Linux 4.16-rc3
[cris-mirror.git] / kernel / time / timekeeping.c
blobcd03317e7b57deaec813644758080f605490f446
1 /*
2 * linux/kernel/time/timekeeping.c
4 * Kernel timekeeping code and accessor functions
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
9 */
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/nmi.h>
18 #include <linux/sched.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/syscore_ops.h>
21 #include <linux/clocksource.h>
22 #include <linux/jiffies.h>
23 #include <linux/time.h>
24 #include <linux/tick.h>
25 #include <linux/stop_machine.h>
26 #include <linux/pvclock_gtod.h>
27 #include <linux/compiler.h>
29 #include "tick-internal.h"
30 #include "ntp_internal.h"
31 #include "timekeeping_internal.h"
33 #define TK_CLEAR_NTP (1 << 0)
34 #define TK_MIRROR (1 << 1)
35 #define TK_CLOCK_WAS_SET (1 << 2)
38 * The most important data for readout fits into a single 64 byte
39 * cache line.
41 static struct {
42 seqcount_t seq;
43 struct timekeeper timekeeper;
44 } tk_core ____cacheline_aligned;
46 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
47 static struct timekeeper shadow_timekeeper;
49 /**
50 * struct tk_fast - NMI safe timekeeper
51 * @seq: Sequence counter for protecting updates. The lowest bit
52 * is the index for the tk_read_base array
53 * @base: tk_read_base array. Access is indexed by the lowest bit of
54 * @seq.
56 * See @update_fast_timekeeper() below.
58 struct tk_fast {
59 seqcount_t seq;
60 struct tk_read_base base[2];
63 /* Suspend-time cycles value for halted fast timekeeper. */
64 static u64 cycles_at_suspend;
66 static u64 dummy_clock_read(struct clocksource *cs)
68 return cycles_at_suspend;
71 static struct clocksource dummy_clock = {
72 .read = dummy_clock_read,
75 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
76 .base[0] = { .clock = &dummy_clock, },
77 .base[1] = { .clock = &dummy_clock, },
80 static struct tk_fast tk_fast_raw ____cacheline_aligned = {
81 .base[0] = { .clock = &dummy_clock, },
82 .base[1] = { .clock = &dummy_clock, },
85 /* flag for if timekeeping is suspended */
86 int __read_mostly timekeeping_suspended;
88 static inline void tk_normalize_xtime(struct timekeeper *tk)
90 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
91 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
92 tk->xtime_sec++;
94 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
95 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
96 tk->raw_sec++;
100 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
102 struct timespec64 ts;
104 ts.tv_sec = tk->xtime_sec;
105 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
106 return ts;
109 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
111 tk->xtime_sec = ts->tv_sec;
112 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
115 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
117 tk->xtime_sec += ts->tv_sec;
118 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
119 tk_normalize_xtime(tk);
122 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
124 struct timespec64 tmp;
127 * Verify consistency of: offset_real = -wall_to_monotonic
128 * before modifying anything
130 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
131 -tk->wall_to_monotonic.tv_nsec);
132 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
133 tk->wall_to_monotonic = wtm;
134 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
135 tk->offs_real = timespec64_to_ktime(tmp);
136 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
139 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
141 tk->offs_boot = ktime_add(tk->offs_boot, delta);
145 * tk_clock_read - atomic clocksource read() helper
147 * This helper is necessary to use in the read paths because, while the
148 * seqlock ensures we don't return a bad value while structures are updated,
149 * it doesn't protect from potential crashes. There is the possibility that
150 * the tkr's clocksource may change between the read reference, and the
151 * clock reference passed to the read function. This can cause crashes if
152 * the wrong clocksource is passed to the wrong read function.
153 * This isn't necessary to use when holding the timekeeper_lock or doing
154 * a read of the fast-timekeeper tkrs (which is protected by its own locking
155 * and update logic).
157 static inline u64 tk_clock_read(struct tk_read_base *tkr)
159 struct clocksource *clock = READ_ONCE(tkr->clock);
161 return clock->read(clock);
164 #ifdef CONFIG_DEBUG_TIMEKEEPING
165 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
167 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
170 u64 max_cycles = tk->tkr_mono.clock->max_cycles;
171 const char *name = tk->tkr_mono.clock->name;
173 if (offset > max_cycles) {
174 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
175 offset, name, max_cycles);
176 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
177 } else {
178 if (offset > (max_cycles >> 1)) {
179 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
180 offset, name, max_cycles >> 1);
181 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
185 if (tk->underflow_seen) {
186 if (jiffies - tk->last_warning > WARNING_FREQ) {
187 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
188 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
189 printk_deferred(" Your kernel is probably still fine.\n");
190 tk->last_warning = jiffies;
192 tk->underflow_seen = 0;
195 if (tk->overflow_seen) {
196 if (jiffies - tk->last_warning > WARNING_FREQ) {
197 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
198 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
199 printk_deferred(" Your kernel is probably still fine.\n");
200 tk->last_warning = jiffies;
202 tk->overflow_seen = 0;
206 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
208 struct timekeeper *tk = &tk_core.timekeeper;
209 u64 now, last, mask, max, delta;
210 unsigned int seq;
213 * Since we're called holding a seqlock, the data may shift
214 * under us while we're doing the calculation. This can cause
215 * false positives, since we'd note a problem but throw the
216 * results away. So nest another seqlock here to atomically
217 * grab the points we are checking with.
219 do {
220 seq = read_seqcount_begin(&tk_core.seq);
221 now = tk_clock_read(tkr);
222 last = tkr->cycle_last;
223 mask = tkr->mask;
224 max = tkr->clock->max_cycles;
225 } while (read_seqcount_retry(&tk_core.seq, seq));
227 delta = clocksource_delta(now, last, mask);
230 * Try to catch underflows by checking if we are seeing small
231 * mask-relative negative values.
233 if (unlikely((~delta & mask) < (mask >> 3))) {
234 tk->underflow_seen = 1;
235 delta = 0;
238 /* Cap delta value to the max_cycles values to avoid mult overflows */
239 if (unlikely(delta > max)) {
240 tk->overflow_seen = 1;
241 delta = tkr->clock->max_cycles;
244 return delta;
246 #else
247 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
250 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
252 u64 cycle_now, delta;
254 /* read clocksource */
255 cycle_now = tk_clock_read(tkr);
257 /* calculate the delta since the last update_wall_time */
258 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
260 return delta;
262 #endif
265 * tk_setup_internals - Set up internals to use clocksource clock.
267 * @tk: The target timekeeper to setup.
268 * @clock: Pointer to clocksource.
270 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
271 * pair and interval request.
273 * Unless you're the timekeeping code, you should not be using this!
275 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
277 u64 interval;
278 u64 tmp, ntpinterval;
279 struct clocksource *old_clock;
281 ++tk->cs_was_changed_seq;
282 old_clock = tk->tkr_mono.clock;
283 tk->tkr_mono.clock = clock;
284 tk->tkr_mono.mask = clock->mask;
285 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
287 tk->tkr_raw.clock = clock;
288 tk->tkr_raw.mask = clock->mask;
289 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
291 /* Do the ns -> cycle conversion first, using original mult */
292 tmp = NTP_INTERVAL_LENGTH;
293 tmp <<= clock->shift;
294 ntpinterval = tmp;
295 tmp += clock->mult/2;
296 do_div(tmp, clock->mult);
297 if (tmp == 0)
298 tmp = 1;
300 interval = (u64) tmp;
301 tk->cycle_interval = interval;
303 /* Go back from cycles -> shifted ns */
304 tk->xtime_interval = interval * clock->mult;
305 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
306 tk->raw_interval = interval * clock->mult;
308 /* if changing clocks, convert xtime_nsec shift units */
309 if (old_clock) {
310 int shift_change = clock->shift - old_clock->shift;
311 if (shift_change < 0) {
312 tk->tkr_mono.xtime_nsec >>= -shift_change;
313 tk->tkr_raw.xtime_nsec >>= -shift_change;
314 } else {
315 tk->tkr_mono.xtime_nsec <<= shift_change;
316 tk->tkr_raw.xtime_nsec <<= shift_change;
320 tk->tkr_mono.shift = clock->shift;
321 tk->tkr_raw.shift = clock->shift;
323 tk->ntp_error = 0;
324 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
325 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
328 * The timekeeper keeps its own mult values for the currently
329 * active clocksource. These value will be adjusted via NTP
330 * to counteract clock drifting.
