idle, cpumask_of(cpu));
5367 #endif
5369 * We're having a chicken and egg problem, even though we are
5370 * holding rq->lock, the CPU isn't yet set to this CPU so the
5371 * lockdep check in task_group() will fail.
5373 * Similar case to sched_fork(). / Alternatively we could
5374 * use task_rq_lock() here and obtain the other rq->lock.
5376 * Silence PROVE_RCU
5378 rcu_read_lock();
5379 __set_task_cpu(idle, cpu);
5380 rcu_read_unlock();
5382 rq->curr = rq->idle = idle;
5383 idle->on_rq = TASK_ON_RQ_QUEUED;
5384 #ifdef CONFIG_SMP
5385 idle->on_cpu = 1;
5386 #endif
5387 raw_spin_unlock(&rq->lock);
5388 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5390 /* Set the preempt count _outside_ the spinlocks! */
5391 init_idle_preempt_count(idle, cpu);
5394 * The idle tasks have their own, simple scheduling class:
5396 idle->sched_class = &idle_sched_class;
5397 ftrace_graph_init_idle_task(idle, cpu);
5398 vtime_init_idle(idle, cpu);
5399 #ifdef CONFIG_SMP
5400 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5401 #endif
5404 #ifdef CONFIG_SMP
5406 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5407 const struct cpumask *trial)
5409 int ret = 1;
5411 if (!cpumask_weight(cur))
5412 return ret;
5414 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5416 return ret;
5419 int task_can_attach(struct task_struct *p,
5420 const struct cpumask *cs_cpus_allowed)
5422 int ret = 0;
5425 * Kthreads which disallow setaffinity shouldn't be moved
5426 * to a new cpuset; we don't want to change their CPU
5427 * affinity and isolating such threads by their set of
5428 * allowed nodes is unnecessary. Thus, cpusets are not
5429 * applicable for such threads. This prevents checking for
5430 * success of set_cpus_allowed_ptr() on all attached tasks
5431 * before cpus_allowed may be changed.
5433 if (p->flags & PF_NO_SETAFFINITY) {
5434 ret = -EINVAL;
5435 goto out;
5438 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5439 cs_cpus_allowed))
5440 ret = dl_task_can_attach(p, cs_cpus_allowed);
5442 out:
5443 return ret;
5446 bool sched_smp_initialized __read_mostly;
5448 #ifdef CONFIG_NUMA_BALANCING
5449 /* Migrate current task p to target_cpu */
5450 int migrate_task_to(struct task_struct *p, int target_cpu)
5452 struct migration_arg arg = { p, target_cpu };
5453 int curr_cpu = task_cpu(p);
5455 if (curr_cpu == target_cpu)
5456 return 0;
5458 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5459 return -EINVAL;
5461 /* TODO: This is not properly updating schedstats */
5463 trace_sched_move_numa(p, curr_cpu, target_cpu);
5464 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5468 * Requeue a task on a given node and accurately track the number of NUMA
5469 * tasks on the runqueues
5471 void sched_setnuma(struct task_struct *p, int nid)
5473 bool queued, running;
5474 struct rq_flags rf;
5475 struct rq *rq;
5477 rq = task_rq_lock(p, &rf);
5478 queued = task_on_rq_queued(p);
5479 running = task_current(rq, p);
5481 if (queued)
5482 dequeue_task(rq, p, DEQUEUE_SAVE);
5483 if (running)
5484 put_prev_task(rq, p);
5486 p->numa_preferred_nid = nid;
5488 if (queued)
5489 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5490 if (running)
5491 set_curr_task(rq, p);
5492 task_rq_unlock(rq, p, &rf);
5494 #endif /* CONFIG_NUMA_BALANCING */
5496 #ifdef CONFIG_HOTPLUG_CPU
5498 * Ensure that the idle task is using init_mm right before its CPU goes
5499 * offline.
5501 void idle_task_exit(void)
5503 struct mm_struct *mm = current->active_mm;
5505 BUG_ON(cpu_online(smp_processor_id()));
5507 if (mm != &init_mm) {
5508 switch_mm(mm, &init_mm, current);
5509 finish_arch_post_lock_switch();
5511 mmdrop(mm);
5515 * Since this CPU is going 'away' for a while, fold any nr_active delta
5516 * we might have. Assumes we're called after migrate_tasks() so that the
5517 * nr_active count is stable. We need to take the teardown thread which
5518 * is calling this into account, so we hand in adjust = 1 to the load
5519 * calculation.
5521 * Also see the comment "Global load-average calculations".
5523 static void calc_load_migrate(struct rq *rq)
5525 long delta = calc_load_fold_active(rq, 1);
5526 if (delta)
5527 atomic_long_add(delta, &calc_load_tasks);
5530 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5534 static const struct sched_class fake_sched_class = {
5535 .put_prev_task = put_prev_task_fake,
5538 static struct task_struct fake_task = {
5540 * Avoid pull_{rt,dl}_task()
5542 .prio = MAX_PRIO + 1,
5543 .sched_class = &fake_sched_class,
5547 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5548 * try_to_wake_up()->select_task_rq().
5550 * Called with rq->lock held even though we'er in stop_machine() and
5551 * there's no concurrency possible, we hold the required locks anyway
5552 * because of lock validation efforts.
5554 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
5556 struct rq *rq = dead_rq;
5557 struct task_struct *next, *stop = rq->stop;
5558 struct rq_flags orf = *rf;
5559 int dest_cpu;
5562 * Fudge the rq selection such that the below task selection loop
5563 * doesn't get stuck on the currently eligible stop task.
5565 * We're currently inside stop_machine() and the rq is either stuck
5566 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5567 * either way we should never end up calling schedule() until we're
5568 * done here.
