Linux 4.16-rc3
[cris-mirror.git] / kernel / trace / ring_buffer.c
blobdcf1c4dd3efe6954b7d030b986f43bd0a897f052
1 /*
2 * Generic ring buffer
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/sched/clock.h>
10 #include <linux/trace_seq.h>
11 #include <linux/spinlock.h>
12 #include <linux/irq_work.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h> /* for self test */
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
26 #include <asm/local.h>
28 static void update_pages_handler(struct work_struct *work);
31 * The ring buffer header is special. We must manually up keep it.
33 int ring_buffer_print_entry_header(struct trace_seq *s)
35 trace_seq_puts(s, "# compressed entry header\n");
36 trace_seq_puts(s, "\ttype_len : 5 bits\n");
37 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
38 trace_seq_puts(s, "\tarray : 32 bits\n");
39 trace_seq_putc(s, '\n');
40 trace_seq_printf(s, "\tpadding : type == %d\n",
41 RINGBUF_TYPE_PADDING);
42 trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 RINGBUF_TYPE_TIME_EXTEND);
44 trace_seq_printf(s, "\tdata max type_len == %d\n",
45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
47 return !trace_seq_has_overflowed(s);
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on. A reader may read
54 * from any per cpu buffer.
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
64 * Here's some silly ASCII art.
66 * +------+
67 * |reader| RING BUFFER
68 * |page |
69 * +------+ +---+ +---+ +---+
70 * | |-->| |-->| |
71 * +---+ +---+ +---+
72 * ^ |
73 * | |
74 * +---------------+
77 * +------+
78 * |reader| RING BUFFER
79 * |page |------------------v
80 * +------+ +---+ +---+ +---+
81 * | |-->| |-->| |
82 * +---+ +---+ +---+
83 * ^ |
84 * | |
85 * +---------------+
88 * +------+
89 * |reader| RING BUFFER
90 * |page |------------------v
91 * +------+ +---+ +---+ +---+
92 * ^ | |-->| |-->| |
93 * | +---+ +---+ +---+
94 * | |
95 * | |
96 * +------------------------------+
99 * +------+
100 * |buffer| RING BUFFER
101 * |page |------------------v
102 * +------+ +---+ +---+ +---+
103 * ^ | | | |-->| |
104 * | New +---+ +---+ +---+
105 * | Reader------^ |
106 * | page |
107 * +------------------------------+
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
114 * We will be using cmpxchg soon to make all this lockless.
118 /* Used for individual buffers (after the counter) */
119 #define RB_BUFFER_OFF (1 << 20)
121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
124 #define RB_ALIGNMENT 4U
125 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
126 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
129 # define RB_FORCE_8BYTE_ALIGNMENT 0
130 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
131 #else
132 # define RB_FORCE_8BYTE_ALIGNMENT 1
133 # define RB_ARCH_ALIGNMENT 8U
134 #endif
136 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
141 enum {
142 RB_LEN_TIME_EXTEND = 8,
143 RB_LEN_TIME_STAMP = 16,
146 #define skip_time_extend(event) \
147 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
149 static inline int rb_null_event(struct ring_buffer_event *event)
151 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
154 static void rb_event_set_padding(struct ring_buffer_event *event)
156 /* padding has a NULL time_delta */
157 event->type_len = RINGBUF_TYPE_PADDING;
158 event->time_delta = 0;
161 static unsigned
162 rb_event_data_length(struct ring_buffer_event *event)
164 unsigned length;
166 if (event->type_len)
167 length = event->type_len * RB_ALIGNMENT;
168 else
169 length = event->array[0];
170 return length + RB_EVNT_HDR_SIZE;
174 * Return the length of the given event. Will return
175 * the length of the time extend if the event is a
176 * time extend.
178 static inline unsigned
179 rb_event_length(struct ring_buffer_event *event)
181 switch (event->type_len) {
182 case RINGBUF_TYPE_PADDING:
183 if (rb_null_event(event))
184 /* undefined */
185 return -1;
186 return event->array[0] + RB_EVNT_HDR_SIZE;
188 case RINGBUF_TYPE_TIME_EXTEND:
189 return RB_LEN_TIME_EXTEND;
191 case RINGBUF_TYPE_TIME_STAMP:
192 return RB_LEN_TIME_STAMP;
194 case RINGBUF_TYPE_DATA:
195 return rb_event_data_length(event);
196 default:
197 BUG();
199 /* not hit */
200 return 0;
204 * Return total length of time extend and data,
205 * or just the event length for all other events.
207 static inline unsigned
208 rb_event_ts_length(struct ring_buffer_event *event)
210 unsigned len = 0;
212 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213 /* time extends include the data event after it */
214 len = RB_LEN_TIME_EXTEND;
215 event = skip_time_extend(event);
217 return len + rb_event_length(event);
221 * ring_buffer_event_length - return the length of the event
222 * @event: the event to get the length of
224 * Returns the size of the data load of a data event.
225 * If the event is something other than a data event, it
226 * returns the size of the event itself. With the exception
227 * of a TIME EXTEND, where it still returns the size of the
228 * data load of the data event after it.
230 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
232 unsigned length;
234 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235 event = skip_time_extend(event);
237 length = rb_event_length(event);
238 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
239 return length;
240 length -= RB_EVNT_HDR_SIZE;
241 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242 length -= sizeof(event->array[0]);
243 return length;
245 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
247 /* inline for ring buffer fast paths */
248 static __always_inline void *
249 rb_event_data(struct ring_buffer_event *event)
251 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252 event = skip_time_extend(event);
253 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
254 /* If length is in len field, then array[0] has the data */
255 if (event->type_len)
256 return (void *)&event->array[0];
257 /* Otherwise length is in array[0] and array[1] has the data */
258 return (void *)&event->array[1];
262 * ring_buffer_event_data - return the data of the event
263 * @event: the event to get the data from
265 void *ring_buffer_event_data(struct ring_buffer_event *event)
267 return rb_event_data(event);
269 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
271 #define for_each_buffer_cpu(buffer, cpu) \
272 for_each_cpu(cpu, buffer->cpumask)
274 #define TS_SHIFT 27
275 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
276 #define TS_DELTA_TEST (~TS_MASK)
278 /* Flag when events were overwritten */
279 #define RB_MISSED_EVENTS (1 << 31)
280 /* Missed count stored at end */
281 #define RB_MISSED_STORED (1 << 30)
283 #define RB_MISSED_FLAGS (RB_MISSED_EVENTS|RB_MISSED_STORED)
285 struct buffer_data_page {
286 u64 time_stamp; /* page time stamp */
287 local_t commit; /* write committed index */
288 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
292 * Note, the buffer_page list must be first. The buffer pages
293 * are allocated in cache lines, which means that each buffer
294 * page will be at the beginning of a cache line, and thus
295 * the least significant bits will be zero. We use this to
296 * add flags in the list struct pointers, to make the ring buffer
297 * lockless.
299 struct buffer_page {
300 struct list_head list; /* list of buffer pages */
301 local_t write; /* index for next write */
302 unsigned read; /* index for next read */
303 local_t entries; /* entries on this page */
304 unsigned long real_end; /* real end of data */
305 struct buffer_data_page *page; /* Actual data page */
309 * The buffer page counters, write and entries, must be reset
310 * atomically when crossing page boundaries. To synchronize this
311 * update, two counters are inserted into the number. One is
312 * the actual counter for the write position or count on the page.
314 * The other is a counter of updaters. Before an update happens
315 * the update partition of the counter is incremented. This will
316 * allow the updater to update the counter atomically.
318 * The counter is 20 bits, and the state data is 12.
320 #define RB_WRITE_MASK 0xfffff
321 #define RB_WRITE_INTCNT (1 << 20)
323 static void rb_init_page(struct buffer_data_page *bpage)
325 local_set(&bpage->commit, 0);
329 * ring_buffer_page_len - the size of data on the page.
330 * @page: The page to read
332 * Returns the amount of data on the page, including buffer page header.
334 size_t ring_buffer_page_len(void *page)
336 struct buffer_data_page *bpage = page;
338 return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS)
339 + BUF_PAGE_HDR_SIZE;
343 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
344 * this issue out.
346 static void free_buffer_page(struct buffer_page *bpage)
348 free_page((unsigned long)bpage->page);
349 kfree(bpage);
353 * We need to fit the time_stamp delta into 27 bits.
355 static inline int test_time_stamp(u64 delta)
357 if (delta & TS_DELTA_TEST)
358 return 1;
359 return 0;
362 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
364 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
365 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
367 int ring_buffer_print_page_header(struct trace_seq *s)
369 struct buffer_data_page field;
371 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
372 "offset:0;\tsize:%u;\tsigned:%u;\n",
373 (unsigned int)sizeof(field.time_stamp),
374 (unsigned int)is_signed_type(u64));
376 trace_seq_printf(s, "\tfield: local_t commit;\t"
377 "offset:%u;\tsize:%u;\tsigned:%u;\n",
378 (unsigned int)offsetof(typeof(field), commit),
379 (unsigned int)sizeof(field.commit),
380 (unsigned int)is_signed_type(long));
382 trace_seq_printf(s, "\tfield: int overwrite;\t"
383 "offset:%u;\tsize:%u;\tsigned:%u;\n",
384 (unsigned int)offsetof(typeof(field), commit),
386 (unsigned int)is_signed_type(long));
388 trace_seq_printf(s, "\tfield: char data;\t"
389 "offset:%u;\tsize:%u;\tsigned:%u;\n",
390 (unsigned int)offsetof(typeof(field), data),
391 (unsigned int)BUF_PAGE_SIZE,
392 (unsigned int)is_signed_type(char));
394 return !trace_seq_has_overflowed(s);
397 struct rb_irq_work {
398 struct irq_work work;
399 wait_queue_head_t waiters;
400 wait_queue_head_t full_waiters;
401 bool waiters_pending;
402 bool full_waiters_pending;
403 bool wakeup_full;
407 * Structure to hold event state and handle nested events.
409 struct rb_event_info {
410 u64 ts;
411 u64 delta;
412 unsigned long length;
413 struct buffer_page *tail_page;
414 int add_timestamp;
418 * Used for which event context the event is in.
419 * NMI = 0
420 * IRQ = 1
421 * SOFTIRQ = 2
422 * NORMAL = 3
424 * See trace_recursive_lock() comment below for more details.
426 enum {
427 RB_CTX_NMI,
428 RB_CTX_IRQ,
429 RB_CTX_SOFTIRQ,
430 RB_CTX_NORMAL,
431 RB_CTX_MAX
435 * head_page == tail_page && head == tail then buffer is empty.
437 struct ring_buffer_per_cpu {
438 int cpu;
439 atomic_t record_disabled;
440 struct ring_buffer *buffer;
441 raw_spinlock_t reader_lock; /* serialize readers */
442 arch_spinlock_t lock;
443 struct lock_class_key lock_key;
444 struct buffer_data_page *free_page;
445 unsigned long nr_pages;
446 unsigned int current_context;
447 struct list_head *pages;
448 struct buffer_page *head_page; /* read from head */
449 struct buffer_page *tail_page; /* write to tail */
450 struct buffer_page *commit_page; /* committed pages */
451 struct buffer_page *reader_page;
452 unsigned long lost_events;
453 unsigned long last_overrun;
454 local_t entries_bytes;
455 local_t entries;
456 local_t overrun;
457 local_t commit_overrun;
458 local_t dropped_events;
459 local_t committing;
460 local_t commits;
461 unsigned long read;
462 unsigned long read_bytes;
463 u64 write_stamp;
464 u64 read_stamp;
465 /* ring buffer pages to update, > 0 to add, < 0 to remove */
466 long nr_pages_to_update;
467 struct list_head new_pages; /* new pages to add */
468 struct work_struct update_pages_work;
469 struct completion update_done;
471 struct rb_irq_work irq_work;
474 struct ring_buffer {
475 unsigned flags;
476 int cpus;
477 atomic_t record_disabled;
478 atomic_t resize_disabled;
479 cpumask_var_t cpumask;
481 struct lock_class_key *reader_lock_key;
483 struct mutex mutex;
485 struct ring_buffer_per_cpu **buffers;
487 struct hlist_node node;
488 u64 (*clock)(void);
490 struct rb_irq_work irq_work;
493 struct ring_buffer_iter {
494 struct ring_buffer_per_cpu *cpu_buffer;
495 unsigned long head;
496 struct buffer_page *head_page;
497 struct buffer_page *cache_reader_page;
498 unsigned long cache_read;
499 u64 read_stamp;
503 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
505 * Schedules a delayed work to wake up any task that is blocked on the
506 * ring buffer waiters queue.
508 static void rb_wake_up_waiters(struct irq_work *work)
510 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
512 wake_up_all(&rbwork->waiters);
513 if (rbwork->wakeup_full) {
514 rbwork->wakeup_full = false;
515 wake_up_all(&rbwork->full_waiters);
520 * ring_buffer_wait - wait for input to the ring buffer
521 * @buffer: buffer to wait on
522 * @cpu: the cpu buffer to wait on
523 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
525 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
526 * as data is added to any of the @buffer's cpu buffers. Otherwise
527 * it will wait for data to be added to a specific cpu buffer.
529 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
531 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
532 DEFINE_WAIT(wait);
533 struct rb_irq_work *work;
534 int ret = 0;
537 * Depending on what the caller is waiting for, either any
538 * data in any cpu buffer, or a specific buffer, put the
539 * caller on the appropriate wait queue.
541 if (cpu == RING_BUFFER_ALL_CPUS) {
542 work = &buffer->irq_work;
543 /* Full only makes sense on per cpu reads */
544 full = false;
545 } else {
546 if (!cpumask_test_cpu(cpu, buffer->cpumask))
547 return -ENODEV;
548 cpu_buffer = buffer->buffers[cpu];
549 work = &cpu_buffer->irq_work;
553 while (true) {
554 if (full)
555 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
556 else
557 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
560 * The events can happen in critical sections where
561 * checking a work queue can cause deadlocks.
562 * After adding a task to the queue, this flag is set
563 * only to notify events to try to wake up the queue
564 * using irq_work.
566 * We don't clear it even if the buffer is no longer
567 * empty. The flag only causes the next event to run
568 * irq_work to do the work queue wake up. The worse
569 * that can happen if we race with !trace_empty() is that
570 * an event will cause an irq_work to try to wake up
571 * an empty queue.
573 * There's no reason to protect this flag either, as
574 * the work queue and irq_work logic will do the necessary
575 * synchronization for the wake ups. The only thing
576 * that is necessary is that the wake up happens after
577 * a task has been queued. It's OK for spurious wake ups.
579 if (full)
580 work->full_waiters_pending = true;
581 else
582 work->waiters_pending = true;
584 if (signal_pending(current)) {
585 ret = -EINTR;
586 break;
589 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
590 break;
592 if (cpu != RING_BUFFER_ALL_CPUS &&
593 !ring_buffer_empty_cpu(buffer, cpu)) {
594 unsigned long flags;
595 bool pagebusy;
597 if (!full)
598 break;
600 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
601 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
602 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
604 if (!pagebusy)
605 break;
608 schedule();
611 if (full)
612 finish_wait(&work->full_waiters, &wait);
613 else
614 finish_wait(&work->waiters, &wait);
616 return ret;
620 * ring_buffer_poll_wait - poll on buffer input
621 * @buffer: buffer to wait on
622 * @cpu: the cpu buffer to wait on
623 * @filp: the file descriptor
624 * @poll_table: The poll descriptor
626 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
627 * as data is added to any of the @buffer's cpu buffers. Otherwise
628 * it will wait for data to be added to a specific cpu buffer.
630 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
631 * zero otherwise.
633 __poll_t ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
634 struct file *filp, poll_table *poll_table)
636 struct ring_buffer_per_cpu *cpu_buffer;
637 struct rb_irq_work *work;
639 if (cpu == RING_BUFFER_ALL_CPUS)
640 work = &buffer->irq_work;
641 else {
642 if (!cpumask_test_cpu(cpu, buffer->cpumask))
643 return -EINVAL;
645 cpu_buffer = buffer->buffers[cpu];
646 work = &cpu_buffer->irq_work;
649 poll_wait(filp, &work->waiters, poll_table);
650 work->waiters_pending = true;
652 * There's a tight race between setting the waiters_pending and
653 * checking if the ring buffer is empty. Once the waiters_pending bit
654 * is set, the next event will wake the task up, but we can get stuck
655 * if there's only a single event in.
