1 // SPDX-License-Identifier: GPL-2.0
3 * Implement CPU time clocks for the POSIX clock interface.
6 #include <linux/sched/signal.h>
7 #include <linux/sched/cputime.h>
8 #include <linux/posix-timers.h>
9 #include <linux/errno.h>
10 #include <linux/math64.h>
11 #include <linux/uaccess.h>
12 #include <linux/kernel_stat.h>
13 #include <trace/events/timer.h>
14 #include <linux/tick.h>
15 #include <linux/workqueue.h>
16 #include <linux/compat.h>
17 #include <linux/sched/deadline.h>
19 #include "posix-timers.h"
21 static void posix_cpu_timer_rearm(struct k_itimer
*timer
);
24 * Called after updating RLIMIT_CPU to run cpu timer and update
25 * tsk->signal->cputime_expires expiration cache if necessary. Needs
26 * siglock protection since other code may update expiration cache as
29 void update_rlimit_cpu(struct task_struct
*task
, unsigned long rlim_new
)
31 u64 nsecs
= rlim_new
* NSEC_PER_SEC
;
33 spin_lock_irq(&task
->sighand
->siglock
);
34 set_process_cpu_timer(task
, CPUCLOCK_PROF
, &nsecs
, NULL
);
35 spin_unlock_irq(&task
->sighand
->siglock
);
38 static int check_clock(const clockid_t which_clock
)
41 struct task_struct
*p
;
42 const pid_t pid
= CPUCLOCK_PID(which_clock
);
44 if (CPUCLOCK_WHICH(which_clock
) >= CPUCLOCK_MAX
)
51 p
= find_task_by_vpid(pid
);
52 if (!p
|| !(CPUCLOCK_PERTHREAD(which_clock
) ?
53 same_thread_group(p
, current
) : has_group_leader_pid(p
))) {
62 * Update expiry time from increment, and increase overrun count,
63 * given the current clock sample.
65 static void bump_cpu_timer(struct k_itimer
*timer
, u64 now
)
70 if (timer
->it
.cpu
.incr
== 0)
73 if (now
< timer
->it
.cpu
.expires
)
76 incr
= timer
->it
.cpu
.incr
;
77 delta
= now
+ incr
- timer
->it
.cpu
.expires
;
79 /* Don't use (incr*2 < delta), incr*2 might overflow. */
80 for (i
= 0; incr
< delta
- incr
; i
++)
83 for (; i
>= 0; incr
>>= 1, i
--) {
87 timer
->it
.cpu
.expires
+= incr
;
88 timer
->it_overrun
+= 1 << i
;
94 * task_cputime_zero - Check a task_cputime struct for all zero fields.
96 * @cputime: The struct to compare.
98 * Checks @cputime to see if all fields are zero. Returns true if all fields
99 * are zero, false if any field is nonzero.
101 static inline int task_cputime_zero(const struct task_cputime
*cputime
)
103 if (!cputime
->utime
&& !cputime
->stime
&& !cputime
->sum_exec_runtime
)
108 static inline u64
prof_ticks(struct task_struct
*p
)
112 task_cputime(p
, &utime
, &stime
);
114 return utime
+ stime
;
116 static inline u64
virt_ticks(struct task_struct
*p
)
120 task_cputime(p
, &utime
, &stime
);
126 posix_cpu_clock_getres(const clockid_t which_clock
, struct timespec64
*tp
)
128 int error
= check_clock(which_clock
);
131 tp
->tv_nsec
= ((NSEC_PER_SEC
+ HZ
- 1) / HZ
);
132 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
134 * If sched_clock is using a cycle counter, we
135 * don't have any idea of its true resolution
136 * exported, but it is much more than 1s/HZ.
145 posix_cpu_clock_set(const clockid_t which_clock
, const struct timespec64
*tp
)
148 * You can never reset a CPU clock, but we check for other errors
149 * in the call before failing with EPERM.
151 int error
= check_clock(which_clock
);
160 * Sample a per-thread clock for the given task.
162 static int cpu_clock_sample(const clockid_t which_clock
,
163 struct task_struct
*p
, u64
*sample
)
165 switch (CPUCLOCK_WHICH(which_clock
)) {
169 *sample
= prof_ticks(p
);
172 *sample
= virt_ticks(p
);
175 *sample
= task_sched_runtime(p
);
182 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
183 * to avoid race conditions with concurrent updates to cputime.
185 static inline void __update_gt_cputime(atomic64_t
*cputime
, u64 sum_cputime
)
189 curr_cputime
= atomic64_read(cputime
);
190 if (sum_cputime
> curr_cputime
) {
191 if (atomic64_cmpxchg(cputime
, curr_cputime
, sum_cputime
) != curr_cputime
)
196 static void update_gt_cputime(struct task_cputime_atomic
*cputime_atomic
, struct task_cputime
*sum
)
198 __update_gt_cputime(&cputime_atomic
->utime
, sum
->utime
);
199 __update_gt_cputime(&cputime_atomic
->stime
, sum
->stime
);
200 __update_gt_cputime(&cputime_atomic
->sum_exec_runtime
, sum
->sum_exec_runtime
);
203 /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
204 static inline void sample_cputime_atomic(struct task_cputime
*times
,
205 struct task_cputime_atomic
*atomic_times
)
207 times
->utime
= atomic64_read(&atomic_times
->utime
);
208 times
->stime
= atomic64_read(&atomic_times
->stime
);
209 times
->sum_exec_runtime
= atomic64_read(&atomic_times
->sum_exec_runtime
);
212 void thread_group_cputimer(struct task_struct
*tsk
, struct task_cputime
*times
)
214 struct thread_group_cputimer
*cputimer
= &tsk
->signal
->cputimer
;
215 struct task_cputime sum
;
217 /* Check if cputimer isn't running. This is accessed without locking. */
218 if (!READ_ONCE(cputimer
->running
)) {
220 * The POSIX timer interface allows for absolute time expiry
221 * values through the TIMER_ABSTIME flag, therefore we have
222 * to synchronize the timer to the clock every time we start it.
