Linux 4.16-rc3
[cris-mirror.git] / mm / zsmalloc.c
blobc3013505c30527dc42714946916f6cf26c51c602
1 /*
2 * zsmalloc memory allocator
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
23 * page->units: first object offset in a subpage of zspage
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/shrinker.h>
50 #include <linux/types.h>
51 #include <linux/debugfs.h>
52 #include <linux/zsmalloc.h>
53 #include <linux/zpool.h>
54 #include <linux/mount.h>
55 #include <linux/migrate.h>
56 #include <linux/pagemap.h>
57 #include <linux/fs.h>
59 #define ZSPAGE_MAGIC 0x58
62 * This must be power of 2 and greater than of equal to sizeof(link_free).
63 * These two conditions ensure that any 'struct link_free' itself doesn't
64 * span more than 1 page which avoids complex case of mapping 2 pages simply
65 * to restore link_free pointer values.
67 #define ZS_ALIGN 8
70 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
71 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
73 #define ZS_MAX_ZSPAGE_ORDER 2
74 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
76 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
79 * Object location (<PFN>, <obj_idx>) is encoded as
80 * as single (unsigned long) handle value.
82 * Note that object index <obj_idx> starts from 0.
84 * This is made more complicated by various memory models and PAE.
87 #ifndef MAX_PHYSMEM_BITS
88 #ifdef CONFIG_HIGHMEM64G
89 #define MAX_PHYSMEM_BITS 36
90 #else /* !CONFIG_HIGHMEM64G */
92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
93 * be PAGE_SHIFT
95 #define MAX_PHYSMEM_BITS BITS_PER_LONG
96 #endif
97 #endif
98 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
101 * Memory for allocating for handle keeps object position by
102 * encoding <page, obj_idx> and the encoded value has a room
103 * in least bit(ie, look at obj_to_location).
104 * We use the bit to synchronize between object access by
105 * user and migration.
107 #define HANDLE_PIN_BIT 0
110 * Head in allocated object should have OBJ_ALLOCATED_TAG
111 * to identify the object was allocated or not.
112 * It's okay to add the status bit in the least bit because
113 * header keeps handle which is 4byte-aligned address so we
114 * have room for two bit at least.
116 #define OBJ_ALLOCATED_TAG 1
117 #define OBJ_TAG_BITS 1
118 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
119 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
121 #define FULLNESS_BITS 2
122 #define CLASS_BITS 8
123 #define ISOLATED_BITS 3
124 #define MAGIC_VAL_BITS 8
126 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
127 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
128 #define ZS_MIN_ALLOC_SIZE \
129 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
130 /* each chunk includes extra space to keep handle */
131 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
134 * On systems with 4K page size, this gives 255 size classes! There is a
135 * trader-off here:
136 * - Large number of size classes is potentially wasteful as free page are
137 * spread across these classes
138 * - Small number of size classes causes large internal fragmentation
139 * - Probably its better to use specific size classes (empirically
140 * determined). NOTE: all those class sizes must be set as multiple of
141 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
143 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
144 * (reason above)
146 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
147 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
148 ZS_SIZE_CLASS_DELTA) + 1)
150 enum fullness_group {
151 ZS_EMPTY,
152 ZS_ALMOST_EMPTY,
153 ZS_ALMOST_FULL,
154 ZS_FULL,
155 NR_ZS_FULLNESS,
158 enum zs_stat_type {
159 CLASS_EMPTY,
160 CLASS_ALMOST_EMPTY,
161 CLASS_ALMOST_FULL,
162 CLASS_FULL,
163 OBJ_ALLOCATED,
164 OBJ_USED,
165 NR_ZS_STAT_TYPE,
168 struct zs_size_stat {
169 unsigned long objs[NR_ZS_STAT_TYPE];
172 #ifdef CONFIG_ZSMALLOC_STAT
173 static struct dentry *zs_stat_root;
174 #endif
176 #ifdef CONFIG_COMPACTION
177 static struct vfsmount *zsmalloc_mnt;
178 #endif
181 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
182 * n <= N / f, where
183 * n = number of allocated objects
184 * N = total number of objects zspage can store
185 * f = fullness_threshold_frac
187 * Similarly, we assign zspage to:
188 * ZS_ALMOST_FULL when n > N / f
189 * ZS_EMPTY when n == 0
190 * ZS_FULL when n == N
192 * (see: fix_fullness_group())
194 static const int fullness_threshold_frac = 4;
196 struct size_class {
197 spinlock_t lock;
198 struct list_head fullness_list[NR_ZS_FULLNESS];
200 * Size of objects stored in this class. Must be multiple
201 * of ZS_ALIGN.
203 int size;
204 int objs_per_zspage;
205 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
206 int pages_per_zspage;
208 unsigned int index;
209 struct zs_size_stat stats;
212 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
213 static void SetPageHugeObject(struct page *page)
215 SetPageOwnerPriv1(page);
218 static void ClearPageHugeObject(struct page *page)
220 ClearPageOwnerPriv1(page);
223 static int PageHugeObject(struct page *page)
225 return PageOwnerPriv1(page);
229 * Placed within free objects to form a singly linked list.
230 * For every zspage, zspage->freeobj gives head of this list.
232 * This must be power of 2 and less than or equal to ZS_ALIGN
234 struct link_free {
235 union {
237 * Free object index;
238 * It's valid for non-allocated object
240 unsigned long next;
242 * Handle of allocated object.
244 unsigned long handle;
248 struct zs_pool {
249 const char *name;
251 struct size_class *size_class[ZS_SIZE_CLASSES];
252 struct kmem_cache *handle_cachep;
253 struct kmem_cache *zspage_cachep;
255 atomic_long_t pages_allocated;
257 struct zs_pool_stats stats;
259 /* Compact classes */
260 struct shrinker shrinker;
262 #ifdef CONFIG_ZSMALLOC_STAT
263 struct dentry *stat_dentry;
264 #endif
265 #ifdef CONFIG_COMPACTION
266 struct inode *inode;
267 struct work_struct free_work;
268 #endif
271 struct zspage {
272 struct {
273 unsigned int fullness:FULLNESS_BITS;
274 unsigned int class:CLASS_BITS + 1;
275 unsigned int isolated:ISOLATED_BITS;
276 unsigned int magic:MAGIC_VAL_BITS;
278 unsigned int inuse;
279 unsigned int freeobj;
280 struct page *first_page;
281 struct list_head list; /* fullness list */
282 #ifdef CONFIG_COMPACTION
283 rwlock_t lock;
284 #endif
287 struct mapping_area {
288 #ifdef CONFIG_PGTABLE_MAPPING
289 struct vm_struct *vm; /* vm area for mapping object that span pages */
290 #else
291 char *vm_buf; /* copy buffer for objects that span pages */
292 #endif
293 char *vm_addr; /* address of kmap_atomic()'ed pages */
294 enum zs_mapmode vm_mm; /* mapping mode */
297 #ifdef CONFIG_COMPACTION
298 static int zs_register_migration(struct zs_pool *pool);
299 static void zs_unregister_migration(struct zs_pool *pool);
300 static void migrate_lock_init(struct zspage *zspage);
301 static void migrate_read_lock(struct zspage *zspage);
302 static void migrate_read_unlock(struct zspage *zspage);
303 static void kick_deferred_free(struct zs_pool *pool);
304 static void init_deferred_free(struct zs_pool *pool);
305 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
306 #else
307 static int zsmalloc_mount(void) { return 0; }
308 static void zsmalloc_unmount(void) {}
309 static int zs_register_migration(struct zs_pool *pool) { return 0; }
310 static void zs_unregister_migration(struct zs_pool *pool) {}
311 static void migrate_lock_init(struct zspage *zspage) {}
312 static void migrate_read_lock(struct zspage *zspage) {}
313 static void migrate_read_unlock(struct zspage *zspage) {}
314 static void kick_deferred_free(struct zs_pool *pool) {}
315 static void init_deferred_free(struct zs_pool *pool) {}
316 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
317 #endif
319 static int create_cache(struct zs_pool *pool)
321 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
322 0, 0, NULL);
323 if (!pool->handle_cachep)
324 return 1;
326 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
327 0, 0, NULL);
328 if (!pool->zspage_cachep) {
329 kmem_cache_destroy(pool->handle_cachep);
330 pool->handle_cachep = NULL;
331 return 1;
334 return 0;
337 static void destroy_cache(struct zs_pool *pool)
339 kmem_cache_destroy(pool->handle_cachep);
340 kmem_cache_destroy(pool->zspage_cachep);
343 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
345 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
346 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
349 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
351 kmem_cache_free(pool->handle_cachep, (void *)handle);
354 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
356 return kmem_cache_alloc(pool->zspage_cachep,
357 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
360 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
362 kmem_cache_free(pool->zspage_cachep, zspage);
365 static void record_obj(unsigned long handle, unsigned long obj)
368 * lsb of @obj represents handle lock while other bits
369 * represent object value the handle is pointing so
370 * updating shouldn't do store tearing.
