Linux 4.16-rc3
[cris-mirror.git] / mm / ksm.c
blob293721f5da702ade0da55724702e0dbe6bf6422c
1 /*
2 * Memory merging support.
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
7 * Copyright (C) 2008-2009 Red Hat, Inc.
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
12 * Hugh Dickins
14 * This work is licensed under the terms of the GNU GPL, version 2.
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/jhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
43 #include <asm/tlbflush.h>
44 #include "internal.h"
46 #ifdef CONFIG_NUMA
47 #define NUMA(x) (x)
48 #define DO_NUMA(x) do { (x); } while (0)
49 #else
50 #define NUMA(x) (0)
51 #define DO_NUMA(x) do { } while (0)
52 #endif
55 * A few notes about the KSM scanning process,
56 * to make it easier to understand the data structures below:
58 * In order to reduce excessive scanning, KSM sorts the memory pages by their
59 * contents into a data structure that holds pointers to the pages' locations.
61 * Since the contents of the pages may change at any moment, KSM cannot just
62 * insert the pages into a normal sorted tree and expect it to find anything.
63 * Therefore KSM uses two data structures - the stable and the unstable tree.
65 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
66 * by their contents. Because each such page is write-protected, searching on
67 * this tree is fully assured to be working (except when pages are unmapped),
68 * and therefore this tree is called the stable tree.
70 * In addition to the stable tree, KSM uses a second data structure called the
71 * unstable tree: this tree holds pointers to pages which have been found to
72 * be "unchanged for a period of time". The unstable tree sorts these pages
73 * by their contents, but since they are not write-protected, KSM cannot rely
74 * upon the unstable tree to work correctly - the unstable tree is liable to
75 * be corrupted as its contents are modified, and so it is called unstable.
77 * KSM solves this problem by several techniques:
79 * 1) The unstable tree is flushed every time KSM completes scanning all
80 * memory areas, and then the tree is rebuilt again from the beginning.
81 * 2) KSM will only insert into the unstable tree, pages whose hash value
82 * has not changed since the previous scan of all memory areas.
83 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
84 * colors of the nodes and not on their contents, assuring that even when
85 * the tree gets "corrupted" it won't get out of balance, so scanning time
86 * remains the same (also, searching and inserting nodes in an rbtree uses
87 * the same algorithm, so we have no overhead when we flush and rebuild).
88 * 4) KSM never flushes the stable tree, which means that even if it were to
89 * take 10 attempts to find a page in the unstable tree, once it is found,
90 * it is secured in the stable tree. (When we scan a new page, we first
91 * compare it against the stable tree, and then against the unstable tree.)
93 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
94 * stable trees and multiple unstable trees: one of each for each NUMA node.
97 /**
98 * struct mm_slot - ksm information per mm that is being scanned
99 * @link: link to the mm_slots hash list
100 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
101 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
102 * @mm: the mm that this information is valid for
104 struct mm_slot {
105 struct hlist_node link;
106 struct list_head mm_list;
107 struct rmap_item *rmap_list;
108 struct mm_struct *mm;
112 * struct ksm_scan - cursor for scanning
113 * @mm_slot: the current mm_slot we are scanning
114 * @address: the next address inside that to be scanned
115 * @rmap_list: link to the next rmap to be scanned in the rmap_list
116 * @seqnr: count of completed full scans (needed when removing unstable node)
118 * There is only the one ksm_scan instance of this cursor structure.
120 struct ksm_scan {
121 struct mm_slot *mm_slot;
122 unsigned long address;
123 struct rmap_item **rmap_list;
124 unsigned long seqnr;
128 * struct stable_node - node of the stable rbtree
129 * @node: rb node of this ksm page in the stable tree
130 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
131 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
132 * @list: linked into migrate_nodes, pending placement in the proper node tree
133 * @hlist: hlist head of rmap_items using this ksm page
134 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
135 * @chain_prune_time: time of the last full garbage collection
136 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
137 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
139 struct stable_node {
140 union {
141 struct rb_node node; /* when node of stable tree */
142 struct { /* when listed for migration */
143 struct list_head *head;
144 struct {
145 struct hlist_node hlist_dup;
146 struct list_head list;
150 struct hlist_head hlist;
151 union {
152 unsigned long kpfn;
153 unsigned long chain_prune_time;
156 * STABLE_NODE_CHAIN can be any negative number in
157 * rmap_hlist_len negative range, but better not -1 to be able
158 * to reliably detect underflows.
160 #define STABLE_NODE_CHAIN -1024
161 int rmap_hlist_len;
162 #ifdef CONFIG_NUMA
163 int nid;
164 #endif
168 * struct rmap_item - reverse mapping item for virtual addresses
169 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
170 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
171 * @nid: NUMA node id of unstable tree in which linked (may not match page)
172 * @mm: the memory structure this rmap_item is pointing into
173 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
174 * @oldchecksum: previous checksum of the page at that virtual address
175 * @node: rb node of this rmap_item in the unstable tree
176 * @head: pointer to stable_node heading this list in the stable tree
177 * @hlist: link into hlist of rmap_items hanging off that stable_node
179 struct rmap_item {
180 struct rmap_item *rmap_list;
181 union {
182 struct anon_vma *anon_vma; /* when stable */
183 #ifdef CONFIG_NUMA
184 int nid; /* when node of unstable tree */
185 #endif
187 struct mm_struct *mm;
188 unsigned long address; /* + low bits used for flags below */
189 unsigned int oldchecksum; /* when unstable */
190 union {
191 struct rb_node node; /* when node of unstable tree */
192 struct { /* when listed from stable tree */
193 struct stable_node *head;
194 struct hlist_node hlist;
199 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
200 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
201 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
203 /* The stable and unstable tree heads */
204 static struct rb_root one_stable_tree[1] = { RB_ROOT };
205 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
206 static struct rb_root *root_stable_tree = one_stable_tree;
207 static struct rb_root *root_unstable_tree = one_unstable_tree;
209 /* Recently migrated nodes of stable tree, pending proper placement */
210 static LIST_HEAD(migrate_nodes);
211 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
213 #define MM_SLOTS_HASH_BITS 10
214 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
216 static struct mm_slot ksm_mm_head = {
217 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
219 static struct ksm_scan ksm_scan = {
220 .mm_slot = &ksm_mm_head,
223 static struct kmem_cache *rmap_item_cache;
224 static struct kmem_cache *stable_node_cache;
225 static struct kmem_cache *mm_slot_cache;
227 /* The number of nodes in the stable tree */
228 static unsigned long ksm_pages_shared;
230 /* The number of page slots additionally sharing those nodes */
231 static unsigned long ksm_pages_sharing;
233 /* The number of nodes in the unstable tree */
234 static unsigned long ksm_pages_unshared;
236 /* The number of rmap_items in use: to calculate pages_volatile */
237 static unsigned long ksm_rmap_items;
239 /* The number of stable_node chains */
240 static unsigned long ksm_stable_node_chains;
242 /* The number of stable_node dups linked to the stable_node chains */
243 static unsigned long ksm_stable_node_dups;
245 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
246 static int ksm_stable_node_chains_prune_millisecs = 2000;
248 /* Maximum number of page slots sharing a stable node */
249 static int ksm_max_page_sharing = 256;
251 /* Number of pages ksmd should scan in one batch */
252 static unsigned int ksm_thread_pages_to_scan = 100;
254 /* Milliseconds ksmd should sleep between batches */
255 static unsigned int ksm_thread_sleep_millisecs = 20;
257 /* Checksum of an empty (zeroed) page */
258 static unsigned int zero_checksum __read_mostly;
260 /* Whether to merge empty (zeroed) pages with actual zero pages */
261 static bool ksm_use_zero_pages __read_mostly;
263 #ifdef CONFIG_NUMA
264 /* Zeroed when merging across nodes is not allowed */
265 static unsigned int ksm_merge_across_nodes = 1;
266 static int ksm_nr_node_ids = 1;
267 #else
268 #define ksm_merge_across_nodes 1U
269 #define ksm_nr_node_ids 1
270 #endif
272 #define KSM_RUN_STOP 0
273 #define KSM_RUN_MERGE 1
274 #define KSM_RUN_UNMERGE 2
275 #define KSM_RUN_OFFLINE 4
276 static unsigned long ksm_run = KSM_RUN_STOP;
277 static void wait_while_offlining(void);
279 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
280 static DEFINE_MUTEX(ksm_thread_mutex);
281 static DEFINE_SPINLOCK(ksm_mmlist_lock);
283 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
284 sizeof(struct __struct), __alignof__(struct __struct),\
285 (__flags), NULL)
287 static int __init ksm_slab_init(void)
289 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
290 if (!rmap_item_cache)
291 goto out;
293 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
294 if (!stable_node_cache)
295 goto out_free1;
297 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
298 if (!mm_slot_cache)
299 goto out_free2;
301 return 0;
303 out_free2:
304 kmem_cache_destroy(stable_node_cache);
305 out_free1:
306 kmem_cache_destroy(rmap_item_cache);
307 out:
308 return -ENOMEM;
311 static void __init ksm_slab_free(void)
313 kmem_cache_destroy(mm_slot_cache);
314 kmem_cache_destroy(stable_node_cache);
315 kmem_cache_destroy(rmap_item_cache);
316 mm_slot_cache = NULL;
319 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
321 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
324 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
326 return dup->head == STABLE_NODE_DUP_HEAD;
329 static inline void stable_node_chain_add_dup(struct stable_node *dup,
330 struct stable_node *chain)
332 VM_BUG_ON(is_stable_node_dup(dup));
333 dup->head = STABLE_NODE_DUP_HEAD;
334 VM_BUG_ON(!is_stable_node_chain(chain));
335 hlist_add_head(&dup->hlist_dup, &chain->hlist);
336 ksm_stable_node_dups++;
339 static inline void __stable_node_dup_del(struct stable_node *dup)
341 VM_BUG_ON(!is_stable_node_dup(dup));
342 hlist_del(&dup->hlist_dup);
343 ksm_stable_node_dups--;
346 static inline void stable_node_dup_del(struct stable_node *dup)
348 VM_BUG_ON(is_stable_node_chain(dup));
349 if (is_stable_node_dup(dup))
350 __stable_node_dup_del(dup);
351 else
352 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
353 #ifdef CONFIG_DEBUG_VM
354 dup->head = NULL;
355 #endif
358 static inline struct rmap_item *alloc_rmap_item(void)
360 struct rmap_item *rmap_item;
362 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
363 __GFP_NORETRY | __GFP_NOWARN);
364 if (rmap_item)
365 ksm_rmap_items++;
366 return rmap_item;
369 static inline void free_rmap_item(struct rmap_item *rmap_item)
371 ksm_rmap_items--;
372 rmap_item->mm = NULL; /* debug safety */
373 kmem_cache_free(rmap_item_cache, rmap_item);
376 static inline struct stable_node *alloc_stable_node(void)
379 * The allocation can take too long with GFP_KERNEL when memory is under
380 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
381 * grants access to memory reserves, helping to avoid this problem.
