Linux 4.16-rc3
[cris-mirror.git] / kernel / sched / rt.c
blobaad49451584e6766d1b9a2f657397da345146c23
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4 * policies)
5 */
7 #include "sched.h"
9 #include <linux/slab.h>
10 #include <linux/irq_work.h>
12 int sched_rr_timeslice = RR_TIMESLICE;
13 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
15 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
17 struct rt_bandwidth def_rt_bandwidth;
19 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
21 struct rt_bandwidth *rt_b =
22 container_of(timer, struct rt_bandwidth, rt_period_timer);
23 int idle = 0;
24 int overrun;
26 raw_spin_lock(&rt_b->rt_runtime_lock);
27 for (;;) {
28 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
29 if (!overrun)
30 break;
32 raw_spin_unlock(&rt_b->rt_runtime_lock);
33 idle = do_sched_rt_period_timer(rt_b, overrun);
34 raw_spin_lock(&rt_b->rt_runtime_lock);
36 if (idle)
37 rt_b->rt_period_active = 0;
38 raw_spin_unlock(&rt_b->rt_runtime_lock);
40 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
43 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
45 rt_b->rt_period = ns_to_ktime(period);
46 rt_b->rt_runtime = runtime;
48 raw_spin_lock_init(&rt_b->rt_runtime_lock);
50 hrtimer_init(&rt_b->rt_period_timer,
51 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
52 rt_b->rt_period_timer.function = sched_rt_period_timer;
55 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
57 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
58 return;
60 raw_spin_lock(&rt_b->rt_runtime_lock);
61 if (!rt_b->rt_period_active) {
62 rt_b->rt_period_active = 1;
64 * SCHED_DEADLINE updates the bandwidth, as a run away
65 * RT task with a DL task could hog a CPU. But DL does
66 * not reset the period. If a deadline task was running
67 * without an RT task running, it can cause RT tasks to
68 * throttle when they start up. Kick the timer right away
69 * to update the period.
71 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
72 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
74 raw_spin_unlock(&rt_b->rt_runtime_lock);
77 void init_rt_rq(struct rt_rq *rt_rq)
79 struct rt_prio_array *array;
80 int i;
82 array = &rt_rq->active;
83 for (i = 0; i < MAX_RT_PRIO; i++) {
84 INIT_LIST_HEAD(array->queue + i);
85 __clear_bit(i, array->bitmap);
87 /* delimiter for bitsearch: */
88 __set_bit(MAX_RT_PRIO, array->bitmap);
90 #if defined CONFIG_SMP
91 rt_rq->highest_prio.curr = MAX_RT_PRIO;
92 rt_rq->highest_prio.next = MAX_RT_PRIO;
93 rt_rq->rt_nr_migratory = 0;
94 rt_rq->overloaded = 0;
95 plist_head_init(&rt_rq->pushable_tasks);
96 #endif /* CONFIG_SMP */
97 /* We start is dequeued state, because no RT tasks are queued */
98 rt_rq->rt_queued = 0;
100 rt_rq->rt_time = 0;
101 rt_rq->rt_throttled = 0;
102 rt_rq->rt_runtime = 0;
103 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
106 #ifdef CONFIG_RT_GROUP_SCHED
107 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
109 hrtimer_cancel(&rt_b->rt_period_timer);
112 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
114 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
116 #ifdef CONFIG_SCHED_DEBUG
117 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
118 #endif
119 return container_of(rt_se, struct task_struct, rt);
122 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
124 return rt_rq->rq;
127 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
129 return rt_se->rt_rq;
132 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
134 struct rt_rq *rt_rq = rt_se->rt_rq;
136 return rt_rq->rq;
139 void free_rt_sched_group(struct task_group *tg)
141 int i;
143 if (tg->rt_se)
144 destroy_rt_bandwidth(&tg->rt_bandwidth);
146 for_each_possible_cpu(i) {
147 if (tg->rt_rq)
148 kfree(tg->rt_rq[i]);
149 if (tg->rt_se)
150 kfree(tg->rt_se[i]);
153 kfree(tg->rt_rq);
154 kfree(tg->rt_se);
157 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
158 struct sched_rt_entity *rt_se, int cpu,
159 struct sched_rt_entity *parent)
161 struct rq *rq = cpu_rq(cpu);
163 rt_rq->highest_prio.curr = MAX_RT_PRIO;
164 rt_rq->rt_nr_boosted = 0;
165 rt_rq->rq = rq;
166 rt_rq->tg = tg;
168 tg->rt_rq[cpu] = rt_rq;
169 tg->rt_se[cpu] = rt_se;
171 if (!rt_se)
172 return;
174 if (!parent)
175 rt_se->rt_rq = &rq->rt;
176 else
177 rt_se->rt_rq = parent->my_q;
179 rt_se->my_q = rt_rq;
180 rt_se->parent = parent;
181 INIT_LIST_HEAD(&rt_se->run_list);
184 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
186 struct rt_rq *rt_rq;
187 struct sched_rt_entity *rt_se;
188 int i;
190 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
191 if (!tg->rt_rq)
192 goto err;
193 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
194 if (!tg->rt_se)
195 goto err;
197 init_rt_bandwidth(&tg->rt_bandwidth,
198 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
200 for_each_possible_cpu(i) {
201 rt_rq = kzalloc_node(sizeof(struct rt_rq),
202 GFP_KERNEL, cpu_to_node(i));
203 if (!rt_rq)
204 goto err;
206 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
207 GFP_KERNEL, cpu_to_node(i));
208 if (!rt_se)
209 goto err_free_rq;
211 init_rt_rq(rt_rq);
212 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
213 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
216 return 1;
218 err_free_rq:
219 kfree(rt_rq);
220 err:
221 return 0;
224 #else /* CONFIG_RT_GROUP_SCHED */
226 #define rt_entity_is_task(rt_se) (1)
228 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
230 return container_of(rt_se, struct task_struct, rt);
233 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
235 return container_of(rt_rq, struct rq, rt);
238 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
240 struct task_struct *p = rt_task_of(rt_se);
242 return task_rq(p);
245 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
247 struct rq *rq = rq_of_rt_se(rt_se);
249 return &rq->rt;
252 void free_rt_sched_group(struct task_group *tg) { }
254 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
256 return 1;
258 #endif /* CONFIG_RT_GROUP_SCHED */
260 #ifdef CONFIG_SMP
262 static void pull_rt_task(struct rq *this_rq);
264 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
266 /* Try to pull RT tasks here if we lower this rq's prio */
267 return rq->rt.highest_prio.curr > prev->prio;
270 static inline int rt_overloaded(struct rq *rq)
272 return atomic_read(&rq->rd->rto_count);
275 static inline void rt_set_overload(struct rq *rq)
277 if (!rq->online)
278 return;
280 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
282 * Make sure the mask is visible before we set
283 * the overload count. That is checked to determine
284 * if we should look at the mask. It would be a shame
285 * if we looked at the mask, but the mask was not
286 * updated yet.
288 * Matched by the barrier in pull_rt_task().