372 WRITE_ONCE(*(unsigned long *)handle, obj);
375 /* zpool driver */
377 #ifdef CONFIG_ZPOOL
379 static void *zs_zpool_create(const char *name, gfp_t gfp,
380 const struct zpool_ops *zpool_ops,
381 struct zpool *zpool)
384 * Ignore global gfp flags: zs_malloc() may be invoked from
385 * different contexts and its caller must provide a valid
386 * gfp mask.
388 return zs_create_pool(name);
391 static void zs_zpool_destroy(void *pool)
393 zs_destroy_pool(pool);
396 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
397 unsigned long *handle)
399 *handle = zs_malloc(pool, size, gfp);
400 return *handle ? 0 : -1;
402 static void zs_zpool_free(void *pool, unsigned long handle)
404 zs_free(pool, handle);
407 static void *zs_zpool_map(void *pool, unsigned long handle,
408 enum zpool_mapmode mm)
410 enum zs_mapmode zs_mm;
412 switch (mm) {
413 case ZPOOL_MM_RO:
414 zs_mm = ZS_MM_RO;
415 break;
416 case ZPOOL_MM_WO:
417 zs_mm = ZS_MM_WO;
418 break;
419 case ZPOOL_MM_RW: /* fallthru */
420 default:
421 zs_mm = ZS_MM_RW;
422 break;
425 return zs_map_object(pool, handle, zs_mm);
427 static void zs_zpool_unmap(void *pool, unsigned long handle)
429 zs_unmap_object(pool, handle);
432 static u64 zs_zpool_total_size(void *pool)
434 return zs_get_total_pages(pool) << PAGE_SHIFT;
437 static struct zpool_driver zs_zpool_driver = {
438 .type = "zsmalloc",
439 .owner = THIS_MODULE,
440 .create = zs_zpool_create,
441 .destroy = zs_zpool_destroy,
442 .malloc = zs_zpool_malloc,
443 .free = zs_zpool_free,
444 .map = zs_zpool_map,
445 .unmap = zs_zpool_unmap,
446 .total_size = zs_zpool_total_size,
449 MODULE_ALIAS("zpool-zsmalloc");
450 #endif /* CONFIG_ZPOOL */
452 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
453 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
455 static bool is_zspage_isolated(struct zspage *zspage)
457 return zspage->isolated;
460 static __maybe_unused int is_first_page(struct page *page)
462 return PagePrivate(page);
465 /* Protected by class->lock */
466 static inline int get_zspage_inuse(struct zspage *zspage)
468 return zspage->inuse;
471 static inline void set_zspage_inuse(struct zspage *zspage, int val)
473 zspage->inuse = val;
476 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
478 zspage->inuse += val;
481 static inline struct page *get_first_page(struct zspage *zspage)
483 struct page *first_page = zspage->first_page;
485 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
486 return first_page;
489 static inline int get_first_obj_offset(struct page *page)
491 return page->units;
494 static inline void set_first_obj_offset(struct page *page, int offset)
496 page->units = offset;
499 static inline unsigned int get_freeobj(struct zspage *zspage)
501 return zspage->freeobj;
504 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
506 zspage->freeobj = obj;
509 static void get_zspage_mapping(struct zspage *zspage,
510 unsigned int *class_idx,
511 enum fullness_group *fullness)
513 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
515 *fullness = zspage->fullness;
516 *class_idx = zspage->class;
519 static void set_zspage_mapping(struct zspage *zspage,
520 unsigned int class_idx,
521 enum fullness_group fullness)
523 zspage->class = class_idx;
524 zspage->fullness = fullness;
528 * zsmalloc divides the pool into various size classes where each
529 * class maintains a list of zspages where each zspage is divided
530 * into equal sized chunks. Each allocation falls into one of these
531 * classes depending on its size. This function returns index of the
532 * size class which has chunk size big enough to hold the give size.
534 static int get_size_class_index(int size)
536 int idx = 0;
538 if (likely(size > ZS_MIN_ALLOC_SIZE))
539 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
540 ZS_SIZE_CLASS_DELTA);
542 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
545 /* type can be of enum type zs_stat_type or fullness_group */
546 static inline void zs_stat_inc(struct size_class *class,
547 int type, unsigned long cnt)
549 class->stats.objs[type] += cnt;
552 /* type can be of enum type zs_stat_type or fullness_group */
553 static inline void zs_stat_dec(struct size_class *class,
554 int type, unsigned long cnt)
556 class->stats.objs[type] -= cnt;
559 /* type can be of enum type zs_stat_type or fullness_group */
560 static inline unsigned long zs_stat_get(struct size_class *class,
561 int type)
563 return class->stats.objs[type];
566 #ifdef CONFIG_ZSMALLOC_STAT
568 static void __init zs_stat_init(void)
570 if (!debugfs_initialized()) {
571 pr_warn("debugfs not available, stat dir not created\n");
572 return;
575 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
576 if (!zs_stat_root)
577 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
580 static void __exit zs_stat_exit(void)
582 debugfs_remove_recursive(zs_stat_root);
585 static unsigned long zs_can_compact(struct size_class *class);
587 static int zs_stats_size_show(struct seq_file *s, void *v)
589 int i;
590 struct zs_pool *pool = s->private;
591 struct size_class *class;
592 int objs_per_zspage;
593 unsigned long class_almost_full, class_almost_empty;
594 unsigned long obj_allocated, obj_used, pages_used, freeable;
595 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
596 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
597 unsigned long total_freeable = 0;
599 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
600 "class", "size", "almost_full", "almost_empty",
601 "obj_allocated", "obj_used", "pages_used",
602 "pages_per_zspage", "freeable");
604 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
605 class = pool->size_class[i];
607 if (class->index != i)
608 continue;
610 spin_lock(&class->lock);
611 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
612 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
613 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
614 obj_used = zs_stat_get(class, OBJ_USED);
615 freeable = zs_can_compact(class);
616 spin_unlock(&class->lock);
618 objs_per_zspage = class->objs_per_zspage;
619 pages_used = obj_allocated / objs_per_zspage *
620 class->pages_per_zspage;
622 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
623 " %10lu %10lu %16d %8lu\n",
624 i, class->size, class_almost_full, class_almost_empty,
625 obj_allocated, obj_used, pages_used,
626 class->pages_per_zspage, freeable);
628 total_class_almost_full += class_almost_full;
629 total_class_almost_empty += class_almost_empty;
630 total_objs += obj_allocated;
631 total_used_objs += obj_used;
632 total_pages += pages_used;
633 total_freeable += freeable;
636 seq_puts(s, "\n");
637 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
638 "Total", "", total_class_almost_full,
639 total_class_almost_empty, total_objs,
640 total_used_objs, total_pages, "", total_freeable);
642 return 0;
645 static int zs_stats_size_open(struct inode *inode, struct file *file)
647 return single_open(file, zs_stats_size_show, inode->i_private);
650 static const struct file_operations zs_stat_size_ops = {
651 .open = zs_stats_size_open,
652 .read = seq_read,
653 .llseek = seq_lseek,
654 .release = single_release,
657 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
659 struct dentry *entry;
661 if (!zs_stat_root) {
662 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
663 return;
666 entry = debugfs_create_dir(name, zs_stat_root);
667 if (!entry) {
668 pr_warn("debugfs dir <%s> creation failed\n", name);
669 return;
671 pool->stat_dentry = entry;
673 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
674 pool->stat_dentry, pool, &zs_stat_size_ops);
675 if (!entry) {
676 pr_warn("%s: debugfs file entry <%s> creation failed\n",
677 name, "classes");
678 debugfs_remove_recursive(pool->stat_dentry);
679 pool->stat_dentry = NULL;
683 static void zs_pool_stat_destroy(struct zs_pool *pool)
685 debugfs_remove_recursive(pool->stat_dentry);
688 #else /* CONFIG_ZSMALLOC_STAT */
689 static void __init zs_stat_init(void)
693 static void __exit zs_stat_exit(void)
697 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
701 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
704 #endif
708 * For each size class, zspages are divided into different groups
709 * depending on how "full" they are. This was done so that we could
710 * easily find empty or nearly empty zspages when we try to shrink
711 * the pool (not yet implemented). This function returns fullness
712 * status of the given page.