332 tk->tkr_mono.mult = clock->mult;
333 tk->tkr_raw.mult = clock->mult;
334 tk->ntp_err_mult = 0;
337 /* Timekeeper helper functions. */
339 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
340 static u32 default_arch_gettimeoffset(void) { return 0; }
341 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
342 #else
343 static inline u32 arch_gettimeoffset(void) { return 0; }
344 #endif
346 static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta)
348 u64 nsec;
350 nsec = delta * tkr->mult + tkr->xtime_nsec;
351 nsec >>= tkr->shift;
353 /* If arch requires, add in get_arch_timeoffset() */
354 return nsec + arch_gettimeoffset();
357 static inline u64 timekeeping_get_ns(struct tk_read_base *tkr)
359 u64 delta;
361 delta = timekeeping_get_delta(tkr);
362 return timekeeping_delta_to_ns(tkr, delta);
365 static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles)
367 u64 delta;
369 /* calculate the delta since the last update_wall_time */
370 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
371 return timekeeping_delta_to_ns(tkr, delta);
375 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
376 * @tkr: Timekeeping readout base from which we take the update
378 * We want to use this from any context including NMI and tracing /
379 * instrumenting the timekeeping code itself.
381 * Employ the latch technique; see @raw_write_seqcount_latch.
383 * So if a NMI hits the update of base[0] then it will use base[1]
384 * which is still consistent. In the worst case this can result is a
385 * slightly wrong timestamp (a few nanoseconds). See
386 * @ktime_get_mono_fast_ns.
388 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
390 struct tk_read_base *base = tkf->base;
392 /* Force readers off to base[1] */
393 raw_write_seqcount_latch(&tkf->seq);
395 /* Update base[0] */
396 memcpy(base, tkr, sizeof(*base));
398 /* Force readers back to base[0] */
399 raw_write_seqcount_latch(&tkf->seq);
401 /* Update base[1] */
402 memcpy(base + 1, base, sizeof(*base));
406 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
408 * This timestamp is not guaranteed to be monotonic across an update.
409 * The timestamp is calculated by:
411 * now = base_mono + clock_delta * slope
413 * So if the update lowers the slope, readers who are forced to the
414 * not yet updated second array are still using the old steeper slope.
416 * tmono
418 * | o n
419 * | o n
420 * | u
421 * | o
422 * |o
423 * |12345678---> reader order
425 * o = old slope
426 * u = update
427 * n = new slope
429 * So reader 6 will observe time going backwards versus reader 5.
431 * While other CPUs are likely to be able observe that, the only way
432 * for a CPU local observation is when an NMI hits in the middle of
433 * the update. Timestamps taken from that NMI context might be ahead
434 * of the following timestamps. Callers need to be aware of that and
435 * deal with it.
437 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
439 struct tk_read_base *tkr;
440 unsigned int seq;
441 u64 now;
443 do {
444 seq = raw_read_seqcount_latch(&tkf->seq);
445 tkr = tkf->base + (seq & 0x01);
446 now = ktime_to_ns(tkr->base);
448 now += timekeeping_delta_to_ns(tkr,
449 clocksource_delta(
450 tk_clock_read(tkr),
451 tkr->cycle_last,
452 tkr->mask));
453 } while (read_seqcount_retry(&tkf->seq, seq));
455 return now;
458 u64 ktime_get_mono_fast_ns(void)
460 return __ktime_get_fast_ns(&tk_fast_mono);
462 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
464 u64 ktime_get_raw_fast_ns(void)
466 return __ktime_get_fast_ns(&tk_fast_raw);
468 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
471 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
473 * To keep it NMI safe since we're accessing from tracing, we're not using a
474 * separate timekeeper with updates to monotonic clock and boot offset
475 * protected with seqlocks. This has the following minor side effects:
477 * (1) Its possible that a timestamp be taken after the boot offset is updated
478 * but before the timekeeper is updated. If this happens, the new boot offset
479 * is added to the old timekeeping making the clock appear to update slightly
480 * earlier:
481 * CPU 0 CPU 1
482 * timekeeping_inject_sleeptime64()
483 * __timekeeping_inject_sleeptime(tk, delta);
484 * timestamp();
485 * timekeeping_update(tk, TK_CLEAR_NTP...);
487 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
488 * partially updated. Since the tk->offs_boot update is a rare event, this
489 * should be a rare occurrence which postprocessing should be able to handle.
491 u64 notrace ktime_get_boot_fast_ns(void)
493 struct timekeeper *tk = &tk_core.timekeeper;
495 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
497 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
501 * See comment for __ktime_get_fast_ns() vs. timestamp ordering
503 static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
505 struct tk_read_base *tkr;
506 unsigned int seq;
507 u64 now;
509 do {
510 seq = raw_read_seqcount_latch(&tkf->seq);
511 tkr = tkf->base + (seq & 0x01);
512 now = ktime_to_ns(tkr->base_real);
514 now += timekeeping_delta_to_ns(tkr,
515 clocksource_delta(
516 tk_clock_read(tkr),
517 tkr->cycle_last,
518 tkr->mask));
519 } while (read_seqcount_retry(&tkf->seq, seq));
521 return now;
525 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
527 u64 ktime_get_real_fast_ns(void)
529 return __ktime_get_real_fast_ns(&tk_fast_mono);
531 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
534 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
535 * @tk: Timekeeper to snapshot.
537 * It generally is unsafe to access the clocksource after timekeeping has been
538 * suspended, so take a snapshot of the readout base of @tk and use it as the
539 * fast timekeeper's readout base while suspended. It will return the same
540 * number of cycles every time until timekeeping is resumed at which time the
541 * proper readout base for the fast timekeeper will be restored automatically.
543 static void halt_fast_timekeeper(struct timekeeper *tk)
545 static struct tk_read_base tkr_dummy;
546 struct tk_read_base *tkr = &tk->tkr_mono;
548 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
549 cycles_at_suspend = tk_clock_read(tkr);
550 tkr_dummy.clock = &dummy_clock;
551 tkr_dummy.base_real = tkr->base + tk->offs_real;
552 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
554 tkr = &tk->tkr_raw;
555 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
556 tkr_dummy.clock = &dummy_clock;
557 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
560 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
562 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
564 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
568 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
570 int pvclock_gtod_register_notifier(struct notifier_block *nb)
572 struct timekeeper *tk = &tk_core.timekeeper;
573 unsigned long flags;
574 int ret;
576 raw_spin_lock_irqsave(&timekeeper_lock, flags);
577 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
578 update_pvclock_gtod(tk, true);
579 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
581 return ret;
583 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
586 * pvclock_gtod_unregister_notifier - unregister a pvclock
587 * timedata update listener
589 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
591 unsigned long flags;
592 int ret;
594 raw_spin_lock_irqsave(&timekeeper_lock, flags);
595 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
596 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
598 return ret;
600 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
603 * tk_update_leap_state - helper to update the next_leap_ktime
605 static inline void tk_update_leap_state(struct timekeeper *tk)
607 tk->next_leap_ktime = ntp_get_next_leap();
608 if (tk->next_leap_ktime != KTIME_MAX)
609 /* Convert to monotonic time */
610 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
614 * Update the ktime_t based scalar nsec members of the timekeeper
616 static inline void tk_update_ktime_data(struct timekeeper *tk)
618 u64 seconds;
619 u32 nsec;
622 * The xtime based monotonic readout is:
623 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
624 * The ktime based monotonic readout is:
625 * nsec = base_mono + now();
626 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
628 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
629 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
630 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
633 * The sum of the nanoseconds portions of xtime and
634 * wall_to_monotonic can be greater/equal one second. Take
635 * this into account before updating tk->ktime_sec.
637 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
638 if (nsec >= NSEC_PER_SEC)
639 seconds++;
640 tk->ktime_sec = seconds;
642 /* Update the monotonic raw base */
643 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
646 /* must hold timekeeper_lock */
647 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
649 if (action & TK_CLEAR_NTP) {
650 tk->ntp_error = 0;
651 ntp_clear();
654 tk_update_leap_state(tk);
655 tk_update_ktime_data(tk);
657 update_vsyscall(tk);
658 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
660 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
661 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
662 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
664 if (action & TK_CLOCK_WAS_SET)
665 tk->clock_was_set_seq++;
667 * The mirroring of the data to the shadow-timekeeper needs
668 * to happen last here to ensure we don't over-write the
669 * timekeeper structure on the next update with stale data
671 if (action & TK_MIRROR)
672 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
673 sizeof(tk_core.timekeeper));
677 * timekeeping_forward_now - update clock to the current time
679 * Forward the current clock to update its state since the last call to
680 * update_wall_time(). This is useful before significant clock changes,
681 * as it avoids having to deal with this time offset explicitly.