657 * FIXME: Ideally, we need a memory barrier on the writer side as well,
658 * but adding a memory barrier to all events will cause too much of a
659 * performance hit in the fast path. We only need a memory barrier when
660 * the buffer goes from empty to having content. But as this race is
661 * extremely small, and it's not a problem if another event comes in, we
662 * will fix it later.
664 smp_mb();
666 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
667 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
668 return EPOLLIN | EPOLLRDNORM;
669 return 0;
672 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
673 #define RB_WARN_ON(b, cond) \
674 ({ \
675 int _____ret = unlikely(cond); \
676 if (_____ret) { \
677 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
678 struct ring_buffer_per_cpu *__b = \
679 (void *)b; \
680 atomic_inc(&__b->buffer->record_disabled); \
681 } else \
682 atomic_inc(&b->record_disabled); \
683 WARN_ON(1); \
685 _____ret; \
688 /* Up this if you want to test the TIME_EXTENTS and normalization */
689 #define DEBUG_SHIFT 0
691 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
693 /* shift to debug/test normalization and TIME_EXTENTS */
694 return buffer->clock() << DEBUG_SHIFT;
697 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
699 u64 time;
701 preempt_disable_notrace();
702 time = rb_time_stamp(buffer);
703 preempt_enable_no_resched_notrace();
705 return time;
707 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
709 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
710 int cpu, u64 *ts)
712 /* Just stupid testing the normalize function and deltas */
713 *ts >>= DEBUG_SHIFT;
715 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
718 * Making the ring buffer lockless makes things tricky.
719 * Although writes only happen on the CPU that they are on,
720 * and they only need to worry about interrupts. Reads can
721 * happen on any CPU.
723 * The reader page is always off the ring buffer, but when the
724 * reader finishes with a page, it needs to swap its page with
725 * a new one from the buffer. The reader needs to take from
726 * the head (writes go to the tail). But if a writer is in overwrite
727 * mode and wraps, it must push the head page forward.
729 * Here lies the problem.
731 * The reader must be careful to replace only the head page, and
732 * not another one. As described at the top of the file in the
733 * ASCII art, the reader sets its old page to point to the next
734 * page after head. It then sets the page after head to point to
735 * the old reader page. But if the writer moves the head page
736 * during this operation, the reader could end up with the tail.
738 * We use cmpxchg to help prevent this race. We also do something
739 * special with the page before head. We set the LSB to 1.
741 * When the writer must push the page forward, it will clear the
742 * bit that points to the head page, move the head, and then set
743 * the bit that points to the new head page.
745 * We also don't want an interrupt coming in and moving the head
746 * page on another writer. Thus we use the second LSB to catch
747 * that too. Thus:
749 * head->list->prev->next bit 1 bit 0
750 * ------- -------
751 * Normal page 0 0
752 * Points to head page 0 1
753 * New head page 1 0
755 * Note we can not trust the prev pointer of the head page, because:
757 * +----+ +-----+ +-----+
758 * | |------>| T |---X--->| N |
759 * | |<------| | | |
760 * +----+ +-----+ +-----+
761 * ^ ^ |
762 * | +-----+ | |
763 * +----------| R |----------+ |
764 * | |<-----------+
765 * +-----+
767 * Key: ---X--> HEAD flag set in pointer
768 * T Tail page
769 * R Reader page
770 * N Next page
772 * (see __rb_reserve_next() to see where this happens)
774 * What the above shows is that the reader just swapped out
775 * the reader page with a page in the buffer, but before it
776 * could make the new header point back to the new page added
777 * it was preempted by a writer. The writer moved forward onto
778 * the new page added by the reader and is about to move forward
779 * again.
781 * You can see, it is legitimate for the previous pointer of
782 * the head (or any page) not to point back to itself. But only
783 * temporarially.
786 #define RB_PAGE_NORMAL 0UL
787 #define RB_PAGE_HEAD 1UL
788 #define RB_PAGE_UPDATE 2UL
791 #define RB_FLAG_MASK 3UL
793 /* PAGE_MOVED is not part of the mask */
794 #define RB_PAGE_MOVED 4UL
797 * rb_list_head - remove any bit
799 static struct list_head *rb_list_head(struct list_head *list)
801 unsigned long val = (unsigned long)list;
803 return (struct list_head *)(val & ~RB_FLAG_MASK);
807 * rb_is_head_page - test if the given page is the head page
809 * Because the reader may move the head_page pointer, we can
810 * not trust what the head page is (it may be pointing to
811 * the reader page). But if the next page is a header page,
812 * its flags will be non zero.
814 static inline int
815 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
816 struct buffer_page *page, struct list_head *list)
818 unsigned long val;
820 val = (unsigned long)list->next;
822 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
823 return RB_PAGE_MOVED;
825 return val & RB_FLAG_MASK;
829 * rb_is_reader_page
831 * The unique thing about the reader page, is that, if the
832 * writer is ever on it, the previous pointer never points
833 * back to the reader page.
835 static bool rb_is_reader_page(struct buffer_page *page)
837 struct list_head *list = page->list.prev;
839 return rb_list_head(list->next) != &page->list;
843 * rb_set_list_to_head - set a list_head to be pointing to head.
845 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
846 struct list_head *list)
848 unsigned long *ptr;
850 ptr = (unsigned long *)&list->next;
851 *ptr |= RB_PAGE_HEAD;
852 *ptr &= ~RB_PAGE_UPDATE;
856 * rb_head_page_activate - sets up head page
858 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
860 struct buffer_page *head;
862 head = cpu_buffer->head_page;
863 if (!head)
864 return;
867 * Set the previous list pointer to have the HEAD flag.
869 rb_set_list_to_head(cpu_buffer, head->list.prev);
872 static void rb_list_head_clear(struct list_head *list)
874 unsigned long *ptr = (unsigned long *)&list->next;
876 *ptr &= ~RB_FLAG_MASK;
880 * rb_head_page_dactivate - clears head page ptr (for free list)
882 static void
883 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
885 struct list_head *hd;
887 /* Go through the whole list and clear any pointers found. */
888 rb_list_head_clear(cpu_buffer->pages);
890 list_for_each(hd, cpu_buffer->pages)
891 rb_list_head_clear(hd);
894 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
895 struct buffer_page *head,
896 struct buffer_page *prev,
897 int old_flag, int new_flag)
899 struct list_head *list;
900 unsigned long val = (unsigned long)&head->list;
901 unsigned long ret;
903 list = &prev->list;
905 val &= ~RB_FLAG_MASK;
907 ret = cmpxchg((unsigned long *)&list->next,
908 val | old_flag, val | new_flag);
910 /* check if the reader took the page */
911 if ((ret & ~RB_FLAG_MASK) != val)
912 return RB_PAGE_MOVED;
914 return ret & RB_FLAG_MASK;
917 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
918 struct buffer_page *head,
919 struct buffer_page *prev,
920 int old_flag)
922 return rb_head_page_set(cpu_buffer, head, prev,
923 old_flag, RB_PAGE_UPDATE);
926 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
927 struct buffer_page *head,
928 struct buffer_page *prev,
929 int old_flag)
931 return rb_head_page_set(cpu_buffer, head, prev,
932 old_flag, RB_PAGE_HEAD);
935 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
936 struct buffer_page *head,
937 struct buffer_page *prev,
938 int old_flag)
940 return rb_head_page_set(cpu_buffer, head, prev,
941 old_flag, RB_PAGE_NORMAL);
944 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
945 struct buffer_page **bpage)
947 struct list_head *p = rb_list_head((*bpage)->list.next);
949 *bpage = list_entry(p, struct buffer_page, list);
952 static struct buffer_page *
953 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
955 struct buffer_page *head;
956 struct buffer_page *page;
957 struct list_head *list;
958 int i;
960 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
961 return NULL;
963 /* sanity check */
964 list = cpu_buffer->pages;
965 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
966 return NULL;
968 page = head = cpu_buffer->head_page;
970 * It is possible that the writer moves the header behind
971 * where we started, and we miss in one loop.
972 * A second loop should grab the header, but we'll do
973 * three loops just because I'm paranoid.
975 for (i = 0; i < 3; i++) {
976 do {
977 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
978 cpu_buffer->head_page = page;
979 return page;
981 rb_inc_page(cpu_buffer, &page);
982 } while (page != head);
985 RB_WARN_ON(cpu_buffer, 1);
987 return NULL;
990 static int rb_head_page_replace(struct buffer_page *old,
991 struct buffer_page *new)
993 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
994 unsigned long val;
995 unsigned long ret;
997 val = *ptr & ~RB_FLAG_MASK;
998 val |= RB_PAGE_HEAD;
1000 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1002 return ret == val;
1006 * rb_tail_page_update - move the tail page forward
1008 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1009 struct buffer_page *tail_page,
1010 struct buffer_page *next_page)
1012 unsigned long old_entries;
1013 unsigned long old_write;
1016 * The tail page now needs to be moved forward.
1018 * We need to reset the tail page, but without messing
1019 * with possible erasing of data brought in by interrupts
1020 * that have moved the tail page and are currently on it.
1022 * We add a counter to the write field to denote this.
1024 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1025 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1028 * Just make sure we have seen our old_write and synchronize
1029 * with any interrupts that come in.
1031 barrier();
1034 * If the tail page is still the same as what we think
1035 * it is, then it is up to us to update the tail
1036 * pointer.
1038 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1039 /* Zero the write counter */
1040 unsigned long val = old_write & ~RB_WRITE_MASK;
1041 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1044 * This will only succeed if an interrupt did
1045 * not come in and change it. In which case, we
1046 * do not want to modify it.
1048 * We add (void) to let the compiler know that we do not care
1049 * about the return value of these functions. We use the
1050 * cmpxchg to only update if an interrupt did not already
1051 * do it for us. If the cmpxchg fails, we don't care.
1053 (void)local_cmpxchg(&next_page->write, old_write, val);
1054 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1057 * No need to worry about races with clearing out the commit.
1058 * it only can increment when a commit takes place. But that
1059 * only happens in the outer most nested commit.
1061 local_set(&next_page->page->commit, 0);
1063 /* Again, either we update tail_page or an interrupt does */
1064 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1068 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1069 struct buffer_page *bpage)
1071 unsigned long val = (unsigned long)bpage;
1073 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1074 return 1;
1076 return 0;
1080 * rb_check_list - make sure a pointer to a list has the last bits zero
1082 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1083 struct list_head *list)
1085 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1086 return 1;
1087 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1088 return 1;
1089 return 0;
1093 * rb_check_pages - integrity check of buffer pages
1094 * @cpu_buffer: CPU buffer with pages to test
1096 * As a safety measure we check to make sure the data pages have not
1097 * been corrupted.
1099 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1101 struct list_head *head = cpu_buffer->pages;
1102 struct buffer_page *bpage, *tmp;
1104 /* Reset the head page if it exists */
1105 if (cpu_buffer->head_page)
1106 rb_set_head_page(cpu_buffer);
1108 rb_head_page_deactivate(cpu_buffer);
1110 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1111 return -1;
1112 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1113 return -1;
1115 if (rb_check_list(cpu_buffer, head))
1116 return -1;
1118 list_for_each_entry_safe(bpage, tmp, head, list) {
1119 if (RB_WARN_ON(cpu_buffer,
1120 bpage->list.next->prev != &bpage->list))
1121 return -1;
1122 if (RB_WARN_ON(cpu_buffer,
1123 bpage->list.prev->next != &bpage->list))
1124 return -1;
1125 if (rb_check_list(cpu_buffer, &bpage->list))
1126 return -1;
1129 rb_head_page_activate(cpu_buffer);
1131 return 0;
1134 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1136 struct buffer_page *bpage, *tmp;
1137 long i;
1139 for (i = 0; i < nr_pages; i++) {
1140 struct page *page;
1142 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1143 * gracefully without invoking oom-killer and the system is not
1144 * destabilized.
1146 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1147 GFP_KERNEL | __GFP_RETRY_MAYFAIL,
1148 cpu_to_node(cpu));
1149 if (!bpage)
1150 goto free_pages;
1152 list_add(&bpage->list, pages);
1154 page = alloc_pages_node(cpu_to_node(cpu),
1155 GFP_KERNEL | __GFP_RETRY_MAYFAIL, 0);
1156 if (!page)
1157 goto free_pages;
1158 bpage->page = page_address(page);
1159 rb_init_page(bpage->page);
1162 return 0;
1164 free_pages:
1165 list_for_each_entry_safe(bpage, tmp, pages, list) {
1166 list_del_init(&bpage->list);
1167 free_buffer_page(bpage);
1170 return -ENOMEM;
1173 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1174 unsigned long nr_pages)
1176 LIST_HEAD(pages);
1178 WARN_ON(!nr_pages);
1180 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1181 return -ENOMEM;
1184 * The ring buffer page list is a circular list that does not
1185 * start and end with a list head. All page list items point to
1186 * other pages.
1188 cpu_buffer->pages = pages.next;
1189 list_del(&pages);
1191 cpu_buffer->nr_pages = nr_pages;
1193 rb_check_pages(cpu_buffer);
1195 return 0;
1198 static struct ring_buffer_per_cpu *
1199 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1201 struct ring_buffer_per_cpu *cpu_buffer;
1202 struct buffer_page *bpage;
1203 struct page *page;
1204 int ret;
1206 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1207 GFP_KERNEL, cpu_to_node(cpu));
1208 if (!cpu_buffer)
1209 return NULL;
1211 cpu_buffer->cpu = cpu;
1212 cpu_buffer->buffer = buffer;
1213 raw_spin_lock_init(&cpu_buffer->reader_lock);
1214 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1215 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1216 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1217 init_completion(&cpu_buffer->update_done);
1218 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1219 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1220 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1222 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1223 GFP_KERNEL, cpu_to_node(cpu));
1224 if (!bpage)
1225 goto fail_free_buffer;
1227 rb_check_bpage(cpu_buffer, bpage);
1229 cpu_buffer->reader_page = bpage;
1230 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1231 if (!page)
1232 goto fail_free_reader;
1233 bpage->page = page_address(page);
1234 rb_init_page(bpage->page);
1236 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1237 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1239 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1240 if (ret < 0)
1241 goto fail_free_reader;
1243 cpu_buffer->head_page
1244 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1245 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1247 rb_head_page_activate(cpu_buffer);
1249 return cpu_buffer;
1251 fail_free_reader:
1252 free_buffer_page(cpu_buffer->reader_page);
1254 fail_free_buffer:
1255 kfree(cpu_buffer);
1256 return NULL;
1259 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1261 struct list_head *head = cpu_buffer->pages;
1262 struct buffer_page *bpage, *tmp;
1264 free_buffer_page(cpu_buffer->reader_page);
1266 rb_head_page_deactivate(cpu_buffer);
1268 if (head) {
1269 list_for_each_entry_safe(bpage, tmp, head, list) {
1270 list_del_init(&bpage->list);
1271 free_buffer_page(bpage);
1273 bpage = list_entry(head, struct buffer_page, list);
1274 free_buffer_page(bpage);
1277 kfree(cpu_buffer);
1281 * __ring_buffer_alloc - allocate a new ring_buffer
1282 * @size: the size in bytes per cpu that is needed.
1283 * @flags: attributes to set for the ring buffer.
1285 * Currently the only flag that is available is the RB_FL_OVERWRITE
1286 * flag. This flag means that the buffer will overwrite old data
1287 * when the buffer wraps. If this flag is not set, the buffer will
1288 * drop data when the tail hits the head.