5570 rq->stop = NULL;
5573 * put_prev_task() and pick_next_task() sched
5574 * class method both need to have an up-to-date
5575 * value of rq->clock[_task]
5577 update_rq_clock(rq);
5579 for (;;) {
5581 * There's this thread running, bail when that's the only
5582 * remaining thread:
5584 if (rq->nr_running == 1)
5585 break;
5588 * pick_next_task() assumes pinned rq->lock:
5590 next = pick_next_task(rq, &fake_task, rf);
5591 BUG_ON(!next);
5592 put_prev_task(rq, next);
5595 * Rules for changing task_struct::cpus_allowed are holding
5596 * both pi_lock and rq->lock, such that holding either
5597 * stabilizes the mask.
5599 * Drop rq->lock is not quite as disastrous as it usually is
5600 * because !cpu_active at this point, which means load-balance
5601 * will not interfere. Also, stop-machine.
5603 rq_unlock(rq, rf);
5604 raw_spin_lock(&next->pi_lock);
5605 rq_relock(rq, rf);
5608 * Since we're inside stop-machine, _nothing_ should have
5609 * changed the task, WARN if weird stuff happened, because in
5610 * that case the above rq->lock drop is a fail too.
5612 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5613 raw_spin_unlock(&next->pi_lock);
5614 continue;
5617 /* Find suitable destination for @next, with force if needed. */
5618 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5619 rq = __migrate_task(rq, rf, next, dest_cpu);
5620 if (rq != dead_rq) {
5621 rq_unlock(rq, rf);
5622 rq = dead_rq;
5623 *rf = orf;
5624 rq_relock(rq, rf);
5626 raw_spin_unlock(&next->pi_lock);
5629 rq->stop = stop;
5631 #endif /* CONFIG_HOTPLUG_CPU */
5633 void set_rq_online(struct rq *rq)
5635 if (!rq->online) {
5636 const struct sched_class *class;
5638 cpumask_set_cpu(rq->cpu, rq->rd->online);
5639 rq->online = 1;
5641 for_each_class(class) {
5642 if (class->rq_online)
5643 class->rq_online(rq);
5648 void set_rq_offline(struct rq *rq)
5650 if (rq->online) {
5651 const struct sched_class *class;
5653 for_each_class(class) {
5654 if (class->rq_offline)
5655 class->rq_offline(rq);
5658 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5659 rq->online = 0;
5663 static void set_cpu_rq_start_time(unsigned int cpu)
5665 struct rq *rq = cpu_rq(cpu);
5667 rq->age_stamp = sched_clock_cpu(cpu);
5671 * used to mark begin/end of suspend/resume:
5673 static int num_cpus_frozen;
5676 * Update cpusets according to cpu_active mask. If cpusets are
5677 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5678 * around partition_sched_domains().
5680 * If we come here as part of a suspend/resume, don't touch cpusets because we
5681 * want to restore it back to its original state upon resume anyway.
5683 static void cpuset_cpu_active(void)
5685 if (cpuhp_tasks_frozen) {
5687 * num_cpus_frozen tracks how many CPUs are involved in suspend
5688 * resume sequence. As long as this is not the last online
5689 * operation in the resume sequence, just build a single sched
5690 * domain, ignoring cpusets.
5692 partition_sched_domains(1, NULL, NULL);
5693 if (--num_cpus_frozen)
5694 return;
5696 * This is the last CPU online operation. So fall through and
5697 * restore the original sched domains by considering the
5698 * cpuset configurations.
5700 cpuset_force_rebuild();
5702 cpuset_update_active_cpus();
5705 static int cpuset_cpu_inactive(unsigned int cpu)
5707 if (!cpuhp_tasks_frozen) {
5708 if (dl_cpu_busy(cpu))
5709 return -EBUSY;
5710 cpuset_update_active_cpus();
5711 } else {
5712 num_cpus_frozen++;
5713 partition_sched_domains(1, NULL, NULL);
5715 return 0;
5718 int sched_cpu_activate(unsigned int cpu)
5720 struct rq *rq = cpu_rq(cpu);
5721 struct rq_flags rf;
5723 set_cpu_active(cpu, true);
5725 if (sched_smp_initialized) {
5726 sched_domains_numa_masks_set(cpu);
5727 cpuset_cpu_active();
5731 * Put the rq online, if not already. This happens:
5733 * 1) In the early boot process, because we build the real domains
5734 * after all CPUs have been brought up.
5736 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5737 * domains.
5739 rq_lock_irqsave(rq, &rf);
5740 if (rq->rd) {
5741 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5742 set_rq_online(rq);
5744 rq_unlock_irqrestore(rq, &rf);
5746 update_max_interval();
5748 return 0;
5751 int sched_cpu_deactivate(unsigned int cpu)
5753 int ret;
5755 set_cpu_active(cpu, false);
5757 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5758 * users of this state to go away such that all new such users will
5759 * observe it.
5761 * Do sync before park smpboot threads to take care the rcu boost case.
5763 synchronize_rcu_mult(call_rcu, call_rcu_sched);
5765 if (!sched_smp_initialized)
5766 return 0;
5768 ret = cpuset_cpu_inactive(cpu);
5769 if (ret) {
5770 set_cpu_active(cpu, true);
5771 return ret;
5773 sched_domains_numa_masks_clear(cpu);
5774 return 0;
5777 static void sched_rq_cpu_starting(unsigned int cpu)
5779 struct rq *rq = cpu_rq(cpu);
5781 rq->calc_load_update = calc_load_update;
5782 update_max_interval();
5785 int sched_cpu_starting(unsigned int cpu)
5787 set_cpu_rq_start_time(cpu);
5788 sched_rq_cpu_starting(cpu);
5789 return 0;
5792 #ifdef CONFIG_HOTPLUG_CPU
5793 int sched_cpu_dying(unsigned int cpu)
5795 struct rq *rq = cpu_rq(cpu);
5796 struct rq_flags rf;
5798 /* Handle pending wakeups and then migrate everything off */
5799 sched_ttwu_pending();
5801 rq_lock_irqsave(rq, &rf);
5802 if (rq->rd) {
5803 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5804 set_rq_offline(rq);
5806 migrate_tasks(rq, &rf);
5807 BUG_ON(rq->nr_running != 1);
5808 rq_unlock_irqrestore(rq, &rf);
5810 calc_load_migrate(rq);
5811 update_max_interval();
5812 nohz_balance_exit_idle(cpu);
5813 hrtick_clear(rq);
5814 return 0;
5816 #endif
5818 #ifdef CONFIG_SCHED_SMT
5819 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5821 static void sched_init_smt(void)
5824 * We've enumerated all CPUs and will assume that if any CPU
5825 * has SMT siblings, CPU0 will too.