383 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
386 static inline void free_stable_node(struct stable_node *stable_node)
388 VM_BUG_ON(stable_node->rmap_hlist_len &&
389 !is_stable_node_chain(stable_node));
390 kmem_cache_free(stable_node_cache, stable_node);
393 static inline struct mm_slot *alloc_mm_slot(void)
395 if (!mm_slot_cache) /* initialization failed */
396 return NULL;
397 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
400 static inline void free_mm_slot(struct mm_slot *mm_slot)
402 kmem_cache_free(mm_slot_cache, mm_slot);
405 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
407 struct mm_slot *slot;
409 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
410 if (slot->mm == mm)
411 return slot;
413 return NULL;
416 static void insert_to_mm_slots_hash(struct mm_struct *mm,
417 struct mm_slot *mm_slot)
419 mm_slot->mm = mm;
420 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
424 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
425 * page tables after it has passed through ksm_exit() - which, if necessary,
426 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
427 * a special flag: they can just back out as soon as mm_users goes to zero.
428 * ksm_test_exit() is used throughout to make this test for exit: in some
429 * places for correctness, in some places just to avoid unnecessary work.
431 static inline bool ksm_test_exit(struct mm_struct *mm)
433 return atomic_read(&mm->mm_users) == 0;
437 * We use break_ksm to break COW on a ksm page: it's a stripped down
439 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
440 * put_page(page);
442 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
443 * in case the application has unmapped and remapped mm,addr meanwhile.
444 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
445 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
447 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
448 * of the process that owns 'vma'. We also do not want to enforce
449 * protection keys here anyway.
451 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
453 struct page *page;
454 int ret = 0;
456 do {
457 cond_resched();
458 page = follow_page(vma, addr,
459 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
460 if (IS_ERR_OR_NULL(page))
461 break;
462 if (PageKsm(page))
463 ret = handle_mm_fault(vma, addr,
464 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
465 else
466 ret = VM_FAULT_WRITE;
467 put_page(page);
468 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
470 * We must loop because handle_mm_fault() may back out if there's
471 * any difficulty e.g. if pte accessed bit gets updated concurrently.
473 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
474 * COW has been broken, even if the vma does not permit VM_WRITE;
475 * but note that a concurrent fault might break PageKsm for us.
477 * VM_FAULT_SIGBUS could occur if we race with truncation of the
478 * backing file, which also invalidates anonymous pages: that's
479 * okay, that truncation will have unmapped the PageKsm for us.
481 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
482 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
483 * current task has TIF_MEMDIE set, and will be OOM killed on return
484 * to user; and ksmd, having no mm, would never be chosen for that.
486 * But if the mm is in a limited mem_cgroup, then the fault may fail
487 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
488 * even ksmd can fail in this way - though it's usually breaking ksm
489 * just to undo a merge it made a moment before, so unlikely to oom.
491 * That's a pity: we might therefore have more kernel pages allocated
492 * than we're counting as nodes in the stable tree; but ksm_do_scan
493 * will retry to break_cow on each pass, so should recover the page
494 * in due course. The important thing is to not let VM_MERGEABLE
495 * be cleared while any such pages might remain in the area.
497 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
500 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
501 unsigned long addr)
503 struct vm_area_struct *vma;
504 if (ksm_test_exit(mm))
505 return NULL;
506 vma = find_vma(mm, addr);
507 if (!vma || vma->vm_start > addr)
508 return NULL;
509 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
510 return NULL;
511 return vma;
514 static void break_cow(struct rmap_item *rmap_item)
516 struct mm_struct *mm = rmap_item->mm;
517 unsigned long addr = rmap_item->address;
518 struct vm_area_struct *vma;
521 * It is not an accident that whenever we want to break COW
522 * to undo, we also need to drop a reference to the anon_vma.
524 put_anon_vma(rmap_item->anon_vma);
526 down_read(&mm->mmap_sem);
527 vma = find_mergeable_vma(mm, addr);
528 if (vma)
529 break_ksm(vma, addr);
530 up_read(&mm->mmap_sem);
533 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
535 struct mm_struct *mm = rmap_item->mm;
536 unsigned long addr = rmap_item->address;
537 struct vm_area_struct *vma;
538 struct page *page;
540 down_read(&mm->mmap_sem);
541 vma = find_mergeable_vma(mm, addr);
542 if (!vma)
543 goto out;
545 page = follow_page(vma, addr, FOLL_GET);
546 if (IS_ERR_OR_NULL(page))
547 goto out;
548 if (PageAnon(page)) {
549 flush_anon_page(vma, page, addr);
550 flush_dcache_page(page);
551 } else {
552 put_page(page);
553 out:
554 page = NULL;
556 up_read(&mm->mmap_sem);
557 return page;
561 * This helper is used for getting right index into array of tree roots.
562 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
563 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
564 * every node has its own stable and unstable tree.
566 static inline int get_kpfn_nid(unsigned long kpfn)
568 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
571 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
572 struct rb_root *root)
574 struct stable_node *chain = alloc_stable_node();
575 VM_BUG_ON(is_stable_node_chain(dup));
576 if (likely(chain)) {
577 INIT_HLIST_HEAD(&chain->hlist);
578 chain->chain_prune_time = jiffies;
579 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
580 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
581 chain->nid = -1; /* debug */
582 #endif
583 ksm_stable_node_chains++;
586 * Put the stable node chain in the first dimension of
587 * the stable tree and at the same time remove the old
588 * stable node.
590 rb_replace_node(&dup->node, &chain->node, root);
593 * Move the old stable node to the second dimension
594 * queued in the hlist_dup. The invariant is that all
595 * dup stable_nodes in the chain->hlist point to pages
596 * that are wrprotected and have the exact same
597 * content.
599 stable_node_chain_add_dup(dup, chain);
601 return chain;
604 static inline void free_stable_node_chain(struct stable_node *chain,
605 struct rb_root *root)
607 rb_erase(&chain->node, root);
608 free_stable_node(chain);
609 ksm_stable_node_chains--;
612 static void remove_node_from_stable_tree(struct stable_node *stable_node)
614 struct rmap_item *rmap_item;
616 /* check it's not STABLE_NODE_CHAIN or negative */
617 BUG_ON(stable_node->rmap_hlist_len < 0);
619 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
620 if (rmap_item->hlist.next)
621 ksm_pages_sharing--;
622 else
623 ksm_pages_shared--;
624 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
625 stable_node->rmap_hlist_len--;
626 put_anon_vma(rmap_item->anon_vma);
627 rmap_item->address &= PAGE_MASK;
628 cond_resched();
632 * We need the second aligned pointer of the migrate_nodes
633 * list_head to stay clear from the rb_parent_color union
634 * (aligned and different than any node) and also different
635 * from &migrate_nodes. This will verify that future list.h changes
636 * don't break STABLE_NODE_DUP_HEAD.
638 #if GCC_VERSION >= 40903 /* only recent gcc can handle it */
639 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
640 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
641 #endif
643 if (stable_node->head == &migrate_nodes)
644 list_del(&stable_node->list);
645 else
646 stable_node_dup_del(stable_node);
647 free_stable_node(stable_node);
651 * get_ksm_page: checks if the page indicated by the stable node
652 * is still its ksm page, despite having held no reference to it.
653 * In which case we can trust the content of the page, and it
654 * returns the gotten page; but if the page has now been zapped,
655 * remove the stale node from the stable tree and return NULL.
656 * But beware, the stable node's page might be being migrated.
658 * You would expect the stable_node to hold a reference to the ksm page.
659 * But if it increments the page's count, swapping out has to wait for
660 * ksmd to come around again before it can free the page, which may take
661 * seconds or even minutes: much too unresponsive. So instead we use a
662 * "keyhole reference": access to the ksm page from the stable node peeps
663 * out through its keyhole to see if that page still holds the right key,
664 * pointing back to this stable node. This relies on freeing a PageAnon
665 * page to reset its page->mapping to NULL, and relies on no other use of
666 * a page to put something that might look like our key in page->mapping.
667 * is on its way to being freed; but it is an anomaly to bear in mind.
669 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
671 struct page *page;
672 void *expected_mapping;
673 unsigned long kpfn;
675 expected_mapping = (void *)((unsigned long)stable_node |
676 PAGE_MAPPING_KSM);
677 again:
678 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
679 page = pfn_to_page(kpfn);
680 if (READ_ONCE(page->mapping) != expected_mapping)
681 goto stale;
684 * We cannot do anything with the page while its refcount is 0.
685 * Usually 0 means free, or tail of a higher-order page: in which
686 * case this node is no longer referenced, and should be freed;
687 * however, it might mean that the page is under page_freeze_refs().
688 * The __remove_mapping() case is easy, again the node is now stale;
689 * but if page is swapcache in migrate_page_move_mapping(), it might
690 * still be our page, in which case it's essential to keep the node.
692 while (!get_page_unless_zero(page)) {
694 * Another check for page->mapping != expected_mapping would
695 * work here too. We have chosen the !PageSwapCache test to
696 * optimize the common case, when the page is or is about to
697 * be freed: PageSwapCache is cleared (under spin_lock_irq)
698 * in the freeze_refs section of __remove_mapping(); but Anon
699 * page->mapping reset to NULL later, in free_pages_prepare().
701 if (!PageSwapCache(page))
702 goto stale;
703 cpu_relax();
706 if (READ_ONCE(page->mapping) != expected_mapping) {
707 put_page(page);
708 goto stale;
711 if (lock_it) {
712 lock_page(page);
713 if (READ_ONCE(page->mapping) != expected_mapping) {
714 unlock_page(page);
715 put_page(page);
716 goto stale;
719 return page;
721 stale:
723 * We come here from above when page->mapping or !PageSwapCache
724 * suggests that the node is stale; but it might be under migration.
725 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
726 * before checking whether node->kpfn has been changed.
728 smp_rmb();
729 if (READ_ONCE(stable_node->kpfn) != kpfn)
730 goto again;
731 remove_node_from_stable_tree(stable_node);
732 return NULL;
736 * Removing rmap_item from stable or unstable tree.
737 * This function will clean the information from the stable/unstable tree.
739 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
741 if (rmap_item->address & STABLE_FLAG) {
742 struct stable_node *stable_node;
743 struct page *page;
745 stable_node = rmap_item->head;
746 page = get_ksm_page(stable_node, true);
747 if (!page)
748 goto out;
750 hlist_del(&rmap_item->hlist);
751 unlock_page(page);
752 put_page(page);
754 if (!hlist_empty(&stable_node->hlist))
755 ksm_pages_sharing--;
756 else
757 ksm_pages_shared--;
758 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
759 stable_node->rmap_hlist_len--;
761 put_anon_vma(rmap_item->anon_vma);
762 rmap_item->address &= PAGE_MASK;
764 } else if (rmap_item->address & UNSTABLE_FLAG) {
765 unsigned char age;
767 * Usually ksmd can and must skip the rb_erase, because
768 * root_unstable_tree was already reset to RB_ROOT.
769 * But be careful when an mm is exiting: do the rb_erase
770 * if this rmap_item was inserted by this scan, rather
771 * than left over from before.
773 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
774 BUG_ON(age > 1);
775 if (!age)
776 rb_erase(&rmap_item->node,
777 root_unstable_tree + NUMA(rmap_item->nid));
778 ksm_pages_unshared--;
779 rmap_item->address &= PAGE_MASK;
781 out:
782 cond_resched(); /* we're called from many long loops */
785 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
786 struct rmap_item **rmap_list)
788 while (*rmap_list) {
789 struct rmap_item *rmap_item = *rmap_list;
790 *rmap_list = rmap_item->rmap_list;
791 remove_rmap_item_from_tree(rmap_item);
792 free_rmap_item(rmap_item);
797 * Though it's very tempting to unmerge rmap_items from stable tree rather
798 * than check every pte of a given vma, the locking doesn't quite work for
799 * that - an rmap_item is assigned to the stable tree after inserting ksm
800 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
801 * rmap_items from parent to child at fork time (so as not to waste time
802 * if exit comes before the next scan reaches it).