714 static enum fullness_group get_fullness_group(struct size_class *class,
715 struct zspage *zspage)
717 int inuse, objs_per_zspage;
718 enum fullness_group fg;
720 inuse = get_zspage_inuse(zspage);
721 objs_per_zspage = class->objs_per_zspage;
723 if (inuse == 0)
724 fg = ZS_EMPTY;
725 else if (inuse == objs_per_zspage)
726 fg = ZS_FULL;
727 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
728 fg = ZS_ALMOST_EMPTY;
729 else
730 fg = ZS_ALMOST_FULL;
732 return fg;
736 * Each size class maintains various freelists and zspages are assigned
737 * to one of these freelists based on the number of live objects they
738 * have. This functions inserts the given zspage into the freelist
739 * identified by <class, fullness_group>.
741 static void insert_zspage(struct size_class *class,
742 struct zspage *zspage,
743 enum fullness_group fullness)
745 struct zspage *head;
747 zs_stat_inc(class, fullness, 1);
748 head = list_first_entry_or_null(&class->fullness_list[fullness],
749 struct zspage, list);
751 * We want to see more ZS_FULL pages and less almost empty/full.
752 * Put pages with higher ->inuse first.
754 if (head) {
755 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
756 list_add(&zspage->list, &head->list);
757 return;
760 list_add(&zspage->list, &class->fullness_list[fullness]);
764 * This function removes the given zspage from the freelist identified
765 * by <class, fullness_group>.
767 static void remove_zspage(struct size_class *class,
768 struct zspage *zspage,
769 enum fullness_group fullness)
771 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
772 VM_BUG_ON(is_zspage_isolated(zspage));
774 list_del_init(&zspage->list);
775 zs_stat_dec(class, fullness, 1);
779 * Each size class maintains zspages in different fullness groups depending
780 * on the number of live objects they contain. When allocating or freeing
781 * objects, the fullness status of the page can change, say, from ALMOST_FULL
782 * to ALMOST_EMPTY when freeing an object. This function checks if such
783 * a status change has occurred for the given page and accordingly moves the
784 * page from the freelist of the old fullness group to that of the new
785 * fullness group.
787 static enum fullness_group fix_fullness_group(struct size_class *class,
788 struct zspage *zspage)
790 int class_idx;
791 enum fullness_group currfg, newfg;
793 get_zspage_mapping(zspage, &class_idx, &currfg);
794 newfg = get_fullness_group(class, zspage);
795 if (newfg == currfg)
796 goto out;
798 if (!is_zspage_isolated(zspage)) {
799 remove_zspage(class, zspage, currfg);
800 insert_zspage(class, zspage, newfg);
803 set_zspage_mapping(zspage, class_idx, newfg);
805 out:
806 return newfg;
810 * We have to decide on how many pages to link together
811 * to form a zspage for each size class. This is important
812 * to reduce wastage due to unusable space left at end of
813 * each zspage which is given as:
814 * wastage = Zp % class_size
815 * usage = Zp - wastage
816 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
818 * For example, for size class of 3/8 * PAGE_SIZE, we should
819 * link together 3 PAGE_SIZE sized pages to form a zspage
820 * since then we can perfectly fit in 8 such objects.
822 static int get_pages_per_zspage(int class_size)
824 int i, max_usedpc = 0;
825 /* zspage order which gives maximum used size per KB */
826 int max_usedpc_order = 1;
828 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
829 int zspage_size;
830 int waste, usedpc;
832 zspage_size = i * PAGE_SIZE;
833 waste = zspage_size % class_size;
834 usedpc = (zspage_size - waste) * 100 / zspage_size;
836 if (usedpc > max_usedpc) {
837 max_usedpc = usedpc;
838 max_usedpc_order = i;
842 return max_usedpc_order;
845 static struct zspage *get_zspage(struct page *page)
847 struct zspage *zspage = (struct zspage *)page->private;
849 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
850 return zspage;
853 static struct page *get_next_page(struct page *page)
855 if (unlikely(PageHugeObject(page)))
856 return NULL;
858 return page->freelist;
862 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
863 * @page: page object resides in zspage
864 * @obj_idx: object index
866 static void obj_to_location(unsigned long obj, struct page **page,
867 unsigned int *obj_idx)
869 obj >>= OBJ_TAG_BITS;
870 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
871 *obj_idx = (obj & OBJ_INDEX_MASK);
875 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
876 * @page: page object resides in zspage
877 * @obj_idx: object index
879 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
881 unsigned long obj;
883 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
884 obj |= obj_idx & OBJ_INDEX_MASK;
885 obj <<= OBJ_TAG_BITS;
887 return obj;
890 static unsigned long handle_to_obj(unsigned long handle)
892 return *(unsigned long *)handle;
895 static unsigned long obj_to_head(struct page *page, void *obj)
897 if (unlikely(PageHugeObject(page))) {
898 VM_BUG_ON_PAGE(!is_first_page(page), page);
899 return page->index;
900 } else
901 return *(unsigned long *)obj;
904 static inline int testpin_tag(unsigned long handle)
906 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
909 static inline int trypin_tag(unsigned long handle)
911 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
914 static void pin_tag(unsigned long handle)
916 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
919 static void unpin_tag(unsigned long handle)
921 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
924 static void reset_page(struct page *page)
926 __ClearPageMovable(page);
927 ClearPagePrivate(page);
928 set_page_private(page, 0);
929 page_mapcount_reset(page);
930 ClearPageHugeObject(page);
931 page->freelist = NULL;
935 * To prevent zspage destroy during migration, zspage freeing should
936 * hold locks of all pages in the zspage.
938 void lock_zspage(struct zspage *zspage)
940 struct page *page = get_first_page(zspage);
942 do {
943 lock_page(page);
944 } while ((page = get_next_page(page)) != NULL);
947 int trylock_zspage(struct zspage *zspage)
949 struct page *cursor, *fail;
951 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
952 get_next_page(cursor)) {
953 if (!trylock_page(cursor)) {
954 fail = cursor;
955 goto unlock;
959 return 1;
960 unlock:
961 for (cursor = get_first_page(zspage); cursor != fail; cursor =
962 get_next_page(cursor))
963 unlock_page(cursor);
965 return 0;
968 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
969 struct zspage *zspage)
971 struct page *page, *next;
972 enum fullness_group fg;
973 unsigned int class_idx;
975 get_zspage_mapping(zspage, &class_idx, &fg);
977 assert_spin_locked(&class->lock);
979 VM_BUG_ON(get_zspage_inuse(zspage));
980 VM_BUG_ON(fg != ZS_EMPTY);
982 next = page = get_first_page(zspage);
983 do {
984 VM_BUG_ON_PAGE(!PageLocked(page), page);
985 next = get_next_page(page);
986 reset_page(page);
987 unlock_page(page);
988 dec_zone_page_state(page, NR_ZSPAGES);
989 put_page(page);
990 page = next;
991 } while (page != NULL);
993 cache_free_zspage(pool, zspage);
995 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
996 atomic_long_sub(class->pages_per_zspage,
997 &pool->pages_allocated);
1000 static void free_zspage(struct zs_pool *pool, struct size_class *class,
1001 struct zspage *zspage)
1003 VM_BUG_ON(get_zspage_inuse(zspage));
1004 VM_BUG_ON(list_empty(&zspage->list));
1006 if (!trylock_zspage(zspage)) {
1007 kick_deferred_free(pool);
1008 return;
1011 remove_zspage(class, zspage, ZS_EMPTY);
1012 __free_zspage(pool, class, zspage);
1015 /* Initialize a newly allocated zspage */
1016 static void init_zspage(struct size_class *class, struct zspage *zspage)
1018 unsigned int freeobj = 1;
1019 unsigned long off = 0;
1020 struct page *page = get_first_page(zspage);
1022 while (page) {
1023 struct page *next_page;
1024 struct link_free *link;
1025 void *vaddr;
1027 set_first_obj_offset(page, off);
1029 vaddr = kmap_atomic(page);
1030 link = (struct link_free *)vaddr + off / sizeof(*link);
1032 while ((off += class->size) < PAGE_SIZE) {
1033 link->next = freeobj++ << OBJ_TAG_BITS;
1034 link += class->size / sizeof(*link);
1038 * We now come to the last (full or partial) object on this
1039 * page, which must point to the first object on the next
1040 * page (if present)
1042 next_page = get_next_page(page);
1043 if (next_page) {
1044 link->next = freeobj++ << OBJ_TAG_BITS;
1045 } else {
1047 * Reset OBJ_TAG_BITS bit to last link to tell
1048 * whether it's allocated object or not.