224 thread_group_cputime(tsk
, &sum
);
225 update_gt_cputime(&cputimer
->cputime_atomic
, &sum
);
228 * We're setting cputimer->running without a lock. Ensure
229 * this only gets written to in one operation. We set
230 * running after update_gt_cputime() as a small optimization,
231 * but barriers are not required because update_gt_cputime()
232 * can handle concurrent updates.
234 WRITE_ONCE(cputimer
->running
, true);
236 sample_cputime_atomic(times
, &cputimer
->cputime_atomic
);
240 * Sample a process (thread group) clock for the given group_leader task.
241 * Must be called with task sighand lock held for safe while_each_thread()
244 static int cpu_clock_sample_group(const clockid_t which_clock
,
245 struct task_struct
*p
,
248 struct task_cputime cputime
;
250 switch (CPUCLOCK_WHICH(which_clock
)) {
254 thread_group_cputime(p
, &cputime
);
255 *sample
= cputime
.utime
+ cputime
.stime
;
258 thread_group_cputime(p
, &cputime
);
259 *sample
= cputime
.utime
;
262 thread_group_cputime(p
, &cputime
);
263 *sample
= cputime
.sum_exec_runtime
;
269 static int posix_cpu_clock_get_task(struct task_struct
*tsk
,
270 const clockid_t which_clock
,
271 struct timespec64
*tp
)
276 if (CPUCLOCK_PERTHREAD(which_clock
)) {
277 if (same_thread_group(tsk
, current
))
278 err
= cpu_clock_sample(which_clock
, tsk
, &rtn
);
280 if (tsk
== current
|| thread_group_leader(tsk
))
281 err
= cpu_clock_sample_group(which_clock
, tsk
, &rtn
);
285 *tp
= ns_to_timespec64(rtn
);
291 static int posix_cpu_clock_get(const clockid_t which_clock
, struct timespec64
*tp
)
293 const pid_t pid
= CPUCLOCK_PID(which_clock
);
298 * Special case constant value for our own clocks.
299 * We don't have to do any lookup to find ourselves.
301 err
= posix_cpu_clock_get_task(current
, which_clock
, tp
);
304 * Find the given PID, and validate that the caller
305 * should be able to see it.
307 struct task_struct
*p
;
309 p
= find_task_by_vpid(pid
);
311 err
= posix_cpu_clock_get_task(p
, which_clock
, tp
);
319 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
320 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
321 * new timer already all-zeros initialized.
323 static int posix_cpu_timer_create(struct k_itimer
*new_timer
)
326 const pid_t pid
= CPUCLOCK_PID(new_timer
->it_clock
);
327 struct task_struct
*p
;
329 if (CPUCLOCK_WHICH(new_timer
->it_clock
) >= CPUCLOCK_MAX
)
332 new_timer
->kclock
= &clock_posix_cpu
;
334 INIT_LIST_HEAD(&new_timer
->it
.cpu
.entry
);
337 if (CPUCLOCK_PERTHREAD(new_timer
->it_clock
)) {
341 p
= find_task_by_vpid(pid
);
342 if (p
&& !same_thread_group(p
, current
))
347 p
= current
->group_leader
;
349 p
= find_task_by_vpid(pid
);
350 if (p
&& !has_group_leader_pid(p
))
354 new_timer
->it
.cpu
.task
= p
;
366 * Clean up a CPU-clock timer that is about to be destroyed.
367 * This is called from timer deletion with the timer already locked.
368 * If we return TIMER_RETRY, it's necessary to release the timer's lock
369 * and try again. (This happens when the timer is in the middle of firing.)
371 static int posix_cpu_timer_del(struct k_itimer
*timer
)
375 struct sighand_struct
*sighand
;
376 struct task_struct
*p
= timer
->it
.cpu
.task
;
378 WARN_ON_ONCE(p
== NULL
);
381 * Protect against sighand release/switch in exit/exec and process/
382 * thread timer list entry concurrent read/writes.
384 sighand
= lock_task_sighand(p
, &flags
);
385 if (unlikely(sighand
== NULL
)) {
387 * We raced with the reaping of the task.
388 * The deletion should have cleared us off the list.
390 WARN_ON_ONCE(!list_empty(&timer
->it
.cpu
.entry
));
392 if (timer
->it
.cpu
.firing
)
395 list_del(&timer
->it
.cpu
.entry
);
397 unlock_task_sighand(p
, &flags
);
406 static void cleanup_timers_list(struct list_head
*head
)
408 struct cpu_timer_list
*timer
, *next
;
410 list_for_each_entry_safe(timer
, next
, head
, entry
)
411 list_del_init(&timer
->entry
);
415 * Clean out CPU timers still ticking when a thread exited. The task
416 * pointer is cleared, and the expiry time is replaced with the residual
417 * time for later timer_gettime calls to return.