683 static void timekeeping_forward_now(struct timekeeper *tk)
685 u64 cycle_now, delta;
687 cycle_now = tk_clock_read(&tk->tkr_mono);
688 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
689 tk->tkr_mono.cycle_last = cycle_now;
690 tk->tkr_raw.cycle_last = cycle_now;
692 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
694 /* If arch requires, add in get_arch_timeoffset() */
695 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
698 tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
700 /* If arch requires, add in get_arch_timeoffset() */
701 tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
703 tk_normalize_xtime(tk);
707 * __getnstimeofday64 - Returns the time of day in a timespec64.
708 * @ts: pointer to the timespec to be set
710 * Updates the time of day in the timespec.
711 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
713 int __getnstimeofday64(struct timespec64 *ts)
715 struct timekeeper *tk = &tk_core.timekeeper;
716 unsigned long seq;
717 u64 nsecs;
719 do {
720 seq = read_seqcount_begin(&tk_core.seq);
722 ts->tv_sec = tk->xtime_sec;
723 nsecs = timekeeping_get_ns(&tk->tkr_mono);
725 } while (read_seqcount_retry(&tk_core.seq, seq));
727 ts->tv_nsec = 0;
728 timespec64_add_ns(ts, nsecs);
731 * Do not bail out early, in case there were callers still using
732 * the value, even in the face of the WARN_ON.
734 if (unlikely(timekeeping_suspended))
735 return -EAGAIN;
736 return 0;
738 EXPORT_SYMBOL(__getnstimeofday64);
741 * getnstimeofday64 - Returns the time of day in a timespec64.
742 * @ts: pointer to the timespec64 to be set
744 * Returns the time of day in a timespec64 (WARN if suspended).
746 void getnstimeofday64(struct timespec64 *ts)
748 WARN_ON(__getnstimeofday64(ts));
750 EXPORT_SYMBOL(getnstimeofday64);
752 ktime_t ktime_get(void)
754 struct timekeeper *tk = &tk_core.timekeeper;
755 unsigned int seq;
756 ktime_t base;
757 u64 nsecs;
759 WARN_ON(timekeeping_suspended);
761 do {
762 seq = read_seqcount_begin(&tk_core.seq);
763 base = tk->tkr_mono.base;
764 nsecs = timekeeping_get_ns(&tk->tkr_mono);
766 } while (read_seqcount_retry(&tk_core.seq, seq));
768 return ktime_add_ns(base, nsecs);
770 EXPORT_SYMBOL_GPL(ktime_get);
772 u32 ktime_get_resolution_ns(void)
774 struct timekeeper *tk = &tk_core.timekeeper;
775 unsigned int seq;
776 u32 nsecs;
778 WARN_ON(timekeeping_suspended);
780 do {
781 seq = read_seqcount_begin(&tk_core.seq);
782 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
783 } while (read_seqcount_retry(&tk_core.seq, seq));
785 return nsecs;
787 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
789 static ktime_t *offsets[TK_OFFS_MAX] = {
790 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
791 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
792 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
795 ktime_t ktime_get_with_offset(enum tk_offsets offs)
797 struct timekeeper *tk = &tk_core.timekeeper;
798 unsigned int seq;
799 ktime_t base, *offset = offsets[offs];
800 u64 nsecs;
802 WARN_ON(timekeeping_suspended);
804 do {
805 seq = read_seqcount_begin(&tk_core.seq);
806 base = ktime_add(tk->tkr_mono.base, *offset);
807 nsecs = timekeeping_get_ns(&tk->tkr_mono);
809 } while (read_seqcount_retry(&tk_core.seq, seq));
811 return ktime_add_ns(base, nsecs);
814 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
817 * ktime_mono_to_any() - convert mononotic time to any other time
818 * @tmono: time to convert.
819 * @offs: which offset to use
821 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
823 ktime_t *offset = offsets[offs];
824 unsigned long seq;
825 ktime_t tconv;
827 do {
828 seq = read_seqcount_begin(&tk_core.seq);
829 tconv = ktime_add(tmono, *offset);
830 } while (read_seqcount_retry(&tk_core.seq, seq));
832 return tconv;
834 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
837 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
839 ktime_t ktime_get_raw(void)
841 struct timekeeper *tk = &tk_core.timekeeper;
842 unsigned int seq;
843 ktime_t base;
844 u64 nsecs;
846 do {
847 seq = read_seqcount_begin(&tk_core.seq);
848 base = tk->tkr_raw.base;
849 nsecs = timekeeping_get_ns(&tk->tkr_raw);
851 } while (read_seqcount_retry(&tk_core.seq, seq));
853 return ktime_add_ns(base, nsecs);
855 EXPORT_SYMBOL_GPL(ktime_get_raw);
858 * ktime_get_ts64 - get the monotonic clock in timespec64 format
859 * @ts: pointer to timespec variable
861 * The function calculates the monotonic clock from the realtime
862 * clock and the wall_to_monotonic offset and stores the result
863 * in normalized timespec64 format in the variable pointed to by @ts.
865 void ktime_get_ts64(struct timespec64 *ts)
867 struct timekeeper *tk = &tk_core.timekeeper;
868 struct timespec64 tomono;
869 unsigned int seq;
870 u64 nsec;
872 WARN_ON(timekeeping_suspended);
874 do {
875 seq = read_seqcount_begin(&tk_core.seq);
876 ts->tv_sec = tk->xtime_sec;
877 nsec = timekeeping_get_ns(&tk->tkr_mono);
878 tomono = tk->wall_to_monotonic;
880 } while (read_seqcount_retry(&tk_core.seq, seq));
882 ts->tv_sec += tomono.tv_sec;
883 ts->tv_nsec = 0;
884 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
886 EXPORT_SYMBOL_GPL(ktime_get_ts64);
889 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
891 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
892 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
893 * works on both 32 and 64 bit systems. On 32 bit systems the readout
894 * covers ~136 years of uptime which should be enough to prevent
895 * premature wrap arounds.
897 time64_t ktime_get_seconds(void)
899 struct timekeeper *tk = &tk_core.timekeeper;
901 WARN_ON(timekeeping_suspended);
902 return tk->ktime_sec;
904 EXPORT_SYMBOL_GPL(ktime_get_seconds);
907 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
909 * Returns the wall clock seconds since 1970. This replaces the
910 * get_seconds() interface which is not y2038 safe on 32bit systems.
912 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
913 * 32bit systems the access must be protected with the sequence
914 * counter to provide "atomic" access to the 64bit tk->xtime_sec
915 * value.
917 time64_t ktime_get_real_seconds(void)
919 struct timekeeper *tk = &tk_core.timekeeper;
920 time64_t seconds;
921 unsigned int seq;
923 if (IS_ENABLED(CONFIG_64BIT))
924 return tk->xtime_sec;
926 do {
927 seq = read_seqcount_begin(&tk_core.seq);
928 seconds = tk->xtime_sec;
930 } while (read_seqcount_retry(&tk_core.seq, seq));
932 return seconds;
934 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
937 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
938 * but without the sequence counter protect. This internal function
939 * is called just when timekeeping lock is already held.
941 time64_t __ktime_get_real_seconds(void)
943 struct timekeeper *tk = &tk_core.timekeeper;
945 return tk->xtime_sec;
949 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
950 * @systime_snapshot: pointer to struct receiving the system time snapshot
952 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
954 struct timekeeper *tk = &tk_core.timekeeper;
955 unsigned long seq;
956 ktime_t base_raw;
957 ktime_t base_real;
958 u64 nsec_raw;
959 u64 nsec_real;
960 u64 now;
962 WARN_ON_ONCE(timekeeping_suspended);
964 do {
965 seq = read_seqcount_begin(&tk_core.seq);
966 now = tk_clock_read(&tk->tkr_mono);
967 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
968 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
969 base_real = ktime_add(tk->tkr_mono.base,
970 tk_core.timekeeper.offs_real);
971 base_raw = tk->tkr_raw.base;
972 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
973 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
974 } while (read_seqcount_retry(&tk_core.seq, seq));
976 systime_snapshot->cycles = now;
977 systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
978 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
980 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
982 /* Scale base by mult/div checking for overflow */
983 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
985 u64 tmp, rem;
987 tmp = div64_u64_rem(*base, div, &rem);
989 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
990 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
991 return -EOVERFLOW;
992 tmp *= mult;
993 rem *= mult;
995 do_div(rem, div);
996 *base = tmp + rem;
997 return 0;
1001 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1002 * @history: Snapshot representing start of history
1003 * @partial_history_cycles: Cycle offset into history (fractional part)
1004 * @total_history_cycles: Total history length in cycles
1005 * @discontinuity: True indicates clock was set on history period
1006 * @ts: Cross timestamp that should be adjusted using
1007 * partial/total ratio
1009 * Helper function used by get_device_system_crosststamp() to correct the
1010 * crosstimestamp corresponding to the start of the current interval to the
1011 * system counter value (timestamp point) provided by the driver. The
1012 * total_history_* quantities are the total history starting at the provided
1013 * reference point and ending at the start of the current interval. The cycle
1014 * count between the driver timestamp point and the start of the current
1015 * interval is partial_history_cycles.
1017 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1018 u64 partial_history_cycles,
1019 u64 total_history_cycles,
1020 bool discontinuity,
1021 struct system_device_crosststamp *ts)
1023 struct timekeeper *tk = &tk_core.timekeeper;
1024 u64 corr_raw, corr_real;
1025 bool interp_forward;
1026 int ret;
1028 if (total_history_cycles == 0 || partial_history_cycles == 0)
1029 return 0;
1031 /* Interpolate shortest distance from beginning or end of history */
1032 interp_forward = partial_history_cycles > total_history_cycles / 2;
1033 partial_history_cycles = interp_forward ?
1034 total_history_cycles - partial_history_cycles :
1035 partial_history_cycles;
1038 * Scale the monotonic raw time delta by:
1039 * partial_history_cycles / total_history_cycles
1041 corr_raw = (u64)ktime_to_ns(
1042 ktime_sub(ts->sys_monoraw, history->raw));
1043 ret = scale64_check_overflow(partial_history_cycles,
1044 total_history_cycles, &corr_raw);
1045 if (ret)
1046 return ret;
1049 * If there is a discontinuity in the history, scale monotonic raw
1050 * correction by:
1051 * mult(real)/mult(raw) yielding the realtime correction
1052 * Otherwise, calculate the realtime correction similar to monotonic
1053 * raw calculation
1055 if (discontinuity) {
1056 corr_real = mul_u64_u32_div
1057 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1058 } else {
1059 corr_real = (u64)ktime_to_ns(
1060 ktime_sub(ts->sys_realtime, history->real));
1061 ret = scale64_check_overflow(partial_history_cycles,
1062 total_history_cycles, &corr_real);
1063 if (ret)
1064 return ret;
1067 /* Fixup monotonic raw and real time time values */
1068 if (interp_forward) {
1069 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1070 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1071 } else {
1072 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1073 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1076 return 0;
1080 * cycle_between - true if test occurs chronologically between before and after
1082 static bool cycle_between(u64 before, u64 test, u64 after)
1084 if (test > before && test < after)
1085 return true;
1086 if (test < before && before > after)
1087 return true;
1088 return false;
1092 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1093 * @get_time_fn: Callback to get simultaneous device time and
1094 * system counter from the device driver
1095 * @ctx: Context passed to get_time_fn()
1096 * @history_begin: Historical reference point used to interpolate system
1097 * time when counter provided by the driver is before the current interval
1098 * @xtstamp: Receives simultaneously captured system and device time
1100 * Reads a timestamp from a device and correlates it to system time
1102 int get_device_system_crosststamp(int (*get_time_fn)
1103 (ktime_t *device_time,
1104 struct system_counterval_t *sys_counterval,
1105 void *ctx),
1106 void *ctx,
1107 struct system_time_snapshot *history_begin,
1108 struct system_device_crosststamp *xtstamp)
1110 struct system_counterval_t system_counterval;
1111 struct timekeeper *tk = &tk_core.timekeeper;
1112 u64 cycles, now, interval_start;
1113 unsigned int clock_was_set_seq = 0;
1114 ktime_t base_real, base_raw;
1115 u64 nsec_real, nsec_raw;
1116 u8 cs_was_changed_seq;
1117 unsigned long seq;
1118 bool do_interp;
1119 int ret;
1121 do {
1122 seq = read_seqcount_begin(&tk_core.seq);
1124 * Try to synchronously capture device time and a system
1125 * counter value calling back into the device driver
1127 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1128 if (ret)
1129 return ret;
1132 * Verify that the clocksource associated with the captured
1133 * system counter value is the same as the currently installed
1134 * timekeeper clocksource
1136 if (tk->tkr_mono.clock != system_counterval.cs)
1137 return -ENODEV;
1138 cycles = system_counterval.cycles;
1141 * Check whether the system counter value provided by the
1142 * device driver is on the current timekeeping interval.
1144 now = tk_clock_read(&tk->tkr_mono);
1145 interval_start = tk->tkr_mono.cycle_last;
1146 if (!cycle_between(interval_start, cycles, now)) {
1147 clock_was_set_seq = tk->clock_was_set_seq;
1148 cs_was_changed_seq = tk->cs_was_changed_seq;
1149 cycles = interval_start;
1150 do_interp = true;
1151 } else {
1152 do_interp = false;
1155 base_real = ktime_add(tk->tkr_mono.base,
1156 tk_core.timekeeper.offs_real);
1157 base_raw = tk->tkr_raw.base;
1159 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1160 system_counterval.cycles);
1161 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1162 system_counterval.cycles);
1163 } while (read_seqcount_retry(&tk_core.seq, seq));
1165 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1166 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1169 * Interpolate if necessary, adjusting back from the start of the
1170 * current interval
1172 if (do_interp) {
1173 u64 partial_history_cycles, total_history_cycles;
1174 bool discontinuity;
1177 * Check that the counter value occurs after the provided
1178 * history reference and that the history doesn't cross a
1179 * clocksource change
1181 if (!history_begin ||
1182 !cycle_between(history_begin->cycles,
1183 system_counterval.cycles, cycles) ||
1184 history_begin->cs_was_changed_seq != cs_was_changed_seq)
1185 return -EINVAL;
1186 partial_history_cycles = cycles - system_counterval.cycles;
1187 total_history_cycles = cycles - history_begin->cycles;
1188 discontinuity =
1189 history_begin->clock_was_set_seq != clock_was_set_seq;
1191 ret = adjust_historical_crosststamp(history_begin,
1192 partial_history_cycles,
1193 total_history_cycles,
1194 discontinuity, xtstamp);
1195 if (ret)
1196 return ret;
1199 return 0;
1201 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1204 * do_gettimeofday - Returns the time of day in a timeval
1205 * @tv: pointer to the timeval to be set
1207 * NOTE: Users should be converted to using getnstimeofday()
1209 void do_gettimeofday(struct timeval *tv)
1211 struct timespec64 now;
1213 getnstimeofday64(&now);
1214 tv->tv_sec = now.tv_sec;
1215 tv->tv_usec = now.tv_nsec/1000;
1217 EXPORT_SYMBOL(do_gettimeofday);
1220 * do_settimeofday64 - Sets the time of day.
1221 * @ts: pointer to the timespec64 variable containing the new time
1223 * Sets the time of day to the new time and update NTP and notify hrtimers
1225 int do_settimeofday64(const struct timespec64 *ts)
1227 struct timekeeper *tk = &tk_core.timekeeper;
1228 struct timespec64 ts_delta, xt;
1229 unsigned long flags;
1230 int ret = 0;
1232 if (!timespec64_valid_strict(ts))
1233 return -EINVAL;
1235 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1236 write_seqcount_begin(&tk_core.seq);
1238 timekeeping_forward_now(tk);
1240 xt = tk_xtime(tk);
1241 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1242 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1244 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1245 ret = -EINVAL;
1246 goto out;
1249 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1251 tk_set_xtime(tk, ts);
1252 out:
1253 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1255 write_seqcount_end(&tk_core.seq);
1256 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1258 /* signal hrtimers about time change */
1259 clock_was_set();
1261 return ret;
1263 EXPORT_SYMBOL(do_settimeofday64);
1266 * timekeeping_inject_offset - Adds or subtracts from the current time.