1050 link->next = -1UL << OBJ_TAG_BITS;
1052 kunmap_atomic(vaddr);
1053 page = next_page;
1054 off %= PAGE_SIZE;
1057 set_freeobj(zspage, 0);
1060 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1061 struct page *pages[])
1063 int i;
1064 struct page *page;
1065 struct page *prev_page = NULL;
1066 int nr_pages = class->pages_per_zspage;
1069 * Allocate individual pages and link them together as:
1070 * 1. all pages are linked together using page->freelist
1071 * 2. each sub-page point to zspage using page->private
1073 * we set PG_private to identify the first page (i.e. no other sub-page
1074 * has this flag set).
1076 for (i = 0; i < nr_pages; i++) {
1077 page = pages[i];
1078 set_page_private(page, (unsigned long)zspage);
1079 page->freelist = NULL;
1080 if (i == 0) {
1081 zspage->first_page = page;
1082 SetPagePrivate(page);
1083 if (unlikely(class->objs_per_zspage == 1 &&
1084 class->pages_per_zspage == 1))
1085 SetPageHugeObject(page);
1086 } else {
1087 prev_page->freelist = page;
1089 prev_page = page;
1094 * Allocate a zspage for the given size class
1096 static struct zspage *alloc_zspage(struct zs_pool *pool,
1097 struct size_class *class,
1098 gfp_t gfp)
1100 int i;
1101 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1102 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1104 if (!zspage)
1105 return NULL;
1107 memset(zspage, 0, sizeof(struct zspage));
1108 zspage->magic = ZSPAGE_MAGIC;
1109 migrate_lock_init(zspage);
1111 for (i = 0; i < class->pages_per_zspage; i++) {
1112 struct page *page;
1114 page = alloc_page(gfp);
1115 if (!page) {
1116 while (--i >= 0) {
1117 dec_zone_page_state(pages[i], NR_ZSPAGES);
1118 __free_page(pages[i]);
1120 cache_free_zspage(pool, zspage);
1121 return NULL;
1124 inc_zone_page_state(page, NR_ZSPAGES);
1125 pages[i] = page;
1128 create_page_chain(class, zspage, pages);
1129 init_zspage(class, zspage);
1131 return zspage;
1134 static struct zspage *find_get_zspage(struct size_class *class)
1136 int i;
1137 struct zspage *zspage;
1139 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1140 zspage = list_first_entry_or_null(&class->fullness_list[i],
1141 struct zspage, list);
1142 if (zspage)
1143 break;
1146 return zspage;
1149 #ifdef CONFIG_PGTABLE_MAPPING
1150 static inline int __zs_cpu_up(struct mapping_area *area)
1153 * Make sure we don't leak memory if a cpu UP notification
1154 * and zs_init() race and both call zs_cpu_up() on the same cpu
1156 if (area->vm)
1157 return 0;
1158 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1159 if (!area->vm)
1160 return -ENOMEM;
1161 return 0;
1164 static inline void __zs_cpu_down(struct mapping_area *area)
1166 if (area->vm)
1167 free_vm_area(area->vm);
1168 area->vm = NULL;
1171 static inline void *__zs_map_object(struct mapping_area *area,
1172 struct page *pages[2], int off, int size)
1174 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1175 area->vm_addr = area->vm->addr;
1176 return area->vm_addr + off;
1179 static inline void __zs_unmap_object(struct mapping_area *area,
1180 struct page *pages[2], int off, int size)
1182 unsigned long addr = (unsigned long)area->vm_addr;
1184 unmap_kernel_range(addr, PAGE_SIZE * 2);
1187 #else /* CONFIG_PGTABLE_MAPPING */
1189 static inline int __zs_cpu_up(struct mapping_area *area)
1192 * Make sure we don't leak memory if a cpu UP notification
1193 * and zs_init() race and both call zs_cpu_up() on the same cpu
1195 if (area->vm_buf)
1196 return 0;
1197 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1198 if (!area->vm_buf)
1199 return -ENOMEM;
1200 return 0;
1203 static inline void __zs_cpu_down(struct mapping_area *area)
1205 kfree(area->vm_buf);
1206 area->vm_buf = NULL;
1209 static void *__zs_map_object(struct mapping_area *area,
1210 struct page *pages[2], int off, int size)
1212 int sizes[2];
1213 void *addr;
1214 char *buf = area->vm_buf;
1216 /* disable page faults to match kmap_atomic() return conditions */
1217 pagefault_disable();
1219 /* no read fastpath */
1220 if (area->vm_mm == ZS_MM_WO)
1221 goto out;
1223 sizes[0] = PAGE_SIZE - off;
1224 sizes[1] = size - sizes[0];
1226 /* copy object to per-cpu buffer */
1227 addr = kmap_atomic(pages[0]);
1228 memcpy(buf, addr + off, sizes[0]);
1229 kunmap_atomic(addr);
1230 addr = kmap_atomic(pages[1]);
1231 memcpy(buf + sizes[0], addr, sizes[1]);
1232 kunmap_atomic(addr);
1233 out:
1234 return area->vm_buf;
1237 static void __zs_unmap_object(struct mapping_area *area,
1238 struct page *pages[2], int off, int size)
1240 int sizes[2];
1241 void *addr;
1242 char *buf;
1244 /* no write fastpath */
1245 if (area->vm_mm == ZS_MM_RO)
1246 goto out;
1248 buf = area->vm_buf;
1249 buf = buf + ZS_HANDLE_SIZE;
1250 size -= ZS_HANDLE_SIZE;
1251 off += ZS_HANDLE_SIZE;
1253 sizes[0] = PAGE_SIZE - off;
1254 sizes[1] = size - sizes[0];
1256 /* copy per-cpu buffer to object */
1257 addr = kmap_atomic(pages[0]);
1258 memcpy(addr + off, buf, sizes[0]);
1259 kunmap_atomic(addr);
1260 addr = kmap_atomic(pages[1]);
1261 memcpy(addr, buf + sizes[0], sizes[1]);
1262 kunmap_atomic(addr);
1264 out:
1265 /* enable page faults to match kunmap_atomic() return conditions */
1266 pagefault_enable();
1269 #endif /* CONFIG_PGTABLE_MAPPING */
1271 static int zs_cpu_prepare(unsigned int cpu)
1273 struct mapping_area *area;
1275 area = &per_cpu(zs_map_area, cpu);
1276 return __zs_cpu_up(area);
1279 static int zs_cpu_dead(unsigned int cpu)
1281 struct mapping_area *area;
1283 area = &per_cpu(zs_map_area, cpu);
1284 __zs_cpu_down(area);
1285 return 0;
1288 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1289 int objs_per_zspage)
1291 if (prev->pages_per_zspage == pages_per_zspage &&
1292 prev->objs_per_zspage == objs_per_zspage)
1293 return true;
1295 return false;
1298 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1300 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1303 unsigned long zs_get_total_pages(struct zs_pool *pool)
1305 return atomic_long_read(&pool->pages_allocated);
1307 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1310 * zs_map_object - get address of allocated object from handle.