418 * This must be called with the siglock held.
420 static void cleanup_timers(struct list_head
*head
)
422 cleanup_timers_list(head
);
423 cleanup_timers_list(++head
);
424 cleanup_timers_list(++head
);
428 * These are both called with the siglock held, when the current thread
429 * is being reaped. When the final (leader) thread in the group is reaped,
430 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
432 void posix_cpu_timers_exit(struct task_struct
*tsk
)
434 cleanup_timers(tsk
->cpu_timers
);
436 void posix_cpu_timers_exit_group(struct task_struct
*tsk
)
438 cleanup_timers(tsk
->signal
->cpu_timers
);
441 static inline int expires_gt(u64 expires
, u64 new_exp
)
443 return expires
== 0 || expires
> new_exp
;
447 * Insert the timer on the appropriate list before any timers that
448 * expire later. This must be called with the sighand lock held.
450 static void arm_timer(struct k_itimer
*timer
)
452 struct task_struct
*p
= timer
->it
.cpu
.task
;
453 struct list_head
*head
, *listpos
;
454 struct task_cputime
*cputime_expires
;
455 struct cpu_timer_list
*const nt
= &timer
->it
.cpu
;
456 struct cpu_timer_list
*next
;
458 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
459 head
= p
->cpu_timers
;
460 cputime_expires
= &p
->cputime_expires
;
462 head
= p
->signal
->cpu_timers
;
463 cputime_expires
= &p
->signal
->cputime_expires
;
465 head
+= CPUCLOCK_WHICH(timer
->it_clock
);
468 list_for_each_entry(next
, head
, entry
) {
469 if (nt
->expires
< next
->expires
)
471 listpos
= &next
->entry
;
473 list_add(&nt
->entry
, listpos
);
475 if (listpos
== head
) {
476 u64 exp
= nt
->expires
;
479 * We are the new earliest-expiring POSIX 1.b timer, hence
480 * need to update expiration cache. Take into account that
481 * for process timers we share expiration cache with itimers
482 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
485 switch (CPUCLOCK_WHICH(timer
->it_clock
)) {
487 if (expires_gt(cputime_expires
->prof_exp
, exp
))
488 cputime_expires
->prof_exp
= exp
;
491 if (expires_gt(cputime_expires
->virt_exp
, exp
))
492 cputime_expires
->virt_exp
= exp
;
495 if (expires_gt(cputime_expires
->sched_exp
, exp
))
496 cputime_expires
->sched_exp
= exp
;
499 if (CPUCLOCK_PERTHREAD(timer
->it_clock
))
500 tick_dep_set_task(p
, TICK_DEP_BIT_POSIX_TIMER
);
502 tick_dep_set_signal(p
->signal
, TICK_DEP_BIT_POSIX_TIMER
);
507 * The timer is locked, fire it and arrange for its reload.
509 static void cpu_timer_fire(struct k_itimer
*timer
)
511 if ((timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
) {
513 * User don't want any signal.
515 timer
->it
.cpu
.expires
= 0;
516 } else if (unlikely(timer
->sigq
== NULL
)) {
518 * This a special case for clock_nanosleep,
519 * not a normal timer from sys_timer_create.
521 wake_up_process(timer
->it_process
);
522 timer
->it
.cpu
.expires
= 0;
523 } else if (timer
->it
.cpu
.incr
== 0) {
525 * One-shot timer. Clear it as soon as it's fired.
527 posix_timer_event(timer
, 0);
528 timer
->it
.cpu
.expires
= 0;
529 } else if (posix_timer_event(timer
, ++timer
->it_requeue_pending
)) {
531 * The signal did not get queued because the signal
532 * was ignored, so we won't get any callback to
533 * reload the timer. But we need to keep it
534 * ticking in case the signal is deliverable next time.
536 posix_cpu_timer_rearm(timer
);
537 ++timer
->it_requeue_pending
;
542 * Sample a process (thread group) timer for the given group_leader task.
543 * Must be called with task sighand lock held for safe while_each_thread()
546 static int cpu_timer_sample_group(const clockid_t which_clock
,
547 struct task_struct
*p
, u64
*sample
)
549 struct task_cputime cputime
;
551 thread_group_cputimer(p
, &cputime
);
552 switch (CPUCLOCK_WHICH(which_clock
)) {
556 *sample
= cputime
.utime
+ cputime
.stime
;
559 *sample
= cputime
.utime
;
562 *sample
= cputime
.sum_exec_runtime
;
569 * Guts of sys_timer_settime for CPU timers.
570 * This is called with the timer locked and interrupts disabled.
571 * If we return TIMER_RETRY, it's necessary to release the timer's lock
572 * and try again. (This happens when the timer is in the middle of firing.)
574 static int posix_cpu_timer_set(struct k_itimer
*timer
, int timer_flags
,
575 struct itimerspec64
*new, struct itimerspec64
*old
)
578 struct sighand_struct
*sighand
;
579 struct task_struct
*p
= timer
->it
.cpu
.task
;
580 u64 old_expires
, new_expires
, old_incr
, val
;
583 WARN_ON_ONCE(p
== NULL
);
586 * Use the to_ktime conversion because that clamps the maximum
587 * value to KTIME_MAX and avoid multiplication overflows.