5827 if (cpumask_weight(cpu_smt_mask(0)) > 1)
5828 static_branch_enable(&sched_smt_present);
5830 #else
5831 static inline void sched_init_smt(void) { }
5832 #endif
5834 void __init sched_init_smp(void)
5836 sched_init_numa();
5839 * There's no userspace yet to cause hotplug operations; hence all the
5840 * CPU masks are stable and all blatant races in the below code cannot
5841 * happen.
5843 mutex_lock(&sched_domains_mutex);
5844 sched_init_domains(cpu_active_mask);
5845 mutex_unlock(&sched_domains_mutex);
5847 /* Move init over to a non-isolated CPU */
5848 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5849 BUG();
5850 sched_init_granularity();
5852 init_sched_rt_class();
5853 init_sched_dl_class();
5855 sched_init_smt();
5857 sched_smp_initialized = true;
5860 static int __init migration_init(void)
5862 sched_rq_cpu_starting(smp_processor_id());
5863 return 0;
5865 early_initcall(migration_init);
5867 #else
5868 void __init sched_init_smp(void)
5870 sched_init_granularity();
5872 #endif /* CONFIG_SMP */
5874 int in_sched_functions(unsigned long addr)
5876 return in_lock_functions(addr) ||
5877 (addr >= (unsigned long)__sched_text_start
5878 && addr < (unsigned long)__sched_text_end);
5881 #ifdef CONFIG_CGROUP_SCHED
5883 * Default task group.
5884 * Every task in system belongs to this group at bootup.
5886 struct task_group root_task_group;
5887 LIST_HEAD(task_groups);
5889 /* Cacheline aligned slab cache for task_group */
5890 static struct kmem_cache *task_group_cache __read_mostly;
5891 #endif
5893 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5894 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
5896 void __init sched_init(void)
5898 int i, j;
5899 unsigned long alloc_size = 0, ptr;
5901 sched_clock_init();
5902 wait_bit_init();
5904 #ifdef CONFIG_FAIR_GROUP_SCHED
5905 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5906 #endif
5907 #ifdef CONFIG_RT_GROUP_SCHED
5908 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5909 #endif
5910 if (alloc_size) {
5911 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5913 #ifdef CONFIG_FAIR_GROUP_SCHED
5914 root_task_group.se = (struct sched_entity **)ptr;
5915 ptr += nr_cpu_ids * sizeof(void **);
5917 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5918 ptr += nr_cpu_ids * sizeof(void **);
5920 #endif /* CONFIG_FAIR_GROUP_SCHED */
5921 #ifdef CONFIG_RT_GROUP_SCHED
5922 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5923 ptr += nr_cpu_ids * sizeof(void **);
5925 root_task_group.rt_rq = (struct rt_rq **)ptr;
5926 ptr += nr_cpu_ids * sizeof(void **);
5928 #endif /* CONFIG_RT_GROUP_SCHED */
5930 #ifdef CONFIG_CPUMASK_OFFSTACK
5931 for_each_possible_cpu(i) {
5932 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
5933 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5934 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
5935 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5937 #endif /* CONFIG_CPUMASK_OFFSTACK */
5939 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
5940 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
5942 #ifdef CONFIG_SMP
5943 init_defrootdomain();
5944 #endif
5946 #ifdef CONFIG_RT_GROUP_SCHED
5947 init_rt_bandwidth(&root_task_group.rt_bandwidth,
5948 global_rt_period(), global_rt_runtime());
5949 #endif /* CONFIG_RT_GROUP_SCHED */
5951 #ifdef CONFIG_CGROUP_SCHED
5952 task_group_cache = KMEM_CACHE(task_group, 0);
5954 list_add(&root_task_group.list, &task_groups);
5955 INIT_LIST_HEAD(&root_task_group.children);
5956 INIT_LIST_HEAD(&root_task_group.siblings);
5957 autogroup_init(&init_task);
5958 #endif /* CONFIG_CGROUP_SCHED */
5960 for_each_possible_cpu(i) {
5961 struct rq *rq;
5963 rq = cpu_rq(i);
5964 raw_spin_lock_init(&rq->lock);
5965 rq->nr_running = 0;
5966 rq->calc_load_active = 0;
5967 rq->calc_load_update = jiffies + LOAD_FREQ;
5968 init_cfs_rq(&rq->cfs);
5969 init_rt_rq(&rq->rt);
5970 init_dl_rq(&rq->dl);
5971 #ifdef CONFIG_FAIR_GROUP_SCHED
5972 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
5973 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
5974 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
5976 * How much CPU bandwidth does root_task_group get?
5978 * In case of task-groups formed thr' the cgroup filesystem, it
5979 * gets 100% of the CPU resources in the system. This overall
5980 * system CPU resource is divided among the tasks of
5981 * root_task_group and its child task-groups in a fair manner,
5982 * based on each entity's (task or task-group's) weight
5983 * (se->load.weight).