1311 * @pool: pool from which the object was allocated
1312 * @handle: handle returned from zs_malloc
1314 * Before using an object allocated from zs_malloc, it must be mapped using
1315 * this function. When done with the object, it must be unmapped using
1316 * zs_unmap_object.
1318 * Only one object can be mapped per cpu at a time. There is no protection
1319 * against nested mappings.
1321 * This function returns with preemption and page faults disabled.
1323 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1324 enum zs_mapmode mm)
1326 struct zspage *zspage;
1327 struct page *page;
1328 unsigned long obj, off;
1329 unsigned int obj_idx;
1331 unsigned int class_idx;
1332 enum fullness_group fg;
1333 struct size_class *class;
1334 struct mapping_area *area;
1335 struct page *pages[2];
1336 void *ret;
1339 * Because we use per-cpu mapping areas shared among the
1340 * pools/users, we can't allow mapping in interrupt context
1341 * because it can corrupt another users mappings.
1343 BUG_ON(in_interrupt());
1345 /* From now on, migration cannot move the object */
1346 pin_tag(handle);
1348 obj = handle_to_obj(handle);
1349 obj_to_location(obj, &page, &obj_idx);
1350 zspage = get_zspage(page);
1352 /* migration cannot move any subpage in this zspage */
1353 migrate_read_lock(zspage);
1355 get_zspage_mapping(zspage, &class_idx, &fg);
1356 class = pool->size_class[class_idx];
1357 off = (class->size * obj_idx) & ~PAGE_MASK;
1359 area = &get_cpu_var(zs_map_area);
1360 area->vm_mm = mm;
1361 if (off + class->size <= PAGE_SIZE) {
1362 /* this object is contained entirely within a page */
1363 area->vm_addr = kmap_atomic(page);
1364 ret = area->vm_addr + off;
1365 goto out;
1368 /* this object spans two pages */
1369 pages[0] = page;
1370 pages[1] = get_next_page(page);
1371 BUG_ON(!pages[1]);
1373 ret = __zs_map_object(area, pages, off, class->size);
1374 out:
1375 if (likely(!PageHugeObject(page)))
1376 ret += ZS_HANDLE_SIZE;
1378 return ret;
1380 EXPORT_SYMBOL_GPL(zs_map_object);
1382 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1384 struct zspage *zspage;
1385 struct page *page;
1386 unsigned long obj, off;
1387 unsigned int obj_idx;
1389 unsigned int class_idx;
1390 enum fullness_group fg;
1391 struct size_class *class;
1392 struct mapping_area *area;
1394 obj = handle_to_obj(handle);
1395 obj_to_location(obj, &page, &obj_idx);
1396 zspage = get_zspage(page);
1397 get_zspage_mapping(zspage, &class_idx, &fg);
1398 class = pool->size_class[class_idx];
1399 off = (class->size * obj_idx) & ~PAGE_MASK;
1401 area = this_cpu_ptr(&zs_map_area);
1402 if (off + class->size <= PAGE_SIZE)
1403 kunmap_atomic(area->vm_addr);
1404 else {
1405 struct page *pages[2];
1407 pages[0] = page;
1408 pages[1] = get_next_page(page);
1409 BUG_ON(!pages[1]);
1411 __zs_unmap_object(area, pages, off, class->size);
1413 put_cpu_var(zs_map_area);
1415 migrate_read_unlock(zspage);
1416 unpin_tag(handle);
1418 EXPORT_SYMBOL_GPL(zs_unmap_object);
1420 static unsigned long obj_malloc(struct size_class *class,
1421 struct zspage *zspage, unsigned long handle)
1423 int i, nr_page, offset;
1424 unsigned long obj;
1425 struct link_free *link;
1427 struct page *m_page;
1428 unsigned long m_offset;
1429 void *vaddr;
1431 handle |= OBJ_ALLOCATED_TAG;
1432 obj = get_freeobj(zspage);
1434 offset = obj * class->size;
1435 nr_page = offset >> PAGE_SHIFT;
1436 m_offset = offset & ~PAGE_MASK;
1437 m_page = get_first_page(zspage);
1439 for (i = 0; i < nr_page; i++)
1440 m_page = get_next_page(m_page);
1442 vaddr = kmap_atomic(m_page);
1443 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1444 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1445 if (likely(!PageHugeObject(m_page)))
1446 /* record handle in the header of allocated chunk */
1447 link->handle = handle;
1448 else
1449 /* record handle to page->index */
1450 zspage->first_page->index = handle;
1452 kunmap_atomic(vaddr);
1453 mod_zspage_inuse(zspage, 1);
1454 zs_stat_inc(class, OBJ_USED, 1);
1456 obj = location_to_obj(m_page, obj);
1458 return obj;
1463 * zs_malloc - Allocate block of given size from pool.
1464 * @pool: pool to allocate from
1465 * @size: size of block to allocate
1466 * @gfp: gfp flags when allocating object
1468 * On success, handle to the allocated object is returned,
1469 * otherwise 0.
1470 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1472 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1474 unsigned long handle, obj;
1475 struct size_class *class;
1476 enum fullness_group newfg;
1477 struct zspage *zspage;
1479 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1480 return 0;
1482 handle = cache_alloc_handle(pool, gfp);
1483 if (!handle)
1484 return 0;
1486 /* extra space in chunk to keep the handle */
1487 size += ZS_HANDLE_SIZE;
1488 class = pool->size_class[get_size_class_index(size)];
1490 spin_lock(&class->lock);
1491 zspage = find_get_zspage(class);
1492 if (likely(zspage)) {
1493 obj = obj_malloc(class, zspage, handle);
1494 /* Now move the zspage to another fullness group, if required */
1495 fix_fullness_group(class, zspage);
1496 record_obj(handle, obj);
1497 spin_unlock(&class->lock);
1499 return handle;
1502 spin_unlock(&class->lock);
1504 zspage = alloc_zspage(pool, class, gfp);
1505 if (!zspage) {
1506 cache_free_handle(pool, handle);
1507 return 0;
1510 spin_lock(&class->lock);
1511 obj = obj_malloc(class, zspage, handle);
1512 newfg = get_fullness_group(class, zspage);
1513 insert_zspage(class, zspage, newfg);
1514 set_zspage_mapping(zspage, class->index, newfg);
1515 record_obj(handle, obj);
1516 atomic_long_add(class->pages_per_zspage,
1517 &pool->pages_allocated);
1518 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1520 /* We completely set up zspage so mark them as movable */
1521 SetZsPageMovable(pool, zspage);
1522 spin_unlock(&class->lock);
1524 return handle;
1526 EXPORT_SYMBOL_GPL(zs_malloc);
1528 static void obj_free(struct size_class *class, unsigned long obj)
1530 struct link_free *link;
1531 struct zspage *zspage;
1532 struct page *f_page;
1533 unsigned long f_offset;
1534 unsigned int f_objidx;
1535 void *vaddr;
1537 obj &= ~OBJ_ALLOCATED_TAG;
1538 obj_to_location(obj, &f_page, &f_objidx);
1539 f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1540 zspage = get_zspage(f_page);
1542 vaddr = kmap_atomic(f_page);
1544 /* Insert this object in containing zspage's freelist */
1545 link = (struct link_free *)(vaddr + f_offset);
1546 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1547 kunmap_atomic(vaddr);
1548 set_freeobj(zspage, f_objidx);
1549 mod_zspage_inuse(zspage, -1);
1550 zs_stat_dec(class, OBJ_USED, 1);
1553 void zs_free(struct zs_pool *pool, unsigned long handle)
1555 struct zspage *zspage;
1556 struct page *f_page;
1557 unsigned long obj;
1558 unsigned int f_objidx;
1559 int class_idx;
1560 struct size_class *class;
1561 enum fullness_group fullness;
1562 bool isolated;
1564 if (unlikely(!handle))
1565 return;
1567 pin_tag(handle);
1568 obj = handle_to_obj(handle);
1569 obj_to_location(obj, &f_page, &f_objidx);
1570 zspage = get_zspage(f_page);
1572 migrate_read_lock(zspage);
1574 get_zspage_mapping(zspage, &class_idx, &fullness);
1575 class = pool->size_class[class_idx];
1577 spin_lock(&class->lock);
1578 obj_free(class, obj);
1579 fullness = fix_fullness_group(class, zspage);
1580 if (fullness != ZS_EMPTY) {
1581 migrate_read_unlock(zspage);
1582 goto out;
1585 isolated = is_zspage_isolated(zspage);
1586 migrate_read_unlock(zspage);