1290 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1291 struct lock_class_key *key)
1293 struct ring_buffer *buffer;
1294 long nr_pages;
1295 int bsize;
1296 int cpu;
1297 int ret;
1299 /* keep it in its own cache line */
1300 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1301 GFP_KERNEL);
1302 if (!buffer)
1303 return NULL;
1305 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1306 goto fail_free_buffer;
1308 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1309 buffer->flags = flags;
1310 buffer->clock = trace_clock_local;
1311 buffer->reader_lock_key = key;
1313 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1314 init_waitqueue_head(&buffer->irq_work.waiters);
1316 /* need at least two pages */
1317 if (nr_pages < 2)
1318 nr_pages = 2;
1320 buffer->cpus = nr_cpu_ids;
1322 bsize = sizeof(void *) * nr_cpu_ids;
1323 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1324 GFP_KERNEL);
1325 if (!buffer->buffers)
1326 goto fail_free_cpumask;
1328 cpu = raw_smp_processor_id();
1329 cpumask_set_cpu(cpu, buffer->cpumask);
1330 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1331 if (!buffer->buffers[cpu])
1332 goto fail_free_buffers;
1334 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1335 if (ret < 0)
1336 goto fail_free_buffers;
1338 mutex_init(&buffer->mutex);
1340 return buffer;
1342 fail_free_buffers:
1343 for_each_buffer_cpu(buffer, cpu) {
1344 if (buffer->buffers[cpu])
1345 rb_free_cpu_buffer(buffer->buffers[cpu]);
1347 kfree(buffer->buffers);
1349 fail_free_cpumask:
1350 free_cpumask_var(buffer->cpumask);
1352 fail_free_buffer:
1353 kfree(buffer);
1354 return NULL;
1356 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1359 * ring_buffer_free - free a ring buffer.
1360 * @buffer: the buffer to free.
1362 void
1363 ring_buffer_free(struct ring_buffer *buffer)
1365 int cpu;
1367 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1369 for_each_buffer_cpu(buffer, cpu)
1370 rb_free_cpu_buffer(buffer->buffers[cpu]);
1372 kfree(buffer->buffers);
1373 free_cpumask_var(buffer->cpumask);
1375 kfree(buffer);
1377 EXPORT_SYMBOL_GPL(ring_buffer_free);
1379 void ring_buffer_set_clock(struct ring_buffer *buffer,
1380 u64 (*clock)(void))
1382 buffer->clock = clock;
1385 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1387 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1389 return local_read(&bpage->entries) & RB_WRITE_MASK;
1392 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1394 return local_read(&bpage->write) & RB_WRITE_MASK;
1397 static int
1398 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1400 struct list_head *tail_page, *to_remove, *next_page;
1401 struct buffer_page *to_remove_page, *tmp_iter_page;
1402 struct buffer_page *last_page, *first_page;
1403 unsigned long nr_removed;
1404 unsigned long head_bit;
1405 int page_entries;
1407 head_bit = 0;
1409 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1410 atomic_inc(&cpu_buffer->record_disabled);
1412 * We don't race with the readers since we have acquired the reader
1413 * lock. We also don't race with writers after disabling recording.
1414 * This makes it easy to figure out the first and the last page to be
1415 * removed from the list. We unlink all the pages in between including
1416 * the first and last pages. This is done in a busy loop so that we
1417 * lose the least number of traces.
1418 * The pages are freed after we restart recording and unlock readers.
1420 tail_page = &cpu_buffer->tail_page->list;
1423 * tail page might be on reader page, we remove the next page
1424 * from the ring buffer
1426 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1427 tail_page = rb_list_head(tail_page->next);
1428 to_remove = tail_page;
1430 /* start of pages to remove */
1431 first_page = list_entry(rb_list_head(to_remove->next),
1432 struct buffer_page, list);
1434 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1435 to_remove = rb_list_head(to_remove)->next;
1436 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1439 next_page = rb_list_head(to_remove)->next;
1442 * Now we remove all pages between tail_page and next_page.
1443 * Make sure that we have head_bit value preserved for the
1444 * next page
1446 tail_page->next = (struct list_head *)((unsigned long)next_page |
1447 head_bit);
1448 next_page = rb_list_head(next_page);
1449 next_page->prev = tail_page;
1451 /* make sure pages points to a valid page in the ring buffer */
1452 cpu_buffer->pages = next_page;
1454 /* update head page */
1455 if (head_bit)
1456 cpu_buffer->head_page = list_entry(next_page,
1457 struct buffer_page, list);
1460 * change read pointer to make sure any read iterators reset
1461 * themselves
1463 cpu_buffer->read = 0;
1465 /* pages are removed, resume tracing and then free the pages */
1466 atomic_dec(&cpu_buffer->record_disabled);
1467 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1469 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1471 /* last buffer page to remove */
1472 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1473 list);
1474 tmp_iter_page = first_page;
1476 do {
1477 to_remove_page = tmp_iter_page;
1478 rb_inc_page(cpu_buffer, &tmp_iter_page);
1480 /* update the counters */
1481 page_entries = rb_page_entries(to_remove_page);
1482 if (page_entries) {
1484 * If something was added to this page, it was full
1485 * since it is not the tail page. So we deduct the
1486 * bytes consumed in ring buffer from here.
1487 * Increment overrun to account for the lost events.
1489 local_add(page_entries, &cpu_buffer->overrun);
1490 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1494 * We have already removed references to this list item, just
1495 * free up the buffer_page and its page
1497 free_buffer_page(to_remove_page);
1498 nr_removed--;
1500 } while (to_remove_page != last_page);
1502 RB_WARN_ON(cpu_buffer, nr_removed);
1504 return nr_removed == 0;
1507 static int
1508 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1510 struct list_head *pages = &cpu_buffer->new_pages;
1511 int retries, success;
1513 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1515 * We are holding the reader lock, so the reader page won't be swapped
1516 * in the ring buffer. Now we are racing with the writer trying to
1517 * move head page and the tail page.
1518 * We are going to adapt the reader page update process where:
1519 * 1. We first splice the start and end of list of new pages between
1520 * the head page and its previous page.
1521 * 2. We cmpxchg the prev_page->next to point from head page to the
1522 * start of new pages list.
1523 * 3. Finally, we update the head->prev to the end of new list.
1525 * We will try this process 10 times, to make sure that we don't keep
1526 * spinning.
1528 retries = 10;
1529 success = 0;
1530 while (retries--) {
1531 struct list_head *head_page, *prev_page, *r;
1532 struct list_head *last_page, *first_page;
1533 struct list_head *head_page_with_bit;
1535 head_page = &rb_set_head_page(cpu_buffer)->list;
1536 if (!head_page)
1537 break;
1538 prev_page = head_page->prev;
1540 first_page = pages->next;
1541 last_page = pages->prev;
1543 head_page_with_bit = (struct list_head *)
1544 ((unsigned long)head_page | RB_PAGE_HEAD);
1546 last_page->next = head_page_with_bit;
1547 first_page->prev = prev_page;
1549 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1551 if (r == head_page_with_bit) {
1553 * yay, we replaced the page pointer to our new list,
1554 * now, we just have to update to head page's prev
1555 * pointer to point to end of list
1557 head_page->prev = last_page;
1558 success = 1;
1559 break;
1563 if (success)
1564 INIT_LIST_HEAD(pages);
1566 * If we weren't successful in adding in new pages, warn and stop
1567 * tracing
1569 RB_WARN_ON(cpu_buffer, !success);
1570 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1572 /* free pages if they weren't inserted */
1573 if (!success) {
1574 struct buffer_page *bpage, *tmp;
1575 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1576 list) {
1577 list_del_init(&bpage->list);
1578 free_buffer_page(bpage);
1581 return success;
1584 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1586 int success;
1588 if (cpu_buffer->nr_pages_to_update > 0)
1589 success = rb_insert_pages(cpu_buffer);
1590 else
1591 success = rb_remove_pages(cpu_buffer,
1592 -cpu_buffer->nr_pages_to_update);
1594 if (success)
1595 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1598 static void update_pages_handler(struct work_struct *work)
1600 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1601 struct ring_buffer_per_cpu, update_pages_work);
1602 rb_update_pages(cpu_buffer);
1603 complete(&cpu_buffer->update_done);
1607 * ring_buffer_resize - resize the ring buffer
1608 * @buffer: the buffer to resize.
1609 * @size: the new size.
1610 * @cpu_id: the cpu buffer to resize
1612 * Minimum size is 2 * BUF_PAGE_SIZE.
1614 * Returns 0 on success and < 0 on failure.
1616 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1617 int cpu_id)
1619 struct ring_buffer_per_cpu *cpu_buffer;
1620 unsigned long nr_pages;
1621 int cpu, err = 0;
1624 * Always succeed at resizing a non-existent buffer:
1626 if (!buffer)
1627 return size;
1629 /* Make sure the requested buffer exists */
1630 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1631 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1632 return size;
1634 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1636 /* we need a minimum of two pages */
1637 if (nr_pages < 2)
1638 nr_pages = 2;
1640 size = nr_pages * BUF_PAGE_SIZE;
1643 * Don't succeed if resizing is disabled, as a reader might be
1644 * manipulating the ring buffer and is expecting a sane state while
1645 * this is true.
1647 if (atomic_read(&buffer->resize_disabled))
1648 return -EBUSY;
1650 /* prevent another thread from changing buffer sizes */
1651 mutex_lock(&buffer->mutex);
1653 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1654 /* calculate the pages to update */
1655 for_each_buffer_cpu(buffer, cpu) {
1656 cpu_buffer = buffer->buffers[cpu];
1658 cpu_buffer->nr_pages_to_update = nr_pages -
1659 cpu_buffer->nr_pages;
1661 * nothing more to do for removing pages or no update
1663 if (cpu_buffer->nr_pages_to_update <= 0)
1664 continue;
1666 * to add pages, make sure all new pages can be
1667 * allocated without receiving ENOMEM
1669 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1670 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1671 &cpu_buffer->new_pages, cpu)) {
1672 /* not enough memory for new pages */
1673 err = -ENOMEM;
1674 goto out_err;
1678 get_online_cpus();
1680 * Fire off all the required work handlers
1681 * We can't schedule on offline CPUs, but it's not necessary
1682 * since we can change their buffer sizes without any race.
1684 for_each_buffer_cpu(buffer, cpu) {
1685 cpu_buffer = buffer->buffers[cpu];
1686 if (!cpu_buffer->nr_pages_to_update)
1687 continue;
1689 /* Can't run something on an offline CPU. */
1690 if (!cpu_online(cpu)) {
1691 rb_update_pages(cpu_buffer);
1692 cpu_buffer->nr_pages_to_update = 0;
1693 } else {
1694 schedule_work_on(cpu,
1695 &cpu_buffer->update_pages_work);
1699 /* wait for all the updates to complete */
1700 for_each_buffer_cpu(buffer, cpu) {
1701 cpu_buffer = buffer->buffers[cpu];
1702 if (!cpu_buffer->nr_pages_to_update)
1703 continue;
1705 if (cpu_online(cpu))
1706 wait_for_completion(&cpu_buffer->update_done);
1707 cpu_buffer->nr_pages_to_update = 0;
1710 put_online_cpus();
1711 } else {
1712 /* Make sure this CPU has been intitialized */
1713 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1714 goto out;
1716 cpu_buffer = buffer->buffers[cpu_id];
1718 if (nr_pages == cpu_buffer->nr_pages)
1719 goto out;
1721 cpu_buffer->nr_pages_to_update = nr_pages -
1722 cpu_buffer->nr_pages;
1724 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1725 if (cpu_buffer->nr_pages_to_update > 0 &&
1726 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1727 &cpu_buffer->new_pages, cpu_id)) {
1728 err = -ENOMEM;
1729 goto out_err;
1732 get_online_cpus();
1734 /* Can't run something on an offline CPU. */
1735 if (!cpu_online(cpu_id))
1736 rb_update_pages(cpu_buffer);
1737 else {
1738 schedule_work_on(cpu_id,
1739 &cpu_buffer->update_pages_work);
1740 wait_for_completion(&cpu_buffer->update_done);
1743 cpu_buffer->nr_pages_to_update = 0;
1744 put_online_cpus();
1747 out:
1749 * The ring buffer resize can happen with the ring buffer
1750 * enabled, so that the update disturbs the tracing as little
1751 * as possible. But if the buffer is disabled, we do not need
1752 * to worry about that, and we can take the time to verify
1753 * that the buffer is not corrupt.
1755 if (atomic_read(&buffer->record_disabled)) {
1756 atomic_inc(&buffer->record_disabled);
1758 * Even though the buffer was disabled, we must make sure
1759 * that it is truly disabled before calling rb_check_pages.
1760 * There could have been a race between checking
1761 * record_disable and incrementing it.
1763 synchronize_sched();
1764 for_each_buffer_cpu(buffer, cpu) {
1765 cpu_buffer = buffer->buffers[cpu];
1766 rb_check_pages(cpu_buffer);
1768 atomic_dec(&buffer->record_disabled);
1771 mutex_unlock(&buffer->mutex);
1772 return size;
1774 out_err:
1775 for_each_buffer_cpu(buffer, cpu) {
1776 struct buffer_page *bpage, *tmp;
1778 cpu_buffer = buffer->buffers[cpu];
1779 cpu_buffer->nr_pages_to_update = 0;
1781 if (list_empty(&cpu_buffer->new_pages))
1782 continue;
1784 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1785 list) {
1786 list_del_init(&bpage->list);
1787 free_buffer_page(bpage);
1790 mutex_unlock(&buffer->mutex);
1791 return err;
1793 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1795 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1797 mutex_lock(&buffer->mutex);
1798 if (val)
1799 buffer->flags |= RB_FL_OVERWRITE;
1800 else
1801 buffer->flags &= ~RB_FL_OVERWRITE;
1802 mutex_unlock(&buffer->mutex);
1804 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1806 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1808 return bpage->page->data + index;
1811 static __always_inline struct ring_buffer_event *
1812 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1814 return __rb_page_index(cpu_buffer->reader_page,
1815 cpu_buffer->reader_page->read);
1818 static __always_inline struct ring_buffer_event *
1819 rb_iter_head_event(struct ring_buffer_iter *iter)
1821 return __rb_page_index(iter->head_page, iter->head);
1824 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1826 return local_read(&bpage->page->commit);
1829 /* Size is determined by what has been committed */
1830 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1832 return rb_page_commit(bpage);
1835 static __always_inline unsigned
1836 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1838 return rb_page_commit(cpu_buffer->commit_page);
1841 static __always_inline unsigned
1842 rb_event_index(struct ring_buffer_event *event)
1844 unsigned long addr = (unsigned long)event;
1846 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1849 static void rb_inc_iter(struct ring_buffer_iter *iter)
1851 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1854 * The iterator could be on the reader page (it starts there).
1855 * But the head could have moved, since the reader was
1856 * found. Check for this case and assign the iterator
1857 * to the head page instead of next.
1859 if (iter->head_page == cpu_buffer->reader_page)
1860 iter->head_page = rb_set_head_page(cpu_buffer);
1861 else
1862 rb_inc_page(cpu_buffer, &iter->head_page);
1864 iter->read_stamp = iter->head_page->page->time_stamp;
1865 iter->head = 0;
1869 * rb_handle_head_page - writer hit the head page
1871 * Returns: +1 to retry page
1872 * 0 to continue
1873 * -1 on error
1875 static int
1876 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1877 struct buffer_page *tail_page,
1878 struct buffer_page *next_page)
1880 struct buffer_page *new_head;
1881 int entries;
1882 int type;
1883 int ret;
1885 entries = rb_page_entries(next_page);
1888 * The hard part is here. We need to move the head
1889 * forward, and protect against both readers on
1890 * other CPUs and writers coming in via interrupts.
1892 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1893 RB_PAGE_HEAD);
1896 * type can be one of four:
1897 * NORMAL - an interrupt already moved it for us
1898 * HEAD - we are the first to get here.
1899 * UPDATE - we are the interrupt interrupting
1900 * a current move.
1901 * MOVED - a reader on another CPU moved the next
1902 * pointer to its reader page. Give up
1903 * and try again.
1906 switch (type) {
1907 case RB_PAGE_HEAD:
1909 * We changed the head to UPDATE, thus
1910 * it is our responsibility to update
1911 * the counters.
1913 local_add(entries, &cpu_buffer->overrun);
1914 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1917 * The entries will be zeroed out when we move the
1918 * tail page.
1921 /* still more to do */
1922 break;
1924 case RB_PAGE_UPDATE:
1926 * This is an interrupt that interrupt the
1927 * previous update. Still more to do.
1929 break;
1930 case RB_PAGE_NORMAL:
1932 * An interrupt came in before the update
1933 * and processed this for us.
1934 * Nothing left to do.
1936 return 1;
1937 case RB_PAGE_MOVED:
1939 * The reader is on another CPU and just did
1940 * a swap with our next_page.
1941 * Try again.
1943 return 1;
1944 default:
1945 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1946 return -1;
1950 * Now that we are here, the old head pointer is
1951 * set to UPDATE. This will keep the reader from
1952 * swapping the head page with the reader page.
1953 * The reader (on another CPU) will spin till
1954 * we are finished.