5985 * In other words, if root_task_group has 10 tasks of weight
5986 * 1024) and two child groups A0 and A1 (of weight 1024 each),
5987 * then A0's share of the CPU resource is:
5989 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
5991 * We achieve this by letting root_task_group's tasks sit
5992 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
5994 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
5995 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
5996 #endif /* CONFIG_FAIR_GROUP_SCHED */
5998 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
5999 #ifdef CONFIG_RT_GROUP_SCHED
6000 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6001 #endif
6003 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6004 rq->cpu_load[j] = 0;
6006 #ifdef CONFIG_SMP
6007 rq->sd = NULL;
6008 rq->rd = NULL;
6009 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6010 rq->balance_callback = NULL;
6011 rq->active_balance = 0;
6012 rq->next_balance = jiffies;
6013 rq->push_cpu = 0;
6014 rq->cpu = i;
6015 rq->online = 0;
6016 rq->idle_stamp = 0;
6017 rq->avg_idle = 2*sysctl_sched_migration_cost;
6018 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6020 INIT_LIST_HEAD(&rq->cfs_tasks);
6022 rq_attach_root(rq, &def_root_domain);
6023 #ifdef CONFIG_NO_HZ_COMMON
6024 rq->last_load_update_tick = jiffies;
6025 rq->nohz_flags = 0;
6026 #endif
6027 #ifdef CONFIG_NO_HZ_FULL
6028 rq->last_sched_tick = 0;
6029 #endif
6030 #endif /* CONFIG_SMP */
6031 init_rq_hrtick(rq);
6032 atomic_set(&rq->nr_iowait, 0);
6035 set_load_weight(&init_task, false);
6038 * The boot idle thread does lazy MMU switching as well:
6040 mmgrab(&init_mm);
6041 enter_lazy_tlb(&init_mm, current);
6044 * Make us the idle thread. Technically, schedule() should not be
6045 * called from this thread, however somewhere below it might be,
6046 * but because we are the idle thread, we just pick up running again
6047 * when this runqueue becomes "idle".
6049 init_idle(current, smp_processor_id());
6051 calc_load_update = jiffies + LOAD_FREQ;
6053 #ifdef CONFIG_SMP
6054 idle_thread_set_boot_cpu();
6055 set_cpu_rq_start_time(smp_processor_id());
6056 #endif
6057 init_sched_fair_class();
6059 init_schedstats();
6061 scheduler_running = 1;
6064 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6065 static inline int preempt_count_equals(int preempt_offset)
6067 int nested = preempt_count() + rcu_preempt_depth();
6069 return (nested == preempt_offset);
6072 void __might_sleep(const char *file, int line, int preempt_offset)
6075 * Blocking primitives will set (and therefore destroy) current->state,
6076 * since we will exit with TASK_RUNNING make sure we enter with it,
6077 * otherwise we will destroy state.
6079 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6080 "do not call blocking ops when !TASK_RUNNING; "
6081 "state=%lx set at [<%p>] %pS\n",
6082 current->state,
6083 (void *)current->task_state_change,
6084 (void *)current->task_state_change);
6086 ___might_sleep(file, line, preempt_offset);
6088 EXPORT_SYMBOL(__might_sleep);
6090 void ___might_sleep(const char *file, int line, int preempt_offset)
6092 /* Ratelimiting timestamp: */
6093 static unsigned long prev_jiffy;
6095 unsigned long preempt_disable_ip;
6097 /* WARN_ON_ONCE() by default, no rate limit required: */
6098 rcu_sleep_check();
6100 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6101 !is_idle_task(current)) ||
6102 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6103 oops_in_progress)
6104 return;
6106 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6107 return;
6108 prev_jiffy = jiffies;
6110 /* Save this before calling printk(), since that will clobber it: */
6111 preempt_disable_ip = get_preempt_disable_ip(current);
6113 printk(KERN_ERR
6114 "BUG: sleeping function called from invalid context at %s:%d\n",
6115 file, line);
6116 printk(KERN_ERR
6117 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6118 in_atomic(), irqs_disabled(),
6119 current->pid, current->comm);
6121 if (task_stack_end_corrupted(current))
6122 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6124 debug_show_held_locks(current);
6125 if (irqs_disabled())
6126 print_irqtrace_events(current);
6127 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6128 && !preempt_count_equals(preempt_offset)) {
6129 pr_err("Preemption disabled at:");
6130 print_ip_sym(preempt_disable_ip);
6131 pr_cont("\n");
6133 dump_stack();
6134 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6136 EXPORT_SYMBOL(___might_sleep);
6137 #endif
6139 #ifdef CONFIG_MAGIC_SYSRQ
6140 void normalize_rt_tasks(void)
6142 struct task_struct *g, *p;
6143 struct sched_attr attr = {
6144 .sched_policy = SCHED_NORMAL,
6147 read_lock(&tasklist_lock);
6148 for_each_process_thread(g, p) {
6150 * Only normalize user tasks:
6152 if (p->flags & PF_KTHREAD)
6153 continue;
6155 p->se.exec_start = 0;
6156 schedstat_set(p->se.statistics.wait_start, 0);
6157 schedstat_set(p->se.statistics.sleep_start, 0);
6158 schedstat_set(p->se.statistics.block_start, 0);
6160 if (!dl_task(p) && !rt_task(p)) {
6162 * Renice negative nice level userspace
6163 * tasks back to 0:
6165 if (task_nice(p) < 0)
6166 set_user_nice(p, 0);
6167 continue;
6170 __sched_setscheduler(p, &attr, false, false);
6172 read_unlock(&tasklist_lock);
6175 #endif /* CONFIG_MAGIC_SYSRQ */
6177 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6179 * These functions are only useful for the IA64 MCA handling, or kdb.