589 new_expires
= ktime_to_ns(timespec64_to_ktime(new->it_value
));
592 * Protect against sighand release/switch in exit/exec and p->cpu_timers
593 * and p->signal->cpu_timers read/write in arm_timer()
595 sighand
= lock_task_sighand(p
, &flags
);
597 * If p has just been reaped, we can no
598 * longer get any information about it at all.
600 if (unlikely(sighand
== NULL
)) {
605 * Disarm any old timer after extracting its expiry time.
607 lockdep_assert_irqs_disabled();
610 old_incr
= timer
->it
.cpu
.incr
;
611 old_expires
= timer
->it
.cpu
.expires
;
612 if (unlikely(timer
->it
.cpu
.firing
)) {
613 timer
->it
.cpu
.firing
= -1;
616 list_del_init(&timer
->it
.cpu
.entry
);
619 * We need to sample the current value to convert the new
620 * value from to relative and absolute, and to convert the
621 * old value from absolute to relative. To set a process
622 * timer, we need a sample to balance the thread expiry
623 * times (in arm_timer). With an absolute time, we must
624 * check if it's already passed. In short, we need a sample.
626 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
627 cpu_clock_sample(timer
->it_clock
, p
, &val
);
629 cpu_timer_sample_group(timer
->it_clock
, p
, &val
);
633 if (old_expires
== 0) {
634 old
->it_value
.tv_sec
= 0;
635 old
->it_value
.tv_nsec
= 0;
638 * Update the timer in case it has
639 * overrun already. If it has,
640 * we'll report it as having overrun
641 * and with the next reloaded timer
642 * already ticking, though we are
643 * swallowing that pending
644 * notification here to install the
647 bump_cpu_timer(timer
, val
);
648 if (val
< timer
->it
.cpu
.expires
) {
649 old_expires
= timer
->it
.cpu
.expires
- val
;
650 old
->it_value
= ns_to_timespec64(old_expires
);
652 old
->it_value
.tv_nsec
= 1;
653 old
->it_value
.tv_sec
= 0;
660 * We are colliding with the timer actually firing.
661 * Punt after filling in the timer's old value, and
662 * disable this firing since we are already reporting
663 * it as an overrun (thanks to bump_cpu_timer above).
665 unlock_task_sighand(p
, &flags
);
669 if (new_expires
!= 0 && !(timer_flags
& TIMER_ABSTIME
)) {
674 * Install the new expiry time (or zero).
675 * For a timer with no notification action, we don't actually
676 * arm the timer (we'll just fake it for timer_gettime).
678 timer
->it
.cpu
.expires
= new_expires
;
679 if (new_expires
!= 0 && val
< new_expires
) {
683 unlock_task_sighand(p
, &flags
);
685 * Install the new reload setting, and
686 * set up the signal and overrun bookkeeping.
688 timer
->it
.cpu
.incr
= timespec64_to_ns(&new->it_interval
);
691 * This acts as a modification timestamp for the timer,
692 * so any automatic reload attempt will punt on seeing
693 * that we have reset the timer manually.
695 timer
->it_requeue_pending
= (timer
->it_requeue_pending
+ 2) &
697 timer
->it_overrun_last
= 0;
698 timer
->it_overrun
= -1;
700 if (new_expires
!= 0 && !(val
< new_expires
)) {
702 * The designated time already passed, so we notify
703 * immediately, even if the thread never runs to
704 * accumulate more time on this clock.
706 cpu_timer_fire(timer
);
712 old
->it_interval
= ns_to_timespec64(old_incr
);
717 static void posix_cpu_timer_get(struct k_itimer
*timer
, struct itimerspec64
*itp
)
720 struct task_struct
*p
= timer
->it
.cpu
.task
;
722 WARN_ON_ONCE(p
== NULL
);
725 * Easy part: convert the reload time.
727 itp
->it_interval
= ns_to_timespec64(timer
->it
.cpu
.incr
);
729 if (!timer
->it
.cpu
.expires
)
733 * Sample the clock to take the difference with the expiry time.
735 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
736 cpu_clock_sample(timer
->it_clock
, p
, &now
);
738 struct sighand_struct
*sighand
;
742 * Protect against sighand release/switch in exit/exec and
743 * also make timer sampling safe if it ends up calling
744 * thread_group_cputime().
746 sighand
= lock_task_sighand(p
, &flags
);
747 if (unlikely(sighand
== NULL
)) {
749 * The process has been reaped.
750 * We can't even collect a sample any more.
751 * Call the timer disarmed, nothing else to do.
753 timer
->it
.cpu
.expires
= 0;
756 cpu_timer_sample_group(timer
->it_clock
, p
, &now
);
757 unlock_task_sighand(p
, &flags
);
761 if (now
< timer
->it
.cpu
.expires
) {
762 itp
->it_value
= ns_to_timespec64(timer
->it
.cpu
.expires
- now
);
765 * The timer should have expired already, but the firing
766 * hasn't taken place yet. Say it's just about to expire.