804 * Similarly, although we'd like to remove rmap_items (so updating counts
805 * and freeing memory) when unmerging an area, it's easier to leave that
806 * to the next pass of ksmd - consider, for example, how ksmd might be
807 * in cmp_and_merge_page on one of the rmap_items we would be removing.
809 static int unmerge_ksm_pages(struct vm_area_struct *vma,
810 unsigned long start, unsigned long end)
812 unsigned long addr;
813 int err = 0;
815 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
816 if (ksm_test_exit(vma->vm_mm))
817 break;
818 if (signal_pending(current))
819 err = -ERESTARTSYS;
820 else
821 err = break_ksm(vma, addr);
823 return err;
826 #ifdef CONFIG_SYSFS
828 * Only called through the sysfs control interface:
830 static int remove_stable_node(struct stable_node *stable_node)
832 struct page *page;
833 int err;
835 page = get_ksm_page(stable_node, true);
836 if (!page) {
838 * get_ksm_page did remove_node_from_stable_tree itself.
840 return 0;
843 if (WARN_ON_ONCE(page_mapped(page))) {
845 * This should not happen: but if it does, just refuse to let
846 * merge_across_nodes be switched - there is no need to panic.
848 err = -EBUSY;
849 } else {
851 * The stable node did not yet appear stale to get_ksm_page(),
852 * since that allows for an unmapped ksm page to be recognized
853 * right up until it is freed; but the node is safe to remove.
854 * This page might be in a pagevec waiting to be freed,
855 * or it might be PageSwapCache (perhaps under writeback),
856 * or it might have been removed from swapcache a moment ago.
858 set_page_stable_node(page, NULL);
859 remove_node_from_stable_tree(stable_node);
860 err = 0;
863 unlock_page(page);
864 put_page(page);
865 return err;
868 static int remove_stable_node_chain(struct stable_node *stable_node,
869 struct rb_root *root)
871 struct stable_node *dup;
872 struct hlist_node *hlist_safe;
874 if (!is_stable_node_chain(stable_node)) {
875 VM_BUG_ON(is_stable_node_dup(stable_node));
876 if (remove_stable_node(stable_node))
877 return true;
878 else
879 return false;
882 hlist_for_each_entry_safe(dup, hlist_safe,
883 &stable_node->hlist, hlist_dup) {
884 VM_BUG_ON(!is_stable_node_dup(dup));
885 if (remove_stable_node(dup))
886 return true;
888 BUG_ON(!hlist_empty(&stable_node->hlist));
889 free_stable_node_chain(stable_node, root);
890 return false;
893 static int remove_all_stable_nodes(void)
895 struct stable_node *stable_node, *next;
896 int nid;
897 int err = 0;
899 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
900 while (root_stable_tree[nid].rb_node) {
901 stable_node = rb_entry(root_stable_tree[nid].rb_node,
902 struct stable_node, node);
903 if (remove_stable_node_chain(stable_node,
904 root_stable_tree + nid)) {
905 err = -EBUSY;
906 break; /* proceed to next nid */
908 cond_resched();
911 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
912 if (remove_stable_node(stable_node))
913 err = -EBUSY;
914 cond_resched();
916 return err;
919 static int unmerge_and_remove_all_rmap_items(void)
921 struct mm_slot *mm_slot;
922 struct mm_struct *mm;
923 struct vm_area_struct *vma;
924 int err = 0;
926 spin_lock(&ksm_mmlist_lock);
927 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
928 struct mm_slot, mm_list);
929 spin_unlock(&ksm_mmlist_lock);
931 for (mm_slot = ksm_scan.mm_slot;
932 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
933 mm = mm_slot->mm;
934 down_read(&mm->mmap_sem);
935 for (vma = mm->mmap; vma; vma = vma->vm_next) {
936 if (ksm_test_exit(mm))
937 break;
938 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
939 continue;
940 err = unmerge_ksm_pages(vma,
941 vma->vm_start, vma->vm_end);
942 if (err)
943 goto error;
946 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
947 up_read(&mm->mmap_sem);
949 spin_lock(&ksm_mmlist_lock);
950 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
951 struct mm_slot, mm_list);
952 if (ksm_test_exit(mm)) {
953 hash_del(&mm_slot->link);
954 list_del(&mm_slot->mm_list);
955 spin_unlock(&ksm_mmlist_lock);
957 free_mm_slot(mm_slot);
958 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
959 mmdrop(mm);
960 } else
961 spin_unlock(&ksm_mmlist_lock);
964 /* Clean up stable nodes, but don't worry if some are still busy */
965 remove_all_stable_nodes();
966 ksm_scan.seqnr = 0;
967 return 0;
969 error:
970 up_read(&mm->mmap_sem);
971 spin_lock(&ksm_mmlist_lock);
972 ksm_scan.mm_slot = &ksm_mm_head;
973 spin_unlock(&ksm_mmlist_lock);
974 return err;
976 #endif /* CONFIG_SYSFS */
978 static u32 calc_checksum(struct page *page)
980 u32 checksum;
981 void *addr = kmap_atomic(page);
982 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
983 kunmap_atomic(addr);
984 return checksum;
987 static int memcmp_pages(struct page *page1, struct page *page2)
989 char *addr1, *addr2;
990 int ret;
992 addr1 = kmap_atomic(page1);
993 addr2 = kmap_atomic(page2);
994 ret = memcmp(addr1, addr2, PAGE_SIZE);
995 kunmap_atomic(addr2);
996 kunmap_atomic(addr1);
997 return ret;
1000 static inline int pages_identical(struct page *page1, struct page *page2)
1002 return !memcmp_pages(page1, page2);
1005 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1006 pte_t *orig_pte)
1008 struct mm_struct *mm = vma->vm_mm;
1009 struct page_vma_mapped_walk pvmw = {
1010 .page = page,
1011 .vma = vma,
1013 int swapped;
1014 int err = -EFAULT;
1015 unsigned long mmun_start; /* For mmu_notifiers */
1016 unsigned long mmun_end; /* For mmu_notifiers */
1018 pvmw.address = page_address_in_vma(page, vma);
1019 if (pvmw.address == -EFAULT)
1020 goto out;
1022 BUG_ON(PageTransCompound(page));
1024 mmun_start = pvmw.address;
1025 mmun_end = pvmw.address + PAGE_SIZE;
1026 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1028 if (!page_vma_mapped_walk(&pvmw))
1029 goto out_mn;
1030 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1031 goto out_unlock;
1033 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1034 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1035 mm_tlb_flush_pending(mm)) {
1036 pte_t entry;
1038 swapped = PageSwapCache(page);
1039 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1041 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1042 * take any lock, therefore the check that we are going to make
1043 * with the pagecount against the mapcount is racey and
1044 * O_DIRECT can happen right after the check.
1045 * So we clear the pte and flush the tlb before the check
1046 * this assure us that no O_DIRECT can happen after the check
1047 * or in the middle of the check.
1049 * No need to notify as we are downgrading page table to read
1050 * only not changing it to point to a new page.
1052 * See Documentation/vm/mmu_notifier.txt
1054 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1056 * Check that no O_DIRECT or similar I/O is in progress on the
1057 * page
1059 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1060 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1061 goto out_unlock;
1063 if (pte_dirty(entry))
1064 set_page_dirty(page);
1066 if (pte_protnone(entry))
1067 entry = pte_mkclean(pte_clear_savedwrite(entry));
1068 else
1069 entry = pte_mkclean(pte_wrprotect(entry));
1070 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1072 *orig_pte = *pvmw.pte;
1073 err = 0;
1075 out_unlock:
1076 page_vma_mapped_walk_done(&pvmw);
1077 out_mn:
1078 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1079 out:
1080 return err;
1084 * replace_page - replace page in vma by new ksm page
1085 * @vma: vma that holds the pte pointing to page
1086 * @page: the page we are replacing by kpage
1087 * @kpage: the ksm page we replace page by
1088 * @orig_pte: the original value of the pte
1090 * Returns 0 on success, -EFAULT on failure.
1092 static int replace_page(struct vm_area_struct *vma, struct page *page,
1093 struct page *kpage, pte_t orig_pte)
1095 struct mm_struct *mm = vma->vm_mm;
1096 pmd_t *pmd;
1097 pte_t *ptep;
1098 pte_t newpte;
1099 spinlock_t *ptl;
1100 unsigned long addr;
1101 int err = -EFAULT;
1102 unsigned long mmun_start; /* For mmu_notifiers */
1103 unsigned long mmun_end; /* For mmu_notifiers */
1105 addr = page_address_in_vma(page, vma);
1106 if (addr == -EFAULT)
1107 goto out;
1109 pmd = mm_find_pmd(mm, addr);
1110 if (!pmd)
1111 goto out;
1113 mmun_start = addr;
1114 mmun_end = addr + PAGE_SIZE;
1115 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1117 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1118 if (!pte_same(*ptep, orig_pte)) {
1119 pte_unmap_unlock(ptep, ptl);
1120 goto out_mn;
1124 * No need to check ksm_use_zero_pages here: we can only have a
1125 * zero_page here if ksm_use_zero_pages was enabled alreaady.
1127 if (!is_zero_pfn(page_to_pfn(kpage))) {
1128 get_page(kpage);
1129 page_add_anon_rmap(kpage, vma, addr, false);
1130 newpte = mk_pte(kpage, vma->vm_page_prot);
1131 } else {
1132 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1133 vma->vm_page_prot));
1136 flush_cache_page(vma, addr, pte_pfn(*ptep));
1138 * No need to notify as we are replacing a read only page with another
1139 * read only page with the same content.
1141 * See Documentation/vm/mmu_notifier.txt
1143 ptep_clear_flush(vma, addr, ptep);
1144 set_pte_at_notify(mm, addr, ptep, newpte);
1146 page_remove_rmap(page, false);
1147 if (!page_mapped(page))
1148 try_to_free_swap(page);
1149 put_page(page);
1151 pte_unmap_unlock(ptep, ptl);
1152 err = 0;
1153 out_mn:
1154 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1155 out:
1156 return err;
1160 * try_to_merge_one_page - take two pages and merge them into one
1161 * @vma: the vma that holds the pte pointing to page
1162 * @page: the PageAnon page that we want to replace with kpage
1163 * @kpage: the PageKsm page that we want to map instead of page,
1164 * or NULL the first time when we want to use page as kpage.
1166 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1168 static int try_to_merge_one_page(struct vm_area_struct *vma,
1169 struct page *page, struct page *kpage)
1171 pte_t orig_pte = __pte(0);
1172 int err = -EFAULT;
1174 if (page == kpage) /* ksm page forked */
1175 return 0;
1177 if (!PageAnon(page))
1178 goto out;
1181 * We need the page lock to read a stable PageSwapCache in
1182 * write_protect_page(). We use trylock_page() instead of
1183 * lock_page() because we don't want to wait here - we
1184 * prefer to continue scanning and merging different pages,
1185 * then come back to this page when it is unlocked.