6181 * They can only be called when the whole system has been
6182 * stopped - every CPU needs to be quiescent, and no scheduling
6183 * activity can take place. Using them for anything else would
6184 * be a serious bug, and as a result, they aren't even visible
6185 * under any other configuration.
6189 * curr_task - return the current task for a given CPU.
6190 * @cpu: the processor in question.
6192 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6194 * Return: The current task for @cpu.
6196 struct task_struct *curr_task(int cpu)
6198 return cpu_curr(cpu);
6201 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6203 #ifdef CONFIG_IA64
6205 * set_curr_task - set the current task for a given CPU.
6206 * @cpu: the processor in question.
6207 * @p: the task pointer to set.
6209 * Description: This function must only be used when non-maskable interrupts
6210 * are serviced on a separate stack. It allows the architecture to switch the
6211 * notion of the current task on a CPU in a non-blocking manner. This function
6212 * must be called with all CPU's synchronized, and interrupts disabled, the
6213 * and caller must save the original value of the current task (see
6214 * curr_task() above) and restore that value before reenabling interrupts and
6215 * re-starting the system.
6217 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6219 void ia64_set_curr_task(int cpu, struct task_struct *p)
6221 cpu_curr(cpu) = p;
6224 #endif
6226 #ifdef CONFIG_CGROUP_SCHED
6227 /* task_group_lock serializes the addition/removal of task groups */
6228 static DEFINE_SPINLOCK(task_group_lock);
6230 static void sched_free_group(struct task_group *tg)
6232 free_fair_sched_group(tg);
6233 free_rt_sched_group(tg);
6234 autogroup_free(tg);
6235 kmem_cache_free(task_group_cache, tg);
6238 /* allocate runqueue etc for a new task group */
6239 struct task_group *sched_create_group(struct task_group *parent)
6241 struct task_group *tg;
6243 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6244 if (!tg)
6245 return ERR_PTR(-ENOMEM);
6247 if (!alloc_fair_sched_group(tg, parent))
6248 goto err;
6250 if (!alloc_rt_sched_group(tg, parent))
6251 goto err;
6253 return tg;
6255 err:
6256 sched_free_group(tg);
6257 return ERR_PTR(-ENOMEM);
6260 void sched_online_group(struct task_group *tg, struct task_group *parent)
6262 unsigned long flags;
6264 spin_lock_irqsave(&task_group_lock, flags);
6265 list_add_rcu(&tg->list, &task_groups);
6267 /* Root should already exist: */
6268 WARN_ON(!parent);
6270 tg->parent = parent;
6271 INIT_LIST_HEAD(&tg->children);
6272 list_add_rcu(&tg->siblings, &parent->children);
6273 spin_unlock_irqrestore(&task_group_lock, flags);
6275 online_fair_sched_group(tg);
6278 /* rcu callback to free various structures associated with a task group */
6279 static void sched_free_group_rcu(struct rcu_head *rhp)
6281 /* Now it should be safe to free those cfs_rqs: */
6282 sched_free_group(container_of(rhp, struct task_group, rcu));
6285 void sched_destroy_group(struct task_group *tg)
6287 /* Wait for possible concurrent references to cfs_rqs complete: */
6288 call_rcu(&tg->rcu, sched_free_group_rcu);
6291 void sched_offline_group(struct task_group *tg)
6293 unsigned long flags;
6295 /* End participation in shares distribution: */
6296 unregister_fair_sched_group(tg);
6298 spin_lock_irqsave(&task_group_lock, flags);
6299 list_del_rcu(&tg->list);
6300 list_del_rcu(&tg->siblings);
6301 spin_unlock_irqrestore(&task_group_lock, flags);
6304 static void sched_change_group(struct task_struct *tsk, int type)
6306 struct task_group *tg;
6309 * All callers are synchronized by task_rq_lock(); we do not use RCU
6310 * which is pointless here. Thus, we pass "true" to task_css_check()
6311 * to prevent lockdep warnings.
6313 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6314 struct task_group, css);
6315 tg = autogroup_task_group(tsk, tg);
6316 tsk->sched_task_group = tg;
6318 #ifdef CONFIG_FAIR_GROUP_SCHED
6319 if (tsk->sched_class->task_change_group)
6320 tsk->sched_class->task_change_group(tsk, type);
6321 else
6322 #endif
6323 set_task_rq(tsk, task_cpu(tsk));
6327 * Change task's runqueue when it moves between groups.
6329 * The caller of this function should have put the task in its new group by
6330 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6331 * its new group.
6333 void sched_move_task(struct task_struct *tsk)
6335 int queued, running, queue_flags =
6336 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6337 struct rq_flags rf;
6338 struct rq *rq;
6340 rq = task_rq_lock(tsk, &rf);
6341 update_rq_clock(rq);
6343 running = task_current(rq, tsk);
6344 queued = task_on_rq_queued(tsk);
6346 if (queued)
6347 dequeue_task(rq, tsk, queue_flags);
6348 if (running)
6349 put_prev_task(rq, tsk);
6351 sched_change_group(tsk, TASK_MOVE_GROUP);
6353 if (queued)
6354 enqueue_task(rq, tsk, queue_flags);
6355 if (running)
6356 set_curr_task(rq, tsk);
6358 task_rq_unlock(rq, tsk, &rf);
6361 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6363 return css ? container_of(css, struct task_group, css) : NULL;
6366 static struct cgroup_subsys_state *
6367 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6369 struct task_group *parent = css_tg(parent_css);
6370 struct task_group *tg;
6372 if (!parent) {
6373 /* This is early initialization for the top cgroup */
6374 return &root_task_group.css;
6377 tg = sched_create_group(parent);
6378 if (IS_ERR(tg))
6379 return ERR_PTR(-ENOMEM);
6381 return &tg->css;
6384 /* Expose task group only after completing cgroup initialization */
6385 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6387 struct task_group *tg = css_tg(css);
6388 struct task_group *parent = css_tg(css->parent);
6390 if (parent)
6391 sched_online_group(tg, parent);
6392 return 0;
6395 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6397 struct task_group *tg = css_tg(css);
6399 sched_offline_group(tg);
6402 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6404 struct task_group *tg = css_tg(css);
6407 * Relies on the RCU grace period between css_released() and this.