768 itp
->it_value
.tv_nsec
= 1;
769 itp
->it_value
.tv_sec
= 0;
773 static unsigned long long
774 check_timers_list(struct list_head
*timers
,
775 struct list_head
*firing
,
776 unsigned long long curr
)
780 while (!list_empty(timers
)) {
781 struct cpu_timer_list
*t
;
783 t
= list_first_entry(timers
, struct cpu_timer_list
, entry
);
785 if (!--maxfire
|| curr
< t
->expires
)
789 list_move_tail(&t
->entry
, firing
);
795 static inline void check_dl_overrun(struct task_struct
*tsk
)
797 if (tsk
->dl
.dl_overrun
) {
798 tsk
->dl
.dl_overrun
= 0;
799 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
804 * Check for any per-thread CPU timers that have fired and move them off
805 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
806 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
808 static void check_thread_timers(struct task_struct
*tsk
,
809 struct list_head
*firing
)
811 struct list_head
*timers
= tsk
->cpu_timers
;
812 struct task_cputime
*tsk_expires
= &tsk
->cputime_expires
;
817 check_dl_overrun(tsk
);
820 * If cputime_expires is zero, then there are no active
821 * per thread CPU timers.
823 if (task_cputime_zero(&tsk
->cputime_expires
))
826 expires
= check_timers_list(timers
, firing
, prof_ticks(tsk
));
827 tsk_expires
->prof_exp
= expires
;
829 expires
= check_timers_list(++timers
, firing
, virt_ticks(tsk
));
830 tsk_expires
->virt_exp
= expires
;
832 tsk_expires
->sched_exp
= check_timers_list(++timers
, firing
,
833 tsk
->se
.sum_exec_runtime
);
836 * Check for the special case thread timers.
838 soft
= task_rlimit(tsk
, RLIMIT_RTTIME
);
839 if (soft
!= RLIM_INFINITY
) {
840 unsigned long hard
= task_rlimit_max(tsk
, RLIMIT_RTTIME
);
842 if (hard
!= RLIM_INFINITY
&&
843 tsk
->rt
.timeout
> DIV_ROUND_UP(hard
, USEC_PER_SEC
/HZ
)) {
845 * At the hard limit, we just die.
846 * No need to calculate anything else now.
848 if (print_fatal_signals
) {
849 pr_info("CPU Watchdog Timeout (hard): %s[%d]\n",
850 tsk
->comm
, task_pid_nr(tsk
));
852 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
855 if (tsk
->rt
.timeout
> DIV_ROUND_UP(soft
, USEC_PER_SEC
/HZ
)) {
857 * At the soft limit, send a SIGXCPU every second.
860 soft
+= USEC_PER_SEC
;
861 tsk
->signal
->rlim
[RLIMIT_RTTIME
].rlim_cur
=
864 if (print_fatal_signals
) {
865 pr_info("RT Watchdog Timeout (soft): %s[%d]\n",
866 tsk
->comm
, task_pid_nr(tsk
));
868 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
871 if (task_cputime_zero(tsk_expires
))
872 tick_dep_clear_task(tsk
, TICK_DEP_BIT_POSIX_TIMER
);
875 static inline void stop_process_timers(struct signal_struct
*sig
)
877 struct thread_group_cputimer
*cputimer
= &sig
->cputimer
;
879 /* Turn off cputimer->running. This is done without locking. */
880 WRITE_ONCE(cputimer
->running
, false);
881 tick_dep_clear_signal(sig
, TICK_DEP_BIT_POSIX_TIMER
);
884 static void check_cpu_itimer(struct task_struct
*tsk
, struct cpu_itimer
*it
,
885 u64
*expires
, u64 cur_time
, int signo
)
890 if (cur_time
>= it
->expires
) {
892 it
->expires
+= it
->incr
;
896 trace_itimer_expire(signo
== SIGPROF
?
897 ITIMER_PROF
: ITIMER_VIRTUAL
,
898 tsk
->signal
->leader_pid
, cur_time
);
899 __group_send_sig_info(signo
, SEND_SIG_PRIV
, tsk
);
902 if (it
->expires
&& (!*expires
|| it
->expires
< *expires
))
903 *expires
= it
->expires
;
907 * Check for any per-thread CPU timers that have fired and move them
908 * off the tsk->*_timers list onto the firing list. Per-thread timers
909 * have already been taken off.
911 static void check_process_timers(struct task_struct
*tsk
,
912 struct list_head
*firing
)
914 struct signal_struct
*const sig
= tsk
->signal
;
915 u64 utime
, ptime
, virt_expires
, prof_expires
;
916 u64 sum_sched_runtime
, sched_expires
;
917 struct list_head
*timers
= sig
->cpu_timers
;
918 struct task_cputime cputime
;
922 check_dl_overrun(tsk
);
925 * If cputimer is not running, then there are no active
926 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
928 if (!READ_ONCE(tsk
->signal
->cputimer
.running
))
932 * Signify that a thread is checking for process timers.
933 * Write access to this field is protected by the sighand lock.
935 sig
->cputimer
.checking_timer
= true;
938 * Collect the current process totals.
940 thread_group_cputimer(tsk
, &cputime
);
941 utime
= cputime
.utime
;
942 ptime
= utime
+ cputime
.stime
;
943 sum_sched_runtime
= cputime
.sum_exec_runtime
;
945 prof_expires
= check_timers_list(timers
, firing
, ptime
);
946 virt_expires
= check_timers_list(++timers
, firing
, utime
);
947 sched_expires
= check_timers_list(++timers
, firing
, sum_sched_runtime
);
950 * Check for the special case process timers.