290 smp_wmb();
291 atomic_inc(&rq->rd->rto_count);
294 static inline void rt_clear_overload(struct rq *rq)
296 if (!rq->online)
297 return;
299 /* the order here really doesn't matter */
300 atomic_dec(&rq->rd->rto_count);
301 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
304 static void update_rt_migration(struct rt_rq *rt_rq)
306 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
307 if (!rt_rq->overloaded) {
308 rt_set_overload(rq_of_rt_rq(rt_rq));
309 rt_rq->overloaded = 1;
311 } else if (rt_rq->overloaded) {
312 rt_clear_overload(rq_of_rt_rq(rt_rq));
313 rt_rq->overloaded = 0;
317 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
319 struct task_struct *p;
321 if (!rt_entity_is_task(rt_se))
322 return;
324 p = rt_task_of(rt_se);
325 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
327 rt_rq->rt_nr_total++;
328 if (p->nr_cpus_allowed > 1)
329 rt_rq->rt_nr_migratory++;
331 update_rt_migration(rt_rq);
334 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
336 struct task_struct *p;
338 if (!rt_entity_is_task(rt_se))
339 return;
341 p = rt_task_of(rt_se);
342 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
344 rt_rq->rt_nr_total--;
345 if (p->nr_cpus_allowed > 1)
346 rt_rq->rt_nr_migratory--;
348 update_rt_migration(rt_rq);
351 static inline int has_pushable_tasks(struct rq *rq)
353 return !plist_head_empty(&rq->rt.pushable_tasks);
356 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
357 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
359 static void push_rt_tasks(struct rq *);
360 static void pull_rt_task(struct rq *);
362 static inline void queue_push_tasks(struct rq *rq)
364 if (!has_pushable_tasks(rq))
365 return;
367 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
370 static inline void queue_pull_task(struct rq *rq)
372 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
375 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
377 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
378 plist_node_init(&p->pushable_tasks, p->prio);
379 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
381 /* Update the highest prio pushable task */
382 if (p->prio < rq->rt.highest_prio.next)
383 rq->rt.highest_prio.next = p->prio;
386 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
388 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
390 /* Update the new highest prio pushable task */
391 if (has_pushable_tasks(rq)) {
392 p = plist_first_entry(&rq->rt.pushable_tasks,
393 struct task_struct, pushable_tasks);
394 rq->rt.highest_prio.next = p->prio;
395 } else
396 rq->rt.highest_prio.next = MAX_RT_PRIO;
399 #else
401 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
405 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
409 static inline
410 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
414 static inline
415 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
419 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
421 return false;
424 static inline void pull_rt_task(struct rq *this_rq)
428 static inline void queue_push_tasks(struct rq *rq)
431 #endif /* CONFIG_SMP */
433 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
434 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
436 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
438 return rt_se->on_rq;
441 #ifdef CONFIG_RT_GROUP_SCHED
443 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
445 if (!rt_rq->tg)
446 return RUNTIME_INF;
448 return rt_rq->rt_runtime;
451 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
453 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
456 typedef struct task_group *rt_rq_iter_t;
458 static inline struct task_group *next_task_group(struct task_group *tg)
460 do {
461 tg = list_entry_rcu(tg->list.next,
462 typeof(struct task_group), list);
463 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
465 if (&tg->list == &task_groups)
466 tg = NULL;
468 return tg;
471 #define for_each_rt_rq(rt_rq, iter, rq) \
472 for (iter = container_of(&task_groups, typeof(*iter), list); \
473 (iter = next_task_group(iter)) && \
474 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
476 #define for_each_sched_rt_entity(rt_se) \
477 for (; rt_se; rt_se = rt_se->parent)
479 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
481 return rt_se->my_q;
484 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
485 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
487 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
489 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
490 struct rq *rq = rq_of_rt_rq(rt_rq);
491 struct sched_rt_entity *rt_se;
493 int cpu = cpu_of(rq);
495 rt_se = rt_rq->tg->rt_se[cpu];
497 if (rt_rq->rt_nr_running) {
498 if (!rt_se)
499 enqueue_top_rt_rq(rt_rq);
500 else if (!on_rt_rq(rt_se))
501 enqueue_rt_entity(rt_se, 0);
503 if (rt_rq->highest_prio.curr < curr->prio)
504 resched_curr(rq);
508 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
510 struct sched_rt_entity *rt_se;
511 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
513 rt_se = rt_rq->tg->rt_se[cpu];
515 if (!rt_se)
516 dequeue_top_rt_rq(rt_rq);
517 else if (on_rt_rq(rt_se))
518 dequeue_rt_entity(rt_se, 0);
521 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
523 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
526 static int rt_se_boosted(struct sched_rt_entity *rt_se)
528 struct rt_rq *rt_rq = group_rt_rq(rt_se);
529 struct task_struct *p;
531 if (rt_rq)
532 return !!rt_rq->rt_nr_boosted;
534 p = rt_task_of(rt_se);
535 return p->prio != p->normal_prio;
538 #ifdef CONFIG_SMP
539 static inline const struct cpumask *sched_rt_period_mask(void)
541 return this_rq()->rd->span;
543 #else
544 static inline const struct cpumask *sched_rt_period_mask(void)
546 return cpu_online_mask;
548 #endif
550 static inline
551 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
553 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
556 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
558 return &rt_rq->tg->rt_bandwidth;
561 #else /* !CONFIG_RT_GROUP_SCHED */
563 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
565 return rt_rq->rt_runtime;
568 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
570 return ktime_to_ns(def_rt_bandwidth.rt_period);
573 typedef struct rt_rq *rt_rq_iter_t;
575 #define for_each_rt_rq(rt_rq, iter, rq) \
576 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
578 #define for_each_sched_rt_entity(rt_se) \
579 for (; rt_se; rt_se = NULL)
581 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
583 return NULL;
586 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
588 struct rq *rq = rq_of_rt_rq(rt_rq);
590 if (!rt_rq->rt_nr_running)
591 return;
593 enqueue_top_rt_rq(rt_rq);
594 resched_curr(rq);
597 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
599 dequeue_top_rt_rq(rt_rq);
602 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
604 return rt_rq->rt_throttled;
607 static inline const struct cpumask *sched_rt_period_mask(void)
609 return cpu_online_mask;
612 static inline
613 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
615 return &cpu_rq(cpu)->rt;
618 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
620 return &def_rt_bandwidth;
623 #endif /* CONFIG_RT_GROUP_SCHED */
625 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
627 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
629 return (hrtimer_active(&rt_b->rt_period_timer) ||
630 rt_rq->rt_time < rt_b->rt_runtime);
633 #ifdef CONFIG_SMP
635 * We ran out of runtime, see if we can borrow some from our neighbours.
637 static void do_balance_runtime(struct rt_rq *rt_rq)
639 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
640 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
641 int i, weight;
642 u64 rt_period;
644 weight = cpumask_weight(rd->span);
646 raw_spin_lock(&rt_b->rt_runtime_lock);
647 rt_period = ktime_to_ns(rt_b->rt_period);
648 for_each_cpu(i, rd->span) {
649 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
650 s64 diff;
652 if (iter == rt_rq)
653 continue;
655 raw_spin_lock(&iter->rt_runtime_lock);
657 * Either all rqs have inf runtime and there's nothing to steal
658 * or __disable_runtime() below sets a specific rq to inf to
659 * indicate its been disabled and disalow stealing.
661 if (iter->rt_runtime == RUNTIME_INF)
662 goto next;
665 * From runqueues with spare time, take 1/n part of their
666 * spare time, but no more than our period.
668 diff = iter->rt_runtime - iter->rt_time;
669 if (diff > 0) {
670 diff = div_u64((u64)diff, weight);
671 if (rt_rq->rt_runtime + diff > rt_period)
672 diff = rt_period - rt_rq->rt_runtime;
673 iter->rt_runtime -= diff;
674 rt_rq->rt_runtime += diff;
675 if (rt_rq->rt_runtime == rt_period) {
676 raw_spin_unlock(&iter->rt_runtime_lock);
677 break;
680 next:
681 raw_spin_unlock(&iter->rt_runtime_lock);
683 raw_spin_unlock(&rt_b->rt_runtime_lock);
687 * Ensure this RQ takes back all the runtime it lend to its neighbours.
689 static void __disable_runtime(struct rq *rq)
691 struct root_domain *rd = rq->rd;
692 rt_rq_iter_t iter;
693 struct rt_rq *rt_rq;
695 if (unlikely(!scheduler_running))
696 return;
698 for_each_rt_rq(rt_rq, iter, rq) {
699 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
700 s64 want;
701 int i;
703 raw_spin_lock(&rt_b->rt_runtime_lock);
704 raw_spin_lock(&rt_rq->rt_runtime_lock);
706 * Either we're all inf and nobody needs to borrow, or we're
707 * already disabled and thus have nothing to do, or we have
708 * exactly the right amount of runtime to take out.
710 if (rt_rq->rt_runtime == RUNTIME_INF ||
711 rt_rq->rt_runtime == rt_b->rt_runtime)
712 goto balanced;
713 raw_spin_unlock(&rt_rq->rt_runtime_lock);
716 * Calculate the difference between what we started out with
717 * and what we current have, that's the amount of runtime
718 * we lend and now have to reclaim.
720 want = rt_b->rt_runtime - rt_rq->rt_runtime;
723 * Greedy reclaim, take back as much as we can.
725 for_each_cpu(i, rd->span) {
726 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
727 s64 diff;
730 * Can't reclaim from ourselves or disabled runqueues.
732 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
733 continue;
735 raw_spin_lock(&iter->rt_runtime_lock);
736 if (want > 0) {
737 diff = min_t(s64, iter->rt_runtime, want);
738 iter->rt_runtime -= diff;
739 want -= diff;
740 } else {
741 iter->rt_runtime -= want;
742 want -= want;
744 raw_spin_unlock(&iter->rt_runtime_lock);
746 if (!want)
747 break;
750 raw_spin_lock(&rt_rq->rt_runtime_lock);
752 * We cannot be left wanting - that would mean some runtime
753 * leaked out of the system.