1587 /* If zspage is isolated, zs_page_putback will free the zspage */
1588 if (likely(!isolated))
1589 free_zspage(pool, class, zspage);
1590 out:
1592 spin_unlock(&class->lock);
1593 unpin_tag(handle);
1594 cache_free_handle(pool, handle);
1596 EXPORT_SYMBOL_GPL(zs_free);
1598 static void zs_object_copy(struct size_class *class, unsigned long dst,
1599 unsigned long src)
1601 struct page *s_page, *d_page;
1602 unsigned int s_objidx, d_objidx;
1603 unsigned long s_off, d_off;
1604 void *s_addr, *d_addr;
1605 int s_size, d_size, size;
1606 int written = 0;
1608 s_size = d_size = class->size;
1610 obj_to_location(src, &s_page, &s_objidx);
1611 obj_to_location(dst, &d_page, &d_objidx);
1613 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1614 d_off = (class->size * d_objidx) & ~PAGE_MASK;
1616 if (s_off + class->size > PAGE_SIZE)
1617 s_size = PAGE_SIZE - s_off;
1619 if (d_off + class->size > PAGE_SIZE)
1620 d_size = PAGE_SIZE - d_off;
1622 s_addr = kmap_atomic(s_page);
1623 d_addr = kmap_atomic(d_page);
1625 while (1) {
1626 size = min(s_size, d_size);
1627 memcpy(d_addr + d_off, s_addr + s_off, size);
1628 written += size;
1630 if (written == class->size)
1631 break;
1633 s_off += size;
1634 s_size -= size;
1635 d_off += size;
1636 d_size -= size;
1638 if (s_off >= PAGE_SIZE) {
1639 kunmap_atomic(d_addr);
1640 kunmap_atomic(s_addr);
1641 s_page = get_next_page(s_page);
1642 s_addr = kmap_atomic(s_page);
1643 d_addr = kmap_atomic(d_page);
1644 s_size = class->size - written;
1645 s_off = 0;
1648 if (d_off >= PAGE_SIZE) {
1649 kunmap_atomic(d_addr);
1650 d_page = get_next_page(d_page);
1651 d_addr = kmap_atomic(d_page);
1652 d_size = class->size - written;
1653 d_off = 0;
1657 kunmap_atomic(d_addr);
1658 kunmap_atomic(s_addr);
1662 * Find alloced object in zspage from index object and
1663 * return handle.
1665 static unsigned long find_alloced_obj(struct size_class *class,
1666 struct page *page, int *obj_idx)
1668 unsigned long head;
1669 int offset = 0;
1670 int index = *obj_idx;
1671 unsigned long handle = 0;
1672 void *addr = kmap_atomic(page);
1674 offset = get_first_obj_offset(page);
1675 offset += class->size * index;
1677 while (offset < PAGE_SIZE) {
1678 head = obj_to_head(page, addr + offset);
1679 if (head & OBJ_ALLOCATED_TAG) {
1680 handle = head & ~OBJ_ALLOCATED_TAG;
1681 if (trypin_tag(handle))
1682 break;
1683 handle = 0;
1686 offset += class->size;
1687 index++;
1690 kunmap_atomic(addr);
1692 *obj_idx = index;
1694 return handle;
1697 struct zs_compact_control {
1698 /* Source spage for migration which could be a subpage of zspage */
1699 struct page *s_page;
1700 /* Destination page for migration which should be a first page
1701 * of zspage. */
1702 struct page *d_page;
1703 /* Starting object index within @s_page which used for live object
1704 * in the subpage. */
1705 int obj_idx;
1708 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1709 struct zs_compact_control *cc)
1711 unsigned long used_obj, free_obj;
1712 unsigned long handle;
1713 struct page *s_page = cc->s_page;
1714 struct page *d_page = cc->d_page;
1715 int obj_idx = cc->obj_idx;
1716 int ret = 0;
1718 while (1) {
1719 handle = find_alloced_obj(class, s_page, &obj_idx);
1720 if (!handle) {
1721 s_page = get_next_page(s_page);
1722 if (!s_page)
1723 break;
1724 obj_idx = 0;
1725 continue;
1728 /* Stop if there is no more space */
1729 if (zspage_full(class, get_zspage(d_page))) {
1730 unpin_tag(handle);
1731 ret = -ENOMEM;
1732 break;
1735 used_obj = handle_to_obj(handle);
1736 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1737 zs_object_copy(class, free_obj, used_obj);
1738 obj_idx++;
1740 * record_obj updates handle's value to free_obj and it will
1741 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1742 * breaks synchronization using pin_tag(e,g, zs_free) so
1743 * let's keep the lock bit.
1745 free_obj |= BIT(HANDLE_PIN_BIT);
1746 record_obj(handle, free_obj);
1747 unpin_tag(handle);
1748 obj_free(class, used_obj);
1751 /* Remember last position in this iteration */
1752 cc->s_page = s_page;
1753 cc->obj_idx = obj_idx;
1755 return ret;
1758 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1760 int i;
1761 struct zspage *zspage;
1762 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1764 if (!source) {
1765 fg[0] = ZS_ALMOST_FULL;
1766 fg[1] = ZS_ALMOST_EMPTY;
1769 for (i = 0; i < 2; i++) {
1770 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1771 struct zspage, list);
1772 if (zspage) {
1773 VM_BUG_ON(is_zspage_isolated(zspage));
1774 remove_zspage(class, zspage, fg[i]);
1775 return zspage;
1779 return zspage;
1783 * putback_zspage - add @zspage into right class's fullness list
1784 * @class: destination class
1785 * @zspage: target page
1787 * Return @zspage's fullness_group
1789 static enum fullness_group putback_zspage(struct size_class *class,
1790 struct zspage *zspage)
1792 enum fullness_group fullness;
1794 VM_BUG_ON(is_zspage_isolated(zspage));
1796 fullness = get_fullness_group(class, zspage);
1797 insert_zspage(class, zspage, fullness);
1798 set_zspage_mapping(zspage, class->index, fullness);
1800 return fullness;
1803 #ifdef CONFIG_COMPACTION
1804 static struct dentry *zs_mount(struct file_system_type *fs_type,
1805 int flags, const char *dev_name, void *data)
1807 static const struct dentry_operations ops = {
1808 .d_dname = simple_dname,
1811 return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1814 static struct file_system_type zsmalloc_fs = {
1815 .name = "zsmalloc",
1816 .mount = zs_mount,
1817 .kill_sb = kill_anon_super,
1820 static int zsmalloc_mount(void)
1822 int ret = 0;
1824 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1825 if (IS_ERR(zsmalloc_mnt))
1826 ret = PTR_ERR(zsmalloc_mnt);
1828 return ret;
1831 static void zsmalloc_unmount(void)
1833 kern_unmount(zsmalloc_mnt);
1836 static void migrate_lock_init(struct zspage *zspage)
1838 rwlock_init(&zspage->lock);
1841 static void migrate_read_lock(struct zspage *zspage)
1843 read_lock(&zspage->lock);
1846 static void migrate_read_unlock(struct zspage *zspage)
1848 read_unlock(&zspage->lock);
1851 static void migrate_write_lock(struct zspage *zspage)
1853 write_lock(&zspage->lock);
1856 static void migrate_write_unlock(struct zspage *zspage)
1858 write_unlock(&zspage->lock);
1861 /* Number of isolated subpage for *page migration* in this zspage */
1862 static void inc_zspage_isolation(struct zspage *zspage)
1864 zspage->isolated++;
1867 static void dec_zspage_isolation(struct zspage *zspage)
1869 zspage->isolated--;
1872 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1873 struct page *newpage, struct page *oldpage)
1875 struct page *page;
1876 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1877 int idx = 0;
1879 page = get_first_page(zspage);
1880 do {
1881 if (page == oldpage)
1882 pages[idx] = newpage;
1883 else
1884 pages[idx] = page;
1885 idx++;
1886 } while ((page = get_next_page(page)) != NULL);
1888 create_page_chain(class, zspage, pages);
1889 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1890 if (unlikely(PageHugeObject(oldpage)))
1891 newpage->index = oldpage->index;
1892 __SetPageMovable(newpage, page_mapping(oldpage));
1895 bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1897 struct zs_pool *pool;
1898 struct size_class *class;
1899 int class_idx;
1900 enum fullness_group fullness;
1901 struct zspage *zspage;
1902 struct address_space *mapping;
1905 * Page is locked so zspage couldn't be destroyed. For detail, look at
1906 * lock_zspage in free_zspage.