6409 sched_free_group(tg);
6413 * This is called before wake_up_new_task(), therefore we really only
6414 * have to set its group bits, all the other stuff does not apply.
6416 static void cpu_cgroup_fork(struct task_struct *task)
6418 struct rq_flags rf;
6419 struct rq *rq;
6421 rq = task_rq_lock(task, &rf);
6423 update_rq_clock(rq);
6424 sched_change_group(task, TASK_SET_GROUP);
6426 task_rq_unlock(rq, task, &rf);
6429 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6431 struct task_struct *task;
6432 struct cgroup_subsys_state *css;
6433 int ret = 0;
6435 cgroup_taskset_for_each(task, css, tset) {
6436 #ifdef CONFIG_RT_GROUP_SCHED
6437 if (!sched_rt_can_attach(css_tg(css), task))
6438 return -EINVAL;
6439 #else
6440 /* We don't support RT-tasks being in separate groups */
6441 if (task->sched_class != &fair_sched_class)
6442 return -EINVAL;
6443 #endif
6445 * Serialize against wake_up_new_task() such that if its
6446 * running, we're sure to observe its full state.
6448 raw_spin_lock_irq(&task->pi_lock);
6450 * Avoid calling sched_move_task() before wake_up_new_task()
6451 * has happened. This would lead to problems with PELT, due to
6452 * move wanting to detach+attach while we're not attached yet.
6454 if (task->state == TASK_NEW)
6455 ret = -EINVAL;
6456 raw_spin_unlock_irq(&task->pi_lock);
6458 if (ret)
6459 break;
6461 return ret;
6464 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6466 struct task_struct *task;
6467 struct cgroup_subsys_state *css;
6469 cgroup_taskset_for_each(task, css, tset)
6470 sched_move_task(task);
6473 #ifdef CONFIG_FAIR_GROUP_SCHED
6474 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6475 struct cftype *cftype, u64 shareval)
6477 return sched_group_set_shares(css_tg(css), scale_load(shareval));
6480 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6481 struct cftype *cft)
6483 struct task_group *tg = css_tg(css);
6485 return (u64) scale_load_down(tg->shares);
6488 #ifdef CONFIG_CFS_BANDWIDTH
6489 static DEFINE_MUTEX(cfs_constraints_mutex);
6491 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6492 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6494 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6496 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6498 int i, ret = 0, runtime_enabled, runtime_was_enabled;
6499 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6501 if (tg == &root_task_group)
6502 return -EINVAL;
6505 * Ensure we have at some amount of bandwidth every period. This is
6506 * to prevent reaching a state of large arrears when throttled via
6507 * entity_tick() resulting in prolonged exit starvation.
6509 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6510 return -EINVAL;
6513 * Likewise, bound things on the otherside by preventing insane quota
6514 * periods. This also allows us to normalize in computing quota
6515 * feasibility.
6517 if (period > max_cfs_quota_period)
6518 return -EINVAL;
6521 * Prevent race between setting of cfs_rq->runtime_enabled and
6522 * unthrottle_offline_cfs_rqs().
6524 get_online_cpus();
6525 mutex_lock(&cfs_constraints_mutex);
6526 ret = __cfs_schedulable(tg, period, quota);
6527 if (ret)
6528 goto out_unlock;
6530 runtime_enabled = quota != RUNTIME_INF;
6531 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6533 * If we need to toggle cfs_bandwidth_used, off->on must occur
6534 * before making related changes, and on->off must occur afterwards
6536 if (runtime_enabled && !runtime_was_enabled)
6537 cfs_bandwidth_usage_inc();
6538 raw_spin_lock_irq(&cfs_b->lock);
6539 cfs_b->period = ns_to_ktime(period);
6540 cfs_b->quota = quota;
6542 __refill_cfs_bandwidth_runtime(cfs_b);
6544 /* Restart the period timer (if active) to handle new period expiry: */
6545 if (runtime_enabled)
6546 start_cfs_bandwidth(cfs_b);
6548 raw_spin_unlock_irq(&cfs_b->lock);
6550 for_each_online_cpu(i) {
6551 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6552 struct rq *rq = cfs_rq->rq;
6553 struct rq_flags rf;
6555 rq_lock_irq(rq, &rf);
6556 cfs_rq->runtime_enabled = runtime_enabled;
6557 cfs_rq->runtime_remaining = 0;
6559 if (cfs_rq->throttled)
6560 unthrottle_cfs_rq(cfs_rq);
6561 rq_unlock_irq(rq, &rf);
6563 if (runtime_was_enabled && !runtime_enabled)
6564 cfs_bandwidth_usage_dec();
6565 out_unlock:
6566 mutex_unlock(&cfs_constraints_mutex);
6567 put_online_cpus();
6569 return ret;
6572 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
6574 u64 quota, period;
6576 period = ktime_to_ns(tg->cfs_bandwidth.period);
6577 if (cfs_quota_us < 0)
6578 quota = RUNTIME_INF;
6579 else
6580 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6582 return tg_set_cfs_bandwidth(tg, period, quota);
6585 long tg_get_cfs_quota(struct task_group *tg)
6587 u64 quota_us;
6589 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
6590 return -1;
6592 quota_us = tg->cfs_bandwidth.quota;
6593 do_div(quota_us, NSEC_PER_USEC);
6595 return quota_us;
6598 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
6600 u64 quota, period;
6602 period = (u64)cfs_period_us * NSEC_PER_USEC;
6603 quota = tg->cfs_bandwidth.quota;
6605 return tg_set_cfs_bandwidth(tg, period, quota);
6608 long tg_get_cfs_period(struct task_group *tg)
6610 u64 cfs_period_us;
6612 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
6613 do_div(cfs_period_us, NSEC_PER_USEC);
6615 return cfs_period_us;
6618 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6619 struct cftype *cft)
6621 return tg_get_cfs_quota(css_tg(css));
6624 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6625 struct cftype *cftype, s64 cfs_quota_us)
6627 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
6630 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6631 struct cftype *cft)
6633 return tg_get_cfs_period(css_tg(css));
6636 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6637 struct cftype *cftype, u64 cfs_period_us)
6639 return tg_set_cfs_period(css_tg(css), cfs_period_us);
6642 struct cfs_schedulable_data {
6643 struct task_group *tg;
6644 u64 period, quota;
6648 * normalize group quota/period to be quota/max_period
6649 * note: units are usecs
6651 static u64 normalize_cfs_quota(struct task_group *tg,
6652 struct cfs_schedulable_data *d)
6654 u64 quota, period;
6656 if (tg == d->tg) {
6657 period = d->period;
6658 quota = d->quota;
6659 } else {
6660 period = tg_get_cfs_period(tg);
6661 quota = tg_get_cfs_quota(tg);
6664 /* note: these should typically be equivalent */
6665 if (quota == RUNTIME_INF || quota == -1)
6666 return RUNTIME_INF;
6668 return to_ratio(period, quota);
6671 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6673 struct cfs_schedulable_data *d = data;
6674 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6675 s64 quota = 0, parent_quota = -1;
6677 if (!tg->parent) {
6678 quota = RUNTIME_INF;
6679 } else {
6680 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
6682 quota = normalize_cfs_quota(tg, d);
6683 parent_quota = parent_b->hierarchical_quota;
6686 * Ensure max(child_quota) <= parent_quota, inherit when no
6687 * limit is set:
6689 if (quota == RUNTIME_INF)
6690 quota = parent_quota;
6691 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6692 return -EINVAL;
6694 cfs_b->hierarchical_quota = quota;
6696 return 0;
6699 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6701 int ret;
6702 struct cfs_schedulable_data data = {
6703 .tg = tg,
6704 .period = period,
6705 .quota = quota,
6708 if (quota != RUNTIME_INF) {
6709 do_div(data.period, NSEC_PER_USEC);
6710 do_div(data.quota, NSEC_PER_USEC);
6713 rcu_read_lock();
6714 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6715 rcu_read_unlock();
6717 return ret;
6720 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
6722 struct task_group *tg = css_tg(seq_css(sf));
6723 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6725 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6726 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6727 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
6729 return 0;
6731 #endif /* CONFIG_CFS_BANDWIDTH */
6732 #endif /* CONFIG_FAIR_GROUP_SCHED */
6734 #ifdef CONFIG_RT_GROUP_SCHED
6735 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6736 struct cftype *cft, s64 val)
6738 return sched_group_set_rt_runtime(css_tg(css), val);
6741 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6742 struct cftype *cft)
6744 return sched_group_rt_runtime(css_tg(css));
6747 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6748 struct cftype *cftype, u64 rt_period_us)
6750 return sched_group_set_rt_period(css_tg(css), rt_period_us);
6753 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6754 struct cftype *cft)
6756 return sched_group_rt_period(css_tg(css));
6758 #endif /* CONFIG_RT_GROUP_SCHED */
6760 static struct cftype cpu_legacy_files[] = {
6761 #ifdef CONFIG_FAIR_GROUP_SCHED
6763 .name = "shares",
6764 .read_u64 = cpu_shares_read_u64,
6765 .write_u64 = cpu_shares_write_u64,
6767 #endif
6768 #ifdef CONFIG_CFS_BANDWIDTH
6770 .name = "cfs_quota_us",
6771 .read_s64 = cpu_cfs_quota_read_s64,
6772 .write_s64 = cpu_cfs_quota_write_s64,
6775 .name = "cfs_period_us",
6776 .read_u64 = cpu_cfs_period_read_u64,
6777 .write_u64 = cpu_cfs_period_write_u64,
6780 .name = "stat",
6781 .seq_show = cpu_cfs_stat_show,
6783 #endif
6784 #ifdef CONFIG_RT_GROUP_SCHED
6786 .name = "rt_runtime_us",
6787 .read_s64 = cpu_rt_runtime_read,
6788 .write_s64 = cpu_rt_runtime_write,
6791 .name = "rt_period_us",
6792 .read_u64 = cpu_rt_period_read_uint,
6793 .write_u64 = cpu_rt_period_write_uint,
6795 #endif
6796 { } /* Terminate */
6799 static int cpu_extra_stat_show(struct seq_file *sf,
6800 struct cgroup_subsys_state *css)
6802 #ifdef CONFIG_CFS_BANDWIDTH
6804 struct task_group *tg = css_tg(css);
6805 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6806 u64 throttled_usec;
6808 throttled_usec = cfs_b->throttled_time;
6809 do_div(throttled_usec, NSEC_PER_USEC);
6811 seq_printf(sf, "nr_periods %d\n"
6812 "nr_throttled %d\n"
6813 "throttled_usec %llu\n",
6814 cfs_b->nr_periods, cfs_b->nr_throttled,
6815 throttled_usec);
6817 #endif
6818 return 0;
6821 #ifdef CONFIG_FAIR_GROUP_SCHED
6822 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
6823 struct cftype *cft)
6825 struct task_group *tg = css_tg(css);
6826 u64 weight = scale_load_down(tg->shares);
6828 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
6831 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
6832 struct cftype *cft, u64 weight)
6835 * cgroup weight knobs should use the common MIN, DFL and MAX
6836 * values which are 1, 100 and 10000 respectively. While it loses
6837 * a bit of range on both ends, it maps pretty well onto the shares
6838 * value used by scheduler and the round-trip conversions preserve
6839 * the original value over the entire range.