1187 if (!trylock_page(page))
1188 goto out;
1190 if (PageTransCompound(page)) {
1191 if (split_huge_page(page))
1192 goto out_unlock;
1196 * If this anonymous page is mapped only here, its pte may need
1197 * to be write-protected. If it's mapped elsewhere, all of its
1198 * ptes are necessarily already write-protected. But in either
1199 * case, we need to lock and check page_count is not raised.
1201 if (write_protect_page(vma, page, &orig_pte) == 0) {
1202 if (!kpage) {
1204 * While we hold page lock, upgrade page from
1205 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1206 * stable_tree_insert() will update stable_node.
1208 set_page_stable_node(page, NULL);
1209 mark_page_accessed(page);
1211 * Page reclaim just frees a clean page with no dirty
1212 * ptes: make sure that the ksm page would be swapped.
1214 if (!PageDirty(page))
1215 SetPageDirty(page);
1216 err = 0;
1217 } else if (pages_identical(page, kpage))
1218 err = replace_page(vma, page, kpage, orig_pte);
1221 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1222 munlock_vma_page(page);
1223 if (!PageMlocked(kpage)) {
1224 unlock_page(page);
1225 lock_page(kpage);
1226 mlock_vma_page(kpage);
1227 page = kpage; /* for final unlock */
1231 out_unlock:
1232 unlock_page(page);
1233 out:
1234 return err;
1238 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1239 * but no new kernel page is allocated: kpage must already be a ksm page.
1241 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1243 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1244 struct page *page, struct page *kpage)
1246 struct mm_struct *mm = rmap_item->mm;
1247 struct vm_area_struct *vma;
1248 int err = -EFAULT;
1250 down_read(&mm->mmap_sem);
1251 vma = find_mergeable_vma(mm, rmap_item->address);
1252 if (!vma)
1253 goto out;
1255 err = try_to_merge_one_page(vma, page, kpage);
1256 if (err)
1257 goto out;
1259 /* Unstable nid is in union with stable anon_vma: remove first */
1260 remove_rmap_item_from_tree(rmap_item);
1262 /* Must get reference to anon_vma while still holding mmap_sem */
1263 rmap_item->anon_vma = vma->anon_vma;
1264 get_anon_vma(vma->anon_vma);
1265 out:
1266 up_read(&mm->mmap_sem);
1267 return err;
1271 * try_to_merge_two_pages - take two identical pages and prepare them
1272 * to be merged into one page.
1274 * This function returns the kpage if we successfully merged two identical
1275 * pages into one ksm page, NULL otherwise.
1277 * Note that this function upgrades page to ksm page: if one of the pages
1278 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1280 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1281 struct page *page,
1282 struct rmap_item *tree_rmap_item,
1283 struct page *tree_page)
1285 int err;
1287 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1288 if (!err) {
1289 err = try_to_merge_with_ksm_page(tree_rmap_item,
1290 tree_page, page);
1292 * If that fails, we have a ksm page with only one pte
1293 * pointing to it: so break it.
1295 if (err)
1296 break_cow(rmap_item);
1298 return err ? NULL : page;
1301 static __always_inline
1302 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1304 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1306 * Check that at least one mapping still exists, otherwise
1307 * there's no much point to merge and share with this
1308 * stable_node, as the underlying tree_page of the other
1309 * sharer is going to be freed soon.
1311 return stable_node->rmap_hlist_len &&
1312 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1315 static __always_inline
1316 bool is_page_sharing_candidate(struct stable_node *stable_node)
1318 return __is_page_sharing_candidate(stable_node, 0);
1321 struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1322 struct stable_node **_stable_node,
1323 struct rb_root *root,
1324 bool prune_stale_stable_nodes)
1326 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1327 struct hlist_node *hlist_safe;
1328 struct page *_tree_page, *tree_page = NULL;
1329 int nr = 0;
1330 int found_rmap_hlist_len;
1332 if (!prune_stale_stable_nodes ||
1333 time_before(jiffies, stable_node->chain_prune_time +
1334 msecs_to_jiffies(
1335 ksm_stable_node_chains_prune_millisecs)))
1336 prune_stale_stable_nodes = false;
1337 else
1338 stable_node->chain_prune_time = jiffies;
1340 hlist_for_each_entry_safe(dup, hlist_safe,
1341 &stable_node->hlist, hlist_dup) {
1342 cond_resched();
1344 * We must walk all stable_node_dup to prune the stale
1345 * stable nodes during lookup.
1347 * get_ksm_page can drop the nodes from the
1348 * stable_node->hlist if they point to freed pages
1349 * (that's why we do a _safe walk). The "dup"
1350 * stable_node parameter itself will be freed from
1351 * under us if it returns NULL.
1353 _tree_page = get_ksm_page(dup, false);
1354 if (!_tree_page)
1355 continue;
1356 nr += 1;
1357 if (is_page_sharing_candidate(dup)) {
1358 if (!found ||
1359 dup->rmap_hlist_len > found_rmap_hlist_len) {
1360 if (found)
1361 put_page(tree_page);
1362 found = dup;
1363 found_rmap_hlist_len = found->rmap_hlist_len;
1364 tree_page = _tree_page;
1366 /* skip put_page for found dup */
1367 if (!prune_stale_stable_nodes)
1368 break;
1369 continue;
1372 put_page(_tree_page);
1375 if (found) {
1377 * nr is counting all dups in the chain only if
1378 * prune_stale_stable_nodes is true, otherwise we may
1379 * break the loop at nr == 1 even if there are
1380 * multiple entries.
1382 if (prune_stale_stable_nodes && nr == 1) {
1384 * If there's not just one entry it would
1385 * corrupt memory, better BUG_ON. In KSM
1386 * context with no lock held it's not even
1387 * fatal.
1389 BUG_ON(stable_node->hlist.first->next);
1392 * There's just one entry and it is below the
1393 * deduplication limit so drop the chain.
1395 rb_replace_node(&stable_node->node, &found->node,
1396 root);
1397 free_stable_node(stable_node);
1398 ksm_stable_node_chains--;
1399 ksm_stable_node_dups--;
1401 * NOTE: the caller depends on the stable_node
1402 * to be equal to stable_node_dup if the chain
1403 * was collapsed.
1405 *_stable_node = found;
1407 * Just for robustneess as stable_node is
1408 * otherwise left as a stable pointer, the
1409 * compiler shall optimize it away at build
1410 * time.
1412 stable_node = NULL;
1413 } else if (stable_node->hlist.first != &found->hlist_dup &&
1414 __is_page_sharing_candidate(found, 1)) {
1416 * If the found stable_node dup can accept one
1417 * more future merge (in addition to the one
1418 * that is underway) and is not at the head of
1419 * the chain, put it there so next search will
1420 * be quicker in the !prune_stale_stable_nodes
1421 * case.
1423 * NOTE: it would be inaccurate to use nr > 1
1424 * instead of checking the hlist.first pointer
1425 * directly, because in the
1426 * prune_stale_stable_nodes case "nr" isn't
1427 * the position of the found dup in the chain,
1428 * but the total number of dups in the chain.
1430 hlist_del(&found->hlist_dup);
1431 hlist_add_head(&found->hlist_dup,
1432 &stable_node->hlist);
1436 *_stable_node_dup = found;
1437 return tree_page;
1440 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1441 struct rb_root *root)
1443 if (!is_stable_node_chain(stable_node))
1444 return stable_node;
1445 if (hlist_empty(&stable_node->hlist)) {
1446 free_stable_node_chain(stable_node, root);
1447 return NULL;
1449 return hlist_entry(stable_node->hlist.first,
1450 typeof(*stable_node), hlist_dup);
1454 * Like for get_ksm_page, this function can free the *_stable_node and
1455 * *_stable_node_dup if the returned tree_page is NULL.
1457 * It can also free and overwrite *_stable_node with the found
1458 * stable_node_dup if the chain is collapsed (in which case
1459 * *_stable_node will be equal to *_stable_node_dup like if the chain
1460 * never existed). It's up to the caller to verify tree_page is not
1461 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1463 * *_stable_node_dup is really a second output parameter of this
1464 * function and will be overwritten in all cases, the caller doesn't
1465 * need to initialize it.
1467 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1468 struct stable_node **_stable_node,
1469 struct rb_root *root,
1470 bool prune_stale_stable_nodes)
1472 struct stable_node *stable_node = *_stable_node;
1473 if (!is_stable_node_chain(stable_node)) {
1474 if (is_page_sharing_candidate(stable_node)) {
1475 *_stable_node_dup = stable_node;
1476 return get_ksm_page(stable_node, false);
1479 * _stable_node_dup set to NULL means the stable_node
1480 * reached the ksm_max_page_sharing limit.
1482 *_stable_node_dup = NULL;
1483 return NULL;
1485 return stable_node_dup(_stable_node_dup, _stable_node, root,
1486 prune_stale_stable_nodes);
1489 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1490 struct stable_node **s_n,
1491 struct rb_root *root)
1493 return __stable_node_chain(s_n_d, s_n, root, true);
1496 static __always_inline struct page *chain(struct stable_node **s_n_d,
1497 struct stable_node *s_n,
1498 struct rb_root *root)
1500 struct stable_node *old_stable_node = s_n;
1501 struct page *tree_page;
1503 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1504 /* not pruning dups so s_n cannot have changed */
1505 VM_BUG_ON(s_n != old_stable_node);
1506 return tree_page;
1510 * stable_tree_search - search for page inside the stable tree
1512 * This function checks if there is a page inside the stable tree
1513 * with identical content to the page that we are scanning right now.
1515 * This function returns the stable tree node of identical content if found,
1516 * NULL otherwise.
1518 static struct page *stable_tree_search(struct page *page)
1520 int nid;
1521 struct rb_root *root;
1522 struct rb_node **new;
1523 struct rb_node *parent;
1524 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1525 struct stable_node *page_node;
1527 page_node = page_stable_node(page);
1528 if (page_node && page_node->head != &migrate_nodes) {
1529 /* ksm page forked */
1530 get_page(page);
1531 return page;
1534 nid = get_kpfn_nid(page_to_pfn(page));
1535 root = root_stable_tree + nid;
1536 again:
1537 new = &root->rb_node;
1538 parent = NULL;
1540 while (*new) {
1541 struct page *tree_page;
1542 int ret;
1544 cond_resched();
1545 stable_node = rb_entry(*new, struct stable_node, node);
1546 stable_node_any = NULL;
1547 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1549 * NOTE: stable_node may have been freed by
1550 * chain_prune() if the returned stable_node_dup is
1551 * not NULL. stable_node_dup may have been inserted in
1552 * the rbtree instead as a regular stable_node (in
1553 * order to collapse the stable_node chain if a single
1554 * stable_node dup was found in it). In such case the
1555 * stable_node is overwritten by the calleee to point
1556 * to the stable_node_dup that was collapsed in the
1557 * stable rbtree and stable_node will be equal to
1558 * stable_node_dup like if the chain never existed.
1560 if (!stable_node_dup) {
1562 * Either all stable_node dups were full in
1563 * this stable_node chain, or this chain was
1564 * empty and should be rb_erased.
1566 stable_node_any = stable_node_dup_any(stable_node,
1567 root);
1568 if (!stable_node_any) {
1569 /* rb_erase just run */
1570 goto again;
1573 * Take any of the stable_node dups page of
1574 * this stable_node chain to let the tree walk
1575 * continue. All KSM pages belonging to the
1576 * stable_node dups in a stable_node chain
1577 * have the same content and they're
1578 * wrprotected at all times. Any will work
1579 * fine to continue the walk.