1956 * We just need to protect against interrupts
1957 * doing the job. We will set the next pointer
1958 * to HEAD. After that, we set the old pointer
1959 * to NORMAL, but only if it was HEAD before.
1960 * otherwise we are an interrupt, and only
1961 * want the outer most commit to reset it.
1963 new_head = next_page;
1964 rb_inc_page(cpu_buffer, &new_head);
1966 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1967 RB_PAGE_NORMAL);
1970 * Valid returns are:
1971 * HEAD - an interrupt came in and already set it.
1972 * NORMAL - One of two things:
1973 * 1) We really set it.
1974 * 2) A bunch of interrupts came in and moved
1975 * the page forward again.
1977 switch (ret) {
1978 case RB_PAGE_HEAD:
1979 case RB_PAGE_NORMAL:
1980 /* OK */
1981 break;
1982 default:
1983 RB_WARN_ON(cpu_buffer, 1);
1984 return -1;
1988 * It is possible that an interrupt came in,
1989 * set the head up, then more interrupts came in
1990 * and moved it again. When we get back here,
1991 * the page would have been set to NORMAL but we
1992 * just set it back to HEAD.
1994 * How do you detect this? Well, if that happened
1995 * the tail page would have moved.
1997 if (ret == RB_PAGE_NORMAL) {
1998 struct buffer_page *buffer_tail_page;
2000 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2002 * If the tail had moved passed next, then we need
2003 * to reset the pointer.
2005 if (buffer_tail_page != tail_page &&
2006 buffer_tail_page != next_page)
2007 rb_head_page_set_normal(cpu_buffer, new_head,
2008 next_page,
2009 RB_PAGE_HEAD);
2013 * If this was the outer most commit (the one that
2014 * changed the original pointer from HEAD to UPDATE),
2015 * then it is up to us to reset it to NORMAL.
2017 if (type == RB_PAGE_HEAD) {
2018 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2019 tail_page,
2020 RB_PAGE_UPDATE);
2021 if (RB_WARN_ON(cpu_buffer,
2022 ret != RB_PAGE_UPDATE))
2023 return -1;
2026 return 0;
2029 static inline void
2030 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2031 unsigned long tail, struct rb_event_info *info)
2033 struct buffer_page *tail_page = info->tail_page;
2034 struct ring_buffer_event *event;
2035 unsigned long length = info->length;
2038 * Only the event that crossed the page boundary
2039 * must fill the old tail_page with padding.
2041 if (tail >= BUF_PAGE_SIZE) {
2043 * If the page was filled, then we still need
2044 * to update the real_end. Reset it to zero
2045 * and the reader will ignore it.
2047 if (tail == BUF_PAGE_SIZE)
2048 tail_page->real_end = 0;
2050 local_sub(length, &tail_page->write);
2051 return;
2054 event = __rb_page_index(tail_page, tail);
2056 /* account for padding bytes */
2057 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2060 * Save the original length to the meta data.
2061 * This will be used by the reader to add lost event
2062 * counter.
2064 tail_page->real_end = tail;
2067 * If this event is bigger than the minimum size, then
2068 * we need to be careful that we don't subtract the
2069 * write counter enough to allow another writer to slip
2070 * in on this page.
2071 * We put in a discarded commit instead, to make sure
2072 * that this space is not used again.
2074 * If we are less than the minimum size, we don't need to
2075 * worry about it.
2077 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2078 /* No room for any events */
2080 /* Mark the rest of the page with padding */
2081 rb_event_set_padding(event);
2083 /* Set the write back to the previous setting */
2084 local_sub(length, &tail_page->write);
2085 return;
2088 /* Put in a discarded event */
2089 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2090 event->type_len = RINGBUF_TYPE_PADDING;
2091 /* time delta must be non zero */
2092 event->time_delta = 1;
2094 /* Set write to end of buffer */
2095 length = (tail + length) - BUF_PAGE_SIZE;
2096 local_sub(length, &tail_page->write);
2099 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2102 * This is the slow path, force gcc not to inline it.
2104 static noinline struct ring_buffer_event *
2105 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2106 unsigned long tail, struct rb_event_info *info)
2108 struct buffer_page *tail_page = info->tail_page;
2109 struct buffer_page *commit_page = cpu_buffer->commit_page;
2110 struct ring_buffer *buffer = cpu_buffer->buffer;
2111 struct buffer_page *next_page;
2112 int ret;
2114 next_page = tail_page;
2116 rb_inc_page(cpu_buffer, &next_page);
2119 * If for some reason, we had an interrupt storm that made
2120 * it all the way around the buffer, bail, and warn
2121 * about it.
2123 if (unlikely(next_page == commit_page)) {
2124 local_inc(&cpu_buffer->commit_overrun);
2125 goto out_reset;
2129 * This is where the fun begins!
2131 * We are fighting against races between a reader that
2132 * could be on another CPU trying to swap its reader
2133 * page with the buffer head.
2135 * We are also fighting against interrupts coming in and
2136 * moving the head or tail on us as well.
2138 * If the next page is the head page then we have filled
2139 * the buffer, unless the commit page is still on the
2140 * reader page.
2142 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2145 * If the commit is not on the reader page, then
2146 * move the header page.
2148 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2150 * If we are not in overwrite mode,
2151 * this is easy, just stop here.
2153 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2154 local_inc(&cpu_buffer->dropped_events);
2155 goto out_reset;
2158 ret = rb_handle_head_page(cpu_buffer,
2159 tail_page,
2160 next_page);
2161 if (ret < 0)
2162 goto out_reset;
2163 if (ret)
2164 goto out_again;
2165 } else {
2167 * We need to be careful here too. The
2168 * commit page could still be on the reader
2169 * page. We could have a small buffer, and
2170 * have filled up the buffer with events
2171 * from interrupts and such, and wrapped.
2173 * Note, if the tail page is also the on the
2174 * reader_page, we let it move out.
2176 if (unlikely((cpu_buffer->commit_page !=
2177 cpu_buffer->tail_page) &&
2178 (cpu_buffer->commit_page ==
2179 cpu_buffer->reader_page))) {
2180 local_inc(&cpu_buffer->commit_overrun);
2181 goto out_reset;
2186 rb_tail_page_update(cpu_buffer, tail_page, next_page);
2188 out_again:
2190 rb_reset_tail(cpu_buffer, tail, info);
2192 /* Commit what we have for now. */
2193 rb_end_commit(cpu_buffer);
2194 /* rb_end_commit() decs committing */
2195 local_inc(&cpu_buffer->committing);
2197 /* fail and let the caller try again */
2198 return ERR_PTR(-EAGAIN);
2200 out_reset:
2201 /* reset write */
2202 rb_reset_tail(cpu_buffer, tail, info);
2204 return NULL;
2207 /* Slow path, do not inline */
2208 static noinline struct ring_buffer_event *
2209 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2211 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2213 /* Not the first event on the page? */
2214 if (rb_event_index(event)) {
2215 event->time_delta = delta & TS_MASK;
2216 event->array[0] = delta >> TS_SHIFT;
2217 } else {
2218 /* nope, just zero it */
2219 event->time_delta = 0;
2220 event->array[0] = 0;
2223 return skip_time_extend(event);
2226 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2227 struct ring_buffer_event *event);
2230 * rb_update_event - update event type and data
2231 * @event: the event to update
2232 * @type: the type of event
2233 * @length: the size of the event field in the ring buffer
2235 * Update the type and data fields of the event. The length
2236 * is the actual size that is written to the ring buffer,
2237 * and with this, we can determine what to place into the
2238 * data field.
2240 static void
2241 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2242 struct ring_buffer_event *event,
2243 struct rb_event_info *info)
2245 unsigned length = info->length;
2246 u64 delta = info->delta;
2248 /* Only a commit updates the timestamp */
2249 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2250 delta = 0;
2253 * If we need to add a timestamp, then we
2254 * add it to the start of the resevered space.
2256 if (unlikely(info->add_timestamp)) {
2257 event = rb_add_time_stamp(event, delta);
2258 length -= RB_LEN_TIME_EXTEND;
2259 delta = 0;
2262 event->time_delta = delta;
2263 length -= RB_EVNT_HDR_SIZE;
2264 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2265 event->type_len = 0;
2266 event->array[0] = length;
2267 } else
2268 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2271 static unsigned rb_calculate_event_length(unsigned length)
2273 struct ring_buffer_event event; /* Used only for sizeof array */
2275 /* zero length can cause confusions */
2276 if (!length)
2277 length++;
2279 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2280 length += sizeof(event.array[0]);
2282 length += RB_EVNT_HDR_SIZE;
2283 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2286 * In case the time delta is larger than the 27 bits for it
2287 * in the header, we need to add a timestamp. If another
2288 * event comes in when trying to discard this one to increase
2289 * the length, then the timestamp will be added in the allocated
2290 * space of this event. If length is bigger than the size needed
2291 * for the TIME_EXTEND, then padding has to be used. The events
2292 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2293 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2294 * As length is a multiple of 4, we only need to worry if it
2295 * is 12 (RB_LEN_TIME_EXTEND + 4).
2297 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2298 length += RB_ALIGNMENT;
2300 return length;
2303 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2304 static inline bool sched_clock_stable(void)
2306 return true;
2308 #endif
2310 static inline int
2311 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2312 struct ring_buffer_event *event)
2314 unsigned long new_index, old_index;
2315 struct buffer_page *bpage;
2316 unsigned long index;
2317 unsigned long addr;
2319 new_index = rb_event_index(event);
2320 old_index = new_index + rb_event_ts_length(event);
2321 addr = (unsigned long)event;
2322 addr &= PAGE_MASK;
2324 bpage = READ_ONCE(cpu_buffer->tail_page);
2326 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2327 unsigned long write_mask =
2328 local_read(&bpage->write) & ~RB_WRITE_MASK;
2329 unsigned long event_length = rb_event_length(event);
2331 * This is on the tail page. It is possible that
2332 * a write could come in and move the tail page
2333 * and write to the next page. That is fine
2334 * because we just shorten what is on this page.
2336 old_index += write_mask;
2337 new_index += write_mask;
2338 index = local_cmpxchg(&bpage->write, old_index, new_index);
2339 if (index == old_index) {
2340 /* update counters */
2341 local_sub(event_length, &cpu_buffer->entries_bytes);
2342 return 1;
2346 /* could not discard */
2347 return 0;
2350 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2352 local_inc(&cpu_buffer->committing);
2353 local_inc(&cpu_buffer->commits);
2356 static __always_inline void
2357 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2359 unsigned long max_count;
2362 * We only race with interrupts and NMIs on this CPU.
2363 * If we own the commit event, then we can commit
2364 * all others that interrupted us, since the interruptions
2365 * are in stack format (they finish before they come
2366 * back to us). This allows us to do a simple loop to
2367 * assign the commit to the tail.
2369 again:
2370 max_count = cpu_buffer->nr_pages * 100;
2372 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2373 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2374 return;
2375 if (RB_WARN_ON(cpu_buffer,
2376 rb_is_reader_page(cpu_buffer->tail_page)))
2377 return;
2378 local_set(&cpu_buffer->commit_page->page->commit,
2379 rb_page_write(cpu_buffer->commit_page));
2380 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2381 /* Only update the write stamp if the page has an event */
2382 if (rb_page_write(cpu_buffer->commit_page))
2383 cpu_buffer->write_stamp =
2384 cpu_buffer->commit_page->page->time_stamp;
2385 /* add barrier to keep gcc from optimizing too much */
2386 barrier();
2388 while (rb_commit_index(cpu_buffer) !=
2389 rb_page_write(cpu_buffer->commit_page)) {
2391 local_set(&cpu_buffer->commit_page->page->commit,
2392 rb_page_write(cpu_buffer->commit_page));
2393 RB_WARN_ON(cpu_buffer,
2394 local_read(&cpu_buffer->commit_page->page->commit) &
2395 ~RB_WRITE_MASK);
2396 barrier();
2399 /* again, keep gcc from optimizing */
2400 barrier();
2403 * If an interrupt came in just after the first while loop
2404 * and pushed the tail page forward, we will be left with
2405 * a dangling commit that will never go forward.
2407 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2408 goto again;
2411 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2413 unsigned long commits;
2415 if (RB_WARN_ON(cpu_buffer,
2416 !local_read(&cpu_buffer->committing)))
2417 return;
2419 again:
2420 commits = local_read(&cpu_buffer->commits);
2421 /* synchronize with interrupts */
2422 barrier();
2423 if (local_read(&cpu_buffer->committing) == 1)
2424 rb_set_commit_to_write(cpu_buffer);
2426 local_dec(&cpu_buffer->committing);
2428 /* synchronize with interrupts */
2429 barrier();
2432 * Need to account for interrupts coming in between the
2433 * updating of the commit page and the clearing of the
2434 * committing counter.
2436 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2437 !local_read(&cpu_buffer->committing)) {
2438 local_inc(&cpu_buffer->committing);
2439 goto again;
2443 static inline void rb_event_discard(struct ring_buffer_event *event)
2445 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2446 event = skip_time_extend(event);
2448 /* array[0] holds the actual length for the discarded event */
2449 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2450 event->type_len = RINGBUF_TYPE_PADDING;
2451 /* time delta must be non zero */
2452 if (!event->time_delta)
2453 event->time_delta = 1;
2456 static __always_inline bool
2457 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2458 struct ring_buffer_event *event)
2460 unsigned long addr = (unsigned long)event;
2461 unsigned long index;
2463 index = rb_event_index(event);
2464 addr &= PAGE_MASK;
2466 return cpu_buffer->commit_page->page == (void *)addr &&
2467 rb_commit_index(cpu_buffer) == index;
2470 static __always_inline void
2471 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2472 struct ring_buffer_event *event)
2474 u64 delta;
2477 * The event first in the commit queue updates the
2478 * time stamp.
2480 if (rb_event_is_commit(cpu_buffer, event)) {
2482 * A commit event that is first on a page
2483 * updates the write timestamp with the page stamp
2485 if (!rb_event_index(event))
2486 cpu_buffer->write_stamp =
2487 cpu_buffer->commit_page->page->time_stamp;
2488 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2489 delta = event->array[0];
2490 delta <<= TS_SHIFT;
2491 delta += event->time_delta;
2492 cpu_buffer->write_stamp += delta;
2493 } else
2494 cpu_buffer->write_stamp += event->time_delta;
2498 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2499 struct ring_buffer_event *event)
2501 local_inc(&cpu_buffer->entries);
2502 rb_update_write_stamp(cpu_buffer, event);
2503 rb_end_commit(cpu_buffer);
2506 static __always_inline void
2507 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2509 bool pagebusy;
2511 if (buffer->irq_work.waiters_pending) {
2512 buffer->irq_work.waiters_pending = false;
2513 /* irq_work_queue() supplies it's own memory barriers */
2514 irq_work_queue(&buffer->irq_work.work);
2517 if (cpu_buffer->irq_work.waiters_pending) {
2518 cpu_buffer->irq_work.waiters_pending = false;
2519 /* irq_work_queue() supplies it's own memory barriers */
2520 irq_work_queue(&cpu_buffer->irq_work.work);
2523 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2525 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2526 cpu_buffer->irq_work.wakeup_full = true;
2527 cpu_buffer->irq_work.full_waiters_pending = false;
2528 /* irq_work_queue() supplies it's own memory barriers */
2529 irq_work_queue(&cpu_buffer->irq_work.work);
2534 * The lock and unlock are done within a preempt disable section.
2535 * The current_context per_cpu variable can only be modified
2536 * by the current task between lock and unlock. But it can
2537 * be modified more than once via an interrupt. To pass this
2538 * information from the lock to the unlock without having to
2539 * access the 'in_interrupt()' functions again (which do show
2540 * a bit of overhead in something as critical as function tracing,
2541 * we use a bitmask trick.
2543 * bit 0 = NMI context
2544 * bit 1 = IRQ context
2545 * bit 2 = SoftIRQ context
2546 * bit 3 = normal context.
2548 * This works because this is the order of contexts that can
2549 * preempt other contexts. A SoftIRQ never preempts an IRQ
2550 * context.
2552 * When the context is determined, the corresponding bit is
2553 * checked and set (if it was set, then a recursion of that context
2554 * happened).
2556 * On unlock, we need to clear this bit. To do so, just subtract
2557 * 1 from the current_context and AND it to itself.