952 check_cpu_itimer(tsk
, &sig
->it
[CPUCLOCK_PROF
], &prof_expires
, ptime
,
954 check_cpu_itimer(tsk
, &sig
->it
[CPUCLOCK_VIRT
], &virt_expires
, utime
,
956 soft
= task_rlimit(tsk
, RLIMIT_CPU
);
957 if (soft
!= RLIM_INFINITY
) {
958 unsigned long psecs
= div_u64(ptime
, NSEC_PER_SEC
);
959 unsigned long hard
= task_rlimit_max(tsk
, RLIMIT_CPU
);
963 * At the hard limit, we just die.
964 * No need to calculate anything else now.
966 if (print_fatal_signals
) {
967 pr_info("RT Watchdog Timeout (hard): %s[%d]\n",
968 tsk
->comm
, task_pid_nr(tsk
));
970 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
975 * At the soft limit, send a SIGXCPU every second.
977 if (print_fatal_signals
) {
978 pr_info("CPU Watchdog Timeout (soft): %s[%d]\n",
979 tsk
->comm
, task_pid_nr(tsk
));
981 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
984 sig
->rlim
[RLIMIT_CPU
].rlim_cur
= soft
;
987 x
= soft
* NSEC_PER_SEC
;
988 if (!prof_expires
|| x
< prof_expires
)
992 sig
->cputime_expires
.prof_exp
= prof_expires
;
993 sig
->cputime_expires
.virt_exp
= virt_expires
;
994 sig
->cputime_expires
.sched_exp
= sched_expires
;
995 if (task_cputime_zero(&sig
->cputime_expires
))
996 stop_process_timers(sig
);
998 sig
->cputimer
.checking_timer
= false;
1002 * This is called from the signal code (via posixtimer_rearm)
1003 * when the last timer signal was delivered and we have to reload the timer.
1005 static void posix_cpu_timer_rearm(struct k_itimer
*timer
)
1007 struct sighand_struct
*sighand
;
1008 unsigned long flags
;
1009 struct task_struct
*p
= timer
->it
.cpu
.task
;
1012 WARN_ON_ONCE(p
== NULL
);
1015 * Fetch the current sample and update the timer's expiry time.
1017 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
1018 cpu_clock_sample(timer
->it_clock
, p
, &now
);
1019 bump_cpu_timer(timer
, now
);
1020 if (unlikely(p
->exit_state
))
1023 /* Protect timer list r/w in arm_timer() */
1024 sighand
= lock_task_sighand(p
, &flags
);
1029 * Protect arm_timer() and timer sampling in case of call to
1030 * thread_group_cputime().
1032 sighand
= lock_task_sighand(p
, &flags
);
1033 if (unlikely(sighand
== NULL
)) {
1035 * The process has been reaped.
1036 * We can't even collect a sample any more.
1038 timer
->it
.cpu
.expires
= 0;
1040 } else if (unlikely(p
->exit_state
) && thread_group_empty(p
)) {
1041 /* If the process is dying, no need to rearm */
1044 cpu_timer_sample_group(timer
->it_clock
, p
, &now
);
1045 bump_cpu_timer(timer
, now
);
1046 /* Leave the sighand locked for the call below. */
1050 * Now re-arm for the new expiry time.
1052 lockdep_assert_irqs_disabled();
1055 unlock_task_sighand(p
, &flags
);
1059 * task_cputime_expired - Compare two task_cputime entities.
1061 * @sample: The task_cputime structure to be checked for expiration.
1062 * @expires: Expiration times, against which @sample will be checked.
1064 * Checks @sample against @expires to see if any field of @sample has expired.
1065 * Returns true if any field of the former is greater than the corresponding
1066 * field of the latter if the latter field is set. Otherwise returns false.
1068 static inline int task_cputime_expired(const struct task_cputime
*sample
,
1069 const struct task_cputime
*expires
)
1071 if (expires
->utime
&& sample
->utime
>= expires
->utime
)
1073 if (expires
->stime
&& sample
->utime
+ sample
->stime
>= expires
->stime
)
1075 if (expires
->sum_exec_runtime
!= 0 &&
1076 sample
->sum_exec_runtime
>= expires
->sum_exec_runtime
)
1082 * fastpath_timer_check - POSIX CPU timers fast path.
1084 * @tsk: The task (thread) being checked.
1086 * Check the task and thread group timers. If both are zero (there are no
1087 * timers set) return false. Otherwise snapshot the task and thread group
1088 * timers and compare them with the corresponding expiration times. Return
1089 * true if a timer has expired, else return false.
1091 static inline int fastpath_timer_check(struct task_struct
*tsk
)
1093 struct signal_struct
*sig
;
1095 if (!task_cputime_zero(&tsk
->cputime_expires
)) {
1096 struct task_cputime task_sample
;
1098 task_cputime(tsk
, &task_sample
.utime
, &task_sample
.stime
);
1099 task_sample
.sum_exec_runtime
= tsk
->se
.sum_exec_runtime
;
1100 if (task_cputime_expired(&task_sample
, &tsk
->cputime_expires
))
1106 * Check if thread group timers expired when the cputimer is
1107 * running and no other thread in the group is already checking
1108 * for thread group cputimers. These fields are read without the
1109 * sighand lock. However, this is fine because this is meant to
1110 * be a fastpath heuristic to determine whether we should try to
1111 * acquire the sighand lock to check/handle timers.
1113 * In the worst case scenario, if 'running' or 'checking_timer' gets
1114 * set but the current thread doesn't see the change yet, we'll wait
1115 * until the next thread in the group gets a scheduler interrupt to
1116 * handle the timer. This isn't an issue in practice because these
1117 * types of delays with signals actually getting sent are expected.