1581 tree_page = get_ksm_page(stable_node_any, false);
1583 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1584 if (!tree_page) {
1586 * If we walked over a stale stable_node,
1587 * get_ksm_page() will call rb_erase() and it
1588 * may rebalance the tree from under us. So
1589 * restart the search from scratch. Returning
1590 * NULL would be safe too, but we'd generate
1591 * false negative insertions just because some
1592 * stable_node was stale.
1594 goto again;
1597 ret = memcmp_pages(page, tree_page);
1598 put_page(tree_page);
1600 parent = *new;
1601 if (ret < 0)
1602 new = &parent->rb_left;
1603 else if (ret > 0)
1604 new = &parent->rb_right;
1605 else {
1606 if (page_node) {
1607 VM_BUG_ON(page_node->head != &migrate_nodes);
1609 * Test if the migrated page should be merged
1610 * into a stable node dup. If the mapcount is
1611 * 1 we can migrate it with another KSM page
1612 * without adding it to the chain.
1614 if (page_mapcount(page) > 1)
1615 goto chain_append;
1618 if (!stable_node_dup) {
1620 * If the stable_node is a chain and
1621 * we got a payload match in memcmp
1622 * but we cannot merge the scanned
1623 * page in any of the existing
1624 * stable_node dups because they're
1625 * all full, we need to wait the
1626 * scanned page to find itself a match
1627 * in the unstable tree to create a
1628 * brand new KSM page to add later to
1629 * the dups of this stable_node.
1631 return NULL;
1635 * Lock and unlock the stable_node's page (which
1636 * might already have been migrated) so that page
1637 * migration is sure to notice its raised count.
1638 * It would be more elegant to return stable_node
1639 * than kpage, but that involves more changes.
1641 tree_page = get_ksm_page(stable_node_dup, true);
1642 if (unlikely(!tree_page))
1644 * The tree may have been rebalanced,
1645 * so re-evaluate parent and new.
1647 goto again;
1648 unlock_page(tree_page);
1650 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1651 NUMA(stable_node_dup->nid)) {
1652 put_page(tree_page);
1653 goto replace;
1655 return tree_page;
1659 if (!page_node)
1660 return NULL;
1662 list_del(&page_node->list);
1663 DO_NUMA(page_node->nid = nid);
1664 rb_link_node(&page_node->node, parent, new);
1665 rb_insert_color(&page_node->node, root);
1666 out:
1667 if (is_page_sharing_candidate(page_node)) {
1668 get_page(page);
1669 return page;
1670 } else
1671 return NULL;
1673 replace:
1675 * If stable_node was a chain and chain_prune collapsed it,
1676 * stable_node has been updated to be the new regular
1677 * stable_node. A collapse of the chain is indistinguishable
1678 * from the case there was no chain in the stable
1679 * rbtree. Otherwise stable_node is the chain and
1680 * stable_node_dup is the dup to replace.
1682 if (stable_node_dup == stable_node) {
1683 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1684 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1685 /* there is no chain */
1686 if (page_node) {
1687 VM_BUG_ON(page_node->head != &migrate_nodes);
1688 list_del(&page_node->list);
1689 DO_NUMA(page_node->nid = nid);
1690 rb_replace_node(&stable_node_dup->node,
1691 &page_node->node,
1692 root);
1693 if (is_page_sharing_candidate(page_node))
1694 get_page(page);
1695 else
1696 page = NULL;
1697 } else {
1698 rb_erase(&stable_node_dup->node, root);
1699 page = NULL;
1701 } else {
1702 VM_BUG_ON(!is_stable_node_chain(stable_node));
1703 __stable_node_dup_del(stable_node_dup);
1704 if (page_node) {
1705 VM_BUG_ON(page_node->head != &migrate_nodes);
1706 list_del(&page_node->list);
1707 DO_NUMA(page_node->nid = nid);
1708 stable_node_chain_add_dup(page_node, stable_node);
1709 if (is_page_sharing_candidate(page_node))
1710 get_page(page);
1711 else
1712 page = NULL;
1713 } else {
1714 page = NULL;
1717 stable_node_dup->head = &migrate_nodes;
1718 list_add(&stable_node_dup->list, stable_node_dup->head);
1719 return page;
1721 chain_append:
1722 /* stable_node_dup could be null if it reached the limit */
1723 if (!stable_node_dup)
1724 stable_node_dup = stable_node_any;
1726 * If stable_node was a chain and chain_prune collapsed it,
1727 * stable_node has been updated to be the new regular
1728 * stable_node. A collapse of the chain is indistinguishable
1729 * from the case there was no chain in the stable
1730 * rbtree. Otherwise stable_node is the chain and
1731 * stable_node_dup is the dup to replace.
1733 if (stable_node_dup == stable_node) {
1734 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1735 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1736 /* chain is missing so create it */
1737 stable_node = alloc_stable_node_chain(stable_node_dup,
1738 root);
1739 if (!stable_node)
1740 return NULL;
1743 * Add this stable_node dup that was
1744 * migrated to the stable_node chain
1745 * of the current nid for this page
1746 * content.
1748 VM_BUG_ON(!is_stable_node_chain(stable_node));
1749 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1750 VM_BUG_ON(page_node->head != &migrate_nodes);
1751 list_del(&page_node->list);
1752 DO_NUMA(page_node->nid = nid);
1753 stable_node_chain_add_dup(page_node, stable_node);
1754 goto out;
1758 * stable_tree_insert - insert stable tree node pointing to new ksm page
1759 * into the stable tree.
1761 * This function returns the stable tree node just allocated on success,
1762 * NULL otherwise.
1764 static struct stable_node *stable_tree_insert(struct page *kpage)
1766 int nid;
1767 unsigned long kpfn;
1768 struct rb_root *root;
1769 struct rb_node **new;
1770 struct rb_node *parent;
1771 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1772 bool need_chain = false;
1774 kpfn = page_to_pfn(kpage);
1775 nid = get_kpfn_nid(kpfn);
1776 root = root_stable_tree + nid;
1777 again:
1778 parent = NULL;
1779 new = &root->rb_node;
1781 while (*new) {
1782 struct page *tree_page;
1783 int ret;
1785 cond_resched();
1786 stable_node = rb_entry(*new, struct stable_node, node);
1787 stable_node_any = NULL;
1788 tree_page = chain(&stable_node_dup, stable_node, root);
1789 if (!stable_node_dup) {
1791 * Either all stable_node dups were full in
1792 * this stable_node chain, or this chain was
1793 * empty and should be rb_erased.
1795 stable_node_any = stable_node_dup_any(stable_node,
1796 root);
1797 if (!stable_node_any) {
1798 /* rb_erase just run */
1799 goto again;
1802 * Take any of the stable_node dups page of
1803 * this stable_node chain to let the tree walk
1804 * continue. All KSM pages belonging to the
1805 * stable_node dups in a stable_node chain
1806 * have the same content and they're
1807 * wrprotected at all times. Any will work
1808 * fine to continue the walk.
1810 tree_page = get_ksm_page(stable_node_any, false);
1812 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1813 if (!tree_page) {
1815 * If we walked over a stale stable_node,
1816 * get_ksm_page() will call rb_erase() and it
1817 * may rebalance the tree from under us. So
1818 * restart the search from scratch. Returning
1819 * NULL would be safe too, but we'd generate
1820 * false negative insertions just because some
1821 * stable_node was stale.
1823 goto again;
1826 ret = memcmp_pages(kpage, tree_page);
1827 put_page(tree_page);
1829 parent = *new;
1830 if (ret < 0)
1831 new = &parent->rb_left;
1832 else if (ret > 0)
1833 new = &parent->rb_right;
1834 else {
1835 need_chain = true;
1836 break;
1840 stable_node_dup = alloc_stable_node();
1841 if (!stable_node_dup)
1842 return NULL;
1844 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1845 stable_node_dup->kpfn = kpfn;
1846 set_page_stable_node(kpage, stable_node_dup);
1847 stable_node_dup->rmap_hlist_len = 0;
1848 DO_NUMA(stable_node_dup->nid = nid);
1849 if (!need_chain) {
1850 rb_link_node(&stable_node_dup->node, parent, new);
1851 rb_insert_color(&stable_node_dup->node, root);
1852 } else {
1853 if (!is_stable_node_chain(stable_node)) {
1854 struct stable_node *orig = stable_node;
1855 /* chain is missing so create it */
1856 stable_node = alloc_stable_node_chain(orig, root);
1857 if (!stable_node) {
1858 free_stable_node(stable_node_dup);
1859 return NULL;
1862 stable_node_chain_add_dup(stable_node_dup, stable_node);
1865 return stable_node_dup;
1869 * unstable_tree_search_insert - search for identical page,
1870 * else insert rmap_item into the unstable tree.
1872 * This function searches for a page in the unstable tree identical to the
1873 * page currently being scanned; and if no identical page is found in the
1874 * tree, we insert rmap_item as a new object into the unstable tree.
1876 * This function returns pointer to rmap_item found to be identical
1877 * to the currently scanned page, NULL otherwise.
1879 * This function does both searching and inserting, because they share
1880 * the same walking algorithm in an rbtree.
1882 static
1883 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1884 struct page *page,
1885 struct page **tree_pagep)
1887 struct rb_node **new;
1888 struct rb_root *root;
1889 struct rb_node *parent = NULL;
1890 int nid;
1892 nid = get_kpfn_nid(page_to_pfn(page));
1893 root = root_unstable_tree + nid;
1894 new = &root->rb_node;
1896 while (*new) {
1897 struct rmap_item *tree_rmap_item;
1898 struct page *tree_page;
1899 int ret;
1901 cond_resched();
1902 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1903 tree_page = get_mergeable_page(tree_rmap_item);
1904 if (!tree_page)
1905 return NULL;
1908 * Don't substitute a ksm page for a forked page.
1910 if (page == tree_page) {
1911 put_page(tree_page);
1912 return NULL;
1915 ret = memcmp_pages(page, tree_page);
1917 parent = *new;
1918 if (ret < 0) {
1919 put_page(tree_page);
1920 new = &parent->rb_left;
1921 } else if (ret > 0) {
1922 put_page(tree_page);
1923 new = &parent->rb_right;
1924 } else if (!ksm_merge_across_nodes &&
1925 page_to_nid(tree_page) != nid) {
1927 * If tree_page has been migrated to another NUMA node,
1928 * it will be flushed out and put in the right unstable
1929 * tree next time: only merge with it when across_nodes.
1931 put_page(tree_page);
1932 return NULL;
1933 } else {
1934 *tree_pagep = tree_page;
1935 return tree_rmap_item;
1939 rmap_item->address |= UNSTABLE_FLAG;
1940 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1941 DO_NUMA(rmap_item->nid = nid);
1942 rb_link_node(&rmap_item->node, parent, new);
1943 rb_insert_color(&rmap_item->node, root);
1945 ksm_pages_unshared++;
1946 return NULL;
1950 * stable_tree_append - add another rmap_item to the linked list of
1951 * rmap_items hanging off a given node of the stable tree, all sharing
1952 * the same ksm page.
1954 static void stable_tree_append(struct rmap_item *rmap_item,
1955 struct stable_node *stable_node,
1956 bool max_page_sharing_bypass)
1959 * rmap won't find this mapping if we don't insert the
1960 * rmap_item in the right stable_node
1961 * duplicate. page_migration could break later if rmap breaks,
1962 * so we can as well crash here. We really need to check for
1963 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1964 * for other negative values as an undeflow if detected here
1965 * for the first time (and not when decreasing rmap_hlist_len)
1966 * would be sign of memory corruption in the stable_node.
1968 BUG_ON(stable_node->rmap_hlist_len < 0);
1970 stable_node->rmap_hlist_len++;
1971 if (!max_page_sharing_bypass)
1972 /* possibly non fatal but unexpected overflow, only warn */
1973 WARN_ON_ONCE(stable_node->rmap_hlist_len >
1974 ksm_max_page_sharing);
1976 rmap_item->head = stable_node;
1977 rmap_item->address |= STABLE_FLAG;
1978 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1980 if (rmap_item->hlist.next)
1981 ksm_pages_sharing++;
1982 else
1983 ksm_pages_shared++;
1987 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1988 * if not, compare checksum to previous and if it's the same, see if page can
1989 * be inserted into the unstable tree, or merged with a page already there and
1990 * both transferred to the stable tree.
1992 * @page: the page that we are searching identical page to.
1993 * @rmap_item: the reverse mapping into the virtual address of this page
1995 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1997 struct mm_struct *mm = rmap_item->mm;
1998 struct rmap_item *tree_rmap_item;
1999 struct page *tree_page = NULL;
2000 struct stable_node *stable_node;
2001 struct page *kpage;
2002 unsigned int checksum;
2003 int err;
2004 bool max_page_sharing_bypass = false;
2006 stable_node = page_stable_node(page);
2007 if (stable_node) {
2008 if (stable_node->head != &migrate_nodes &&
2009 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2010 NUMA(stable_node->nid)) {
2011 stable_node_dup_del(stable_node);
2012 stable_node->head = &migrate_nodes;
2013 list_add(&stable_node->list, stable_node->head);
2015 if (stable_node->head != &migrate_nodes &&
2016 rmap_item->head == stable_node)
2017 return;
2019 * If it's a KSM fork, allow it to go over the sharing limit
2020 * without warnings.
2022 if (!is_page_sharing_candidate(stable_node))
2023 max_page_sharing_bypass = true;
2026 /* We first start with searching the page inside the stable tree */
2027 kpage = stable_tree_search(page);
2028 if (kpage == page && rmap_item->head == stable_node) {
2029 put_page(kpage);
2030 return;
2033 remove_rmap_item_from_tree(rmap_item);
2035 if (kpage) {
2036 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2037 if (!err) {
2039 * The page was successfully merged:
2040 * add its rmap_item to the stable tree.
2042 lock_page(kpage);
2043 stable_tree_append(rmap_item, page_stable_node(kpage),
2044 max_page_sharing_bypass);
2045 unlock_page(kpage);
2047 put_page(kpage);
2048 return;
2052 * If the hash value of the page has changed from the last time
2053 * we calculated it, this page is changing frequently: therefore we
2054 * don't want to insert it in the unstable tree, and we don't want
2055 * to waste our time searching for something identical to it there.
2057 checksum = calc_checksum(page);
2058 if (rmap_item->oldchecksum != checksum) {
2059 rmap_item->oldchecksum = checksum;
2060 return;
2064 * Same checksum as an empty page. We attempt to merge it with the
2065 * appropriate zero page if the user enabled this via sysfs.
2067 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2068 struct vm_area_struct *vma;
2070 down_read(&mm->mmap_sem);
2071 vma = find_mergeable_vma(mm, rmap_item->address);
2072 err = try_to_merge_one_page(vma, page,
2073 ZERO_PAGE(rmap_item->address));
2074 up_read(&mm->mmap_sem);
2076 * In case of failure, the page was not really empty, so we
2077 * need to continue. Otherwise we're done.
2079 if (!err)
2080 return;
2082 tree_rmap_item =
2083 unstable_tree_search_insert(rmap_item, page, &tree_page);
2084 if (tree_rmap_item) {
2085 kpage = try_to_merge_two_pages(rmap_item, page,
2086 tree_rmap_item, tree_page);
2087 put_page(tree_page);
2088 if (kpage) {
2090 * The pages were successfully merged: insert new
2091 * node in the stable tree and add both rmap_items.
2093 lock_page(kpage);
2094 stable_node = stable_tree_insert(kpage);
2095 if (stable_node) {
2096 stable_tree_append(tree_rmap_item, stable_node,
2097 false);
2098 stable_tree_append(rmap_item, stable_node,
2099 false);
2101 unlock_page(kpage);
2104 * If we fail to insert the page into the stable tree,
2105 * we will have 2 virtual addresses that are pointing
2106 * to a ksm page left outside the stable tree,
2107 * in which case we need to break_cow on both.
2109 if (!stable_node) {
2110 break_cow(tree_rmap_item);
2111 break_cow(rmap_item);
2117 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2118 struct rmap_item **rmap_list,
2119 unsigned long addr)
2121 struct rmap_item *rmap_item;
2123 while (*rmap_list) {
2124 rmap_item = *rmap_list;
2125 if ((rmap_item->address & PAGE_MASK) == addr)
2126 return rmap_item;
2127 if (rmap_item->address > addr)
2128 break;
2129 *rmap_list = rmap_item->rmap_list;
2130 remove_rmap_item_from_tree(rmap_item);
2131 free_rmap_item(rmap_item);
2134 rmap_item = alloc_rmap_item();
2135 if (rmap_item) {
2136 /* It has already been zeroed */
2137 rmap_item->mm = mm_slot->mm;
2138 rmap_item->address = addr;
2139 rmap_item->rmap_list = *rmap_list;
2140 *rmap_list = rmap_item;
2142 return rmap_item;
2145 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2147 struct mm_struct *mm;
2148 struct mm_slot *slot;
2149 struct vm_area_struct *vma;
2150 struct rmap_item *rmap_item;
2151 int nid;
2153 if (list_empty(&ksm_mm_head.mm_list))
2154 return NULL;
2156 slot = ksm_scan.mm_slot;
2157 if (slot == &ksm_mm_head) {
2159 * A number of pages can hang around indefinitely on per-cpu
2160 * pagevecs, raised page count preventing write_protect_page
2161 * from merging them. Though it doesn't really matter much,
2162 * it is puzzling to see some stuck in pages_volatile until
2163 * other activity jostles them out, and they also prevented
2164 * LTP's KSM test from succeeding deterministically; so drain
2165 * them here (here rather than on entry to ksm_do_scan(),
2166 * so we don't IPI too often when pages_to_scan is set low).
2168 lru_add_drain_all();
2171 * Whereas stale stable_nodes on the stable_tree itself
2172 * get pruned in the regular course of stable_tree_search(),
2173 * those moved out to the migrate_nodes list can accumulate:
2174 * so prune them once before each full scan.
2176 if (!ksm_merge_across_nodes) {
2177 struct stable_node *stable_node, *next;
2178 struct page *page;
2180 list_for_each_entry_safe(stable_node, next,
2181 &migrate_nodes, list) {
2182 page = get_ksm_page(stable_node, false);
2183 if (page)
2184 put_page(page);
2185 cond_resched();
2189 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2190 root_unstable_tree[nid] = RB_ROOT;
2192 spin_lock(&ksm_mmlist_lock);
2193 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2194 ksm_scan.mm_slot = slot;
2195 spin_unlock(&ksm_mmlist_lock);
2197 * Although we tested list_empty() above, a racing __ksm_exit
2198 * of the last mm on the list may have removed it since then.
2200 if (slot == &ksm_mm_head)
2201 return NULL;
2202 next_mm:
2203 ksm_scan.address = 0;
2204 ksm_scan.rmap_list = &slot->rmap_list;
2207 mm = slot->mm;
2208 down_read(&mm->mmap_sem);
2209 if (ksm_test_exit(mm))
2210 vma = NULL;
2211 else
2212 vma = find_vma(mm, ksm_scan.address);
2214 for (; vma; vma = vma->vm_next) {
2215 if (!(vma->vm_flags & VM_MERGEABLE))
2216 continue;
2217 if (ksm_scan.address < vma->vm_start)
2218 ksm_scan.address = vma->vm_start;
2219 if (!vma->anon_vma)
2220 ksm_scan.address = vma->vm_end;
2222 while (ksm_scan.address < vma->vm_end) {
2223 if (ksm_test_exit(mm))
2224 break;
2225 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2226 if (IS_ERR_OR_NULL(*page)) {
2227 ksm_scan.address += PAGE_SIZE;
2228 cond_resched();
2229 continue;
2231 if (PageAnon(*page)) {
2232 flush_anon_page(vma, *page, ksm_scan.address);
2233 flush_dcache_page(*page);
2234 rmap_item = get_next_rmap_item(slot,
2235 ksm_scan.rmap_list, ksm_scan.address);
2236 if (rmap_item) {
2237 ksm_scan.rmap_list =
2238 &rmap_item->rmap_list;
2239 ksm_scan.address += PAGE_SIZE;
2240 } else
2241 put_page(*page);
2242 up_read(&mm->mmap_sem);
2243 return rmap_item;
2245 put_page(*page);
2246 ksm_scan.address += PAGE_SIZE;
2247 cond_resched();
2251 if (ksm_test_exit(mm)) {
2252 ksm_scan.address = 0;
2253 ksm_scan.rmap_list = &slot->rmap_list;
2256 * Nuke all the rmap_items that are above this current rmap:
2257 * because there were no VM_MERGEABLE vmas with such addresses.
2259 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2261 spin_lock(&ksm_mmlist_lock);
2262 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2263 struct mm_slot, mm_list);
2264 if (ksm_scan.address == 0) {
2266 * We've completed a full scan of all vmas, holding mmap_sem
2267 * throughout, and found no VM_MERGEABLE: so do the same as
2268 * __ksm_exit does to remove this mm from all our lists now.
2269 * This applies either when cleaning up after __ksm_exit
2270 * (but beware: we can reach here even before __ksm_exit),
2271 * or when all VM_MERGEABLE areas have been unmapped (and
2272 * mmap_sem then protects against race with MADV_MERGEABLE).
2274 hash_del(&slot->link);
2275 list_del(&slot->mm_list);
2276 spin_unlock(&ksm_mmlist_lock);
2278 free_mm_slot(slot);
2279 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2280 up_read(&mm->mmap_sem);
2281 mmdrop(mm);
2282 } else {
2283 up_read(&mm->mmap_sem);
2285 * up_read(&mm->mmap_sem) first because after
2286 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2287 * already have been freed under us by __ksm_exit()
2288 * because the "mm_slot" is still hashed and
2289 * ksm_scan.mm_slot doesn't point to it anymore.
2291 spin_unlock(&ksm_mmlist_lock);
2294 /* Repeat until we've completed scanning the whole list */
2295 slot = ksm_scan.mm_slot;
2296 if (slot != &ksm_mm_head)
2297 goto next_mm;
2299 ksm_scan.seqnr++;
2300 return NULL;
2304 * ksm_do_scan - the ksm scanner main worker function.
2305 * @scan_npages: number of pages we want to scan before we return.
2307 static void ksm_do_scan(unsigned int scan_npages)
2309 struct rmap_item *rmap_item;
2310 struct page *uninitialized_var(page);
2312 while (scan_npages-- && likely(!freezing(current))) {
2313 cond_resched();
2314 rmap_item = scan_get_next_rmap_item(&page);
2315 if (!rmap_item)
2316 return;
2317 cmp_and_merge_page(page, rmap_item);
2318 put_page(page);
2322 static int ksmd_should_run(void)
2324 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2327 static int ksm_scan_thread(void *nothing)
2329 set_freezable();
2330 set_user_nice(current, 5);
2332 while (!kthread_should_stop()) {
2333 mutex_lock(&ksm_thread_mutex);
2334 wait_while_offlining();
2335 if (ksmd_should_run())
2336 ksm_do_scan(ksm_thread_pages_to_scan);
2337 mutex_unlock(&ksm_thread_mutex);
2339 try_to_freeze();
2341 if (ksmd_should_run()) {
2342 schedule_timeout_interruptible(
2343 msecs_to_jiffies(ksm_thread_sleep_millisecs));
2344 } else {
2345 wait_event_freezable(ksm_thread_wait,
2346 ksmd_should_run() || kthread_should_stop());
2349 return 0;
2352 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2353 unsigned long end, int advice, unsigned long *vm_flags)
2355 struct mm_struct *mm = vma->vm_mm;
2356 int err;
2358 switch (advice) {
2359 case MADV_MERGEABLE:
2361 * Be somewhat over-protective for now!
2363 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
2364 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
2365 VM_HUGETLB | VM_MIXEDMAP))
2366 return 0; /* just ignore the advice */
2368 #ifdef VM_SAO
2369 if (*vm_flags & VM_SAO)
2370 return 0;
2371 #endif
2373 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2374 err = __ksm_enter(mm);
2375 if (err)
2376 return err;
2379 *vm_flags |= VM_MERGEABLE;
2380 break;
2382 case MADV_UNMERGEABLE:
2383 if (!(*vm_flags & VM_MERGEABLE))
2384 return 0; /* just ignore the advice */
2386 if (vma->anon_vma) {
2387 err = unmerge_ksm_pages(vma, start, end);
2388 if (err)
2389 return err;
2392 *vm_flags &= ~VM_MERGEABLE;
2393 break;
2396 return 0;
2399 int __ksm_enter(struct mm_struct *mm)
2401 struct mm_slot *mm_slot;
2402 int needs_wakeup;
2404 mm_slot = alloc_mm_slot();
2405 if (!mm_slot)
2406 return -ENOMEM;
2408 /* Check ksm_run too? Would need tighter locking */
2409 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2411 spin_lock(&ksm_mmlist_lock);
2412 insert_to_mm_slots_hash(mm, mm_slot);
2414 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2415 * insert just behind the scanning cursor, to let the area settle
2416 * down a little; when fork is followed by immediate exec, we don't
2417 * want ksmd to waste time setting up and tearing down an rmap_list.
2419 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2420 * scanning cursor, otherwise KSM pages in newly forked mms will be
2421 * missed: then we might as well insert at the end of the list.
2423 if (ksm_run & KSM_RUN_UNMERGE)
2424 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2425 else
2426 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2427 spin_unlock(&ksm_mmlist_lock);
2429 set_bit(MMF_VM_MERGEABLE, &mm->flags);
2430 mmgrab(mm);
2432 if (needs_wakeup)
2433 wake_up_interruptible(&ksm_thread_wait);
2435 return 0;
2438 void __ksm_exit(struct mm_struct *mm)
2440 struct mm_slot *mm_slot;
2441 int easy_to_free = 0;
2444 * This process is exiting: if it's straightforward (as is the
2445 * case when ksmd was never running), free mm_slot immediately.
2446 * But if it's at the cursor or has rmap_items linked to it, use
2447 * mmap_sem to synchronize with any break_cows before pagetables
2448 * are freed, and leave the mm_slot on the list for ksmd to free.
2449 * Beware: ksm may already have noticed it exiting and freed the slot.
2452 spin_lock(&ksm_mmlist_lock);
2453 mm_slot = get_mm_slot(mm);
2454 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2455 if (!mm_slot->rmap_list) {
2456 hash_del(&mm_slot->link);
2457 list_del(&mm_slot->mm_list);
2458 easy_to_free = 1;
2459 } else {
2460 list_move(&mm_slot->mm_list,
2461 &ksm_scan.mm_slot->mm_list);
2464 spin_unlock(&ksm_mmlist_lock);
2466 if (easy_to_free) {
2467 free_mm_slot(mm_slot);
2468 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2469 mmdrop(mm);
2470 } else if (mm_slot) {
2471 down_write(&mm->mmap_sem);
2472 up_write(&mm->mmap_sem);
2476 struct page *ksm_might_need_to_copy(struct page *page,
2477 struct vm_area_struct *vma, unsigned long address)
2479 struct anon_vma *anon_vma = page_anon_vma(page);
2480 struct page *new_page;
2482 if (PageKsm(page)) {
2483 if (page_stable_node(page) &&
2484 !(ksm_run & KSM_RUN_UNMERGE))
2485 return page; /* no need to copy it */
2486 } else if (!anon_vma) {
2487 return page; /* no need to copy it */
2488 } else if (anon_vma->root == vma->anon_vma->root &&
2489 page->index == linear_page_index(vma, address)) {
2490 return page; /* still no need to copy it */
2492 if (!PageUptodate(page))
2493 return page; /* let do_swap_page report the error */
2495 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2496 if (new_page) {
2497 copy_user_highpage(new_page, page, address, vma);
2499 SetPageDirty(new_page);
2500 __SetPageUptodate(new_page);
2501 __SetPageLocked(new_page);
2504 return new_page;
2507 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2509 struct stable_node *stable_node;
2510 struct rmap_item *rmap_item;
2511 int search_new_forks = 0;
2513 VM_BUG_ON_PAGE(!PageKsm(page), page);
2516 * Rely on the page lock to protect against concurrent modifications
2517 * to that page's node of the stable tree.
2519 VM_BUG_ON_PAGE(!PageLocked(page), page);
2521 stable_node = page_stable_node(page);
2522 if (!stable_node)
2523 return;
2524 again:
2525 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2526 struct anon_vma *anon_vma = rmap_item->anon_vma;
2527 struct anon_vma_chain *vmac;
2528 struct vm_area_struct *vma;
2530 cond_resched();
2531 anon_vma_lock_read(anon_vma);
2532 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2533 0, ULONG_MAX) {
2534 cond_resched();
2535 vma = vmac->vma;
2536 if (rmap_item->address < vma->vm_start ||
2537 rmap_item->address >= vma->vm_end)
2538 continue;
2540 * Initially we examine only the vma which covers this
2541 * rmap_item; but later, if there is still work to do,
2542 * we examine covering vmas in other mms: in case they
2543 * were forked from the original since ksmd passed.
2545 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2546 continue;
2548 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2549 continue;
2551 if (!rwc->rmap_one(page, vma,
2552 rmap_item->address, rwc->arg)) {
2553 anon_vma_unlock_read(anon_vma);
2554 return;
2556 if (rwc->done && rwc->done(page)) {
2557 anon_vma_unlock_read(anon_vma);
2558 return;
2561 anon_vma_unlock_read(anon_vma);
2563 if (!search_new_forks++)
2564 goto again;
2567 #ifdef CONFIG_MIGRATION
2568 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2570 struct stable_node *stable_node;
2572 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2573 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2574 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2576 stable_node = page_stable_node(newpage);
2577 if (stable_node) {
2578 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2579 stable_node->kpfn = page_to_pfn(newpage);
2581 * newpage->mapping was set in advance; now we need smp_wmb()
2582 * to make sure that the new stable_node->kpfn is visible
2583 * to get_ksm_page() before it can see that oldpage->mapping
2584 * has gone stale (or that PageSwapCache has been cleared).
2586 smp_wmb();
2587 set_page_stable_node(oldpage, NULL);
2590 #endif /* CONFIG_MIGRATION */
2592 #ifdef CONFIG_MEMORY_HOTREMOVE
2593 static void wait_while_offlining(void)
2595 while (ksm_run & KSM_RUN_OFFLINE) {
2596 mutex_unlock(&ksm_thread_mutex);
2597 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2598 TASK_UNINTERRUPTIBLE);
2599 mutex_lock(&ksm_thread_mutex);
2603 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2604 unsigned long start_pfn,
2605 unsigned long end_pfn)
2607 if (stable_node->kpfn >= start_pfn &&
2608 stable_node->kpfn < end_pfn) {
2610 * Don't get_ksm_page, page has already gone:
2611 * which is why we keep kpfn instead of page*
2613 remove_node_from_stable_tree(stable_node);
2614 return true;
2616 return false;
2619 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2620 unsigned long start_pfn,
2621 unsigned long end_pfn,
2622 struct rb_root *root)
2624 struct stable_node *dup;
2625 struct hlist_node *hlist_safe;
2627 if (!is_stable_node_chain(stable_node)) {
2628 VM_BUG_ON(is_stable_node_dup(stable_node));
2629 return stable_node_dup_remove_range(stable_node, start_pfn,
2630 end_pfn);
2633 hlist_for_each_entry_safe(dup, hlist_safe,
2634 &stable_node->hlist, hlist_dup) {
2635 VM_BUG_ON(!is_stable_node_dup(dup));
2636 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2638 if (hlist_empty(&stable_node->hlist)) {
2639 free_stable_node_chain(stable_node, root);
2640 return true; /* notify caller that tree was rebalanced */
2641 } else
2642 return false;
2645 static void ksm_check_stable_tree(unsigned long start_pfn,
2646 unsigned long end_pfn)
2648 struct stable_node *stable_node, *next;
2649 struct rb_node *node;
2650 int nid;
2652 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2653 node = rb_first(root_stable_tree + nid);
2654 while (node) {
2655 stable_node = rb_entry(node, struct stable_node, node);
2656 if (stable_node_chain_remove_range(stable_node,
2657 start_pfn, end_pfn,
2658 root_stable_tree +
2659 nid))
2660 node = rb_first(root_stable_tree + nid);
2661 else
2662 node = rb_next(node);
2663 cond_resched();
2666 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2667 if (stable_node->kpfn >= start_pfn &&
2668 stable_node->kpfn < end_pfn)
2669 remove_node_from_stable_tree(stable_node);
2670 cond_resched();
2674 static int ksm_memory_callback(struct notifier_block *self,
2675 unsigned long action, void *arg)
2677 struct memory_notify *mn = arg;
2679 switch (action) {
2680 case MEM_GOING_OFFLINE:
2682 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2683 * and remove_all_stable_nodes() while memory is going offline:
2684 * it is unsafe for them to touch the stable tree at this time.
2685 * But unmerge_ksm_pages(), rmap lookups and other entry points
2686 * which do not need the ksm_thread_mutex are all safe.
2688 mutex_lock(&ksm_thread_mutex);
2689 ksm_run |= KSM_RUN_OFFLINE;
2690 mutex_unlock(&ksm_thread_mutex);
2691 break;
2693 case MEM_OFFLINE:
2695 * Most of the work is done by page migration; but there might
2696 * be a few stable_nodes left over, still pointing to struct
2697 * pages which have been offlined: prune those from the tree,
2698 * otherwise get_ksm_page() might later try to access a
2699 * non-existent struct page.
2701 ksm_check_stable_tree(mn->start_pfn,
2702 mn->start_pfn + mn->nr_pages);
2703 /* fallthrough */
2705 case MEM_CANCEL_OFFLINE:
2706 mutex_lock(&ksm_thread_mutex);
2707 ksm_run &= ~KSM_RUN_OFFLINE;
2708 mutex_unlock(&ksm_thread_mutex);
2710 smp_mb(); /* wake_up_bit advises this */
2711 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2712 break;
2714 return NOTIFY_OK;
2716 #else
2717 static void wait_while_offlining(void)
2720 #endif /* CONFIG_MEMORY_HOTREMOVE */
2722 #ifdef CONFIG_SYSFS
2724 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2727 #define KSM_ATTR_RO(_name) \
2728 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2729 #define KSM_ATTR(_name) \
2730 static struct kobj_attribute _name##_attr = \
2731 __ATTR(_name, 0644, _name##_show, _name##_store)
2733 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2734 struct kobj_attribute *attr, char *buf)
2736 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2739 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2740 struct kobj_attribute *attr,
2741 const char *buf, size_t count)
2743 unsigned long msecs;
2744 int err;
2746 err = kstrtoul(buf, 10, &msecs);
2747 if (err || msecs > UINT_MAX)
2748 return -EINVAL;
2750 ksm_thread_sleep_millisecs = msecs;
2752 return count;
2754 KSM_ATTR(sleep_millisecs);
2756 static ssize_t pages_to_scan_show(struct kobject *kobj,
2757 struct kobj_attribute *attr, char *buf)
2759 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2762 static ssize_t pages_to_scan_store(struct kobject *kobj,
2763 struct kobj_attribute *attr,
2764 const char *buf, size_t count)
2766 int err;
2767 unsigned long nr_pages;
2769 err = kstrtoul(buf, 10, &nr_pages);
2770 if (err || nr_pages > UINT_MAX)
2771 return -EINVAL;
2773 ksm_thread_pages_to_scan = nr_pages;
2775 return count;
2777 KSM_ATTR(pages_to_scan);
2779 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2780 char *buf)
2782 return sprintf(buf, "%lu\n", ksm_run);
2785 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2786 const char *buf, size_t count)
2788 int err;
2789 unsigned long flags;
2791 err = kstrtoul(buf, 10, &flags);
2792 if (err || flags > UINT_MAX)
2793 return -EINVAL;
2794 if (flags > KSM_RUN_UNMERGE)
2795 return -EINVAL;
2798 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2799 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2800 * breaking COW to free the pages_shared (but leaves mm_slots
2801 * on the list for when ksmd may be set running again).
2804 mutex_lock(&ksm_thread_mutex);
2805 wait_while_offlining();
2806 if (ksm_run != flags) {
2807 ksm_run = flags;
2808 if (flags & KSM_RUN_UNMERGE) {
2809 set_current_oom_origin();
2810 err = unmerge_and_remove_all_rmap_items();
2811 clear_current_oom_origin();
2812 if (err) {
2813 ksm_run = KSM_RUN_STOP;
2814 count = err;
2818 mutex_unlock(&ksm_thread_mutex);
2820 if (flags & KSM_RUN_MERGE)
2821 wake_up_interruptible(&ksm_thread_wait);
2823 return count;
2825 KSM_ATTR(run);
2827 #ifdef CONFIG_NUMA
2828 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2829 struct kobj_attribute *attr, char *buf)
2831 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2834 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2835 struct kobj_attribute *attr,
2836 const char *buf, size_t count)
2838 int err;
2839 unsigned long knob;
2841 err = kstrtoul(buf, 10, &knob);
2842 if (err)
2843 return err;
2844 if (knob > 1)
2845 return -EINVAL;
2847 mutex_lock(&ksm_thread_mutex);
2848 wait_while_offlining();
2849 if (ksm_merge_across_nodes != knob) {
2850 if (ksm_pages_shared || remove_all_stable_nodes())
2851 err = -EBUSY;
2852 else if (root_stable_tree == one_stable_tree) {
2853 struct rb_root *buf;
2855 * This is the first time that we switch away from the
2856 * default of merging across nodes: must now allocate
2857 * a buffer to hold as many roots as may be needed.
2858 * Allocate stable and unstable together:
2859 * MAXSMP NODES_SHIFT 10 will use 16kB.
2861 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2862 GFP_KERNEL);
2863 /* Let us assume that RB_ROOT is NULL is zero */
2864 if (!buf)
2865 err = -ENOMEM;
2866 else {
2867 root_stable_tree = buf;
2868 root_unstable_tree = buf + nr_node_ids;
2869 /* Stable tree is empty but not the unstable */
2870 root_unstable_tree[0] = one_unstable_tree[0];
2873 if (!err) {
2874 ksm_merge_across_nodes = knob;
2875 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2878 mutex_unlock(&ksm_thread_mutex);
2880 return err ? err : count;
2882 KSM_ATTR(merge_across_nodes);
2883 #endif
2885 static ssize_t use_zero_pages_show(struct kobject *kobj,
2886 struct kobj_attribute *attr, char *buf)
2888 return sprintf(buf, "%u\n", ksm_use_zero_pages);
2890 static ssize_t use_zero_pages_store(struct kobject *kobj,
2891 struct kobj_attribute *attr,
2892 const char *buf, size_t count)
2894 int err;
2895 bool value;
2897 err = kstrtobool(buf, &value);
2898 if (err)
2899 return -EINVAL;
2901 ksm_use_zero_pages = value;
2903 return count;
2905 KSM_ATTR(use_zero_pages);
2907 static ssize_t max_page_sharing_show(struct kobject *kobj,
2908 struct kobj_attribute *attr, char *buf)
2910 return sprintf(buf, "%u\n", ksm_max_page_sharing);
2913 static ssize_t max_page_sharing_store(struct kobject *kobj,
2914 struct kobj_attribute *attr,
2915 const char *buf, size_t count)
2917 int err;
2918 int knob;
2920 err = kstrtoint(buf, 10, &knob);
2921 if (err)
2922 return err;
2924 * When a KSM page is created it is shared by 2 mappings. This
2925 * being a signed comparison, it implicitly verifies it's not
2926 * negative.
2928 if (knob < 2)
2929 return -EINVAL;
2931 if (READ_ONCE(ksm_max_page_sharing) == knob)
2932 return count;
2934 mutex_lock(&ksm_thread_mutex);
2935 wait_while_offlining();
2936 if (ksm_max_page_sharing != knob) {
2937 if (ksm_pages_shared || remove_all_stable_nodes())
2938 err = -EBUSY;
2939 else
2940 ksm_max_page_sharing = knob;
2942 mutex_unlock(&ksm_thread_mutex);
2944 return err ? err : count;
2946 KSM_ATTR(max_page_sharing);
2948 static ssize_t pages_shared_show(struct kobject *kobj,
2949 struct kobj_attribute *attr, char *buf)
2951 return sprintf(buf, "%lu\n", ksm_pages_shared);
2953 KSM_ATTR_RO(pages_shared);
2955 static ssize_t pages_sharing_show(struct kobject *kobj,
2956 struct kobj_attribute *attr, char *buf)
2958 return sprintf(buf, "%lu\n", ksm_pages_sharing);
2960 KSM_ATTR_RO(pages_sharing);
2962 static ssize_t pages_unshared_show(struct kobject *kobj,
2963 struct kobj_attribute *attr, char *buf)
2965 return sprintf(buf, "%lu\n", ksm_pages_unshared);
2967 KSM_ATTR_RO(pages_unshared);
2969 static ssize_t pages_volatile_show(struct kobject *kobj,
2970 struct kobj_attribute *attr, char *buf)
2972 long ksm_pages_volatile;
2974 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2975 - ksm_pages_sharing - ksm_pages_unshared;
2977 * It was not worth any locking to calculate that statistic,
2978 * but it might therefore sometimes be negative: conceal that.
2980 if (ksm_pages_volatile < 0)
2981 ksm_pages_volatile = 0;
2982 return sprintf(buf, "%ld\n", ksm_pages_volatile);
2984 KSM_ATTR_RO(pages_volatile);
2986 static ssize_t stable_node_dups_show(struct kobject *kobj,
2987 struct kobj_attribute *attr, char *buf)
2989 return sprintf(buf, "%lu\n", ksm_stable_node_dups);
2991 KSM_ATTR_RO(stable_node_dups);
2993 static ssize_t stable_node_chains_show(struct kobject *kobj,
2994 struct kobj_attribute *attr, char *buf)
2996 return sprintf(buf, "%lu\n", ksm_stable_node_chains);
2998 KSM_ATTR_RO(stable_node_chains);
3000 static ssize_t
3001 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3002 struct kobj_attribute *attr,
3003 char *buf)
3005 return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3008 static ssize_t
3009 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3010 struct kobj_attribute *attr,
3011 const char *buf, size_t count)
3013 unsigned long msecs;
3014 int err;
3016 err = kstrtoul(buf, 10, &msecs);
3017 if (err || msecs > UINT_MAX)
3018 return -EINVAL;
3020 ksm_stable_node_chains_prune_millisecs = msecs;
3022 return count;
3024 KSM_ATTR(stable_node_chains_prune_millisecs);
3026 static ssize_t full_scans_show(struct kobject *kobj,
3027 struct kobj_attribute *attr, char *buf)
3029 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3031 KSM_ATTR_RO(full_scans);
3033 static struct attribute *ksm_attrs[] = {
3034 &sleep_millisecs_attr.attr,
3035 &pages_to_scan_attr.attr,
3036 &run_attr.attr,
3037 &pages_shared_attr.attr,
3038 &pages_sharing_attr.attr,
3039 &pages_unshared_attr.attr,
3040 &pages_volatile_attr.attr,
3041 &full_scans_attr.attr,
3042 #ifdef CONFIG_NUMA
3043 &merge_across_nodes_attr.attr,
3044 #endif
3045 &max_page_sharing_attr.attr,
3046 &stable_node_chains_attr.attr,
3047 &stable_node_dups_attr.attr,
3048 &stable_node_chains_prune_millisecs_attr.attr,
3049 &use_zero_pages_attr.attr,
3050 NULL,
3053 static const struct attribute_group ksm_attr_group = {
3054 .attrs = ksm_attrs,
3055 .name = "ksm",
3057 #endif /* CONFIG_SYSFS */
3059 static int __init ksm_init(void)
3061 struct task_struct *ksm_thread;
3062 int err;
3064 /* The correct value depends on page size and endianness */
3065 zero_checksum = calc_checksum(ZERO_PAGE(0));
3066 /* Default to false for backwards compatibility */
3067 ksm_use_zero_pages = false;
3069 err = ksm_slab_init();
3070 if (err)
3071 goto out;
3073 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3074 if (IS_ERR(ksm_thread)) {
3075 pr_err("ksm: creating kthread failed\n");
3076 err = PTR_ERR(ksm_thread);
3077 goto out_free;
3080 #ifdef CONFIG_SYSFS
3081 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3082 if (err) {
3083 pr_err("ksm: register sysfs failed\n");
3084 kthread_stop(ksm_thread);
3085 goto out_free;
3087 #else
3088 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3090 #endif /* CONFIG_SYSFS */
3092 #ifdef CONFIG_MEMORY_HOTREMOVE
3093 /* There is no significance to this priority 100 */
3094 hotplug_memory_notifier(ksm_memory_callback, 100);
3095 #endif
3096 return 0;
3098 out_free:
3099 ksm_slab_free();
3100 out:
3101 return err;
3103 subsys_initcall(ksm_init);