2559 * (binary)
2560 * 101 - 1 = 100
2561 * 101 & 100 = 100 (clearing bit zero)
2563 * 1010 - 1 = 1001
2564 * 1010 & 1001 = 1000 (clearing bit 1)
2566 * The least significant bit can be cleared this way, and it
2567 * just so happens that it is the same bit corresponding to
2568 * the current context.
2571 static __always_inline int
2572 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2574 unsigned int val = cpu_buffer->current_context;
2575 unsigned long pc = preempt_count();
2576 int bit;
2578 if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
2579 bit = RB_CTX_NORMAL;
2580 else
2581 bit = pc & NMI_MASK ? RB_CTX_NMI :
2582 pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
2584 if (unlikely(val & (1 << bit)))
2585 return 1;
2587 val |= (1 << bit);
2588 cpu_buffer->current_context = val;
2590 return 0;
2593 static __always_inline void
2594 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2596 cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2600 * ring_buffer_unlock_commit - commit a reserved
2601 * @buffer: The buffer to commit to
2602 * @event: The event pointer to commit.
2604 * This commits the data to the ring buffer, and releases any locks held.
2606 * Must be paired with ring_buffer_lock_reserve.
2608 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2609 struct ring_buffer_event *event)
2611 struct ring_buffer_per_cpu *cpu_buffer;
2612 int cpu = raw_smp_processor_id();
2614 cpu_buffer = buffer->buffers[cpu];
2616 rb_commit(cpu_buffer, event);
2618 rb_wakeups(buffer, cpu_buffer);
2620 trace_recursive_unlock(cpu_buffer);
2622 preempt_enable_notrace();
2624 return 0;
2626 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2628 static noinline void
2629 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2630 struct rb_event_info *info)
2632 WARN_ONCE(info->delta > (1ULL << 59),
2633 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2634 (unsigned long long)info->delta,
2635 (unsigned long long)info->ts,
2636 (unsigned long long)cpu_buffer->write_stamp,
2637 sched_clock_stable() ? "" :
2638 "If you just came from a suspend/resume,\n"
2639 "please switch to the trace global clock:\n"
2640 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2641 info->add_timestamp = 1;
2644 static struct ring_buffer_event *
2645 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2646 struct rb_event_info *info)
2648 struct ring_buffer_event *event;
2649 struct buffer_page *tail_page;
2650 unsigned long tail, write;
2653 * If the time delta since the last event is too big to
2654 * hold in the time field of the event, then we append a
2655 * TIME EXTEND event ahead of the data event.
2657 if (unlikely(info->add_timestamp))
2658 info->length += RB_LEN_TIME_EXTEND;
2660 /* Don't let the compiler play games with cpu_buffer->tail_page */
2661 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2662 write = local_add_return(info->length, &tail_page->write);
2664 /* set write to only the index of the write */
2665 write &= RB_WRITE_MASK;
2666 tail = write - info->length;
2669 * If this is the first commit on the page, then it has the same
2670 * timestamp as the page itself.
2672 if (!tail)
2673 info->delta = 0;
2675 /* See if we shot pass the end of this buffer page */
2676 if (unlikely(write > BUF_PAGE_SIZE))
2677 return rb_move_tail(cpu_buffer, tail, info);
2679 /* We reserved something on the buffer */
2681 event = __rb_page_index(tail_page, tail);
2682 rb_update_event(cpu_buffer, event, info);
2684 local_inc(&tail_page->entries);
2687 * If this is the first commit on the page, then update
2688 * its timestamp.
2690 if (!tail)
2691 tail_page->page->time_stamp = info->ts;
2693 /* account for these added bytes */
2694 local_add(info->length, &cpu_buffer->entries_bytes);
2696 return event;
2699 static __always_inline struct ring_buffer_event *
2700 rb_reserve_next_event(struct ring_buffer *buffer,
2701 struct ring_buffer_per_cpu *cpu_buffer,
2702 unsigned long length)
2704 struct ring_buffer_event *event;
2705 struct rb_event_info info;
2706 int nr_loops = 0;
2707 u64 diff;
2709 rb_start_commit(cpu_buffer);
2711 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2713 * Due to the ability to swap a cpu buffer from a buffer
2714 * it is possible it was swapped before we committed.
2715 * (committing stops a swap). We check for it here and
2716 * if it happened, we have to fail the write.
2718 barrier();
2719 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
2720 local_dec(&cpu_buffer->committing);
2721 local_dec(&cpu_buffer->commits);
2722 return NULL;
2724 #endif
2726 info.length = rb_calculate_event_length(length);
2727 again:
2728 info.add_timestamp = 0;
2729 info.delta = 0;
2732 * We allow for interrupts to reenter here and do a trace.
2733 * If one does, it will cause this original code to loop
2734 * back here. Even with heavy interrupts happening, this
2735 * should only happen a few times in a row. If this happens
2736 * 1000 times in a row, there must be either an interrupt
2737 * storm or we have something buggy.
2738 * Bail!
2740 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2741 goto out_fail;
2743 info.ts = rb_time_stamp(cpu_buffer->buffer);
2744 diff = info.ts - cpu_buffer->write_stamp;
2746 /* make sure this diff is calculated here */
2747 barrier();
2749 /* Did the write stamp get updated already? */
2750 if (likely(info.ts >= cpu_buffer->write_stamp)) {
2751 info.delta = diff;
2752 if (unlikely(test_time_stamp(info.delta)))
2753 rb_handle_timestamp(cpu_buffer, &info);
2756 event = __rb_reserve_next(cpu_buffer, &info);
2758 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2759 if (info.add_timestamp)
2760 info.length -= RB_LEN_TIME_EXTEND;
2761 goto again;
2764 if (!event)
2765 goto out_fail;
2767 return event;
2769 out_fail:
2770 rb_end_commit(cpu_buffer);
2771 return NULL;
2775 * ring_buffer_lock_reserve - reserve a part of the buffer
2776 * @buffer: the ring buffer to reserve from
2777 * @length: the length of the data to reserve (excluding event header)
2779 * Returns a reseverd event on the ring buffer to copy directly to.
2780 * The user of this interface will need to get the body to write into
2781 * and can use the ring_buffer_event_data() interface.
2783 * The length is the length of the data needed, not the event length
2784 * which also includes the event header.
2786 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2787 * If NULL is returned, then nothing has been allocated or locked.
2789 struct ring_buffer_event *
2790 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2792 struct ring_buffer_per_cpu *cpu_buffer;
2793 struct ring_buffer_event *event;
2794 int cpu;
2796 /* If we are tracing schedule, we don't want to recurse */
2797 preempt_disable_notrace();
2799 if (unlikely(atomic_read(&buffer->record_disabled)))
2800 goto out;
2802 cpu = raw_smp_processor_id();
2804 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2805 goto out;
2807 cpu_buffer = buffer->buffers[cpu];
2809 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2810 goto out;
2812 if (unlikely(length > BUF_MAX_DATA_SIZE))
2813 goto out;
2815 if (unlikely(trace_recursive_lock(cpu_buffer)))
2816 goto out;
2818 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2819 if (!event)
2820 goto out_unlock;
2822 return event;
2824 out_unlock:
2825 trace_recursive_unlock(cpu_buffer);
2826 out:
2827 preempt_enable_notrace();
2828 return NULL;
2830 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2833 * Decrement the entries to the page that an event is on.
2834 * The event does not even need to exist, only the pointer
2835 * to the page it is on. This may only be called before the commit
2836 * takes place.
2838 static inline void
2839 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2840 struct ring_buffer_event *event)
2842 unsigned long addr = (unsigned long)event;
2843 struct buffer_page *bpage = cpu_buffer->commit_page;
2844 struct buffer_page *start;
2846 addr &= PAGE_MASK;
2848 /* Do the likely case first */
2849 if (likely(bpage->page == (void *)addr)) {
2850 local_dec(&bpage->entries);
2851 return;
2855 * Because the commit page may be on the reader page we
2856 * start with the next page and check the end loop there.
2858 rb_inc_page(cpu_buffer, &bpage);
2859 start = bpage;
2860 do {
2861 if (bpage->page == (void *)addr) {
2862 local_dec(&bpage->entries);
2863 return;
2865 rb_inc_page(cpu_buffer, &bpage);
2866 } while (bpage != start);
2868 /* commit not part of this buffer?? */
2869 RB_WARN_ON(cpu_buffer, 1);
2873 * ring_buffer_commit_discard - discard an event that has not been committed
2874 * @buffer: the ring buffer
2875 * @event: non committed event to discard
2877 * Sometimes an event that is in the ring buffer needs to be ignored.
2878 * This function lets the user discard an event in the ring buffer
2879 * and then that event will not be read later.
2881 * This function only works if it is called before the the item has been
2882 * committed. It will try to free the event from the ring buffer
2883 * if another event has not been added behind it.
2885 * If another event has been added behind it, it will set the event
2886 * up as discarded, and perform the commit.
2888 * If this function is called, do not call ring_buffer_unlock_commit on
2889 * the event.
2891 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2892 struct ring_buffer_event *event)
2894 struct ring_buffer_per_cpu *cpu_buffer;
2895 int cpu;
2897 /* The event is discarded regardless */
2898 rb_event_discard(event);
2900 cpu = smp_processor_id();
2901 cpu_buffer = buffer->buffers[cpu];
2904 * This must only be called if the event has not been
2905 * committed yet. Thus we can assume that preemption
2906 * is still disabled.
2908 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2910 rb_decrement_entry(cpu_buffer, event);
2911 if (rb_try_to_discard(cpu_buffer, event))
2912 goto out;
2915 * The commit is still visible by the reader, so we
2916 * must still update the timestamp.
2918 rb_update_write_stamp(cpu_buffer, event);
2919 out:
2920 rb_end_commit(cpu_buffer);
2922 trace_recursive_unlock(cpu_buffer);
2924 preempt_enable_notrace();
2927 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2930 * ring_buffer_write - write data to the buffer without reserving
2931 * @buffer: The ring buffer to write to.
2932 * @length: The length of the data being written (excluding the event header)
2933 * @data: The data to write to the buffer.
2935 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2936 * one function. If you already have the data to write to the buffer, it
2937 * may be easier to simply call this function.
2939 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2940 * and not the length of the event which would hold the header.
2942 int ring_buffer_write(struct ring_buffer *buffer,
2943 unsigned long length,
2944 void *data)
2946 struct ring_buffer_per_cpu *cpu_buffer;
2947 struct ring_buffer_event *event;
2948 void *body;
2949 int ret = -EBUSY;
2950 int cpu;
2952 preempt_disable_notrace();
2954 if (atomic_read(&buffer->record_disabled))
2955 goto out;
2957 cpu = raw_smp_processor_id();
2959 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2960 goto out;
2962 cpu_buffer = buffer->buffers[cpu];
2964 if (atomic_read(&cpu_buffer->record_disabled))
2965 goto out;
2967 if (length > BUF_MAX_DATA_SIZE)
2968 goto out;
2970 if (unlikely(trace_recursive_lock(cpu_buffer)))
2971 goto out;
2973 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2974 if (!event)
2975 goto out_unlock;
2977 body = rb_event_data(event);
2979 memcpy(body, data, length);
2981 rb_commit(cpu_buffer, event);
2983 rb_wakeups(buffer, cpu_buffer);
2985 ret = 0;
2987 out_unlock:
2988 trace_recursive_unlock(cpu_buffer);
2990 out:
2991 preempt_enable_notrace();
2993 return ret;
2995 EXPORT_SYMBOL_GPL(ring_buffer_write);
2997 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2999 struct buffer_page *reader = cpu_buffer->reader_page;
3000 struct buffer_page *head = rb_set_head_page(cpu_buffer);
3001 struct buffer_page *commit = cpu_buffer->commit_page;
3003 /* In case of error, head will be NULL */
3004 if (unlikely(!head))
3005 return true;
3007 return reader->read == rb_page_commit(reader) &&
3008 (commit == reader ||
3009 (commit == head &&
3010 head->read == rb_page_commit(commit)));
3014 * ring_buffer_record_disable - stop all writes into the buffer
3015 * @buffer: The ring buffer to stop writes to.
3017 * This prevents all writes to the buffer. Any attempt to write
3018 * to the buffer after this will fail and return NULL.
3020 * The caller should call synchronize_sched() after this.
3022 void ring_buffer_record_disable(struct ring_buffer *buffer)
3024 atomic_inc(&buffer->record_disabled);
3026 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3029 * ring_buffer_record_enable - enable writes to the buffer
3030 * @buffer: The ring buffer to enable writes
3032 * Note, multiple disables will need the same number of enables
3033 * to truly enable the writing (much like preempt_disable).
3035 void ring_buffer_record_enable(struct ring_buffer *buffer)
3037 atomic_dec(&buffer->record_disabled);
3039 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3042 * ring_buffer_record_off - stop all writes into the buffer
3043 * @buffer: The ring buffer to stop writes to.
3045 * This prevents all writes to the buffer. Any attempt to write
3046 * to the buffer after this will fail and return NULL.
3048 * This is different than ring_buffer_record_disable() as
3049 * it works like an on/off switch, where as the disable() version
3050 * must be paired with a enable().
3052 void ring_buffer_record_off(struct ring_buffer *buffer)
3054 unsigned int rd;
3055 unsigned int new_rd;
3057 do {
3058 rd = atomic_read(&buffer->record_disabled);
3059 new_rd = rd | RB_BUFFER_OFF;
3060 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3062 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3065 * ring_buffer_record_on - restart writes into the buffer
3066 * @buffer: The ring buffer to start writes to.
3068 * This enables all writes to the buffer that was disabled by
3069 * ring_buffer_record_off().
3071 * This is different than ring_buffer_record_enable() as
3072 * it works like an on/off switch, where as the enable() version
3073 * must be paired with a disable().
3075 void ring_buffer_record_on(struct ring_buffer *buffer)
3077 unsigned int rd;
3078 unsigned int new_rd;
3080 do {
3081 rd = atomic_read(&buffer->record_disabled);
3082 new_rd = rd & ~RB_BUFFER_OFF;
3083 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3085 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3088 * ring_buffer_record_is_on - return true if the ring buffer can write
3089 * @buffer: The ring buffer to see if write is enabled
3091 * Returns true if the ring buffer is in a state that it accepts writes.
3093 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3095 return !atomic_read(&buffer->record_disabled);
3099 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3100 * @buffer: The ring buffer to stop writes to.
3101 * @cpu: The CPU buffer to stop
3103 * This prevents all writes to the buffer. Any attempt to write
3104 * to the buffer after this will fail and return NULL.
3106 * The caller should call synchronize_sched() after this.
3108 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3110 struct ring_buffer_per_cpu *cpu_buffer;
3112 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3113 return;
3115 cpu_buffer = buffer->buffers[cpu];
3116 atomic_inc(&cpu_buffer->record_disabled);
3118 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3121 * ring_buffer_record_enable_cpu - enable writes to the buffer
3122 * @buffer: The ring buffer to enable writes
3123 * @cpu: The CPU to enable.
3125 * Note, multiple disables will need the same number of enables
3126 * to truly enable the writing (much like preempt_disable).
3128 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3130 struct ring_buffer_per_cpu *cpu_buffer;
3132 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3133 return;
3135 cpu_buffer = buffer->buffers[cpu];
3136 atomic_dec(&cpu_buffer->record_disabled);
3138 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3141 * The total entries in the ring buffer is the running counter
3142 * of entries entered into the ring buffer, minus the sum of
3143 * the entries read from the ring buffer and the number of
3144 * entries that were overwritten.
3146 static inline unsigned long
3147 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3149 return local_read(&cpu_buffer->entries) -
3150 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3154 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3155 * @buffer: The ring buffer
3156 * @cpu: The per CPU buffer to read from.
3158 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3160 unsigned long flags;
3161 struct ring_buffer_per_cpu *cpu_buffer;
3162 struct buffer_page *bpage;
3163 u64 ret = 0;
3165 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3166 return 0;
3168 cpu_buffer = buffer->buffers[cpu];
3169 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3171 * if the tail is on reader_page, oldest time stamp is on the reader
3172 * page
3174 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3175 bpage = cpu_buffer->reader_page;
3176 else
3177 bpage = rb_set_head_page(cpu_buffer);
3178 if (bpage)
3179 ret = bpage->page->time_stamp;
3180 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3182 return ret;
3184 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3187 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3188 * @buffer: The ring buffer
3189 * @cpu: The per CPU buffer to read from.