1908 VM_BUG_ON_PAGE(!PageMovable(page), page);
1909 VM_BUG_ON_PAGE(PageIsolated(page), page);
1911 zspage = get_zspage(page);
1914 * Without class lock, fullness could be stale while class_idx is okay
1915 * because class_idx is constant unless page is freed so we should get
1916 * fullness again under class lock.
1918 get_zspage_mapping(zspage, &class_idx, &fullness);
1919 mapping = page_mapping(page);
1920 pool = mapping->private_data;
1921 class = pool->size_class[class_idx];
1923 spin_lock(&class->lock);
1924 if (get_zspage_inuse(zspage) == 0) {
1925 spin_unlock(&class->lock);
1926 return false;
1929 /* zspage is isolated for object migration */
1930 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1931 spin_unlock(&class->lock);
1932 return false;
1936 * If this is first time isolation for the zspage, isolate zspage from
1937 * size_class to prevent further object allocation from the zspage.
1939 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1940 get_zspage_mapping(zspage, &class_idx, &fullness);
1941 remove_zspage(class, zspage, fullness);
1944 inc_zspage_isolation(zspage);
1945 spin_unlock(&class->lock);
1947 return true;
1950 int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1951 struct page *page, enum migrate_mode mode)
1953 struct zs_pool *pool;
1954 struct size_class *class;
1955 int class_idx;
1956 enum fullness_group fullness;
1957 struct zspage *zspage;
1958 struct page *dummy;
1959 void *s_addr, *d_addr, *addr;
1960 int offset, pos;
1961 unsigned long handle, head;
1962 unsigned long old_obj, new_obj;
1963 unsigned int obj_idx;
1964 int ret = -EAGAIN;
1967 * We cannot support the _NO_COPY case here, because copy needs to
1968 * happen under the zs lock, which does not work with
1969 * MIGRATE_SYNC_NO_COPY workflow.
1971 if (mode == MIGRATE_SYNC_NO_COPY)
1972 return -EINVAL;
1974 VM_BUG_ON_PAGE(!PageMovable(page), page);
1975 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1977 zspage = get_zspage(page);
1979 /* Concurrent compactor cannot migrate any subpage in zspage */
1980 migrate_write_lock(zspage);
1981 get_zspage_mapping(zspage, &class_idx, &fullness);
1982 pool = mapping->private_data;
1983 class = pool->size_class[class_idx];
1984 offset = get_first_obj_offset(page);
1986 spin_lock(&class->lock);
1987 if (!get_zspage_inuse(zspage)) {
1989 * Set "offset" to end of the page so that every loops
1990 * skips unnecessary object scanning.
1992 offset = PAGE_SIZE;
1995 pos = offset;
1996 s_addr = kmap_atomic(page);
1997 while (pos < PAGE_SIZE) {
1998 head = obj_to_head(page, s_addr + pos);
1999 if (head & OBJ_ALLOCATED_TAG) {
2000 handle = head & ~OBJ_ALLOCATED_TAG;
2001 if (!trypin_tag(handle))
2002 goto unpin_objects;
2004 pos += class->size;
2008 * Here, any user cannot access all objects in the zspage so let's move.
2010 d_addr = kmap_atomic(newpage);
2011 memcpy(d_addr, s_addr, PAGE_SIZE);
2012 kunmap_atomic(d_addr);
2014 for (addr = s_addr + offset; addr < s_addr + pos;
2015 addr += class->size) {
2016 head = obj_to_head(page, addr);
2017 if (head & OBJ_ALLOCATED_TAG) {
2018 handle = head & ~OBJ_ALLOCATED_TAG;
2019 if (!testpin_tag(handle))
2020 BUG();
2022 old_obj = handle_to_obj(handle);
2023 obj_to_location(old_obj, &dummy, &obj_idx);
2024 new_obj = (unsigned long)location_to_obj(newpage,
2025 obj_idx);
2026 new_obj |= BIT(HANDLE_PIN_BIT);
2027 record_obj(handle, new_obj);
2031 replace_sub_page(class, zspage, newpage, page);
2032 get_page(newpage);
2034 dec_zspage_isolation(zspage);
2037 * Page migration is done so let's putback isolated zspage to
2038 * the list if @page is final isolated subpage in the zspage.
2040 if (!is_zspage_isolated(zspage))
2041 putback_zspage(class, zspage);
2043 reset_page(page);
2044 put_page(page);
2045 page = newpage;
2047 ret = MIGRATEPAGE_SUCCESS;
2048 unpin_objects:
2049 for (addr = s_addr + offset; addr < s_addr + pos;
2050 addr += class->size) {
2051 head = obj_to_head(page, addr);
2052 if (head & OBJ_ALLOCATED_TAG) {
2053 handle = head & ~OBJ_ALLOCATED_TAG;
2054 if (!testpin_tag(handle))
2055 BUG();
2056 unpin_tag(handle);
2059 kunmap_atomic(s_addr);
2060 spin_unlock(&class->lock);
2061 migrate_write_unlock(zspage);
2063 return ret;
2066 void zs_page_putback(struct page *page)
2068 struct zs_pool *pool;
2069 struct size_class *class;
2070 int class_idx;
2071 enum fullness_group fg;
2072 struct address_space *mapping;
2073 struct zspage *zspage;
2075 VM_BUG_ON_PAGE(!PageMovable(page), page);
2076 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2078 zspage = get_zspage(page);
2079 get_zspage_mapping(zspage, &class_idx, &fg);
2080 mapping = page_mapping(page);
2081 pool = mapping->private_data;
2082 class = pool->size_class[class_idx];
2084 spin_lock(&class->lock);
2085 dec_zspage_isolation(zspage);
2086 if (!is_zspage_isolated(zspage)) {
2087 fg = putback_zspage(class, zspage);
2089 * Due to page_lock, we cannot free zspage immediately
2090 * so let's defer.
2092 if (fg == ZS_EMPTY)
2093 schedule_work(&pool->free_work);
2095 spin_unlock(&class->lock);
2098 const struct address_space_operations zsmalloc_aops = {
2099 .isolate_page = zs_page_isolate,
2100 .migratepage = zs_page_migrate,
2101 .putback_page = zs_page_putback,
2104 static int zs_register_migration(struct zs_pool *pool)
2106 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2107 if (IS_ERR(pool->inode)) {
2108 pool->inode = NULL;
2109 return 1;
2112 pool->inode->i_mapping->private_data = pool;
2113 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2114 return 0;
2117 static void zs_unregister_migration(struct zs_pool *pool)
2119 flush_work(&pool->free_work);
2120 iput(pool->inode);
2124 * Caller should hold page_lock of all pages in the zspage
2125 * In here, we cannot use zspage meta data.
2127 static void async_free_zspage(struct work_struct *work)
2129 int i;
2130 struct size_class *class;
2131 unsigned int class_idx;
2132 enum fullness_group fullness;
2133 struct zspage *zspage, *tmp;
2134 LIST_HEAD(free_pages);
2135 struct zs_pool *pool = container_of(work, struct zs_pool,
2136 free_work);
2138 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2139 class = pool->size_class[i];
2140 if (class->index != i)
2141 continue;
2143 spin_lock(&class->lock);
2144 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2145 spin_unlock(&class->lock);
2149 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2150 list_del(&zspage->list);
2151 lock_zspage(zspage);
2153 get_zspage_mapping(zspage, &class_idx, &fullness);
2154 VM_BUG_ON(fullness != ZS_EMPTY);
2155 class = pool->size_class[class_idx];
2156 spin_lock(&class->lock);
2157 __free_zspage(pool, pool->size_class[class_idx], zspage);
2158 spin_unlock(&class->lock);
2162 static void kick_deferred_free(struct zs_pool *pool)
2164 schedule_work(&pool->free_work);
2167 static void init_deferred_free(struct zs_pool *pool)
2169 INIT_WORK(&pool->free_work, async_free_zspage);
2172 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2174 struct page *page = get_first_page(zspage);
2176 do {
2177 WARN_ON(!trylock_page(page));
2178 __SetPageMovable(page, pool->inode->i_mapping);
2179 unlock_page(page);
2180 } while ((page = get_next_page(page)) != NULL);
2182 #endif
2186 * Based on the number of unused allocated objects calculate
2187 * and return the number of pages that we can free.