1119 if (READ_ONCE(sig
->cputimer
.running
) &&
1120 !READ_ONCE(sig
->cputimer
.checking_timer
)) {
1121 struct task_cputime group_sample
;
1123 sample_cputime_atomic(&group_sample
, &sig
->cputimer
.cputime_atomic
);
1125 if (task_cputime_expired(&group_sample
, &sig
->cputime_expires
))
1129 if (dl_task(tsk
) && tsk
->dl
.dl_overrun
)
1136 * This is called from the timer interrupt handler. The irq handler has
1137 * already updated our counts. We need to check if any timers fire now.
1138 * Interrupts are disabled.
1140 void run_posix_cpu_timers(struct task_struct
*tsk
)
1143 struct k_itimer
*timer
, *next
;
1144 unsigned long flags
;
1146 lockdep_assert_irqs_disabled();
1149 * The fast path checks that there are no expired thread or thread
1150 * group timers. If that's so, just return.
1152 if (!fastpath_timer_check(tsk
))
1155 if (!lock_task_sighand(tsk
, &flags
))
1158 * Here we take off tsk->signal->cpu_timers[N] and
1159 * tsk->cpu_timers[N] all the timers that are firing, and
1160 * put them on the firing list.
1162 check_thread_timers(tsk
, &firing
);
1164 check_process_timers(tsk
, &firing
);
1167 * We must release these locks before taking any timer's lock.
1168 * There is a potential race with timer deletion here, as the
1169 * siglock now protects our private firing list. We have set
1170 * the firing flag in each timer, so that a deletion attempt
1171 * that gets the timer lock before we do will give it up and
1172 * spin until we've taken care of that timer below.
1174 unlock_task_sighand(tsk
, &flags
);
1177 * Now that all the timers on our list have the firing flag,
1178 * no one will touch their list entries but us. We'll take
1179 * each timer's lock before clearing its firing flag, so no
1180 * timer call will interfere.
1182 list_for_each_entry_safe(timer
, next
, &firing
, it
.cpu
.entry
) {
1185 spin_lock(&timer
->it_lock
);
1186 list_del_init(&timer
->it
.cpu
.entry
);
1187 cpu_firing
= timer
->it
.cpu
.firing
;
1188 timer
->it
.cpu
.firing
= 0;
1190 * The firing flag is -1 if we collided with a reset
1191 * of the timer, which already reported this
1192 * almost-firing as an overrun. So don't generate an event.
1194 if (likely(cpu_firing
>= 0))
1195 cpu_timer_fire(timer
);
1196 spin_unlock(&timer
->it_lock
);
1201 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1202 * The tsk->sighand->siglock must be held by the caller.
1204 void set_process_cpu_timer(struct task_struct
*tsk
, unsigned int clock_idx
,
1205 u64
*newval
, u64
*oldval
)
1209 WARN_ON_ONCE(clock_idx
== CPUCLOCK_SCHED
);
1211 if (oldval
&& cpu_timer_sample_group(clock_idx
, tsk
, &now
) != -EINVAL
) {
1213 * We are setting itimer. The *oldval is absolute and we update
1214 * it to be relative, *newval argument is relative and we update
1215 * it to be absolute.
1218 if (*oldval
<= now
) {
1219 /* Just about to fire. */
1220 *oldval
= TICK_NSEC
;
1232 * Update expiration cache if we are the earliest timer, or eventually
1233 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1235 switch (clock_idx
) {
1237 if (expires_gt(tsk
->signal
->cputime_expires
.prof_exp
, *newval
))
1238 tsk
->signal
->cputime_expires
.prof_exp
= *newval
;
1241 if (expires_gt(tsk
->signal
->cputime_expires
.virt_exp
, *newval
))
1242 tsk
->signal
->cputime_expires
.virt_exp
= *newval
;
1246 tick_dep_set_signal(tsk
->signal
, TICK_DEP_BIT_POSIX_TIMER
);
1249 static int do_cpu_nanosleep(const clockid_t which_clock
, int flags
,
1250 const struct timespec64
*rqtp
)
1252 struct itimerspec64 it
;
1253 struct k_itimer timer
;
1258 * Set up a temporary timer and then wait for it to go off.
1260 memset(&timer
, 0, sizeof timer
);
1261 spin_lock_init(&timer
.it_lock
);
1262 timer
.it_clock
= which_clock
;
1263 timer
.it_overrun
= -1;
1264 error
= posix_cpu_timer_create(&timer
);
1265 timer
.it_process
= current
;
1267 static struct itimerspec64 zero_it
;
1268 struct restart_block
*restart
;
1270 memset(&it
, 0, sizeof(it
));
1271 it
.it_value
= *rqtp
;
1273 spin_lock_irq(&timer
.it_lock
);
1274 error
= posix_cpu_timer_set(&timer
, flags
, &it
, NULL
);
1276 spin_unlock_irq(&timer
.it_lock
);
1280 while (!signal_pending(current
)) {
1281 if (timer
.it
.cpu
.expires
== 0) {
1283 * Our timer fired and was reset, below
1284 * deletion can not fail.
1286 posix_cpu_timer_del(&timer
);
1287 spin_unlock_irq(&timer
.it_lock
);
1292 * Block until cpu_timer_fire (or a signal) wakes us.
1294 __set_current_state(TASK_INTERRUPTIBLE
);
1295 spin_unlock_irq(&timer
.it_lock
);
1297 spin_lock_irq(&timer
.it_lock
);
1301 * We were interrupted by a signal.