1267 * @tv: pointer to the timespec variable containing the offset
1269 * Adds or subtracts an offset value from the current time.
1271 static int timekeeping_inject_offset(struct timespec64 *ts)
1273 struct timekeeper *tk = &tk_core.timekeeper;
1274 unsigned long flags;
1275 struct timespec64 tmp;
1276 int ret = 0;
1278 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1279 return -EINVAL;
1281 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1282 write_seqcount_begin(&tk_core.seq);
1284 timekeeping_forward_now(tk);
1286 /* Make sure the proposed value is valid */
1287 tmp = timespec64_add(tk_xtime(tk), *ts);
1288 if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1289 !timespec64_valid_strict(&tmp)) {
1290 ret = -EINVAL;
1291 goto error;
1294 tk_xtime_add(tk, ts);
1295 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1297 error: /* even if we error out, we forwarded the time, so call update */
1298 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1300 write_seqcount_end(&tk_core.seq);
1301 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1303 /* signal hrtimers about time change */
1304 clock_was_set();
1306 return ret;
1310 * Indicates if there is an offset between the system clock and the hardware
1311 * clock/persistent clock/rtc.
1313 int persistent_clock_is_local;
1316 * Adjust the time obtained from the CMOS to be UTC time instead of
1317 * local time.
1319 * This is ugly, but preferable to the alternatives. Otherwise we
1320 * would either need to write a program to do it in /etc/rc (and risk
1321 * confusion if the program gets run more than once; it would also be
1322 * hard to make the program warp the clock precisely n hours) or
1323 * compile in the timezone information into the kernel. Bad, bad....
1325 * - TYT, 1992-01-01
1327 * The best thing to do is to keep the CMOS clock in universal time (UTC)
1328 * as real UNIX machines always do it. This avoids all headaches about
1329 * daylight saving times and warping kernel clocks.
1331 void timekeeping_warp_clock(void)
1333 if (sys_tz.tz_minuteswest != 0) {
1334 struct timespec64 adjust;
1336 persistent_clock_is_local = 1;
1337 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1338 adjust.tv_nsec = 0;
1339 timekeeping_inject_offset(&adjust);
1344 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1347 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1349 tk->tai_offset = tai_offset;
1350 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1354 * change_clocksource - Swaps clocksources if a new one is available
1356 * Accumulates current time interval and initializes new clocksource
1358 static int change_clocksource(void *data)
1360 struct timekeeper *tk = &tk_core.timekeeper;
1361 struct clocksource *new, *old;
1362 unsigned long flags;
1364 new = (struct clocksource *) data;
1366 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1367 write_seqcount_begin(&tk_core.seq);
1369 timekeeping_forward_now(tk);
1371 * If the cs is in module, get a module reference. Succeeds
1372 * for built-in code (owner == NULL) as well.
1374 if (try_module_get(new->owner)) {
1375 if (!new->enable || new->enable(new) == 0) {
1376 old = tk->tkr_mono.clock;
1377 tk_setup_internals(tk, new);
1378 if (old->disable)
1379 old->disable(old);
1380 module_put(old->owner);
1381 } else {
1382 module_put(new->owner);
1385 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1387 write_seqcount_end(&tk_core.seq);
1388 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1390 return 0;
1394 * timekeeping_notify - Install a new clock source
1395 * @clock: pointer to the clock source
1397 * This function is called from clocksource.c after a new, better clock
1398 * source has been registered. The caller holds the clocksource_mutex.
1400 int timekeeping_notify(struct clocksource *clock)
1402 struct timekeeper *tk = &tk_core.timekeeper;
1404 if (tk->tkr_mono.clock == clock)
1405 return 0;
1406 stop_machine(change_clocksource, clock, NULL);
1407 tick_clock_notify();
1408 return tk->tkr_mono.clock == clock ? 0 : -1;
1412 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1413 * @ts: pointer to the timespec64 to be set
1415 * Returns the raw monotonic time (completely un-modified by ntp)
1417 void getrawmonotonic64(struct timespec64 *ts)
1419 struct timekeeper *tk = &tk_core.timekeeper;
1420 unsigned long seq;
1421 u64 nsecs;
1423 do {
1424 seq = read_seqcount_begin(&tk_core.seq);
1425 ts->tv_sec = tk->raw_sec;
1426 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1428 } while (read_seqcount_retry(&tk_core.seq, seq));
1430 ts->tv_nsec = 0;
1431 timespec64_add_ns(ts, nsecs);
1433 EXPORT_SYMBOL(getrawmonotonic64);
1437 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1439 int timekeeping_valid_for_hres(void)
1441 struct timekeeper *tk = &tk_core.timekeeper;
1442 unsigned long seq;
1443 int ret;
1445 do {
1446 seq = read_seqcount_begin(&tk_core.seq);
1448 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1450 } while (read_seqcount_retry(&tk_core.seq, seq));
1452 return ret;
1456 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1458 u64 timekeeping_max_deferment(void)
1460 struct timekeeper *tk = &tk_core.timekeeper;
1461 unsigned long seq;
1462 u64 ret;
1464 do {
1465 seq = read_seqcount_begin(&tk_core.seq);
1467 ret = tk->tkr_mono.clock->max_idle_ns;
1469 } while (read_seqcount_retry(&tk_core.seq, seq));
1471 return ret;
1475 * read_persistent_clock - Return time from the persistent clock.
1477 * Weak dummy function for arches that do not yet support it.
1478 * Reads the time from the battery backed persistent clock.
1479 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1481 * XXX - Do be sure to remove it once all arches implement it.
1483 void __weak read_persistent_clock(struct timespec *ts)
1485 ts->tv_sec = 0;
1486 ts->tv_nsec = 0;
1489 void __weak read_persistent_clock64(struct timespec64 *ts64)
1491 struct timespec ts;
1493 read_persistent_clock(&ts);
1494 *ts64 = timespec_to_timespec64(ts);
1498 * read_boot_clock64 - Return time of the system start.
1500 * Weak dummy function for arches that do not yet support it.
1501 * Function to read the exact time the system has been started.
1502 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1504 * XXX - Do be sure to remove it once all arches implement it.
1506 void __weak read_boot_clock64(struct timespec64 *ts)
1508 ts->tv_sec = 0;
1509 ts->tv_nsec = 0;
1512 /* Flag for if timekeeping_resume() has injected sleeptime */
1513 static bool sleeptime_injected;
1515 /* Flag for if there is a persistent clock on this platform */
1516 static bool persistent_clock_exists;
1519 * timekeeping_init - Initializes the clocksource and common timekeeping values
1521 void __init timekeeping_init(void)
1523 struct timekeeper *tk = &tk_core.timekeeper;
1524 struct clocksource *clock;
1525 unsigned long flags;
1526 struct timespec64 now, boot, tmp;
1528 read_persistent_clock64(&now);
1529 if (!timespec64_valid_strict(&now)) {
1530 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1531 " Check your CMOS/BIOS settings.\n");
1532 now.tv_sec = 0;
1533 now.tv_nsec = 0;
1534 } else if (now.tv_sec || now.tv_nsec)
1535 persistent_clock_exists = true;
1537 read_boot_clock64(&boot);
1538 if (!timespec64_valid_strict(&boot)) {
1539 pr_warn("WARNING: Boot clock returned invalid value!\n"
1540 " Check your CMOS/BIOS settings.\n");
1541 boot.tv_sec = 0;
1542 boot.tv_nsec = 0;
1545 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1546 write_seqcount_begin(&tk_core.seq);
1547 ntp_init();
1549 clock = clocksource_default_clock();
1550 if (clock->enable)
1551 clock->enable(clock);
1552 tk_setup_internals(tk, clock);
1554 tk_set_xtime(tk, &now);
1555 tk->raw_sec = 0;
1556 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1557 boot = tk_xtime(tk);
1559 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1560 tk_set_wall_to_mono(tk, tmp);
1562 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1564 write_seqcount_end(&tk_core.seq);
1565 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1568 /* time in seconds when suspend began for persistent clock */
1569 static struct timespec64 timekeeping_suspend_time;
1572 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1573 * @delta: pointer to a timespec delta value
1575 * Takes a timespec offset measuring a suspend interval and properly
1576 * adds the sleep offset to the timekeeping variables.
1578 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1579 struct timespec64 *delta)
1581 if (!timespec64_valid_strict(delta)) {
1582 printk_deferred(KERN_WARNING
1583 "__timekeeping_inject_sleeptime: Invalid "
1584 "sleep delta value!\n");
1585 return;
1587 tk_xtime_add(tk, delta);
1588 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1589 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1590 tk_debug_account_sleep_time(delta);
1593 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1595 * We have three kinds of time sources to use for sleep time
1596 * injection, the preference order is:
1597 * 1) non-stop clocksource
1598 * 2) persistent clock (ie: RTC accessible when irqs are off)
1599 * 3) RTC
1601 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1602 * If system has neither 1) nor 2), 3) will be used finally.
1605 * If timekeeping has injected sleeptime via either 1) or 2),
1606 * 3) becomes needless, so in this case we don't need to call
1607 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1608 * means.
1610 bool timekeeping_rtc_skipresume(void)
1612 return sleeptime_injected;
1616 * 1) can be determined whether to use or not only when doing
1617 * timekeeping_resume() which is invoked after rtc_suspend(),
1618 * so we can't skip rtc_suspend() surely if system has 1).
1620 * But if system has 2), 2) will definitely be used, so in this
1621 * case we don't need to call rtc_suspend(), and this is what
1622 * timekeeping_rtc_skipsuspend() means.
1624 bool timekeeping_rtc_skipsuspend(void)
1626 return persistent_clock_exists;
1630 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1631 * @delta: pointer to a timespec64 delta value
1633 * This hook is for architectures that cannot support read_persistent_clock64
1634 * because their RTC/persistent clock is only accessible when irqs are enabled.
1635 * and also don't have an effective nonstop clocksource.
1637 * This function should only be called by rtc_resume(), and allows
1638 * a suspend offset to be injected into the timekeeping values.
1640 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1642 struct timekeeper *tk = &tk_core.timekeeper;
1643 unsigned long flags;
1645 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1646 write_seqcount_begin(&tk_core.seq);
1648 timekeeping_forward_now(tk);
1650 __timekeeping_inject_sleeptime(tk, delta);
1652 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1654 write_seqcount_end(&tk_core.seq);
1655 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1657 /* signal hrtimers about time change */
1658 clock_was_set();
1660 #endif
1663 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1665 void timekeeping_resume(void)
1667 struct timekeeper *tk = &tk_core.timekeeper;
1668 struct clocksource *clock = tk->tkr_mono.clock;
1669 unsigned long flags;
1670 struct timespec64 ts_new, ts_delta;
1671 u64 cycle_now;
1673 sleeptime_injected = false;
1674 read_persistent_clock64(&ts_new);
1676 clockevents_resume();
1677 clocksource_resume();
1679 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1680 write_seqcount_begin(&tk_core.seq);
1683 * After system resumes, we need to calculate the suspended time and
1684 * compensate it for the OS time. There are 3 sources that could be
1685 * used: Nonstop clocksource during suspend, persistent clock and rtc
1686 * device.
1688 * One specific platform may have 1 or 2 or all of them, and the
1689 * preference will be:
1690 * suspend-nonstop clocksource -> persistent clock -> rtc
1691 * The less preferred source will only be tried if there is no better
1692 * usable source. The rtc part is handled separately in rtc core code.
1694 cycle_now = tk_clock_read(&tk->tkr_mono);
1695 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1696 cycle_now > tk->tkr_mono.cycle_last) {
1697 u64 nsec, cyc_delta;
1699 cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1700 tk->tkr_mono.mask);
1701 nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift);
1702 ts_delta = ns_to_timespec64(nsec);
1703 sleeptime_injected = true;
1704 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1705 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1706 sleeptime_injected = true;
1709 if (sleeptime_injected)
1710 __timekeeping_inject_sleeptime(tk, &ts_delta);
1712 /* Re-base the last cycle value */
1713 tk->tkr_mono.cycle_last = cycle_now;
1714 tk->tkr_raw.cycle_last = cycle_now;
1716 tk->ntp_error = 0;
1717 timekeeping_suspended = 0;
1718 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1719 write_seqcount_end(&tk_core.seq);
1720 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1722 touch_softlockup_watchdog();
1724 tick_resume();
1725 hrtimers_resume();
1728 int timekeeping_suspend(void)
1730 struct timekeeper *tk = &tk_core.timekeeper;
1731 unsigned long flags;
1732 struct timespec64 delta, delta_delta;
1733 static struct timespec64 old_delta;
1735 read_persistent_clock64(&timekeeping_suspend_time);
1738 * On some systems the persistent_clock can not be detected at
1739 * timekeeping_init by its return value, so if we see a valid
1740 * value returned, update the persistent_clock_exists flag.
1742 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1743 persistent_clock_exists = true;
1745 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1746 write_seqcount_begin(&tk_core.seq);
1747 timekeeping_forward_now(tk);
1748 timekeeping_suspended = 1;
1750 if (persistent_clock_exists) {
1752 * To avoid drift caused by repeated suspend/resumes,
1753 * which each can add ~1 second drift error,
1754 * try to compensate so the difference in system time
1755 * and persistent_clock time stays close to constant.
1757 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1758 delta_delta = timespec64_sub(delta, old_delta);
1759 if (abs(delta_delta.tv_sec) >= 2) {
1761 * if delta_delta is too large, assume time correction
1762 * has occurred and set old_delta to the current delta.
1764 old_delta = delta;
1765 } else {
1766 /* Otherwise try to adjust old_system to compensate */
1767 timekeeping_suspend_time =
1768 timespec64_add(timekeeping_suspend_time, delta_delta);
1772 timekeeping_update(tk, TK_MIRROR);
1773 halt_fast_timekeeper(tk);
1774 write_seqcount_end(&tk_core.seq);
1775 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1777 tick_suspend();
1778 clocksource_suspend();
1779 clockevents_suspend();
1781 return 0;
1784 /* sysfs resume/suspend bits for timekeeping */
1785 static struct syscore_ops timekeeping_syscore_ops = {
1786 .resume = timekeeping_resume,
1787 .suspend = timekeeping_suspend,
1790 static int __init timekeeping_init_ops(void)
1792 register_syscore_ops(&timekeeping_syscore_ops);
1793 return 0;
1795 device_initcall(timekeeping_init_ops);
1798 * Apply a multiplier adjustment to the timekeeper
1800 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1801 s64 offset,
1802 bool negative,
1803 int adj_scale)
1805 s64 interval = tk->cycle_interval;
1806 s32 mult_adj = 1;
1808 if (negative) {
1809 mult_adj = -mult_adj;
1810 interval = -interval;
1811 offset = -offset;
1813 mult_adj <<= adj_scale;
1814 interval <<= adj_scale;
1815 offset <<= adj_scale;
1818 * So the following can be confusing.
1820 * To keep things simple, lets assume mult_adj == 1 for now.
1822 * When mult_adj != 1, remember that the interval and offset values
1823 * have been appropriately scaled so the math is the same.
1825 * The basic idea here is that we're increasing the multiplier
1826 * by one, this causes the xtime_interval to be incremented by
1827 * one cycle_interval. This is because:
1828 * xtime_interval = cycle_interval * mult
1829 * So if mult is being incremented by one:
1830 * xtime_interval = cycle_interval * (mult + 1)
1831 * Its the same as:
1832 * xtime_interval = (cycle_interval * mult) + cycle_interval
1833 * Which can be shortened to:
1834 * xtime_interval += cycle_interval
1836 * So offset stores the non-accumulated cycles. Thus the current
1837 * time (in shifted nanoseconds) is:
1838 * now = (offset * adj) + xtime_nsec
1839 * Now, even though we're adjusting the clock frequency, we have
1840 * to keep time consistent. In other words, we can't jump back
1841 * in time, and we also want to avoid jumping forward in time.
1843 * So given the same offset value, we need the time to be the same
1844 * both before and after the freq adjustment.
1845 * now = (offset * adj_1) + xtime_nsec_1
1846 * now = (offset * adj_2) + xtime_nsec_2
1847 * So:
1848 * (offset * adj_1) + xtime_nsec_1 =
1849 * (offset * adj_2) + xtime_nsec_2
1850 * And we know:
1851 * adj_2 = adj_1 + 1
1852 * So:
1853 * (offset * adj_1) + xtime_nsec_1 =
1854 * (offset * (adj_1+1)) + xtime_nsec_2
1855 * (offset * adj_1) + xtime_nsec_1 =
1856 * (offset * adj_1) + offset + xtime_nsec_2
1857 * Canceling the sides:
1858 * xtime_nsec_1 = offset + xtime_nsec_2
1859 * Which gives us:
1860 * xtime_nsec_2 = xtime_nsec_1 - offset
1861 * Which simplfies to:
1862 * xtime_nsec -= offset
1864 * XXX - TODO: Doc ntp_error calculation.
1866 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1867 /* NTP adjustment caused clocksource mult overflow */
1868 WARN_ON_ONCE(1);
1869 return;
1872 tk->tkr_mono.mult += mult_adj;
1873 tk->xtime_interval += interval;
1874 tk->tkr_mono.xtime_nsec -= offset;
1875 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1879 * Calculate the multiplier adjustment needed to match the frequency
1880 * specified by NTP
1882 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1883 s64 offset)
1885 s64 interval = tk->cycle_interval;
1886 s64 xinterval = tk->xtime_interval;
1887 u32 base = tk->tkr_mono.clock->mult;
1888 u32 max = tk->tkr_mono.clock->maxadj;
1889 u32 cur_adj = tk->tkr_mono.mult;
1890 s64 tick_error;
1891 bool negative;
1892 u32 adj_scale;
1894 /* Remove any current error adj from freq calculation */
1895 if (tk->ntp_err_mult)
1896 xinterval -= tk->cycle_interval;
1898 tk->ntp_tick = ntp_tick_length();
1900 /* Calculate current error per tick */
1901 tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1902 tick_error -= (xinterval + tk->xtime_remainder);
1904 /* Don't worry about correcting it if its small */
1905 if (likely((tick_error >= 0) && (tick_error <= interval)))
1906 return;
1908 /* preserve the direction of correction */
1909 negative = (tick_error < 0);
1911 /* If any adjustment would pass the max, just return */
1912 if (negative && (cur_adj - 1) <= (base - max))
1913 return;
1914 if (!negative && (cur_adj + 1) >= (base + max))
1915 return;
1917 * Sort out the magnitude of the correction, but
1918 * avoid making so large a correction that we go
1919 * over the max adjustment.
1921 adj_scale = 0;
1922 tick_error = abs(tick_error);
1923 while (tick_error > interval) {
1924 u32 adj = 1 << (adj_scale + 1);
1926 /* Check if adjustment gets us within 1 unit from the max */
1927 if (negative && (cur_adj - adj) <= (base - max))
1928 break;
1929 if (!negative && (cur_adj + adj) >= (base + max))
1930 break;
1932 adj_scale++;
1933 tick_error >>= 1;
1936 /* scale the corrections */
1937 timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1941 * Adjust the timekeeper's multiplier to the correct frequency
1942 * and also to reduce the accumulated error value.
1944 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1946 /* Correct for the current frequency error */
1947 timekeeping_freqadjust(tk, offset);
1949 /* Next make a small adjustment to fix any cumulative error */
1950 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1951 tk->ntp_err_mult = 1;
1952 timekeeping_apply_adjustment(tk, offset, 0, 0);
1953 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1954 /* Undo any existing error adjustment */
1955 timekeeping_apply_adjustment(tk, offset, 1, 0);
1956 tk->ntp_err_mult = 0;
1959 if (unlikely(tk->tkr_mono.clock->maxadj &&
1960 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1961 > tk->tkr_mono.clock->maxadj))) {
1962 printk_once(KERN_WARNING
1963 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1964 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1965 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1969 * It may be possible that when we entered this function, xtime_nsec
1970 * was very small. Further, if we're slightly speeding the clocksource
1971 * in the code above, its possible the required corrective factor to
1972 * xtime_nsec could cause it to underflow.
1974 * Now, since we already accumulated the second, cannot simply roll
1975 * the accumulated second back, since the NTP subsystem has been
1976 * notified via second_overflow. So instead we push xtime_nsec forward
1977 * by the amount we underflowed, and add that amount into the error.
1979 * We'll correct this error next time through this function, when
1980 * xtime_nsec is not as small.
1982 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1983 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1984 tk->tkr_mono.xtime_nsec = 0;
1985 tk->ntp_error += neg << tk->ntp_error_shift;
1990 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1992 * Helper function that accumulates the nsecs greater than a second
1993 * from the xtime_nsec field to the xtime_secs field.
1994 * It also calls into the NTP code to handle leapsecond processing.
1997 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1999 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
2000 unsigned int clock_set = 0;
2002 while (tk->tkr_mono.xtime_nsec >= nsecps) {
2003 int leap;
2005 tk->tkr_mono.xtime_nsec -= nsecps;
2006 tk->xtime_sec++;
2008 /* Figure out if its a leap sec and apply if needed */
2009 leap = second_overflow(tk->xtime_sec);
2010 if (unlikely(leap)) {
2011 struct timespec64 ts;
2013 tk->xtime_sec += leap;
2015 ts.tv_sec = leap;
2016 ts.tv_nsec = 0;
2017 tk_set_wall_to_mono(tk,
2018 timespec64_sub(tk->wall_to_monotonic, ts));
2020 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2022 clock_set = TK_CLOCK_WAS_SET;
2025 return clock_set;
2029 * logarithmic_accumulation - shifted accumulation of cycles
2031 * This functions accumulates a shifted interval of cycles into
2032 * into a shifted interval nanoseconds. Allows for O(log) accumulation
2033 * loop.
2035 * Returns the unconsumed cycles.
2037 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2038 u32 shift, unsigned int *clock_set)
2040 u64 interval = tk->cycle_interval << shift;
2041 u64 snsec_per_sec;
2043 /* If the offset is smaller than a shifted interval, do nothing */
2044 if (offset < interval)
2045 return offset;
2047 /* Accumulate one shifted interval */
2048 offset -= interval;
2049 tk->tkr_mono.cycle_last += interval;
2050 tk->tkr_raw.cycle_last += interval;
2052 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2053 *clock_set |= accumulate_nsecs_to_secs(tk);
2055 /* Accumulate raw time */
2056 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2057 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2058 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2059 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2060 tk->raw_sec++;
2063 /* Accumulate error between NTP and clock interval */
2064 tk->ntp_error += tk->ntp_tick << shift;
2065 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2066 (tk->ntp_error_shift + shift);
2068 return offset;
2072 * update_wall_time - Uses the current clocksource to increment the wall time
2075 void update_wall_time(void)
2077 struct timekeeper *real_tk = &tk_core.timekeeper;
2078 struct timekeeper *tk = &shadow_timekeeper;
2079 u64 offset;
2080 int shift = 0, maxshift;
2081 unsigned int clock_set = 0;
2082 unsigned long flags;
2084 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2086 /* Make sure we're fully resumed: */
2087 if (unlikely(timekeeping_suspended))
2088 goto out;
2090 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2091 offset = real_tk->cycle_interval;
2092 #else
2093 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2094 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2095 #endif
2097 /* Check if there's really nothing to do */
2098 if (offset < real_tk->cycle_interval)
2099 goto out;
2101 /* Do some additional sanity checking */
2102 timekeeping_check_update(tk, offset);
2105 * With NO_HZ we may have to accumulate many cycle_intervals
2106 * (think "ticks") worth of time at once. To do this efficiently,
2107 * we calculate the largest doubling multiple of cycle_intervals
2108 * that is smaller than the offset. We then accumulate that
2109 * chunk in one go, and then try to consume the next smaller
2110 * doubled multiple.
2112 shift = ilog2(offset) - ilog2(tk->cycle_interval);
2113 shift = max(0, shift);
2114 /* Bound shift to one less than what overflows tick_length */
2115 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2116 shift = min(shift, maxshift);
2117 while (offset >= tk->cycle_interval) {
2118 offset = logarithmic_accumulation(tk, offset, shift,
2119 &clock_set);
2120 if (offset < tk->cycle_interval<<shift)
2121 shift--;
2124 /* correct the clock when NTP error is too big */
2125 timekeeping_adjust(tk, offset);
2128 * Finally, make sure that after the rounding
2129 * xtime_nsec isn't larger than NSEC_PER_SEC
2131 clock_set |= accumulate_nsecs_to_secs(tk);
2133 write_seqcount_begin(&tk_core.seq);
2135 * Update the real timekeeper.
2137 * We could avoid this memcpy by switching pointers, but that
2138 * requires changes to all other timekeeper usage sites as
2139 * well, i.e. move the timekeeper pointer getter into the
2140 * spinlocked/seqcount protected sections. And we trade this
2141 * memcpy under the tk_core.seq against one before we start
2142 * updating.
2144 timekeeping_update(tk, clock_set);
2145 memcpy(real_tk, tk, sizeof(*tk));
2146 /* The memcpy must come last. Do not put anything here! */
2147 write_seqcount_end(&tk_core.seq);
2148 out:
2149 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2150 if (clock_set)
2151 /* Have to call _delayed version, since in irq context*/
2152 clock_was_set_delayed();
2156 * getboottime64 - Return the real time of system boot.
2157 * @ts: pointer to the timespec64 to be set
2159 * Returns the wall-time of boot in a timespec64.
2161 * This is based on the wall_to_monotonic offset and the total suspend
2162 * time. Calls to settimeofday will affect the value returned (which
2163 * basically means that however wrong your real time clock is at boot time,
2164 * you get the right time here).
2166 void getboottime64(struct timespec64 *ts)
2168 struct timekeeper *tk = &tk_core.timekeeper;
2169 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2171 *ts = ktime_to_timespec64(t);
2173 EXPORT_SYMBOL_GPL(getboottime64);
2175 unsigned long get_seconds(void)
2177 struct timekeeper *tk = &tk_core.timekeeper;
2179 return tk->xtime_sec;
2181 EXPORT_SYMBOL(get_seconds);
2183 struct timespec __current_kernel_time(void)
2185 struct timekeeper *tk = &tk_core.timekeeper;
2187 return timespec64_to_timespec(tk_xtime(tk));
2190 struct timespec64 current_kernel_time64(void)
2192 struct timekeeper *tk = &tk_core.timekeeper;
2193 struct timespec64 now;
2194 unsigned long seq;
2196 do {
2197 seq = read_seqcount_begin(&tk_core.seq);
2199 now = tk_xtime(tk);
2200 } while (read_seqcount_retry(&tk_core.seq, seq));
2202 return now;
2204 EXPORT_SYMBOL(current_kernel_time64);
2206 struct timespec64 get_monotonic_coarse64(void)
2208 struct timekeeper *tk = &tk_core.timekeeper;
2209 struct timespec64 now, mono;
2210 unsigned long seq;
2212 do {
2213 seq = read_seqcount_begin(&tk_core.seq);
2215 now = tk_xtime(tk);
2216 mono = tk->wall_to_monotonic;
2217 } while (read_seqcount_retry(&tk_core.seq, seq));
2219 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2220 now.tv_nsec + mono.tv_nsec);
2222 return now;
2224 EXPORT_SYMBOL(get_monotonic_coarse64);
2227 * Must hold jiffies_lock
2229 void do_timer(unsigned long ticks)
2231 jiffies_64 += ticks;
2232 calc_global_load(ticks);
2236 * ktime_get_update_offsets_now - hrtimer helper
2237 * @cwsseq: pointer to check and store the clock was set sequence number
2238 * @offs_real: pointer to storage for monotonic -> realtime offset
2239 * @offs_boot: pointer to storage for monotonic -> boottime offset
2240 * @offs_tai: pointer to storage for monotonic -> clock tai offset
2242 * Returns current monotonic time and updates the offsets if the
2243 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2244 * different.
2246 * Called from hrtimer_interrupt() or retrigger_next_event()
2248 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2249 ktime_t *offs_boot, ktime_t *offs_tai)
2251 struct timekeeper *tk = &tk_core.timekeeper;
2252 unsigned int seq;
2253 ktime_t base;
2254 u64 nsecs;
2256 do {
2257 seq = read_seqcount_begin(&tk_core.seq);
2259 base = tk->tkr_mono.base;
2260 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2261 base = ktime_add_ns(base, nsecs);
2263 if (*cwsseq != tk->clock_was_set_seq) {
2264 *cwsseq = tk->clock_was_set_seq;
2265 *offs_real = tk->offs_real;
2266 *offs_boot = tk->offs_boot;
2267 *offs_tai = tk->offs_tai;
2270 /* Handle leapsecond insertion adjustments */
2271 if (unlikely(base >= tk->next_leap_ktime))
2272 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2274 } while (read_seqcount_retry(&tk_core.seq, seq));
2276 return base;
2280 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2282 static int timekeeping_validate_timex(struct timex *txc)
2284 if (txc->modes & ADJ_ADJTIME) {
2285 /* singleshot must not be used with any other mode bits */
2286 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2287 return -EINVAL;
2288 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2289 !capable(CAP_SYS_TIME))
2290 return -EPERM;
2291 } else {
2292 /* In order to modify anything, you gotta be super-user! */
2293 if (txc->modes && !capable(CAP_SYS_TIME))
2294 return -EPERM;
2296 * if the quartz is off by more than 10% then
2297 * something is VERY wrong!
2299 if (txc->modes & ADJ_TICK &&
2300 (txc->tick < 900000/USER_HZ ||
2301 txc->tick > 1100000/USER_HZ))
2302 return -EINVAL;
2305 if (txc->modes & ADJ_SETOFFSET) {
2306 /* In order to inject time, you gotta be super-user! */
2307 if (!capable(CAP_SYS_TIME))
2308 return -EPERM;
2311 * Validate if a timespec/timeval used to inject a time
2312 * offset is valid. Offsets can be postive or negative, so
2313 * we don't check tv_sec. The value of the timeval/timespec
2314 * is the sum of its fields,but *NOTE*:
2315 * The field tv_usec/tv_nsec must always be non-negative and
2316 * we can't have more nanoseconds/microseconds than a second.
2318 if (txc->time.tv_usec < 0)
2319 return -EINVAL;
2321 if (txc->modes & ADJ_NANO) {
2322 if (txc->time.tv_usec >= NSEC_PER_SEC)
2323 return -EINVAL;
2324 } else {
2325 if (txc->time.tv_usec >= USEC_PER_SEC)
2326 return -EINVAL;
2331 * Check for potential multiplication overflows that can
2332 * only happen on 64-bit systems:
2334 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2335 if (LLONG_MIN / PPM_SCALE > txc->freq)
2336 return -EINVAL;
2337 if (LLONG_MAX / PPM_SCALE < txc->freq)
2338 return -EINVAL;
2341 return 0;
2346 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2348 int do_adjtimex(struct timex *txc)
2350 struct timekeeper *tk = &tk_core.timekeeper;
2351 unsigned long flags;
2352 struct timespec64 ts;
2353 s32 orig_tai, tai;
2354 int ret;
2356 /* Validate the data before disabling interrupts */
2357 ret = timekeeping_validate_timex(txc);
2358 if (ret)
2359 return ret;
2361 if (txc->modes & ADJ_SETOFFSET) {
2362 struct timespec64 delta;
2363 delta.tv_sec = txc->time.tv_sec;
2364 delta.tv_nsec = txc->time.tv_usec;
2365 if (!(txc->modes & ADJ_NANO))
2366 delta.tv_nsec *= 1000;
2367 ret = timekeeping_inject_offset(&delta);
2368 if (ret)
2369 return ret;
2372 getnstimeofday64(&ts);
2374 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2375 write_seqcount_begin(&tk_core.seq);
2377 orig_tai = tai = tk->tai_offset;
2378 ret = __do_adjtimex(txc, &ts, &tai);
2380 if (tai != orig_tai) {
2381 __timekeeping_set_tai_offset(tk, tai);
2382 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2384 tk_update_leap_state(tk);
2386 write_seqcount_end(&tk_core.seq);
2387 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2389 if (tai != orig_tai)
2390 clock_was_set();
2392 ntp_notify_cmos_timer();
2394 return ret;
2397 #ifdef CONFIG_NTP_PPS
2399 * hardpps() - Accessor function to NTP __hardpps function
2401 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2403 unsigned long flags;
2405 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2406 write_seqcount_begin(&tk_core.seq);
2408 __hardpps(phase_ts, raw_ts);
2410 write_seqcount_end(&tk_core.seq);
2411 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2413 EXPORT_SYMBOL(hardpps);
2414 #endif /* CONFIG_NTP_PPS */
2417 * xtime_update() - advances the timekeeping infrastructure
2418 * @ticks: number of ticks, that have elapsed since the last call.
2420 * Must be called with interrupts disabled.
2422 void xtime_update(unsigned long ticks)
2424 write_seqlock(&jiffies_lock);
2425 do_timer(ticks);
2426 write_sequnlock(&jiffies_lock);
2427 update_wall_time();