3191 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3193 struct ring_buffer_per_cpu *cpu_buffer;
3194 unsigned long ret;
3196 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3197 return 0;
3199 cpu_buffer = buffer->buffers[cpu];
3200 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3202 return ret;
3204 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3207 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3208 * @buffer: The ring buffer
3209 * @cpu: The per CPU buffer to get the entries from.
3211 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3213 struct ring_buffer_per_cpu *cpu_buffer;
3215 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3216 return 0;
3218 cpu_buffer = buffer->buffers[cpu];
3220 return rb_num_of_entries(cpu_buffer);
3222 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3225 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3226 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3227 * @buffer: The ring buffer
3228 * @cpu: The per CPU buffer to get the number of overruns from
3230 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3232 struct ring_buffer_per_cpu *cpu_buffer;
3233 unsigned long ret;
3235 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3236 return 0;
3238 cpu_buffer = buffer->buffers[cpu];
3239 ret = local_read(&cpu_buffer->overrun);
3241 return ret;
3243 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3246 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3247 * commits failing due to the buffer wrapping around while there are uncommitted
3248 * events, such as during an interrupt storm.
3249 * @buffer: The ring buffer
3250 * @cpu: The per CPU buffer to get the number of overruns from
3252 unsigned long
3253 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3255 struct ring_buffer_per_cpu *cpu_buffer;
3256 unsigned long ret;
3258 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3259 return 0;
3261 cpu_buffer = buffer->buffers[cpu];
3262 ret = local_read(&cpu_buffer->commit_overrun);
3264 return ret;
3266 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3269 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3270 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3271 * @buffer: The ring buffer
3272 * @cpu: The per CPU buffer to get the number of overruns from
3274 unsigned long
3275 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3277 struct ring_buffer_per_cpu *cpu_buffer;
3278 unsigned long ret;
3280 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3281 return 0;
3283 cpu_buffer = buffer->buffers[cpu];
3284 ret = local_read(&cpu_buffer->dropped_events);
3286 return ret;
3288 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3291 * ring_buffer_read_events_cpu - get the number of events successfully read
3292 * @buffer: The ring buffer
3293 * @cpu: The per CPU buffer to get the number of events read
3295 unsigned long
3296 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3298 struct ring_buffer_per_cpu *cpu_buffer;
3300 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3301 return 0;
3303 cpu_buffer = buffer->buffers[cpu];
3304 return cpu_buffer->read;
3306 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3309 * ring_buffer_entries - get the number of entries in a buffer
3310 * @buffer: The ring buffer
3312 * Returns the total number of entries in the ring buffer
3313 * (all CPU entries)
3315 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3317 struct ring_buffer_per_cpu *cpu_buffer;
3318 unsigned long entries = 0;
3319 int cpu;
3321 /* if you care about this being correct, lock the buffer */
3322 for_each_buffer_cpu(buffer, cpu) {
3323 cpu_buffer = buffer->buffers[cpu];
3324 entries += rb_num_of_entries(cpu_buffer);
3327 return entries;
3329 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3332 * ring_buffer_overruns - get the number of overruns in buffer
3333 * @buffer: The ring buffer
3335 * Returns the total number of overruns in the ring buffer
3336 * (all CPU entries)
3338 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3340 struct ring_buffer_per_cpu *cpu_buffer;
3341 unsigned long overruns = 0;
3342 int cpu;
3344 /* if you care about this being correct, lock the buffer */
3345 for_each_buffer_cpu(buffer, cpu) {
3346 cpu_buffer = buffer->buffers[cpu];
3347 overruns += local_read(&cpu_buffer->overrun);
3350 return overruns;
3352 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3354 static void rb_iter_reset(struct ring_buffer_iter *iter)
3356 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3358 /* Iterator usage is expected to have record disabled */
3359 iter->head_page = cpu_buffer->reader_page;
3360 iter->head = cpu_buffer->reader_page->read;
3362 iter->cache_reader_page = iter->head_page;
3363 iter->cache_read = cpu_buffer->read;
3365 if (iter->head)
3366 iter->read_stamp = cpu_buffer->read_stamp;
3367 else
3368 iter->read_stamp = iter->head_page->page->time_stamp;
3372 * ring_buffer_iter_reset - reset an iterator
3373 * @iter: The iterator to reset
3375 * Resets the iterator, so that it will start from the beginning
3376 * again.
3378 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3380 struct ring_buffer_per_cpu *cpu_buffer;
3381 unsigned long flags;
3383 if (!iter)
3384 return;
3386 cpu_buffer = iter->cpu_buffer;
3388 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3389 rb_iter_reset(iter);
3390 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3392 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3395 * ring_buffer_iter_empty - check if an iterator has no more to read
3396 * @iter: The iterator to check
3398 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3400 struct ring_buffer_per_cpu *cpu_buffer;
3401 struct buffer_page *reader;
3402 struct buffer_page *head_page;
3403 struct buffer_page *commit_page;
3404 unsigned commit;
3406 cpu_buffer = iter->cpu_buffer;
3408 /* Remember, trace recording is off when iterator is in use */
3409 reader = cpu_buffer->reader_page;
3410 head_page = cpu_buffer->head_page;
3411 commit_page = cpu_buffer->commit_page;
3412 commit = rb_page_commit(commit_page);
3414 return ((iter->head_page == commit_page && iter->head == commit) ||
3415 (iter->head_page == reader && commit_page == head_page &&
3416 head_page->read == commit &&
3417 iter->head == rb_page_commit(cpu_buffer->reader_page)));
3419 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3421 static void
3422 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3423 struct ring_buffer_event *event)
3425 u64 delta;
3427 switch (event->type_len) {
3428 case RINGBUF_TYPE_PADDING:
3429 return;
3431 case RINGBUF_TYPE_TIME_EXTEND:
3432 delta = event->array[0];
3433 delta <<= TS_SHIFT;
3434 delta += event->time_delta;
3435 cpu_buffer->read_stamp += delta;
3436 return;
3438 case RINGBUF_TYPE_TIME_STAMP:
3439 /* FIXME: not implemented */
3440 return;
3442 case RINGBUF_TYPE_DATA:
3443 cpu_buffer->read_stamp += event->time_delta;
3444 return;
3446 default:
3447 BUG();
3449 return;
3452 static void
3453 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3454 struct ring_buffer_event *event)
3456 u64 delta;
3458 switch (event->type_len) {
3459 case RINGBUF_TYPE_PADDING:
3460 return;
3462 case RINGBUF_TYPE_TIME_EXTEND:
3463 delta = event->array[0];
3464 delta <<= TS_SHIFT;
3465 delta += event->time_delta;
3466 iter->read_stamp += delta;
3467 return;
3469 case RINGBUF_TYPE_TIME_STAMP:
3470 /* FIXME: not implemented */
3471 return;
3473 case RINGBUF_TYPE_DATA:
3474 iter->read_stamp += event->time_delta;
3475 return;
3477 default:
3478 BUG();
3480 return;
3483 static struct buffer_page *
3484 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3486 struct buffer_page *reader = NULL;
3487 unsigned long overwrite;
3488 unsigned long flags;
3489 int nr_loops = 0;
3490 int ret;
3492 local_irq_save(flags);
3493 arch_spin_lock(&cpu_buffer->lock);
3495 again:
3497 * This should normally only loop twice. But because the
3498 * start of the reader inserts an empty page, it causes
3499 * a case where we will loop three times. There should be no
3500 * reason to loop four times (that I know of).
3502 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3503 reader = NULL;
3504 goto out;
3507 reader = cpu_buffer->reader_page;
3509 /* If there's more to read, return this page */
3510 if (cpu_buffer->reader_page->read < rb_page_size(reader))
3511 goto out;
3513 /* Never should we have an index greater than the size */
3514 if (RB_WARN_ON(cpu_buffer,
3515 cpu_buffer->reader_page->read > rb_page_size(reader)))
3516 goto out;
3518 /* check if we caught up to the tail */
3519 reader = NULL;
3520 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3521 goto out;
3523 /* Don't bother swapping if the ring buffer is empty */
3524 if (rb_num_of_entries(cpu_buffer) == 0)
3525 goto out;
3528 * Reset the reader page to size zero.
3530 local_set(&cpu_buffer->reader_page->write, 0);
3531 local_set(&cpu_buffer->reader_page->entries, 0);
3532 local_set(&cpu_buffer->reader_page->page->commit, 0);
3533 cpu_buffer->reader_page->real_end = 0;
3535 spin:
3537 * Splice the empty reader page into the list around the head.
3539 reader = rb_set_head_page(cpu_buffer);
3540 if (!reader)
3541 goto out;
3542 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3543 cpu_buffer->reader_page->list.prev = reader->list.prev;
3546 * cpu_buffer->pages just needs to point to the buffer, it
3547 * has no specific buffer page to point to. Lets move it out
3548 * of our way so we don't accidentally swap it.
3550 cpu_buffer->pages = reader->list.prev;
3552 /* The reader page will be pointing to the new head */
3553 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3556 * We want to make sure we read the overruns after we set up our
3557 * pointers to the next object. The writer side does a
3558 * cmpxchg to cross pages which acts as the mb on the writer
3559 * side. Note, the reader will constantly fail the swap
3560 * while the writer is updating the pointers, so this
3561 * guarantees that the overwrite recorded here is the one we
3562 * want to compare with the last_overrun.
3564 smp_mb();
3565 overwrite = local_read(&(cpu_buffer->overrun));
3568 * Here's the tricky part.
3570 * We need to move the pointer past the header page.
3571 * But we can only do that if a writer is not currently
3572 * moving it. The page before the header page has the
3573 * flag bit '1' set if it is pointing to the page we want.
3574 * but if the writer is in the process of moving it
3575 * than it will be '2' or already moved '0'.
3578 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3581 * If we did not convert it, then we must try again.
3583 if (!ret)
3584 goto spin;
3587 * Yeah! We succeeded in replacing the page.
3589 * Now make the new head point back to the reader page.
3591 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3592 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3594 /* Finally update the reader page to the new head */
3595 cpu_buffer->reader_page = reader;
3596 cpu_buffer->reader_page->read = 0;
3598 if (overwrite != cpu_buffer->last_overrun) {
3599 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3600 cpu_buffer->last_overrun = overwrite;
3603 goto again;
3605 out:
3606 /* Update the read_stamp on the first event */
3607 if (reader && reader->read == 0)
3608 cpu_buffer->read_stamp = reader->page->time_stamp;
3610 arch_spin_unlock(&cpu_buffer->lock);
3611 local_irq_restore(flags);
3613 return reader;
3616 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3618 struct ring_buffer_event *event;
3619 struct buffer_page *reader;
3620 unsigned length;
3622 reader = rb_get_reader_page(cpu_buffer);
3624 /* This function should not be called when buffer is empty */
3625 if (RB_WARN_ON(cpu_buffer, !reader))
3626 return;
3628 event = rb_reader_event(cpu_buffer);
3630 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3631 cpu_buffer->read++;
3633 rb_update_read_stamp(cpu_buffer, event);
3635 length = rb_event_length(event);
3636 cpu_buffer->reader_page->read += length;
3639 static void rb_advance_iter(struct ring_buffer_iter *iter)
3641 struct ring_buffer_per_cpu *cpu_buffer;
3642 struct ring_buffer_event *event;
3643 unsigned length;
3645 cpu_buffer = iter->cpu_buffer;
3648 * Check if we are at the end of the buffer.
3650 if (iter->head >= rb_page_size(iter->head_page)) {
3651 /* discarded commits can make the page empty */
3652 if (iter->head_page == cpu_buffer->commit_page)
3653 return;
3654 rb_inc_iter(iter);
3655 return;
3658 event = rb_iter_head_event(iter);
3660 length = rb_event_length(event);
3663 * This should not be called to advance the header if we are
3664 * at the tail of the buffer.
3666 if (RB_WARN_ON(cpu_buffer,
3667 (iter->head_page == cpu_buffer->commit_page) &&
3668 (iter->head + length > rb_commit_index(cpu_buffer))))
3669 return;
3671 rb_update_iter_read_stamp(iter, event);
3673 iter->head += length;
3675 /* check for end of page padding */
3676 if ((iter->head >= rb_page_size(iter->head_page)) &&
3677 (iter->head_page != cpu_buffer->commit_page))
3678 rb_inc_iter(iter);
3681 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3683 return cpu_buffer->lost_events;
3686 static struct ring_buffer_event *
3687 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3688 unsigned long *lost_events)
3690 struct ring_buffer_event *event;
3691 struct buffer_page *reader;
3692 int nr_loops = 0;
3694 again:
3696 * We repeat when a time extend is encountered.
3697 * Since the time extend is always attached to a data event,
3698 * we should never loop more than once.
3699 * (We never hit the following condition more than twice).
3701 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3702 return NULL;
3704 reader = rb_get_reader_page(cpu_buffer);
3705 if (!reader)
3706 return NULL;
3708 event = rb_reader_event(cpu_buffer);
3710 switch (event->type_len) {
3711 case RINGBUF_TYPE_PADDING:
3712 if (rb_null_event(event))
3713 RB_WARN_ON(cpu_buffer, 1);
3715 * Because the writer could be discarding every
3716 * event it creates (which would probably be bad)
3717 * if we were to go back to "again" then we may never
3718 * catch up, and will trigger the warn on, or lock
3719 * the box. Return the padding, and we will release
3720 * the current locks, and try again.
3722 return event;
3724 case RINGBUF_TYPE_TIME_EXTEND:
3725 /* Internal data, OK to advance */
3726 rb_advance_reader(cpu_buffer);
3727 goto again;
3729 case RINGBUF_TYPE_TIME_STAMP:
3730 /* FIXME: not implemented */
3731 rb_advance_reader(cpu_buffer);
3732 goto again;
3734 case RINGBUF_TYPE_DATA:
3735 if (ts) {
3736 *ts = cpu_buffer->read_stamp + event->time_delta;
3737 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3738 cpu_buffer->cpu, ts);
3740 if (lost_events)
3741 *lost_events = rb_lost_events(cpu_buffer);
3742 return event;
3744 default:
3745 BUG();
3748 return NULL;
3750 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3752 static struct ring_buffer_event *
3753 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3755 struct ring_buffer *buffer;
3756 struct ring_buffer_per_cpu *cpu_buffer;
3757 struct ring_buffer_event *event;
3758 int nr_loops = 0;
3760 cpu_buffer = iter->cpu_buffer;
3761 buffer = cpu_buffer->buffer;
3764 * Check if someone performed a consuming read to
3765 * the buffer. A consuming read invalidates the iterator
3766 * and we need to reset the iterator in this case.
3768 if (unlikely(iter->cache_read != cpu_buffer->read ||
3769 iter->cache_reader_page != cpu_buffer->reader_page))
3770 rb_iter_reset(iter);
3772 again:
3773 if (ring_buffer_iter_empty(iter))
3774 return NULL;
3777 * We repeat when a time extend is encountered or we hit
3778 * the end of the page. Since the time extend is always attached
3779 * to a data event, we should never loop more than three times.
3780 * Once for going to next page, once on time extend, and
3781 * finally once to get the event.
3782 * (We never hit the following condition more than thrice).
3784 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3785 return NULL;
3787 if (rb_per_cpu_empty(cpu_buffer))
3788 return NULL;
3790 if (iter->head >= rb_page_size(iter->head_page)) {
3791 rb_inc_iter(iter);
3792 goto again;
3795 event = rb_iter_head_event(iter);
3797 switch (event->type_len) {
3798 case RINGBUF_TYPE_PADDING:
3799 if (rb_null_event(event)) {
3800 rb_inc_iter(iter);
3801 goto again;
3803 rb_advance_iter(iter);
3804 return event;
3806 case RINGBUF_TYPE_TIME_EXTEND:
3807 /* Internal data, OK to advance */
3808 rb_advance_iter(iter);
3809 goto again;
3811 case RINGBUF_TYPE_TIME_STAMP:
3812 /* FIXME: not implemented */
3813 rb_advance_iter(iter);
3814 goto again;
3816 case RINGBUF_TYPE_DATA:
3817 if (ts) {
3818 *ts = iter->read_stamp + event->time_delta;
3819 ring_buffer_normalize_time_stamp(buffer,
3820 cpu_buffer->cpu, ts);
3822 return event;
3824 default:
3825 BUG();
3828 return NULL;
3830 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3832 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3834 if (likely(!in_nmi())) {
3835 raw_spin_lock(&cpu_buffer->reader_lock);
3836 return true;
3840 * If an NMI die dumps out the content of the ring buffer
3841 * trylock must be used to prevent a deadlock if the NMI
3842 * preempted a task that holds the ring buffer locks. If
3843 * we get the lock then all is fine, if not, then continue
3844 * to do the read, but this can corrupt the ring buffer,
3845 * so it must be permanently disabled from future writes.