1303 expires
= timer
.it
.cpu
.expires
;
1304 error
= posix_cpu_timer_set(&timer
, 0, &zero_it
, &it
);
1307 * Timer is now unarmed, deletion can not fail.
1309 posix_cpu_timer_del(&timer
);
1311 spin_unlock_irq(&timer
.it_lock
);
1313 while (error
== TIMER_RETRY
) {
1315 * We need to handle case when timer was or is in the
1316 * middle of firing. In other cases we already freed
1319 spin_lock_irq(&timer
.it_lock
);
1320 error
= posix_cpu_timer_del(&timer
);
1321 spin_unlock_irq(&timer
.it_lock
);
1324 if ((it
.it_value
.tv_sec
| it
.it_value
.tv_nsec
) == 0) {
1326 * It actually did fire already.
1331 error
= -ERESTART_RESTARTBLOCK
;
1333 * Report back to the user the time still remaining.
1335 restart
= ¤t
->restart_block
;
1336 restart
->nanosleep
.expires
= expires
;
1337 if (restart
->nanosleep
.type
!= TT_NONE
)
1338 error
= nanosleep_copyout(restart
, &it
.it_value
);
1344 static long posix_cpu_nsleep_restart(struct restart_block
*restart_block
);
1346 static int posix_cpu_nsleep(const clockid_t which_clock
, int flags
,
1347 const struct timespec64
*rqtp
)
1349 struct restart_block
*restart_block
= ¤t
->restart_block
;
1353 * Diagnose required errors first.
1355 if (CPUCLOCK_PERTHREAD(which_clock
) &&
1356 (CPUCLOCK_PID(which_clock
) == 0 ||
1357 CPUCLOCK_PID(which_clock
) == task_pid_vnr(current
)))
1360 error
= do_cpu_nanosleep(which_clock
, flags
, rqtp
);
1362 if (error
== -ERESTART_RESTARTBLOCK
) {
1364 if (flags
& TIMER_ABSTIME
)
1365 return -ERESTARTNOHAND
;
1367 restart_block
->fn
= posix_cpu_nsleep_restart
;
1368 restart_block
->nanosleep
.clockid
= which_clock
;
1373 static long posix_cpu_nsleep_restart(struct restart_block
*restart_block
)
1375 clockid_t which_clock
= restart_block
->nanosleep
.clockid
;
1376 struct timespec64 t
;
1378 t
= ns_to_timespec64(restart_block
->nanosleep
.expires
);
1380 return do_cpu_nanosleep(which_clock
, TIMER_ABSTIME
, &t
);
1383 #define PROCESS_CLOCK make_process_cpuclock(0, CPUCLOCK_SCHED)
1384 #define THREAD_CLOCK make_thread_cpuclock(0, CPUCLOCK_SCHED)
1386 static int process_cpu_clock_getres(const clockid_t which_clock
,
1387 struct timespec64
*tp
)
1389 return posix_cpu_clock_getres(PROCESS_CLOCK
, tp
);
1391 static int process_cpu_clock_get(const clockid_t which_clock
,
1392 struct timespec64
*tp
)
1394 return posix_cpu_clock_get(PROCESS_CLOCK
, tp
);
1396 static int process_cpu_timer_create(struct k_itimer
*timer
)
1398 timer
->it_clock
= PROCESS_CLOCK
;
1399 return posix_cpu_timer_create(timer
);
1401 static int process_cpu_nsleep(const clockid_t which_clock
, int flags
,
1402 const struct timespec64
*rqtp
)
1404 return posix_cpu_nsleep(PROCESS_CLOCK
, flags
, rqtp
);
1406 static int thread_cpu_clock_getres(const clockid_t which_clock
,
1407 struct timespec64
*tp
)
1409 return posix_cpu_clock_getres(THREAD_CLOCK
, tp
);
1411 static int thread_cpu_clock_get(const clockid_t which_clock
,
1412 struct timespec64
*tp
)
1414 return posix_cpu_clock_get(THREAD_CLOCK
, tp
);
1416 static int thread_cpu_timer_create(struct k_itimer
*timer
)
1418 timer
->it_clock
= THREAD_CLOCK
;
1419 return posix_cpu_timer_create(timer
);
1422 const struct k_clock clock_posix_cpu
= {
1423 .clock_getres
= posix_cpu_clock_getres
,
1424 .clock_set
= posix_cpu_clock_set
,
1425 .clock_get
= posix_cpu_clock_get
,
1426 .timer_create
= posix_cpu_timer_create
,
1427 .nsleep
= posix_cpu_nsleep
,
1428 .timer_set
= posix_cpu_timer_set
,
1429 .timer_del
= posix_cpu_timer_del
,
1430 .timer_get
= posix_cpu_timer_get
,
1431 .timer_rearm
= posix_cpu_timer_rearm
,
1434 const struct k_clock clock_process
= {
1435 .clock_getres
= process_cpu_clock_getres
,
1436 .clock_get
= process_cpu_clock_get
,
1437 .timer_create
= process_cpu_timer_create
,
1438 .nsleep
= process_cpu_nsleep
,
1441 const struct k_clock clock_thread
= {
1442 .clock_getres
= thread_cpu_clock_getres
,
1443 .clock_get
= thread_cpu_clock_get
,
1444 .timer_create
= thread_cpu_timer_create
,