755 BUG_ON(want);
756 balanced:
758 * Disable all the borrow logic by pretending we have inf
759 * runtime - in which case borrowing doesn't make sense.
761 rt_rq->rt_runtime = RUNTIME_INF;
762 rt_rq->rt_throttled = 0;
763 raw_spin_unlock(&rt_rq->rt_runtime_lock);
764 raw_spin_unlock(&rt_b->rt_runtime_lock);
766 /* Make rt_rq available for pick_next_task() */
767 sched_rt_rq_enqueue(rt_rq);
771 static void __enable_runtime(struct rq *rq)
773 rt_rq_iter_t iter;
774 struct rt_rq *rt_rq;
776 if (unlikely(!scheduler_running))
777 return;
780 * Reset each runqueue's bandwidth settings
782 for_each_rt_rq(rt_rq, iter, rq) {
783 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
785 raw_spin_lock(&rt_b->rt_runtime_lock);
786 raw_spin_lock(&rt_rq->rt_runtime_lock);
787 rt_rq->rt_runtime = rt_b->rt_runtime;
788 rt_rq->rt_time = 0;
789 rt_rq->rt_throttled = 0;
790 raw_spin_unlock(&rt_rq->rt_runtime_lock);
791 raw_spin_unlock(&rt_b->rt_runtime_lock);
795 static void balance_runtime(struct rt_rq *rt_rq)
797 if (!sched_feat(RT_RUNTIME_SHARE))
798 return;
800 if (rt_rq->rt_time > rt_rq->rt_runtime) {
801 raw_spin_unlock(&rt_rq->rt_runtime_lock);
802 do_balance_runtime(rt_rq);
803 raw_spin_lock(&rt_rq->rt_runtime_lock);
806 #else /* !CONFIG_SMP */
807 static inline void balance_runtime(struct rt_rq *rt_rq) {}
808 #endif /* CONFIG_SMP */
810 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
812 int i, idle = 1, throttled = 0;
813 const struct cpumask *span;
815 span = sched_rt_period_mask();
816 #ifdef CONFIG_RT_GROUP_SCHED
818 * FIXME: isolated CPUs should really leave the root task group,
819 * whether they are isolcpus or were isolated via cpusets, lest
820 * the timer run on a CPU which does not service all runqueues,
821 * potentially leaving other CPUs indefinitely throttled. If
822 * isolation is really required, the user will turn the throttle
823 * off to kill the perturbations it causes anyway. Meanwhile,
824 * this maintains functionality for boot and/or troubleshooting.
826 if (rt_b == &root_task_group.rt_bandwidth)
827 span = cpu_online_mask;
828 #endif
829 for_each_cpu(i, span) {
830 int enqueue = 0;
831 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
832 struct rq *rq = rq_of_rt_rq(rt_rq);
833 int skip;
836 * When span == cpu_online_mask, taking each rq->lock
837 * can be time-consuming. Try to avoid it when possible.
839 raw_spin_lock(&rt_rq->rt_runtime_lock);
840 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
841 raw_spin_unlock(&rt_rq->rt_runtime_lock);
842 if (skip)
843 continue;
845 raw_spin_lock(&rq->lock);
846 if (rt_rq->rt_time) {
847 u64 runtime;
849 raw_spin_lock(&rt_rq->rt_runtime_lock);
850 if (rt_rq->rt_throttled)
851 balance_runtime(rt_rq);
852 runtime = rt_rq->rt_runtime;
853 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
854 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
855 rt_rq->rt_throttled = 0;
856 enqueue = 1;
859 * When we're idle and a woken (rt) task is
860 * throttled check_preempt_curr() will set
861 * skip_update and the time between the wakeup
862 * and this unthrottle will get accounted as
863 * 'runtime'.
865 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
866 rq_clock_skip_update(rq, false);
868 if (rt_rq->rt_time || rt_rq->rt_nr_running)
869 idle = 0;
870 raw_spin_unlock(&rt_rq->rt_runtime_lock);
871 } else if (rt_rq->rt_nr_running) {
872 idle = 0;
873 if (!rt_rq_throttled(rt_rq))
874 enqueue = 1;
876 if (rt_rq->rt_throttled)
877 throttled = 1;
879 if (enqueue)
880 sched_rt_rq_enqueue(rt_rq);
881 raw_spin_unlock(&rq->lock);
884 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
885 return 1;
887 return idle;
890 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
892 #ifdef CONFIG_RT_GROUP_SCHED
893 struct rt_rq *rt_rq = group_rt_rq(rt_se);
895 if (rt_rq)
896 return rt_rq->highest_prio.curr;
897 #endif
899 return rt_task_of(rt_se)->prio;
902 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
904 u64 runtime = sched_rt_runtime(rt_rq);
906 if (rt_rq->rt_throttled)
907 return rt_rq_throttled(rt_rq);
909 if (runtime >= sched_rt_period(rt_rq))
910 return 0;
912 balance_runtime(rt_rq);
913 runtime = sched_rt_runtime(rt_rq);
914 if (runtime == RUNTIME_INF)
915 return 0;
917 if (rt_rq->rt_time > runtime) {
918 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
921 * Don't actually throttle groups that have no runtime assigned
922 * but accrue some time due to boosting.
924 if (likely(rt_b->rt_runtime)) {
925 rt_rq->rt_throttled = 1;
926 printk_deferred_once("sched: RT throttling activated\n");
927 } else {
929 * In case we did anyway, make it go away,
930 * replenishment is a joke, since it will replenish us
931 * with exactly 0 ns.
933 rt_rq->rt_time = 0;
936 if (rt_rq_throttled(rt_rq)) {
937 sched_rt_rq_dequeue(rt_rq);
938 return 1;
942 return 0;
946 * Update the current task's runtime statistics. Skip current tasks that
947 * are not in our scheduling class.
949 static void update_curr_rt(struct rq *rq)
951 struct task_struct *curr = rq->curr;
952 struct sched_rt_entity *rt_se = &curr->rt;
953 u64 delta_exec;
954 u64 now;
956 if (curr->sched_class != &rt_sched_class)
957 return;
959 now = rq_clock_task(rq);
960 delta_exec = now - curr->se.exec_start;
961 if (unlikely((s64)delta_exec <= 0))
962 return;
964 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
965 cpufreq_update_util(rq, SCHED_CPUFREQ_RT);
967 schedstat_set(curr->se.statistics.exec_max,
968 max(curr->se.statistics.exec_max, delta_exec));
970 curr->se.sum_exec_runtime += delta_exec;
971 account_group_exec_runtime(curr, delta_exec);
973 curr->se.exec_start = now;
974 cgroup_account_cputime(curr, delta_exec);
976 sched_rt_avg_update(rq, delta_exec);
978 if (!rt_bandwidth_enabled())
979 return;
981 for_each_sched_rt_entity(rt_se) {
982 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
984 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
985 raw_spin_lock(&rt_rq->rt_runtime_lock);
986 rt_rq->rt_time += delta_exec;
987 if (sched_rt_runtime_exceeded(rt_rq))
988 resched_curr(rq);
989 raw_spin_unlock(&rt_rq->rt_runtime_lock);
994 static void
995 dequeue_top_rt_rq(struct rt_rq *rt_rq)
997 struct rq *rq = rq_of_rt_rq(rt_rq);
999 BUG_ON(&rq->rt != rt_rq);
1001 if (!rt_rq->rt_queued)
1002 return;
1004 BUG_ON(!rq->nr_running);
1006 sub_nr_running(rq, rt_rq->rt_nr_running);
1007 rt_rq->rt_queued = 0;
1010 static void
1011 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1013 struct rq *rq = rq_of_rt_rq(rt_rq);
1015 BUG_ON(&rq->rt != rt_rq);
1017 if (rt_rq->rt_queued)
1018 return;
1019 if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1020 return;
1022 add_nr_running(rq, rt_rq->rt_nr_running);
1023 rt_rq->rt_queued = 1;
1026 #if defined CONFIG_SMP
1028 static void
1029 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1031 struct rq *rq = rq_of_rt_rq(rt_rq);
1033 #ifdef CONFIG_RT_GROUP_SCHED
1035 * Change rq's cpupri only if rt_rq is the top queue.
1037 if (&rq->rt != rt_rq)
1038 return;
1039 #endif
1040 if (rq->online && prio < prev_prio)
1041 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1044 static void
1045 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1047 struct rq *rq = rq_of_rt_rq(rt_rq);
1049 #ifdef CONFIG_RT_GROUP_SCHED
1051 * Change rq's cpupri only if rt_rq is the top queue.
1053 if (&rq->rt != rt_rq)
1054 return;
1055 #endif
1056 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1057 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1060 #else /* CONFIG_SMP */
1062 static inline
1063 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1064 static inline
1065 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1067 #endif /* CONFIG_SMP */
1069 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1070 static void
1071 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1073 int prev_prio = rt_rq->highest_prio.curr;
1075 if (prio < prev_prio)
1076 rt_rq->highest_prio.curr = prio;
1078 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1081 static void
1082 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1084 int prev_prio = rt_rq->highest_prio.curr;
1086 if (rt_rq->rt_nr_running) {
1088 WARN_ON(prio < prev_prio);
1091 * This may have been our highest task, and therefore
1092 * we may have some recomputation to do
1094 if (prio == prev_prio) {
1095 struct rt_prio_array *array = &rt_rq->active;
1097 rt_rq->highest_prio.curr =
1098 sched_find_first_bit(array->bitmap);
1101 } else
1102 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1104 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1107 #else
1109 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1110 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1112 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1114 #ifdef CONFIG_RT_GROUP_SCHED
1116 static void
1117 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1119 if (rt_se_boosted(rt_se))
1120 rt_rq->rt_nr_boosted++;
1122 if (rt_rq->tg)
1123 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1126 static void
1127 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1129 if (rt_se_boosted(rt_se))
1130 rt_rq->rt_nr_boosted--;
1132 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1135 #else /* CONFIG_RT_GROUP_SCHED */
1137 static void
1138 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1140 start_rt_bandwidth(&def_rt_bandwidth);
1143 static inline
1144 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1146 #endif /* CONFIG_RT_GROUP_SCHED */
1148 static inline
1149 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1151 struct rt_rq *group_rq = group_rt_rq(rt_se);
1153 if (group_rq)
1154 return group_rq->rt_nr_running;
1155 else
1156 return 1;
1159 static inline
1160 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1162 struct rt_rq *group_rq = group_rt_rq(rt_se);
1163 struct task_struct *tsk;
1165 if (group_rq)
1166 return group_rq->rr_nr_running;
1168 tsk = rt_task_of(rt_se);
1170 return (tsk->policy == SCHED_RR) ? 1 : 0;
1173 static inline
1174 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1176 int prio = rt_se_prio(rt_se);
1178 WARN_ON(!rt_prio(prio));
1179 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1180 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1182 inc_rt_prio(rt_rq, prio);
1183 inc_rt_migration(rt_se, rt_rq);
1184 inc_rt_group(rt_se, rt_rq);
1187 static inline
1188 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1190 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1191 WARN_ON(!rt_rq->rt_nr_running);
1192 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1193 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1195 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1196 dec_rt_migration(rt_se, rt_rq);
1197 dec_rt_group(rt_se, rt_rq);
1201 * Change rt_se->run_list location unless SAVE && !MOVE
1203 * assumes ENQUEUE/DEQUEUE flags match
1205 static inline bool move_entity(unsigned int flags)
1207 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1208 return false;
1210 return true;
1213 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1215 list_del_init(&rt_se->run_list);
1217 if (list_empty(array->queue + rt_se_prio(rt_se)))
1218 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1220 rt_se->on_list = 0;
1223 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1225 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1226 struct rt_prio_array *array = &rt_rq->active;
1227 struct rt_rq *group_rq = group_rt_rq(rt_se);
1228 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1231 * Don't enqueue the group if its throttled, or when empty.
1232 * The latter is a consequence of the former when a child group
1233 * get throttled and the current group doesn't have any other
1234 * active members.
1236 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1237 if (rt_se->on_list)
1238 __delist_rt_entity(rt_se, array);
1239 return;
1242 if (move_entity(flags)) {
1243 WARN_ON_ONCE(rt_se->on_list);
1244 if (flags & ENQUEUE_HEAD)
1245 list_add(&rt_se->run_list, queue);
1246 else
1247 list_add_tail(&rt_se->run_list, queue);
1249 __set_bit(rt_se_prio(rt_se), array->bitmap);
1250 rt_se->on_list = 1;
1252 rt_se->on_rq = 1;
1254 inc_rt_tasks(rt_se, rt_rq);
1257 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1259 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1260 struct rt_prio_array *array = &rt_rq->active;
1262 if (move_entity(flags)) {
1263 WARN_ON_ONCE(!rt_se->on_list);
1264 __delist_rt_entity(rt_se, array);
1266 rt_se->on_rq = 0;
1268 dec_rt_tasks(rt_se, rt_rq);
1272 * Because the prio of an upper entry depends on the lower
1273 * entries, we must remove entries top - down.
1275 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1277 struct sched_rt_entity *back = NULL;
1279 for_each_sched_rt_entity(rt_se) {
1280 rt_se->back = back;
1281 back = rt_se;
1284 dequeue_top_rt_rq(rt_rq_of_se(back));
1286 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1287 if (on_rt_rq(rt_se))
1288 __dequeue_rt_entity(rt_se, flags);
1292 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1294 struct rq *rq = rq_of_rt_se(rt_se);
1296 dequeue_rt_stack(rt_se, flags);
1297 for_each_sched_rt_entity(rt_se)
1298 __enqueue_rt_entity(rt_se, flags);
1299 enqueue_top_rt_rq(&rq->rt);
1302 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1304 struct rq *rq = rq_of_rt_se(rt_se);
1306 dequeue_rt_stack(rt_se, flags);
1308 for_each_sched_rt_entity(rt_se) {
1309 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1311 if (rt_rq && rt_rq->rt_nr_running)
1312 __enqueue_rt_entity(rt_se, flags);
1314 enqueue_top_rt_rq(&rq->rt);
1318 * Adding/removing a task to/from a priority array:
1320 static void
1321 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1323 struct sched_rt_entity *rt_se = &p->rt;
1325 if (flags & ENQUEUE_WAKEUP)
1326 rt_se->timeout = 0;
1328 enqueue_rt_entity(rt_se, flags);
1330 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1331 enqueue_pushable_task(rq, p);
1334 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1336 struct sched_rt_entity *rt_se = &p->rt;
1338 update_curr_rt(rq);
1339 dequeue_rt_entity(rt_se, flags);
1341 dequeue_pushable_task(rq, p);
1345 * Put task to the head or the end of the run list without the overhead of
1346 * dequeue followed by enqueue.
1348 static void
1349 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1351 if (on_rt_rq(rt_se)) {
1352 struct rt_prio_array *array = &rt_rq->active;
1353 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1355 if (head)
1356 list_move(&rt_se->run_list, queue);
1357 else
1358 list_move_tail(&rt_se->run_list, queue);
1362 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1364 struct sched_rt_entity *rt_se = &p->rt;
1365 struct rt_rq *rt_rq;
1367 for_each_sched_rt_entity(rt_se) {
1368 rt_rq = rt_rq_of_se(rt_se);
1369 requeue_rt_entity(rt_rq, rt_se, head);
1373 static void yield_task_rt(struct rq *rq)
1375 requeue_task_rt(rq, rq->curr, 0);
1378 #ifdef CONFIG_SMP
1379 static int find_lowest_rq(struct task_struct *task);
1381 static int
1382 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1384 struct task_struct *curr;
1385 struct rq *rq;
1387 /* For anything but wake ups, just return the task_cpu */
1388 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1389 goto out;
1391 rq = cpu_rq(cpu);
1393 rcu_read_lock();
1394 curr = READ_ONCE(rq->curr); /* unlocked access */
1397 * If the current task on @p's runqueue is an RT task, then
1398 * try to see if we can wake this RT task up on another
1399 * runqueue. Otherwise simply start this RT task
1400 * on its current runqueue.
1402 * We want to avoid overloading runqueues. If the woken
1403 * task is a higher priority, then it will stay on this CPU
1404 * and the lower prio task should be moved to another CPU.
1405 * Even though this will probably make the lower prio task
1406 * lose its cache, we do not want to bounce a higher task
1407 * around just because it gave up its CPU, perhaps for a
1408 * lock?
1410 * For equal prio tasks, we just let the scheduler sort it out.
1412 * Otherwise, just let it ride on the affined RQ and the
1413 * post-schedule router will push the preempted task away
1415 * This test is optimistic, if we get it wrong the load-balancer
1416 * will have to sort it out.
1418 if (curr && unlikely(rt_task(curr)) &&
1419 (curr->nr_cpus_allowed < 2 ||
1420 curr->prio <= p->prio)) {
1421 int target = find_lowest_rq(p);
1424 * Don't bother moving it if the destination CPU is
1425 * not running a lower priority task.
1427 if (target != -1 &&
1428 p->prio < cpu_rq(target)->rt.highest_prio.curr)
1429 cpu = target;
1431 rcu_read_unlock();
1433 out:
1434 return cpu;
1437 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1440 * Current can't be migrated, useless to reschedule,
1441 * let's hope p can move out.
1443 if (rq->curr->nr_cpus_allowed == 1 ||
1444 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1445 return;
1448 * p is migratable, so let's not schedule it and
1449 * see if it is pushed or pulled somewhere else.
1451 if (p->nr_cpus_allowed != 1
1452 && cpupri_find(&rq->rd->cpupri, p, NULL))
1453 return;
1456 * There appears to be other cpus that can accept
1457 * current and none to run 'p', so lets reschedule
1458 * to try and push current away:
1460 requeue_task_rt(rq, p, 1);
1461 resched_curr(rq);
1464 #endif /* CONFIG_SMP */
1467 * Preempt the current task with a newly woken task if needed:
1469 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1471 if (p->prio < rq->curr->prio) {
1472 resched_curr(rq);
1473 return;
1476 #ifdef CONFIG_SMP
1478 * If:
1480 * - the newly woken task is of equal priority to the current task
1481 * - the newly woken task is non-migratable while current is migratable
1482 * - current will be preempted on the next reschedule
1484 * we should check to see if current can readily move to a different
1485 * cpu. If so, we will reschedule to allow the push logic to try
1486 * to move current somewhere else, making room for our non-migratable
1487 * task.
1489 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1490 check_preempt_equal_prio(rq, p);
1491 #endif
1494 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1495 struct rt_rq *rt_rq)
1497 struct rt_prio_array *array = &rt_rq->active;
1498 struct sched_rt_entity *next = NULL;
1499 struct list_head *queue;
1500 int idx;
1502 idx = sched_find_first_bit(array->bitmap);
1503 BUG_ON(idx >= MAX_RT_PRIO);
1505 queue = array->queue + idx;
1506 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1508 return next;
1511 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1513 struct sched_rt_entity *rt_se;
1514 struct task_struct *p;
1515 struct rt_rq *rt_rq = &rq->rt;
1517 do {
1518 rt_se = pick_next_rt_entity(rq, rt_rq);
1519 BUG_ON(!rt_se);
1520 rt_rq = group_rt_rq(rt_se);
1521 } while (rt_rq);
1523 p = rt_task_of(rt_se);
1524 p->se.exec_start = rq_clock_task(rq);
1526 return p;
1529 static struct task_struct *
1530 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1532 struct task_struct *p;
1533 struct rt_rq *rt_rq = &rq->rt;
1535 if (need_pull_rt_task(rq, prev)) {
1537 * This is OK, because current is on_cpu, which avoids it being
1538 * picked for load-balance and preemption/IRQs are still
1539 * disabled avoiding further scheduler activity on it and we're
1540 * being very careful to re-start the picking loop.
1542 rq_unpin_lock(rq, rf);
1543 pull_rt_task(rq);
1544 rq_repin_lock(rq, rf);
1546 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1547 * means a dl or stop task can slip in, in which case we need
1548 * to re-start task selection.
1550 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1551 rq->dl.dl_nr_running))
1552 return RETRY_TASK;
1556 * We may dequeue prev's rt_rq in put_prev_task().
1557 * So, we update time before rt_nr_running check.
1559 if (prev->sched_class == &rt_sched_class)
1560 update_curr_rt(rq);
1562 if (!rt_rq->rt_queued)
1563 return NULL;
1565 put_prev_task(rq, prev);
1567 p = _pick_next_task_rt(rq);
1569 /* The running task is never eligible for pushing */
1570 dequeue_pushable_task(rq, p);
1572 queue_push_tasks(rq);
1574 return p;
1577 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1579 update_curr_rt(rq);
1582 * The previous task needs to be made eligible for pushing
1583 * if it is still active
1585 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1586 enqueue_pushable_task(rq, p);
1589 #ifdef CONFIG_SMP
1591 /* Only try algorithms three times */
1592 #define RT_MAX_TRIES 3
1594 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1596 if (!task_running(rq, p) &&
1597 cpumask_test_cpu(cpu, &p->cpus_allowed))
1598 return 1;
1599 return 0;
1603 * Return the highest pushable rq's task, which is suitable to be executed
1604 * on the cpu, NULL otherwise
1606 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1608 struct plist_head *head = &rq->rt.pushable_tasks;
1609 struct task_struct *p;
1611 if (!has_pushable_tasks(rq))
1612 return NULL;
1614 plist_for_each_entry(p, head, pushable_tasks) {
1615 if (pick_rt_task(rq, p, cpu))
1616 return p;
1619 return NULL;
1622 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1624 static int find_lowest_rq(struct task_struct *task)
1626 struct sched_domain *sd;
1627 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1628 int this_cpu = smp_processor_id();
1629 int cpu = task_cpu(task);
1631 /* Make sure the mask is initialized first */
1632 if (unlikely(!lowest_mask))
1633 return -1;
1635 if (task->nr_cpus_allowed == 1)
1636 return -1; /* No other targets possible */
1638 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1639 return -1; /* No targets found */
1642 * At this point we have built a mask of cpus representing the
1643 * lowest priority tasks in the system. Now we want to elect
1644 * the best one based on our affinity and topology.
1646 * We prioritize the last cpu that the task executed on since
1647 * it is most likely cache-hot in that location.
1649 if (cpumask_test_cpu(cpu, lowest_mask))
1650 return cpu;
1653 * Otherwise, we consult the sched_domains span maps to figure
1654 * out which cpu is logically closest to our hot cache data.
1656 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1657 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1659 rcu_read_lock();
1660 for_each_domain(cpu, sd) {
1661 if (sd->flags & SD_WAKE_AFFINE) {
1662 int best_cpu;
1665 * "this_cpu" is cheaper to preempt than a
1666 * remote processor.
1668 if (this_cpu != -1 &&
1669 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1670 rcu_read_unlock();
1671 return this_cpu;
1674 best_cpu = cpumask_first_and(lowest_mask,
1675 sched_domain_span(sd));
1676 if (best_cpu < nr_cpu_ids) {
1677 rcu_read_unlock();
1678 return best_cpu;
1682 rcu_read_unlock();
1685 * And finally, if there were no matches within the domains
1686 * just give the caller *something* to work with from the compatible
1687 * locations.
1689 if (this_cpu != -1)
1690 return this_cpu;
1692 cpu = cpumask_any(lowest_mask);
1693 if (cpu < nr_cpu_ids)
1694 return cpu;
1695 return -1;
1698 /* Will lock the rq it finds */
1699 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1701 struct rq *lowest_rq = NULL;
1702 int tries;
1703 int cpu;
1705 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1706 cpu = find_lowest_rq(task);
1708 if ((cpu == -1) || (cpu == rq->cpu))
1709 break;
1711 lowest_rq = cpu_rq(cpu);
1713 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1715 * Target rq has tasks of equal or higher priority,
1716 * retrying does not release any lock and is unlikely
1717 * to yield a different result.
1719 lowest_rq = NULL;
1720 break;
1723 /* if the prio of this runqueue changed, try again */
1724 if (double_lock_balance(rq, lowest_rq)) {
1726 * We had to unlock the run queue. In
1727 * the mean time, task could have
1728 * migrated already or had its affinity changed.
1729 * Also make sure that it wasn't scheduled on its rq.
1731 if (unlikely(task_rq(task) != rq ||
1732 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_allowed) ||
1733 task_running(rq, task) ||
1734 !rt_task(task) ||
1735 !task_on_rq_queued(task))) {
1737 double_unlock_balance(rq, lowest_rq);
1738 lowest_rq = NULL;
1739 break;
1743 /* If this rq is still suitable use it. */
1744 if (lowest_rq->rt.highest_prio.curr > task->prio)
1745 break;
1747 /* try again */
1748 double_unlock_balance(rq, lowest_rq);
1749 lowest_rq = NULL;
1752 return lowest_rq;
1755 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1757 struct task_struct *p;
1759 if (!has_pushable_tasks(rq))
1760 return NULL;
1762 p = plist_first_entry(&rq->rt.pushable_tasks,
1763 struct task_struct, pushable_tasks);
1765 BUG_ON(rq->cpu != task_cpu(p));
1766 BUG_ON(task_current(rq, p));
1767 BUG_ON(p->nr_cpus_allowed <= 1);
1769 BUG_ON(!task_on_rq_queued(p));
1770 BUG_ON(!rt_task(p));
1772 return p;
1776 * If the current CPU has more than one RT task, see if the non
1777 * running task can migrate over to a CPU that is running a task
1778 * of lesser priority.
1780 static int push_rt_task(struct rq *rq)
1782 struct task_struct *next_task;
1783 struct rq *lowest_rq;
1784 int ret = 0;
1786 if (!rq->rt.overloaded)
1787 return 0;
1789 next_task = pick_next_pushable_task(rq);
1790 if (!next_task)
1791 return 0;
1793 retry:
1794 if (unlikely(next_task == rq->curr)) {
1795 WARN_ON(1);
1796 return 0;
1800 * It's possible that the next_task slipped in of
1801 * higher priority than current. If that's the case
1802 * just reschedule current.
1804 if (unlikely(next_task->prio < rq->curr->prio)) {
1805 resched_curr(rq);
1806 return 0;
1809 /* We might release rq lock */
1810 get_task_struct(next_task);
1812 /* find_lock_lowest_rq locks the rq if found */
1813 lowest_rq = find_lock_lowest_rq(next_task, rq);
1814 if (!lowest_rq) {
1815 struct task_struct *task;
1817 * find_lock_lowest_rq releases rq->lock
1818 * so it is possible that next_task has migrated.
1820 * We need to make sure that the task is still on the same
1821 * run-queue and is also still the next task eligible for
1822 * pushing.
1824 task = pick_next_pushable_task(rq);
1825 if (task == next_task) {
1827 * The task hasn't migrated, and is still the next
1828 * eligible task, but we failed to find a run-queue
1829 * to push it to. Do not retry in this case, since
1830 * other cpus will pull from us when ready.
1832 goto out;
1835 if (!task)
1836 /* No more tasks, just exit */
1837 goto out;
1840 * Something has shifted, try again.
1842 put_task_struct(next_task);
1843 next_task = task;
1844 goto retry;
1847 deactivate_task(rq, next_task, 0);
1848 set_task_cpu(next_task, lowest_rq->cpu);
1849 activate_task(lowest_rq, next_task, 0);
1850 ret = 1;
1852 resched_curr(lowest_rq);
1854 double_unlock_balance(rq, lowest_rq);
1856 out:
1857 put_task_struct(next_task);
1859 return ret;
1862 static void push_rt_tasks(struct rq *rq)
1864 /* push_rt_task will return true if it moved an RT */
1865 while (push_rt_task(rq))
1869 #ifdef HAVE_RT_PUSH_IPI
1872 * When a high priority task schedules out from a CPU and a lower priority
1873 * task is scheduled in, a check is made to see if there's any RT tasks
1874 * on other CPUs that are waiting to run because a higher priority RT task
1875 * is currently running on its CPU. In this case, the CPU with multiple RT
1876 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1877 * up that may be able to run one of its non-running queued RT tasks.
1879 * All CPUs with overloaded RT tasks need to be notified as there is currently
1880 * no way to know which of these CPUs have the highest priority task waiting
1881 * to run. Instead of trying to take a spinlock on each of these CPUs,
1882 * which has shown to cause large latency when done on machines with many
1883 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1884 * RT tasks waiting to run.
1886 * Just sending an IPI to each of the CPUs is also an issue, as on large
1887 * count CPU machines, this can cause an IPI storm on a CPU, especially
1888 * if its the only CPU with multiple RT tasks queued, and a large number
1889 * of CPUs scheduling a lower priority task at the same time.
1891 * Each root domain has its own irq work function that can iterate over
1892 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1893 * tassk must be checked if there's one or many CPUs that are lowering
1894 * their priority, there's a single irq work iterator that will try to
1895 * push off RT tasks that are waiting to run.
1897 * When a CPU schedules a lower priority task, it will kick off the
1898 * irq work iterator that will jump to each CPU with overloaded RT tasks.
1899 * As it only takes the first CPU that schedules a lower priority task
1900 * to start the process, the rto_start variable is incremented and if
1901 * the atomic result is one, then that CPU will try to take the rto_lock.
1902 * This prevents high contention on the lock as the process handles all
1903 * CPUs scheduling lower priority tasks.
1905 * All CPUs that are scheduling a lower priority task will increment the
1906 * rt_loop_next variable. This will make sure that the irq work iterator
1907 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1908 * priority task, even if the iterator is in the middle of a scan. Incrementing
1909 * the rt_loop_next will cause the iterator to perform another scan.
1912 static int rto_next_cpu(struct root_domain *rd)
1914 int next;
1915 int cpu;
1918 * When starting the IPI RT pushing, the rto_cpu is set to -1,
1919 * rt_next_cpu() will simply return the first CPU found in
1920 * the rto_mask.
1922 * If rto_next_cpu() is called with rto_cpu is a valid cpu, it
1923 * will return the next CPU found in the rto_mask.
1925 * If there are no more CPUs left in the rto_mask, then a check is made
1926 * against rto_loop and rto_loop_next. rto_loop is only updated with
1927 * the rto_lock held, but any CPU may increment the rto_loop_next
1928 * without any locking.
1930 for (;;) {
1932 /* When rto_cpu is -1 this acts like cpumask_first() */
1933 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
1935 rd->rto_cpu = cpu;
1937 if (cpu < nr_cpu_ids)
1938 return cpu;
1940 rd->rto_cpu = -1;
1943 * ACQUIRE ensures we see the @rto_mask changes
1944 * made prior to the @next value observed.
1946 * Matches WMB in rt_set_overload().
1948 next = atomic_read_acquire(&rd->rto_loop_next);
1950 if (rd->rto_loop == next)
1951 break;
1953 rd->rto_loop = next;
1956 return -1;
1959 static inline bool rto_start_trylock(atomic_t *v)
1961 return !atomic_cmpxchg_acquire(v, 0, 1);
1964 static inline void rto_start_unlock(atomic_t *v)
1966 atomic_set_release(v, 0);
1969 static void tell_cpu_to_push(struct rq *rq)
1971 int cpu = -1;
1973 /* Keep the loop going if the IPI is currently active */
1974 atomic_inc(&rq->rd->rto_loop_next);
1976 /* Only one CPU can initiate a loop at a time */
1977 if (!rto_start_trylock(&rq->rd->rto_loop_start))
1978 return;
1980 raw_spin_lock(&rq->rd->rto_lock);
1983 * The rto_cpu is updated under the lock, if it has a valid cpu
1984 * then the IPI is still running and will continue due to the
1985 * update to loop_next, and nothing needs to be done here.
1986 * Otherwise it is finishing up and an ipi needs to be sent.
1988 if (rq->rd->rto_cpu < 0)
1989 cpu = rto_next_cpu(rq->rd);
1991 raw_spin_unlock(&rq->rd->rto_lock);
1993 rto_start_unlock(&rq->rd->rto_loop_start);
1995 if (cpu >= 0) {
1996 /* Make sure the rd does not get freed while pushing */
1997 sched_get_rd(rq->rd);
1998 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2002 /* Called from hardirq context */
2003 void rto_push_irq_work_func(struct irq_work *work)
2005 struct root_domain *rd =
2006 container_of(work, struct root_domain, rto_push_work);
2007 struct rq *rq;
2008 int cpu;
2010 rq = this_rq();
2013 * We do not need to grab the lock to check for has_pushable_tasks.
2014 * When it gets updated, a check is made if a push is possible.
2016 if (has_pushable_tasks(rq)) {
2017 raw_spin_lock(&rq->lock);
2018 push_rt_tasks(rq);
2019 raw_spin_unlock(&rq->lock);
2022 raw_spin_lock(&rd->rto_lock);
2024 /* Pass the IPI to the next rt overloaded queue */
2025 cpu = rto_next_cpu(rd);
2027 raw_spin_unlock(&rd->rto_lock);
2029 if (cpu < 0) {
2030 sched_put_rd(rd);
2031 return;
2034 /* Try the next RT overloaded CPU */
2035 irq_work_queue_on(&rd->rto_push_work, cpu);
2037 #endif /* HAVE_RT_PUSH_IPI */
2039 static void pull_rt_task(struct rq *this_rq)
2041 int this_cpu = this_rq->cpu, cpu;
2042 bool resched = false;
2043 struct task_struct *p;
2044 struct rq *src_rq;
2045 int rt_overload_count = rt_overloaded(this_rq);
2047 if (likely(!rt_overload_count))
2048 return;
2051 * Match the barrier from rt_set_overloaded; this guarantees that if we
2052 * see overloaded we must also see the rto_mask bit.
2054 smp_rmb();
2056 /* If we are the only overloaded CPU do nothing */
2057 if (rt_overload_count == 1 &&
2058 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2059 return;
2061 #ifdef HAVE_RT_PUSH_IPI
2062 if (sched_feat(RT_PUSH_IPI)) {
2063 tell_cpu_to_push(this_rq);
2064 return;
2066 #endif
2068 for_each_cpu(cpu, this_rq->rd->rto_mask) {
2069 if (this_cpu == cpu)
2070 continue;
2072 src_rq = cpu_rq(cpu);
2075 * Don't bother taking the src_rq->lock if the next highest
2076 * task is known to be lower-priority than our current task.
2077 * This may look racy, but if this value is about to go
2078 * logically higher, the src_rq will push this task away.
2079 * And if its going logically lower, we do not care
2081 if (src_rq->rt.highest_prio.next >=
2082 this_rq->rt.highest_prio.curr)
2083 continue;
2086 * We can potentially drop this_rq's lock in
2087 * double_lock_balance, and another CPU could
2088 * alter this_rq
2090 double_lock_balance(this_rq, src_rq);
2093 * We can pull only a task, which is pushable
2094 * on its rq, and no others.
2096 p = pick_highest_pushable_task(src_rq, this_cpu);
2099 * Do we have an RT task that preempts
2100 * the to-be-scheduled task?
2102 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2103 WARN_ON(p == src_rq->curr);
2104 WARN_ON(!task_on_rq_queued(p));
2107 * There's a chance that p is higher in priority
2108 * than what's currently running on its cpu.
2109 * This is just that p is wakeing up and hasn't
2110 * had a chance to schedule. We only pull
2111 * p if it is lower in priority than the
2112 * current task on the run queue
2114 if (p->prio < src_rq->curr->prio)
2115 goto skip;
2117 resched = true;
2119 deactivate_task(src_rq, p, 0);
2120 set_task_cpu(p, this_cpu);
2121 activate_task(this_rq, p, 0);
2123 * We continue with the search, just in
2124 * case there's an even higher prio task
2125 * in another runqueue. (low likelihood
2126 * but possible)
2129 skip:
2130 double_unlock_balance(this_rq, src_rq);
2133 if (resched)
2134 resched_curr(this_rq);
2138 * If we are not running and we are not going to reschedule soon, we should
2139 * try to push tasks away now
2141 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2143 if (!task_running(rq, p) &&
2144 !test_tsk_need_resched(rq->curr) &&
2145 p->nr_cpus_allowed > 1 &&
2146 (dl_task(rq->curr) || rt_task(rq->curr)) &&
2147 (rq->curr->nr_cpus_allowed < 2 ||
2148 rq->curr->prio <= p->prio))
2149 push_rt_tasks(rq);
2152 /* Assumes rq->lock is held */
2153 static void rq_online_rt(struct rq *rq)
2155 if (rq->rt.overloaded)
2156 rt_set_overload(rq);
2158 __enable_runtime(rq);
2160 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2163 /* Assumes rq->lock is held */
2164 static void rq_offline_rt(struct rq *rq)
2166 if (rq->rt.overloaded)
2167 rt_clear_overload(rq);
2169 __disable_runtime(rq);
2171 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2175 * When switch from the rt queue, we bring ourselves to a position
2176 * that we might want to pull RT tasks from other runqueues.
2178 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2181 * If there are other RT tasks then we will reschedule
2182 * and the scheduling of the other RT tasks will handle
2183 * the balancing. But if we are the last RT task
2184 * we may need to handle the pulling of RT tasks
2185 * now.
2187 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2188 return;
2190 queue_pull_task(rq);
2193 void __init init_sched_rt_class(void)
2195 unsigned int i;
2197 for_each_possible_cpu(i) {
2198 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2199 GFP_KERNEL, cpu_to_node(i));
2202 #endif /* CONFIG_SMP */
2205 * When switching a task to RT, we may overload the runqueue
2206 * with RT tasks. In this case we try to push them off to
2207 * other runqueues.
2209 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2212 * If we are already running, then there's nothing
2213 * that needs to be done. But if we are not running
2214 * we may need to preempt the current running task.
2215 * If that current running task is also an RT task
2216 * then see if we can move to another run queue.
2218 if (task_on_rq_queued(p) && rq->curr != p) {
2219 #ifdef CONFIG_SMP
2220 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2221 queue_push_tasks(rq);
2222 #endif /* CONFIG_SMP */
2223 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2224 resched_curr(rq);
2229 * Priority of the task has changed. This may cause
2230 * us to initiate a push or pull.
2232 static void
2233 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2235 if (!task_on_rq_queued(p))
2236 return;
2238 if (rq->curr == p) {
2239 #ifdef CONFIG_SMP
2241 * If our priority decreases while running, we
2242 * may need to pull tasks to this runqueue.
2244 if (oldprio < p->prio)
2245 queue_pull_task(rq);
2248 * If there's a higher priority task waiting to run
2249 * then reschedule.
2251 if (p->prio > rq->rt.highest_prio.curr)
2252 resched_curr(rq);
2253 #else
2254 /* For UP simply resched on drop of prio */
2255 if (oldprio < p->prio)
2256 resched_curr(rq);
2257 #endif /* CONFIG_SMP */
2258 } else {
2260 * This task is not running, but if it is
2261 * greater than the current running task
2262 * then reschedule.
2264 if (p->prio < rq->curr->prio)
2265 resched_curr(rq);
2269 #ifdef CONFIG_POSIX_TIMERS
2270 static void watchdog(struct rq *rq, struct task_struct *p)
2272 unsigned long soft, hard;
2274 /* max may change after cur was read, this will be fixed next tick */
2275 soft = task_rlimit(p, RLIMIT_RTTIME);
2276 hard = task_rlimit_max(p, RLIMIT_RTTIME);
2278 if (soft != RLIM_INFINITY) {
2279 unsigned long next;
2281 if (p->rt.watchdog_stamp != jiffies) {
2282 p->rt.timeout++;
2283 p->rt.watchdog_stamp = jiffies;
2286 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2287 if (p->rt.timeout > next)
2288 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2291 #else
2292 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2293 #endif
2295 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2297 struct sched_rt_entity *rt_se = &p->rt;
2299 update_curr_rt(rq);
2301 watchdog(rq, p);
2304 * RR tasks need a special form of timeslice management.
2305 * FIFO tasks have no timeslices.
2307 if (p->policy != SCHED_RR)
2308 return;
2310 if (--p->rt.time_slice)
2311 return;
2313 p->rt.time_slice = sched_rr_timeslice;
2316 * Requeue to the end of queue if we (and all of our ancestors) are not
2317 * the only element on the queue
2319 for_each_sched_rt_entity(rt_se) {
2320 if (rt_se->run_list.prev != rt_se->run_list.next) {
2321 requeue_task_rt(rq, p, 0);
2322 resched_curr(rq);
2323 return;
2328 static void set_curr_task_rt(struct rq *rq)
2330 struct task_struct *p = rq->curr;
2332 p->se.exec_start = rq_clock_task(rq);
2334 /* The running task is never eligible for pushing */
2335 dequeue_pushable_task(rq, p);
2338 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2341 * Time slice is 0 for SCHED_FIFO tasks
2343 if (task->policy == SCHED_RR)
2344 return sched_rr_timeslice;
2345 else
2346 return 0;
2349 const struct sched_class rt_sched_class = {
2350 .next = &fair_sched_class,
2351 .enqueue_task = enqueue_task_rt,
2352 .dequeue_task = dequeue_task_rt,
2353 .yield_task = yield_task_rt,
2355 .check_preempt_curr = check_preempt_curr_rt,
2357 .pick_next_task = pick_next_task_rt,
2358 .put_prev_task = put_prev_task_rt,
2360 #ifdef CONFIG_SMP
2361 .select_task_rq = select_task_rq_rt,
2363 .set_cpus_allowed = set_cpus_allowed_common,
2364 .rq_online = rq_online_rt,
2365 .rq_offline = rq_offline_rt,
2366 .task_woken = task_woken_rt,
2367 .switched_from = switched_from_rt,
2368 #endif
2370 .set_curr_task = set_curr_task_rt,
2371 .task_tick = task_tick_rt,
2373 .get_rr_interval = get_rr_interval_rt,
2375 .prio_changed = prio_changed_rt,
2376 .switched_to = switched_to_rt,
2378 .update_curr = update_curr_rt,
2381 #ifdef CONFIG_RT_GROUP_SCHED
2383 * Ensure that the real time constraints are schedulable.