3846 * Reading from NMI is a oneshot deal.
3848 if (raw_spin_trylock(&cpu_buffer->reader_lock))
3849 return true;
3851 /* Continue without locking, but disable the ring buffer */
3852 atomic_inc(&cpu_buffer->record_disabled);
3853 return false;
3856 static inline void
3857 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3859 if (likely(locked))
3860 raw_spin_unlock(&cpu_buffer->reader_lock);
3861 return;
3865 * ring_buffer_peek - peek at the next event to be read
3866 * @buffer: The ring buffer to read
3867 * @cpu: The cpu to peak at
3868 * @ts: The timestamp counter of this event.
3869 * @lost_events: a variable to store if events were lost (may be NULL)
3871 * This will return the event that will be read next, but does
3872 * not consume the data.
3874 struct ring_buffer_event *
3875 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3876 unsigned long *lost_events)
3878 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3879 struct ring_buffer_event *event;
3880 unsigned long flags;
3881 bool dolock;
3883 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3884 return NULL;
3886 again:
3887 local_irq_save(flags);
3888 dolock = rb_reader_lock(cpu_buffer);
3889 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3890 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3891 rb_advance_reader(cpu_buffer);
3892 rb_reader_unlock(cpu_buffer, dolock);
3893 local_irq_restore(flags);
3895 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3896 goto again;
3898 return event;
3902 * ring_buffer_iter_peek - peek at the next event to be read
3903 * @iter: The ring buffer iterator
3904 * @ts: The timestamp counter of this event.
3906 * This will return the event that will be read next, but does
3907 * not increment the iterator.
3909 struct ring_buffer_event *
3910 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3912 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3913 struct ring_buffer_event *event;
3914 unsigned long flags;
3916 again:
3917 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3918 event = rb_iter_peek(iter, ts);
3919 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3921 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3922 goto again;
3924 return event;
3928 * ring_buffer_consume - return an event and consume it
3929 * @buffer: The ring buffer to get the next event from
3930 * @cpu: the cpu to read the buffer from
3931 * @ts: a variable to store the timestamp (may be NULL)
3932 * @lost_events: a variable to store if events were lost (may be NULL)
3934 * Returns the next event in the ring buffer, and that event is consumed.
3935 * Meaning, that sequential reads will keep returning a different event,
3936 * and eventually empty the ring buffer if the producer is slower.
3938 struct ring_buffer_event *
3939 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3940 unsigned long *lost_events)
3942 struct ring_buffer_per_cpu *cpu_buffer;
3943 struct ring_buffer_event *event = NULL;
3944 unsigned long flags;
3945 bool dolock;
3947 again:
3948 /* might be called in atomic */
3949 preempt_disable();
3951 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3952 goto out;
3954 cpu_buffer = buffer->buffers[cpu];
3955 local_irq_save(flags);
3956 dolock = rb_reader_lock(cpu_buffer);
3958 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3959 if (event) {
3960 cpu_buffer->lost_events = 0;
3961 rb_advance_reader(cpu_buffer);
3964 rb_reader_unlock(cpu_buffer, dolock);
3965 local_irq_restore(flags);
3967 out:
3968 preempt_enable();
3970 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3971 goto again;
3973 return event;
3975 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3978 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3979 * @buffer: The ring buffer to read from
3980 * @cpu: The cpu buffer to iterate over
3982 * This performs the initial preparations necessary to iterate
3983 * through the buffer. Memory is allocated, buffer recording
3984 * is disabled, and the iterator pointer is returned to the caller.
3986 * Disabling buffer recordng prevents the reading from being
3987 * corrupted. This is not a consuming read, so a producer is not
3988 * expected.
3990 * After a sequence of ring_buffer_read_prepare calls, the user is
3991 * expected to make at least one call to ring_buffer_read_prepare_sync.
3992 * Afterwards, ring_buffer_read_start is invoked to get things going
3993 * for real.
3995 * This overall must be paired with ring_buffer_read_finish.
3997 struct ring_buffer_iter *
3998 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4000 struct ring_buffer_per_cpu *cpu_buffer;
4001 struct ring_buffer_iter *iter;
4003 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4004 return NULL;
4006 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4007 if (!iter)
4008 return NULL;
4010 cpu_buffer = buffer->buffers[cpu];
4012 iter->cpu_buffer = cpu_buffer;
4014 atomic_inc(&buffer->resize_disabled);
4015 atomic_inc(&cpu_buffer->record_disabled);
4017 return iter;
4019 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4022 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4024 * All previously invoked ring_buffer_read_prepare calls to prepare
4025 * iterators will be synchronized. Afterwards, read_buffer_read_start
4026 * calls on those iterators are allowed.
4028 void
4029 ring_buffer_read_prepare_sync(void)
4031 synchronize_sched();
4033 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4036 * ring_buffer_read_start - start a non consuming read of the buffer
4037 * @iter: The iterator returned by ring_buffer_read_prepare
4039 * This finalizes the startup of an iteration through the buffer.
4040 * The iterator comes from a call to ring_buffer_read_prepare and
4041 * an intervening ring_buffer_read_prepare_sync must have been
4042 * performed.
4044 * Must be paired with ring_buffer_read_finish.
4046 void
4047 ring_buffer_read_start(struct ring_buffer_iter *iter)
4049 struct ring_buffer_per_cpu *cpu_buffer;
4050 unsigned long flags;
4052 if (!iter)
4053 return;
4055 cpu_buffer = iter->cpu_buffer;
4057 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4058 arch_spin_lock(&cpu_buffer->lock);
4059 rb_iter_reset(iter);
4060 arch_spin_unlock(&cpu_buffer->lock);
4061 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4063 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4066 * ring_buffer_read_finish - finish reading the iterator of the buffer
4067 * @iter: The iterator retrieved by ring_buffer_start
4069 * This re-enables the recording to the buffer, and frees the
4070 * iterator.
4072 void
4073 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4075 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4076 unsigned long flags;
4079 * Ring buffer is disabled from recording, here's a good place
4080 * to check the integrity of the ring buffer.
4081 * Must prevent readers from trying to read, as the check
4082 * clears the HEAD page and readers require it.
4084 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4085 rb_check_pages(cpu_buffer);
4086 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4088 atomic_dec(&cpu_buffer->record_disabled);
4089 atomic_dec(&cpu_buffer->buffer->resize_disabled);
4090 kfree(iter);
4092 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4095 * ring_buffer_read - read the next item in the ring buffer by the iterator
4096 * @iter: The ring buffer iterator
4097 * @ts: The time stamp of the event read.
4099 * This reads the next event in the ring buffer and increments the iterator.
4101 struct ring_buffer_event *
4102 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4104 struct ring_buffer_event *event;
4105 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4106 unsigned long flags;
4108 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4109 again:
4110 event = rb_iter_peek(iter, ts);
4111 if (!event)
4112 goto out;
4114 if (event->type_len == RINGBUF_TYPE_PADDING)
4115 goto again;
4117 rb_advance_iter(iter);
4118 out:
4119 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4121 return event;
4123 EXPORT_SYMBOL_GPL(ring_buffer_read);
4126 * ring_buffer_size - return the size of the ring buffer (in bytes)
4127 * @buffer: The ring buffer.
4129 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4132 * Earlier, this method returned
4133 * BUF_PAGE_SIZE * buffer->nr_pages
4134 * Since the nr_pages field is now removed, we have converted this to
4135 * return the per cpu buffer value.
4137 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4138 return 0;
4140 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4142 EXPORT_SYMBOL_GPL(ring_buffer_size);
4144 static void
4145 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4147 rb_head_page_deactivate(cpu_buffer);
4149 cpu_buffer->head_page
4150 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4151 local_set(&cpu_buffer->head_page->write, 0);
4152 local_set(&cpu_buffer->head_page->entries, 0);
4153 local_set(&cpu_buffer->head_page->page->commit, 0);
4155 cpu_buffer->head_page->read = 0;
4157 cpu_buffer->tail_page = cpu_buffer->head_page;
4158 cpu_buffer->commit_page = cpu_buffer->head_page;
4160 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4161 INIT_LIST_HEAD(&cpu_buffer->new_pages);
4162 local_set(&cpu_buffer->reader_page->write, 0);
4163 local_set(&cpu_buffer->reader_page->entries, 0);
4164 local_set(&cpu_buffer->reader_page->page->commit, 0);
4165 cpu_buffer->reader_page->read = 0;
4167 local_set(&cpu_buffer->entries_bytes, 0);
4168 local_set(&cpu_buffer->overrun, 0);
4169 local_set(&cpu_buffer->commit_overrun, 0);
4170 local_set(&cpu_buffer->dropped_events, 0);
4171 local_set(&cpu_buffer->entries, 0);
4172 local_set(&cpu_buffer->committing, 0);
4173 local_set(&cpu_buffer->commits, 0);
4174 cpu_buffer->read = 0;
4175 cpu_buffer->read_bytes = 0;
4177 cpu_buffer->write_stamp = 0;
4178 cpu_buffer->read_stamp = 0;
4180 cpu_buffer->lost_events = 0;
4181 cpu_buffer->last_overrun = 0;
4183 rb_head_page_activate(cpu_buffer);
4187 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4188 * @buffer: The ring buffer to reset a per cpu buffer of
4189 * @cpu: The CPU buffer to be reset
4191 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4193 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4194 unsigned long flags;
4196 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4197 return;
4199 atomic_inc(&buffer->resize_disabled);
4200 atomic_inc(&cpu_buffer->record_disabled);
4202 /* Make sure all commits have finished */
4203 synchronize_sched();
4205 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4207 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4208 goto out;
4210 arch_spin_lock(&cpu_buffer->lock);
4212 rb_reset_cpu(cpu_buffer);
4214 arch_spin_unlock(&cpu_buffer->lock);
4216 out:
4217 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4219 atomic_dec(&cpu_buffer->record_disabled);
4220 atomic_dec(&buffer->resize_disabled);
4222 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4225 * ring_buffer_reset - reset a ring buffer
4226 * @buffer: The ring buffer to reset all cpu buffers
4228 void ring_buffer_reset(struct ring_buffer *buffer)
4230 int cpu;
4232 for_each_buffer_cpu(buffer, cpu)
4233 ring_buffer_reset_cpu(buffer, cpu);
4235 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4238 * rind_buffer_empty - is the ring buffer empty?
4239 * @buffer: The ring buffer to test
4241 bool ring_buffer_empty(struct ring_buffer *buffer)
4243 struct ring_buffer_per_cpu *cpu_buffer;
4244 unsigned long flags;
4245 bool dolock;
4246 int cpu;
4247 int ret;
4249 /* yes this is racy, but if you don't like the race, lock the buffer */
4250 for_each_buffer_cpu(buffer, cpu) {
4251 cpu_buffer = buffer->buffers[cpu];
4252 local_irq_save(flags);
4253 dolock = rb_reader_lock(cpu_buffer);
4254 ret = rb_per_cpu_empty(cpu_buffer);
4255 rb_reader_unlock(cpu_buffer, dolock);
4256 local_irq_restore(flags);
4258 if (!ret)
4259 return false;
4262 return true;
4264 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4267 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4268 * @buffer: The ring buffer
4269 * @cpu: The CPU buffer to test
4271 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4273 struct ring_buffer_per_cpu *cpu_buffer;
4274 unsigned long flags;
4275 bool dolock;
4276 int ret;
4278 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4279 return true;
4281 cpu_buffer = buffer->buffers[cpu];
4282 local_irq_save(flags);
4283 dolock = rb_reader_lock(cpu_buffer);
4284 ret = rb_per_cpu_empty(cpu_buffer);
4285 rb_reader_unlock(cpu_buffer, dolock);
4286 local_irq_restore(flags);
4288 return ret;
4290 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4292 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4294 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4295 * @buffer_a: One buffer to swap with
4296 * @buffer_b: The other buffer to swap with
4298 * This function is useful for tracers that want to take a "snapshot"
4299 * of a CPU buffer and has another back up buffer lying around.
4300 * it is expected that the tracer handles the cpu buffer not being
4301 * used at the moment.
4303 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4304 struct ring_buffer *buffer_b, int cpu)
4306 struct ring_buffer_per_cpu *cpu_buffer_a;
4307 struct ring_buffer_per_cpu *cpu_buffer_b;
4308 int ret = -EINVAL;
4310 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4311 !cpumask_test_cpu(cpu, buffer_b->cpumask))
4312 goto out;
4314 cpu_buffer_a = buffer_a->buffers[cpu];
4315 cpu_buffer_b = buffer_b->buffers[cpu];
4317 /* At least make sure the two buffers are somewhat the same */
4318 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4319 goto out;
4321 ret = -EAGAIN;
4323 if (atomic_read(&buffer_a->record_disabled))
4324 goto out;
4326 if (atomic_read(&buffer_b->record_disabled))
4327 goto out;
4329 if (atomic_read(&cpu_buffer_a->record_disabled))
4330 goto out;
4332 if (atomic_read(&cpu_buffer_b->record_disabled))
4333 goto out;
4336 * We can't do a synchronize_sched here because this
4337 * function can be called in atomic context.
4338 * Normally this will be called from the same CPU as cpu.
4339 * If not it's up to the caller to protect this.
4341 atomic_inc(&cpu_buffer_a->record_disabled);
4342 atomic_inc(&cpu_buffer_b->record_disabled);
4344 ret = -EBUSY;
4345 if (local_read(&cpu_buffer_a->committing))
4346 goto out_dec;
4347 if (local_read(&cpu_buffer_b->committing))
4348 goto out_dec;
4350 buffer_a->buffers[cpu] = cpu_buffer_b;
4351 buffer_b->buffers[cpu] = cpu_buffer_a;
4353 cpu_buffer_b->buffer = buffer_a;
4354 cpu_buffer_a->buffer = buffer_b;
4356 ret = 0;
4358 out_dec:
4359 atomic_dec(&cpu_buffer_a->record_disabled);
4360 atomic_dec(&cpu_buffer_b->record_disabled);
4361 out:
4362 return ret;
4364 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4365 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4368 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4369 * @buffer: the buffer to allocate for.
4370 * @cpu: the cpu buffer to allocate.
4372 * This function is used in conjunction with ring_buffer_read_page.
4373 * When reading a full page from the ring buffer, these functions
4374 * can be used to speed up the process. The calling function should
4375 * allocate a few pages first with this function. Then when it
4376 * needs to get pages from the ring buffer, it passes the result
4377 * of this function into ring_buffer_read_page, which will swap
4378 * the page that was allocated, with the read page of the buffer.
4380 * Returns:
4381 * The page allocated, or ERR_PTR
4383 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4385 struct ring_buffer_per_cpu *cpu_buffer;
4386 struct buffer_data_page *bpage = NULL;
4387 unsigned long flags;
4388 struct page *page;
4390 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4391 return ERR_PTR(-ENODEV);
4393 cpu_buffer = buffer->buffers[cpu];
4394 local_irq_save(flags);
4395 arch_spin_lock(&cpu_buffer->lock);
4397 if (cpu_buffer->free_page) {
4398 bpage = cpu_buffer->free_page;
4399 cpu_buffer->free_page = NULL;
4402 arch_spin_unlock(&cpu_buffer->lock);
4403 local_irq_restore(flags);
4405 if (bpage)
4406 goto out;
4408 page = alloc_pages_node(cpu_to_node(cpu),
4409 GFP_KERNEL | __GFP_NORETRY, 0);
4410 if (!page)
4411 return ERR_PTR(-ENOMEM);
4413 bpage = page_address(page);
4415 out:
4416 rb_init_page(bpage);
4418 return bpage;
4420 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4423 * ring_buffer_free_read_page - free an allocated read page
4424 * @buffer: the buffer the page was allocate for
4425 * @cpu: the cpu buffer the page came from
4426 * @data: the page to free
4428 * Free a page allocated from ring_buffer_alloc_read_page.