6841 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
6842 return -ERANGE;
6844 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
6846 return sched_group_set_shares(css_tg(css), scale_load(weight));
6849 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
6850 struct cftype *cft)
6852 unsigned long weight = scale_load_down(css_tg(css)->shares);
6853 int last_delta = INT_MAX;
6854 int prio, delta;
6856 /* find the closest nice value to the current weight */
6857 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
6858 delta = abs(sched_prio_to_weight[prio] - weight);
6859 if (delta >= last_delta)
6860 break;
6861 last_delta = delta;
6864 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
6867 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
6868 struct cftype *cft, s64 nice)
6870 unsigned long weight;
6872 if (nice < MIN_NICE || nice > MAX_NICE)
6873 return -ERANGE;
6875 weight = sched_prio_to_weight[NICE_TO_PRIO(nice) - MAX_RT_PRIO];
6876 return sched_group_set_shares(css_tg(css), scale_load(weight));
6878 #endif
6880 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
6881 long period, long quota)
6883 if (quota < 0)
6884 seq_puts(sf, "max");
6885 else
6886 seq_printf(sf, "%ld", quota);
6888 seq_printf(sf, " %ld\n", period);
6891 /* caller should put the current value in *@periodp before calling */
6892 static int __maybe_unused cpu_period_quota_parse(char *buf,
6893 u64 *periodp, u64 *quotap)
6895 char tok[21]; /* U64_MAX */
6897 if (!sscanf(buf, "%s %llu", tok, periodp))
6898 return -EINVAL;
6900 *periodp *= NSEC_PER_USEC;
6902 if (sscanf(tok, "%llu", quotap))
6903 *quotap *= NSEC_PER_USEC;
6904 else if (!strcmp(tok, "max"))
6905 *quotap = RUNTIME_INF;
6906 else
6907 return -EINVAL;
6909 return 0;
6912 #ifdef CONFIG_CFS_BANDWIDTH
6913 static int cpu_max_show(struct seq_file *sf, void *v)
6915 struct task_group *tg = css_tg(seq_css(sf));
6917 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
6918 return 0;
6921 static ssize_t cpu_max_write(struct kernfs_open_file *of,
6922 char *buf, size_t nbytes, loff_t off)
6924 struct task_group *tg = css_tg(of_css(of));
6925 u64 period = tg_get_cfs_period(tg);
6926 u64 quota;
6927 int ret;
6929 ret = cpu_period_quota_parse(buf, &period, &quota);
6930 if (!ret)
6931 ret = tg_set_cfs_bandwidth(tg, period, quota);
6932 return ret ?: nbytes;
6934 #endif
6936 static struct cftype cpu_files[] = {
6937 #ifdef CONFIG_FAIR_GROUP_SCHED
6939 .name = "weight",
6940 .flags = CFTYPE_NOT_ON_ROOT,
6941 .read_u64 = cpu_weight_read_u64,
6942 .write_u64 = cpu_weight_write_u64,
6945 .name = "weight.nice",
6946 .flags = CFTYPE_NOT_ON_ROOT,
6947 .read_s64 = cpu_weight_nice_read_s64,
6948 .write_s64 = cpu_weight_nice_write_s64,
6950 #endif
6951 #ifdef CONFIG_CFS_BANDWIDTH
6953 .name = "max",
6954 .flags = CFTYPE_NOT_ON_ROOT,
6955 .seq_show = cpu_max_show,
6956 .write = cpu_max_write,
6958 #endif
6959 { } /* terminate */
6962 struct cgroup_subsys cpu_cgrp_subsys = {
6963 .css_alloc = cpu_cgroup_css_alloc,
6964 .css_online = cpu_cgroup_css_online,
6965 .css_released = cpu_cgroup_css_released,
6966 .css_free = cpu_cgroup_css_free,
6967 .css_extra_stat_show = cpu_extra_stat_show,
6968 .fork = cpu_cgroup_fork,
6969 .can_attach = cpu_cgroup_can_attach,
6970 .attach = cpu_cgroup_attach,
6971 .legacy_cftypes = cpu_legacy_files,
6972 .dfl_cftypes = cpu_files,
6973 .early_init = true,
6974 .threaded = true,
6977 #endif /* CONFIG_CGROUP_SCHED */
6979 void dump_cpu_task(int cpu)
6981 pr_info("Task dump for CPU %d:\n", cpu);
6982 sched_show_task(cpu_curr(cpu));
6986 * Nice levels are multiplicative, with a gentle 10% change for every
6987 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
6988 * nice 1, it will get ~10% less CPU time than another CPU-bound task
6989 * that remained on nice 0.
6991 * The "10% effect" is relative and cumulative: from _any_ nice level,
6992 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
6993 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
6994 * If a task goes up by ~10% and another task goes down by ~10% then
6995 * the relative distance between them is ~25%.)
6997 const int sched_prio_to_weight[40] = {
6998 /* -20 */ 88761, 71755, 56483, 46273, 36291,
6999 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7000 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7001 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7002 /* 0 */ 1024, 820, 655, 526, 423,
7003 /* 5 */ 335, 272, 215, 172, 137,
7004 /* 10 */ 110, 87, 70, 56, 45,
7005 /* 15 */ 36, 29, 23, 18, 15,
7009 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7011 * In cases where the weight does not change often, we can use the
7012 * precalculated inverse to speed up arithmetics by turning divisions
7013 * into multiplications:
7015 const u32 sched_prio_to_wmult[40] = {
7016 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7017 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7018 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7019 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7020 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7021 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7022 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7023 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,