2385 static DEFINE_MUTEX(rt_constraints_mutex);
2387 /* Must be called with tasklist_lock held */
2388 static inline int tg_has_rt_tasks(struct task_group *tg)
2390 struct task_struct *g, *p;
2393 * Autogroups do not have RT tasks; see autogroup_create().
2395 if (task_group_is_autogroup(tg))
2396 return 0;
2398 for_each_process_thread(g, p) {
2399 if (rt_task(p) && task_group(p) == tg)
2400 return 1;
2403 return 0;
2406 struct rt_schedulable_data {
2407 struct task_group *tg;
2408 u64 rt_period;
2409 u64 rt_runtime;
2412 static int tg_rt_schedulable(struct task_group *tg, void *data)
2414 struct rt_schedulable_data *d = data;
2415 struct task_group *child;
2416 unsigned long total, sum = 0;
2417 u64 period, runtime;
2419 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2420 runtime = tg->rt_bandwidth.rt_runtime;
2422 if (tg == d->tg) {
2423 period = d->rt_period;
2424 runtime = d->rt_runtime;
2428 * Cannot have more runtime than the period.
2430 if (runtime > period && runtime != RUNTIME_INF)
2431 return -EINVAL;
2434 * Ensure we don't starve existing RT tasks.
2436 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
2437 return -EBUSY;
2439 total = to_ratio(period, runtime);
2442 * Nobody can have more than the global setting allows.
2444 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2445 return -EINVAL;
2448 * The sum of our children's runtime should not exceed our own.
2450 list_for_each_entry_rcu(child, &tg->children, siblings) {
2451 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2452 runtime = child->rt_bandwidth.rt_runtime;
2454 if (child == d->tg) {
2455 period = d->rt_period;
2456 runtime = d->rt_runtime;
2459 sum += to_ratio(period, runtime);
2462 if (sum > total)
2463 return -EINVAL;
2465 return 0;
2468 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2470 int ret;
2472 struct rt_schedulable_data data = {
2473 .tg = tg,
2474 .rt_period = period,
2475 .rt_runtime = runtime,
2478 rcu_read_lock();
2479 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2480 rcu_read_unlock();
2482 return ret;
2485 static int tg_set_rt_bandwidth(struct task_group *tg,
2486 u64 rt_period, u64 rt_runtime)
2488 int i, err = 0;
2491 * Disallowing the root group RT runtime is BAD, it would disallow the
2492 * kernel creating (and or operating) RT threads.
2494 if (tg == &root_task_group && rt_runtime == 0)
2495 return -EINVAL;
2497 /* No period doesn't make any sense. */
2498 if (rt_period == 0)
2499 return -EINVAL;
2501 mutex_lock(&rt_constraints_mutex);
2502 read_lock(&tasklist_lock);
2503 err = __rt_schedulable(tg, rt_period, rt_runtime);
2504 if (err)
2505 goto unlock;
2507 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2508 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2509 tg->rt_bandwidth.rt_runtime = rt_runtime;
2511 for_each_possible_cpu(i) {
2512 struct rt_rq *rt_rq = tg->rt_rq[i];
2514 raw_spin_lock(&rt_rq->rt_runtime_lock);
2515 rt_rq->rt_runtime = rt_runtime;
2516 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2518 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2519 unlock:
2520 read_unlock(&tasklist_lock);
2521 mutex_unlock(&rt_constraints_mutex);
2523 return err;
2526 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2528 u64 rt_runtime, rt_period;
2530 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2531 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2532 if (rt_runtime_us < 0)
2533 rt_runtime = RUNTIME_INF;
2535 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2538 long sched_group_rt_runtime(struct task_group *tg)
2540 u64 rt_runtime_us;
2542 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2543 return -1;
2545 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2546 do_div(rt_runtime_us, NSEC_PER_USEC);
2547 return rt_runtime_us;
2550 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2552 u64 rt_runtime, rt_period;
2554 rt_period = rt_period_us * NSEC_PER_USEC;
2555 rt_runtime = tg->rt_bandwidth.rt_runtime;
2557 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2560 long sched_group_rt_period(struct task_group *tg)
2562 u64 rt_period_us;
2564 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2565 do_div(rt_period_us, NSEC_PER_USEC);
2566 return rt_period_us;
2569 static int sched_rt_global_constraints(void)
2571 int ret = 0;
2573 mutex_lock(&rt_constraints_mutex);
2574 read_lock(&tasklist_lock);
2575 ret = __rt_schedulable(NULL, 0, 0);
2576 read_unlock(&tasklist_lock);
2577 mutex_unlock(&rt_constraints_mutex);
2579 return ret;
2582 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2584 /* Don't accept realtime tasks when there is no way for them to run */
2585 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2586 return 0;
2588 return 1;
2591 #else /* !CONFIG_RT_GROUP_SCHED */
2592 static int sched_rt_global_constraints(void)
2594 unsigned long flags;
2595 int i;
2597 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2598 for_each_possible_cpu(i) {
2599 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2601 raw_spin_lock(&rt_rq->rt_runtime_lock);
2602 rt_rq->rt_runtime = global_rt_runtime();
2603 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2605 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2607 return 0;
2609 #endif /* CONFIG_RT_GROUP_SCHED */
2611 static int sched_rt_global_validate(void)
2613 if (sysctl_sched_rt_period <= 0)
2614 return -EINVAL;
2616 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2617 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
2618 return -EINVAL;
2620 return 0;
2623 static void sched_rt_do_global(void)
2625 def_rt_bandwidth.rt_runtime = global_rt_runtime();
2626 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2629 int sched_rt_handler(struct ctl_table *table, int write,
2630 void __user *buffer, size_t *lenp,
2631 loff_t *ppos)
2633 int old_period, old_runtime;
2634 static DEFINE_MUTEX(mutex);
2635 int ret;
2637 mutex_lock(&mutex);
2638 old_period = sysctl_sched_rt_period;
2639 old_runtime = sysctl_sched_rt_runtime;
2641 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2643 if (!ret && write) {
2644 ret = sched_rt_global_validate();
2645 if (ret)
2646 goto undo;
2648 ret = sched_dl_global_validate();
2649 if (ret)
2650 goto undo;
2652 ret = sched_rt_global_constraints();
2653 if (ret)
2654 goto undo;
2656 sched_rt_do_global();
2657 sched_dl_do_global();
2659 if (0) {
2660 undo:
2661 sysctl_sched_rt_period = old_period;
2662 sysctl_sched_rt_runtime = old_runtime;
2664 mutex_unlock(&mutex);
2666 return ret;
2669 int sched_rr_handler(struct ctl_table *table, int write,
2670 void __user *buffer, size_t *lenp,
2671 loff_t *ppos)
2673 int ret;
2674 static DEFINE_MUTEX(mutex);
2676 mutex_lock(&mutex);
2677 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2679 * Make sure that internally we keep jiffies.
2680 * Also, writing zero resets the timeslice to default:
2682 if (!ret && write) {
2683 sched_rr_timeslice =
2684 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2685 msecs_to_jiffies(sysctl_sched_rr_timeslice);
2687 mutex_unlock(&mutex);
2688 return ret;
2691 #ifdef CONFIG_SCHED_DEBUG
2692 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2694 void print_rt_stats(struct seq_file *m, int cpu)
2696 rt_rq_iter_t iter;
2697 struct rt_rq *rt_rq;
2699 rcu_read_lock();
2700 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2701 print_rt_rq(m, cpu, rt_rq);
2702 rcu_read_unlock();
2704 #endif /* CONFIG_SCHED_DEBUG */