4430 void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
4432 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4433 struct buffer_data_page *bpage = data;
4434 struct page *page = virt_to_page(bpage);
4435 unsigned long flags;
4437 /* If the page is still in use someplace else, we can't reuse it */
4438 if (page_ref_count(page) > 1)
4439 goto out;
4441 local_irq_save(flags);
4442 arch_spin_lock(&cpu_buffer->lock);
4444 if (!cpu_buffer->free_page) {
4445 cpu_buffer->free_page = bpage;
4446 bpage = NULL;
4449 arch_spin_unlock(&cpu_buffer->lock);
4450 local_irq_restore(flags);
4452 out:
4453 free_page((unsigned long)bpage);
4455 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4458 * ring_buffer_read_page - extract a page from the ring buffer
4459 * @buffer: buffer to extract from
4460 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4461 * @len: amount to extract
4462 * @cpu: the cpu of the buffer to extract
4463 * @full: should the extraction only happen when the page is full.
4465 * This function will pull out a page from the ring buffer and consume it.
4466 * @data_page must be the address of the variable that was returned
4467 * from ring_buffer_alloc_read_page. This is because the page might be used
4468 * to swap with a page in the ring buffer.
4470 * for example:
4471 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4472 * if (IS_ERR(rpage))
4473 * return PTR_ERR(rpage);
4474 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4475 * if (ret >= 0)
4476 * process_page(rpage, ret);
4478 * When @full is set, the function will not return true unless
4479 * the writer is off the reader page.
4481 * Note: it is up to the calling functions to handle sleeps and wakeups.
4482 * The ring buffer can be used anywhere in the kernel and can not
4483 * blindly call wake_up. The layer that uses the ring buffer must be
4484 * responsible for that.
4486 * Returns:
4487 * >=0 if data has been transferred, returns the offset of consumed data.
4488 * <0 if no data has been transferred.
4490 int ring_buffer_read_page(struct ring_buffer *buffer,
4491 void **data_page, size_t len, int cpu, int full)
4493 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4494 struct ring_buffer_event *event;
4495 struct buffer_data_page *bpage;
4496 struct buffer_page *reader;
4497 unsigned long missed_events;
4498 unsigned long flags;
4499 unsigned int commit;
4500 unsigned int read;
4501 u64 save_timestamp;
4502 int ret = -1;
4504 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4505 goto out;
4508 * If len is not big enough to hold the page header, then
4509 * we can not copy anything.
4511 if (len <= BUF_PAGE_HDR_SIZE)
4512 goto out;
4514 len -= BUF_PAGE_HDR_SIZE;
4516 if (!data_page)
4517 goto out;
4519 bpage = *data_page;
4520 if (!bpage)
4521 goto out;
4523 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4525 reader = rb_get_reader_page(cpu_buffer);
4526 if (!reader)
4527 goto out_unlock;
4529 event = rb_reader_event(cpu_buffer);
4531 read = reader->read;
4532 commit = rb_page_commit(reader);
4534 /* Check if any events were dropped */
4535 missed_events = cpu_buffer->lost_events;
4538 * If this page has been partially read or
4539 * if len is not big enough to read the rest of the page or
4540 * a writer is still on the page, then
4541 * we must copy the data from the page to the buffer.
4542 * Otherwise, we can simply swap the page with the one passed in.
4544 if (read || (len < (commit - read)) ||
4545 cpu_buffer->reader_page == cpu_buffer->commit_page) {
4546 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4547 unsigned int rpos = read;
4548 unsigned int pos = 0;
4549 unsigned int size;
4551 if (full)
4552 goto out_unlock;
4554 if (len > (commit - read))
4555 len = (commit - read);
4557 /* Always keep the time extend and data together */
4558 size = rb_event_ts_length(event);
4560 if (len < size)
4561 goto out_unlock;
4563 /* save the current timestamp, since the user will need it */
4564 save_timestamp = cpu_buffer->read_stamp;
4566 /* Need to copy one event at a time */
4567 do {
4568 /* We need the size of one event, because
4569 * rb_advance_reader only advances by one event,
4570 * whereas rb_event_ts_length may include the size of
4571 * one or two events.
4572 * We have already ensured there's enough space if this
4573 * is a time extend. */
4574 size = rb_event_length(event);
4575 memcpy(bpage->data + pos, rpage->data + rpos, size);
4577 len -= size;
4579 rb_advance_reader(cpu_buffer);
4580 rpos = reader->read;
4581 pos += size;
4583 if (rpos >= commit)
4584 break;
4586 event = rb_reader_event(cpu_buffer);
4587 /* Always keep the time extend and data together */
4588 size = rb_event_ts_length(event);
4589 } while (len >= size);
4591 /* update bpage */
4592 local_set(&bpage->commit, pos);
4593 bpage->time_stamp = save_timestamp;
4595 /* we copied everything to the beginning */
4596 read = 0;
4597 } else {
4598 /* update the entry counter */
4599 cpu_buffer->read += rb_page_entries(reader);
4600 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4602 /* swap the pages */
4603 rb_init_page(bpage);
4604 bpage = reader->page;
4605 reader->page = *data_page;
4606 local_set(&reader->write, 0);
4607 local_set(&reader->entries, 0);
4608 reader->read = 0;
4609 *data_page = bpage;
4612 * Use the real_end for the data size,
4613 * This gives us a chance to store the lost events
4614 * on the page.
4616 if (reader->real_end)
4617 local_set(&bpage->commit, reader->real_end);
4619 ret = read;
4621 cpu_buffer->lost_events = 0;
4623 commit = local_read(&bpage->commit);
4625 * Set a flag in the commit field if we lost events
4627 if (missed_events) {
4628 /* If there is room at the end of the page to save the
4629 * missed events, then record it there.
4631 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4632 memcpy(&bpage->data[commit], &missed_events,
4633 sizeof(missed_events));
4634 local_add(RB_MISSED_STORED, &bpage->commit);
4635 commit += sizeof(missed_events);
4637 local_add(RB_MISSED_EVENTS, &bpage->commit);
4641 * This page may be off to user land. Zero it out here.
4643 if (commit < BUF_PAGE_SIZE)
4644 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4646 out_unlock:
4647 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4649 out:
4650 return ret;
4652 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4655 * We only allocate new buffers, never free them if the CPU goes down.
4656 * If we were to free the buffer, then the user would lose any trace that was in
4657 * the buffer.
4659 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4661 struct ring_buffer *buffer;
4662 long nr_pages_same;
4663 int cpu_i;
4664 unsigned long nr_pages;
4666 buffer = container_of(node, struct ring_buffer, node);
4667 if (cpumask_test_cpu(cpu, buffer->cpumask))
4668 return 0;
4670 nr_pages = 0;
4671 nr_pages_same = 1;
4672 /* check if all cpu sizes are same */
4673 for_each_buffer_cpu(buffer, cpu_i) {
4674 /* fill in the size from first enabled cpu */
4675 if (nr_pages == 0)
4676 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4677 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4678 nr_pages_same = 0;
4679 break;
4682 /* allocate minimum pages, user can later expand it */
4683 if (!nr_pages_same)
4684 nr_pages = 2;
4685 buffer->buffers[cpu] =
4686 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4687 if (!buffer->buffers[cpu]) {
4688 WARN(1, "failed to allocate ring buffer on CPU %u\n",
4689 cpu);
4690 return -ENOMEM;
4692 smp_wmb();
4693 cpumask_set_cpu(cpu, buffer->cpumask);
4694 return 0;
4697 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4699 * This is a basic integrity check of the ring buffer.
4700 * Late in the boot cycle this test will run when configured in.
4701 * It will kick off a thread per CPU that will go into a loop
4702 * writing to the per cpu ring buffer various sizes of data.
4703 * Some of the data will be large items, some small.
4705 * Another thread is created that goes into a spin, sending out
4706 * IPIs to the other CPUs to also write into the ring buffer.
4707 * this is to test the nesting ability of the buffer.
4709 * Basic stats are recorded and reported. If something in the
4710 * ring buffer should happen that's not expected, a big warning
4711 * is displayed and all ring buffers are disabled.
4713 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4715 struct rb_test_data {
4716 struct ring_buffer *buffer;
4717 unsigned long events;
4718 unsigned long bytes_written;
4719 unsigned long bytes_alloc;
4720 unsigned long bytes_dropped;
4721 unsigned long events_nested;
4722 unsigned long bytes_written_nested;
4723 unsigned long bytes_alloc_nested;
4724 unsigned long bytes_dropped_nested;
4725 int min_size_nested;
4726 int max_size_nested;
4727 int max_size;
4728 int min_size;
4729 int cpu;
4730 int cnt;
4733 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4735 /* 1 meg per cpu */
4736 #define RB_TEST_BUFFER_SIZE 1048576
4738 static char rb_string[] __initdata =
4739 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4740 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4741 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4743 static bool rb_test_started __initdata;
4745 struct rb_item {
4746 int size;
4747 char str[];
4750 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4752 struct ring_buffer_event *event;
4753 struct rb_item *item;
4754 bool started;
4755 int event_len;
4756 int size;
4757 int len;
4758 int cnt;
4760 /* Have nested writes different that what is written */
4761 cnt = data->cnt + (nested ? 27 : 0);
4763 /* Multiply cnt by ~e, to make some unique increment */
4764 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4766 len = size + sizeof(struct rb_item);
4768 started = rb_test_started;
4769 /* read rb_test_started before checking buffer enabled */
4770 smp_rmb();
4772 event = ring_buffer_lock_reserve(data->buffer, len);
4773 if (!event) {
4774 /* Ignore dropped events before test starts. */
4775 if (started) {
4776 if (nested)
4777 data->bytes_dropped += len;
4778 else
4779 data->bytes_dropped_nested += len;
4781 return len;
4784 event_len = ring_buffer_event_length(event);
4786 if (RB_WARN_ON(data->buffer, event_len < len))
4787 goto out;
4789 item = ring_buffer_event_data(event);
4790 item->size = size;
4791 memcpy(item->str, rb_string, size);
4793 if (nested) {
4794 data->bytes_alloc_nested += event_len;
4795 data->bytes_written_nested += len;
4796 data->events_nested++;
4797 if (!data->min_size_nested || len < data->min_size_nested)
4798 data->min_size_nested = len;
4799 if (len > data->max_size_nested)
4800 data->max_size_nested = len;
4801 } else {
4802 data->bytes_alloc += event_len;
4803 data->bytes_written += len;
4804 data->events++;
4805 if (!data->min_size || len < data->min_size)
4806 data->max_size = len;
4807 if (len > data->max_size)
4808 data->max_size = len;
4811 out:
4812 ring_buffer_unlock_commit(data->buffer, event);
4814 return 0;
4817 static __init int rb_test(void *arg)
4819 struct rb_test_data *data = arg;
4821 while (!kthread_should_stop()) {
4822 rb_write_something(data, false);
4823 data->cnt++;
4825 set_current_state(TASK_INTERRUPTIBLE);
4826 /* Now sleep between a min of 100-300us and a max of 1ms */
4827 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4830 return 0;
4833 static __init void rb_ipi(void *ignore)
4835 struct rb_test_data *data;
4836 int cpu = smp_processor_id();
4838 data = &rb_data[cpu];
4839 rb_write_something(data, true);
4842 static __init int rb_hammer_test(void *arg)
4844 while (!kthread_should_stop()) {
4846 /* Send an IPI to all cpus to write data! */
4847 smp_call_function(rb_ipi, NULL, 1);
4848 /* No sleep, but for non preempt, let others run */
4849 schedule();
4852 return 0;
4855 static __init int test_ringbuffer(void)
4857 struct task_struct *rb_hammer;
4858 struct ring_buffer *buffer;
4859 int cpu;
4860 int ret = 0;
4862 pr_info("Running ring buffer tests...\n");
4864 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4865 if (WARN_ON(!buffer))
4866 return 0;
4868 /* Disable buffer so that threads can't write to it yet */
4869 ring_buffer_record_off(buffer);
4871 for_each_online_cpu(cpu) {
4872 rb_data[cpu].buffer = buffer;
4873 rb_data[cpu].cpu = cpu;
4874 rb_data[cpu].cnt = cpu;
4875 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4876 "rbtester/%d", cpu);
4877 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
4878 pr_cont("FAILED\n");
4879 ret = PTR_ERR(rb_threads[cpu]);
4880 goto out_free;
4883 kthread_bind(rb_threads[cpu], cpu);
4884 wake_up_process(rb_threads[cpu]);
4887 /* Now create the rb hammer! */
4888 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4889 if (WARN_ON(IS_ERR(rb_hammer))) {
4890 pr_cont("FAILED\n");
4891 ret = PTR_ERR(rb_hammer);
4892 goto out_free;
4895 ring_buffer_record_on(buffer);
4897 * Show buffer is enabled before setting rb_test_started.
4898 * Yes there's a small race window where events could be
4899 * dropped and the thread wont catch it. But when a ring
4900 * buffer gets enabled, there will always be some kind of
4901 * delay before other CPUs see it. Thus, we don't care about
4902 * those dropped events. We care about events dropped after
4903 * the threads see that the buffer is active.
4905 smp_wmb();
4906 rb_test_started = true;
4908 set_current_state(TASK_INTERRUPTIBLE);
4909 /* Just run for 10 seconds */;
4910 schedule_timeout(10 * HZ);
4912 kthread_stop(rb_hammer);
4914 out_free:
4915 for_each_online_cpu(cpu) {
4916 if (!rb_threads[cpu])
4917 break;
4918 kthread_stop(rb_threads[cpu]);
4920 if (ret) {
4921 ring_buffer_free(buffer);
4922 return ret;
4925 /* Report! */
4926 pr_info("finished\n");
4927 for_each_online_cpu(cpu) {
4928 struct ring_buffer_event *event;
4929 struct rb_test_data *data = &rb_data[cpu];
4930 struct rb_item *item;
4931 unsigned long total_events;
4932 unsigned long total_dropped;
4933 unsigned long total_written;
4934 unsigned long total_alloc;
4935 unsigned long total_read = 0;
4936 unsigned long total_size = 0;
4937 unsigned long total_len = 0;
4938 unsigned long total_lost = 0;
4939 unsigned long lost;
4940 int big_event_size;
4941 int small_event_size;
4943 ret = -1;
4945 total_events = data->events + data->events_nested;
4946 total_written = data->bytes_written + data->bytes_written_nested;
4947 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4948 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4950 big_event_size = data->max_size + data->max_size_nested;
4951 small_event_size = data->min_size + data->min_size_nested;
4953 pr_info("CPU %d:\n", cpu);
4954 pr_info(" events: %ld\n", total_events);
4955 pr_info(" dropped bytes: %ld\n", total_dropped);
4956 pr_info(" alloced bytes: %ld\n", total_alloc);
4957 pr_info(" written bytes: %ld\n", total_written);
4958 pr_info(" biggest event: %d\n", big_event_size);
4959 pr_info(" smallest event: %d\n", small_event_size);
4961 if (RB_WARN_ON(buffer, total_dropped))
4962 break;
4964 ret = 0;
4966 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4967 total_lost += lost;
4968 item = ring_buffer_event_data(event);
4969 total_len += ring_buffer_event_length(event);
4970 total_size += item->size + sizeof(struct rb_item);
4971 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4972 pr_info("FAILED!\n");
4973 pr_info("buffer had: %.*s\n", item->size, item->str);
4974 pr_info("expected: %.*s\n", item->size, rb_string);
4975 RB_WARN_ON(buffer, 1);
4976 ret = -1;
4977 break;
4979 total_read++;
4981 if (ret)
4982 break;
4984 ret = -1;
4986 pr_info(" read events: %ld\n", total_read);
4987 pr_info(" lost events: %ld\n", total_lost);
4988 pr_info(" total events: %ld\n", total_lost + total_read);
4989 pr_info(" recorded len bytes: %ld\n", total_len);
4990 pr_info(" recorded size bytes: %ld\n", total_size);
4991 if (total_lost)
4992 pr_info(" With dropped events, record len and size may not match\n"
4993 " alloced and written from above\n");
4994 if (!total_lost) {
4995 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4996 total_size != total_written))
4997 break;
4999 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5000 break;
5002 ret = 0;
5004 if (!ret)
5005 pr_info("Ring buffer PASSED!\n");
5007 ring_buffer_free(buffer);
5008 return 0;
5011 late_initcall(test_ringbuffer);
5012 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */