Linux 4.16-rc3
[cris-mirror.git] / kernel / sched / loadavg.c
blob89a989e4d75876e38ca704854145dc98c71f2ffe
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * kernel/sched/loadavg.c
5 * This file contains the magic bits required to compute the global loadavg
6 * figure. Its a silly number but people think its important. We go through
7 * great pains to make it work on big machines and tickless kernels.
8 */
10 #include <linux/export.h>
11 #include <linux/sched/loadavg.h>
13 #include "sched.h"
16 * Global load-average calculations
18 * We take a distributed and async approach to calculating the global load-avg
19 * in order to minimize overhead.
21 * The global load average is an exponentially decaying average of nr_running +
22 * nr_uninterruptible.
24 * Once every LOAD_FREQ:
26 * nr_active = 0;
27 * for_each_possible_cpu(cpu)
28 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
30 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
32 * Due to a number of reasons the above turns in the mess below:
34 * - for_each_possible_cpu() is prohibitively expensive on machines with
35 * serious number of cpus, therefore we need to take a distributed approach
36 * to calculating nr_active.
38 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
39 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
41 * So assuming nr_active := 0 when we start out -- true per definition, we
42 * can simply take per-cpu deltas and fold those into a global accumulate
43 * to obtain the same result. See calc_load_fold_active().
45 * Furthermore, in order to avoid synchronizing all per-cpu delta folding
46 * across the machine, we assume 10 ticks is sufficient time for every
47 * cpu to have completed this task.
49 * This places an upper-bound on the IRQ-off latency of the machine. Then
50 * again, being late doesn't loose the delta, just wrecks the sample.
52 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
53 * this would add another cross-cpu cacheline miss and atomic operation
54 * to the wakeup path. Instead we increment on whatever cpu the task ran
55 * when it went into uninterruptible state and decrement on whatever cpu
56 * did the wakeup. This means that only the sum of nr_uninterruptible over
57 * all cpus yields the correct result.
59 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
62 /* Variables and functions for calc_load */
63 atomic_long_t calc_load_tasks;
64 unsigned long calc_load_update;
65 unsigned long avenrun[3];
66 EXPORT_SYMBOL(avenrun); /* should be removed */
68 /**
69 * get_avenrun - get the load average array
70 * @loads: pointer to dest load array
71 * @offset: offset to add
72 * @shift: shift count to shift the result left
74 * These values are estimates at best, so no need for locking.
76 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
78 loads[0] = (avenrun[0] + offset) << shift;
79 loads[1] = (avenrun[1] + offset) << shift;
80 loads[2] = (avenrun[2] + offset) << shift;
83 long calc_load_fold_active(struct rq *this_rq, long adjust)
85 long nr_active, delta = 0;
87 nr_active = this_rq->nr_running - adjust;
88 nr_active += (long)this_rq->nr_uninterruptible;
90 if (nr_active != this_rq->calc_load_active) {
91 delta = nr_active - this_rq->calc_load_active;
92 this_rq->calc_load_active = nr_active;
95 return delta;
99 * a1 = a0 * e + a * (1 - e)
101 static unsigned long
102 calc_load(unsigned long load, unsigned long exp, unsigned long active)
104 unsigned long newload;
106 newload = load * exp + active * (FIXED_1 - exp);
107 if (active >= load)
108 newload += FIXED_1-1;
110 return newload / FIXED_1;
113 #ifdef CONFIG_NO_HZ_COMMON
115 * Handle NO_HZ for the global load-average.
117 * Since the above described distributed algorithm to compute the global
118 * load-average relies on per-cpu sampling from the tick, it is affected by
119 * NO_HZ.
121 * The basic idea is to fold the nr_active delta into a global NO_HZ-delta upon
122 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
123 * when we read the global state.
125 * Obviously reality has to ruin such a delightfully simple scheme:
127 * - When we go NO_HZ idle during the window, we can negate our sample
128 * contribution, causing under-accounting.
130 * We avoid this by keeping two NO_HZ-delta counters and flipping them
131 * when the window starts, thus separating old and new NO_HZ load.
133 * The only trick is the slight shift in index flip for read vs write.
135 * 0s 5s 10s 15s
136 * +10 +10 +10 +10
137 * |-|-----------|-|-----------|-|-----------|-|
138 * r:0 0 1 1 0 0 1 1 0
139 * w:0 1 1 0 0 1 1 0 0
141 * This ensures we'll fold the old NO_HZ contribution in this window while
142 * accumlating the new one.
144 * - When we wake up from NO_HZ during the window, we push up our
145 * contribution, since we effectively move our sample point to a known
146 * busy state.
148 * This is solved by pushing the window forward, and thus skipping the
149 * sample, for this cpu (effectively using the NO_HZ-delta for this cpu which
150 * was in effect at the time the window opened). This also solves the issue
151 * of having to deal with a cpu having been in NO_HZ for multiple LOAD_FREQ
152 * intervals.
154 * When making the ILB scale, we should try to pull this in as well.
156 static atomic_long_t calc_load_nohz[2];
157 static int calc_load_idx;
159 static inline int calc_load_write_idx(void)
161 int idx = calc_load_idx;
164 * See calc_global_nohz(), if we observe the new index, we also
165 * need to observe the new update time.
167 smp_rmb();
170 * If the folding window started, make sure we start writing in the
171 * next NO_HZ-delta.
173 if (!time_before(jiffies, READ_ONCE(calc_load_update)))
174 idx++;
176 return idx & 1;
179 static inline int calc_load_read_idx(void)
181 return calc_load_idx & 1;
184 void calc_load_nohz_start(void)
186 struct rq *this_rq = this_rq();
187 long delta;
190 * We're going into NO_HZ mode, if there's any pending delta, fold it
191 * into the pending NO_HZ delta.
193 delta = calc_load_fold_active(this_rq, 0);
194 if (delta) {
195 int idx = calc_load_write_idx();
197 atomic_long_add(delta, &calc_load_nohz[idx]);
201 void calc_load_nohz_stop(void)
203 struct rq *this_rq = this_rq();
206 * If we're still before the pending sample window, we're done.
208 this_rq->calc_load_update = READ_ONCE(calc_load_update);
209 if (time_before(jiffies, this_rq->calc_load_update))
210 return;
213 * We woke inside or after the sample window, this means we're already
214 * accounted through the nohz accounting, so skip the entire deal and
215 * sync up for the next window.
217 if (time_before(jiffies, this_rq->calc_load_update + 10))
218 this_rq->calc_load_update += LOAD_FREQ;
221 static long calc_load_nohz_fold(void)
223 int idx = calc_load_read_idx();
224 long delta = 0;
226 if (atomic_long_read(&calc_load_nohz[idx]))
227 delta = atomic_long_xchg(&calc_load_nohz[idx], 0);
229 return delta;
233 * fixed_power_int - compute: x^n, in O(log n) time
235 * @x: base of the power
236 * @frac_bits: fractional bits of @x
237 * @n: power to raise @x to.
239 * By exploiting the relation between the definition of the natural power
240 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
241 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
242 * (where: n_i \elem {0, 1}, the binary vector representing n),
243 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
244 * of course trivially computable in O(log_2 n), the length of our binary
245 * vector.
247 static unsigned long
248 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
250 unsigned long result = 1UL << frac_bits;
252 if (n) {
253 for (;;) {
254 if (n & 1) {
255 result *= x;
256 result += 1UL << (frac_bits - 1);
257 result >>= frac_bits;
259 n >>= 1;
260 if (!n)
261 break;
262 x *= x;
263 x += 1UL << (frac_bits - 1);
264 x >>= frac_bits;
268 return result;
272 * a1 = a0 * e + a * (1 - e)
274 * a2 = a1 * e + a * (1 - e)
275 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
276 * = a0 * e^2 + a * (1 - e) * (1 + e)
278 * a3 = a2 * e + a * (1 - e)
279 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
280 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
282 * ...
284 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
285 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
286 * = a0 * e^n + a * (1 - e^n)
288 * [1] application of the geometric series:
290 * n 1 - x^(n+1)
291 * S_n := \Sum x^i = -------------
292 * i=0 1 - x
294 static unsigned long
295 calc_load_n(unsigned long load, unsigned long exp,
296 unsigned long active, unsigned int n)
298 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
302 * NO_HZ can leave us missing all per-cpu ticks calling
303 * calc_load_fold_active(), but since a NO_HZ CPU folds its delta into
304 * calc_load_nohz per calc_load_nohz_start(), all we need to do is fold
305 * in the pending NO_HZ delta if our NO_HZ period crossed a load cycle boundary.
307 * Once we've updated the global active value, we need to apply the exponential
308 * weights adjusted to the number of cycles missed.
310 static void calc_global_nohz(void)
312 unsigned long sample_window;
313 long delta, active, n;
315 sample_window = READ_ONCE(calc_load_update);
316 if (!time_before(jiffies, sample_window + 10)) {
318 * Catch-up, fold however many we are behind still
320 delta = jiffies - sample_window - 10;
321 n = 1 + (delta / LOAD_FREQ);
323 active = atomic_long_read(&calc_load_tasks);
324 active = active > 0 ? active * FIXED_1 : 0;
326 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
327 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
328 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
330 WRITE_ONCE(calc_load_update, sample_window + n * LOAD_FREQ);
334 * Flip the NO_HZ index...
336 * Make sure we first write the new time then flip the index, so that
337 * calc_load_write_idx() will see the new time when it reads the new
338 * index, this avoids a double flip messing things up.
340 smp_wmb();
341 calc_load_idx++;
343 #else /* !CONFIG_NO_HZ_COMMON */
345 static inline long calc_load_nohz_fold(void) { return 0; }
346 static inline void calc_global_nohz(void) { }
348 #endif /* CONFIG_NO_HZ_COMMON */
351 * calc_load - update the avenrun load estimates 10 ticks after the
352 * CPUs have updated calc_load_tasks.
354 * Called from the global timer code.
356 void calc_global_load(unsigned long ticks)
358 unsigned long sample_window;
359 long active, delta;
361 sample_window = READ_ONCE(calc_load_update);
362 if (time_before(jiffies, sample_window + 10))
363 return;
366 * Fold the 'old' NO_HZ-delta to include all NO_HZ cpus.
368 delta = calc_load_nohz_fold();
369 if (delta)
370 atomic_long_add(delta, &calc_load_tasks);
372 active = atomic_long_read(&calc_load_tasks);
373 active = active > 0 ? active * FIXED_1 : 0;
375 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
376 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
377 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
379 WRITE_ONCE(calc_load_update, sample_window + LOAD_FREQ);
382 * In case we went to NO_HZ for multiple LOAD_FREQ intervals
383 * catch up in bulk.
385 calc_global_nohz();
389 * Called from scheduler_tick() to periodically update this CPU's
390 * active count.
392 void calc_global_load_tick(struct rq *this_rq)
394 long delta;
396 if (time_before(jiffies, this_rq->calc_load_update))
397 return;
399 delta = calc_load_fold_active(this_rq, 0);
400 if (delta)
401 atomic_long_add(delta, &calc_load_tasks);
403 this_rq->calc_load_update += LOAD_FREQ;