2189 static unsigned long zs_can_compact(struct size_class *class)
2191 unsigned long obj_wasted;
2192 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2193 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2195 if (obj_allocated <= obj_used)
2196 return 0;
2198 obj_wasted = obj_allocated - obj_used;
2199 obj_wasted /= class->objs_per_zspage;
2201 return obj_wasted * class->pages_per_zspage;
2204 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2206 struct zs_compact_control cc;
2207 struct zspage *src_zspage;
2208 struct zspage *dst_zspage = NULL;
2210 spin_lock(&class->lock);
2211 while ((src_zspage = isolate_zspage(class, true))) {
2213 if (!zs_can_compact(class))
2214 break;
2216 cc.obj_idx = 0;
2217 cc.s_page = get_first_page(src_zspage);
2219 while ((dst_zspage = isolate_zspage(class, false))) {
2220 cc.d_page = get_first_page(dst_zspage);
2222 * If there is no more space in dst_page, resched
2223 * and see if anyone had allocated another zspage.
2225 if (!migrate_zspage(pool, class, &cc))
2226 break;
2228 putback_zspage(class, dst_zspage);
2231 /* Stop if we couldn't find slot */
2232 if (dst_zspage == NULL)
2233 break;
2235 putback_zspage(class, dst_zspage);
2236 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2237 free_zspage(pool, class, src_zspage);
2238 pool->stats.pages_compacted += class->pages_per_zspage;
2240 spin_unlock(&class->lock);
2241 cond_resched();
2242 spin_lock(&class->lock);
2245 if (src_zspage)
2246 putback_zspage(class, src_zspage);
2248 spin_unlock(&class->lock);
2251 unsigned long zs_compact(struct zs_pool *pool)
2253 int i;
2254 struct size_class *class;
2256 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2257 class = pool->size_class[i];
2258 if (!class)
2259 continue;
2260 if (class->index != i)
2261 continue;
2262 __zs_compact(pool, class);
2265 return pool->stats.pages_compacted;
2267 EXPORT_SYMBOL_GPL(zs_compact);
2269 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2271 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2273 EXPORT_SYMBOL_GPL(zs_pool_stats);
2275 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2276 struct shrink_control *sc)
2278 unsigned long pages_freed;
2279 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2280 shrinker);
2282 pages_freed = pool->stats.pages_compacted;
2284 * Compact classes and calculate compaction delta.
2285 * Can run concurrently with a manually triggered
2286 * (by user) compaction.
2288 pages_freed = zs_compact(pool) - pages_freed;
2290 return pages_freed ? pages_freed : SHRINK_STOP;
2293 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2294 struct shrink_control *sc)
2296 int i;
2297 struct size_class *class;
2298 unsigned long pages_to_free = 0;
2299 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2300 shrinker);
2302 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2303 class = pool->size_class[i];
2304 if (!class)
2305 continue;
2306 if (class->index != i)
2307 continue;
2309 pages_to_free += zs_can_compact(class);
2312 return pages_to_free;
2315 static void zs_unregister_shrinker(struct zs_pool *pool)
2317 unregister_shrinker(&pool->shrinker);
2320 static int zs_register_shrinker(struct zs_pool *pool)
2322 pool->shrinker.scan_objects = zs_shrinker_scan;
2323 pool->shrinker.count_objects = zs_shrinker_count;
2324 pool->shrinker.batch = 0;
2325 pool->shrinker.seeks = DEFAULT_SEEKS;
2327 return register_shrinker(&pool->shrinker);
2331 * zs_create_pool - Creates an allocation pool to work from.
2332 * @name: pool name to be created
2334 * This function must be called before anything when using
2335 * the zsmalloc allocator.
2337 * On success, a pointer to the newly created pool is returned,
2338 * otherwise NULL.
2340 struct zs_pool *zs_create_pool(const char *name)
2342 int i;
2343 struct zs_pool *pool;
2344 struct size_class *prev_class = NULL;
2346 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2347 if (!pool)
2348 return NULL;
2350 init_deferred_free(pool);
2352 pool->name = kstrdup(name, GFP_KERNEL);
2353 if (!pool->name)
2354 goto err;
2356 if (create_cache(pool))
2357 goto err;
2360 * Iterate reversely, because, size of size_class that we want to use
2361 * for merging should be larger or equal to current size.
2363 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2364 int size;
2365 int pages_per_zspage;
2366 int objs_per_zspage;
2367 struct size_class *class;
2368 int fullness = 0;
2370 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2371 if (size > ZS_MAX_ALLOC_SIZE)
2372 size = ZS_MAX_ALLOC_SIZE;
2373 pages_per_zspage = get_pages_per_zspage(size);
2374 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2377 * size_class is used for normal zsmalloc operation such
2378 * as alloc/free for that size. Although it is natural that we
2379 * have one size_class for each size, there is a chance that we
2380 * can get more memory utilization if we use one size_class for
2381 * many different sizes whose size_class have same
2382 * characteristics. So, we makes size_class point to
2383 * previous size_class if possible.
2385 if (prev_class) {
2386 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2387 pool->size_class[i] = prev_class;
2388 continue;
2392 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2393 if (!class)
2394 goto err;
2396 class->size = size;
2397 class->index = i;
2398 class->pages_per_zspage = pages_per_zspage;
2399 class->objs_per_zspage = objs_per_zspage;
2400 spin_lock_init(&class->lock);
2401 pool->size_class[i] = class;
2402 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2403 fullness++)
2404 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2406 prev_class = class;
2409 /* debug only, don't abort if it fails */
2410 zs_pool_stat_create(pool, name);
2412 if (zs_register_migration(pool))
2413 goto err;
2416 * Not critical since shrinker is only used to trigger internal
2417 * defragmentation of the pool which is pretty optional thing. If
2418 * registration fails we still can use the pool normally and user can
2419 * trigger compaction manually. Thus, ignore return code.
2421 zs_register_shrinker(pool);
2423 return pool;
2425 err:
2426 zs_destroy_pool(pool);
2427 return NULL;
2429 EXPORT_SYMBOL_GPL(zs_create_pool);
2431 void zs_destroy_pool(struct zs_pool *pool)
2433 int i;
2435 zs_unregister_shrinker(pool);
2436 zs_unregister_migration(pool);
2437 zs_pool_stat_destroy(pool);
2439 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2440 int fg;
2441 struct size_class *class = pool->size_class[i];
2443 if (!class)
2444 continue;
2446 if (class->index != i)
2447 continue;
2449 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2450 if (!list_empty(&class->fullness_list[fg])) {
2451 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2452 class->size, fg);
2455 kfree(class);
2458 destroy_cache(pool);
2459 kfree(pool->name);
2460 kfree(pool);
2462 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2464 static int __init zs_init(void)
2466 int ret;
2468 ret = zsmalloc_mount();
2469 if (ret)
2470 goto out;
2472 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2473 zs_cpu_prepare, zs_cpu_dead);
2474 if (ret)
2475 goto hp_setup_fail;
2477 #ifdef CONFIG_ZPOOL
2478 zpool_register_driver(&zs_zpool_driver);
2479 #endif
2481 zs_stat_init();
2483 return 0;
2485 hp_setup_fail:
2486 zsmalloc_unmount();
2487 out:
2488 return ret;
2491 static void __exit zs_exit(void)
2493 #ifdef CONFIG_ZPOOL
2494 zpool_unregister_driver(&zs_zpool_driver);
2495 #endif
2496 zsmalloc_unmount();
2497 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2499 zs_stat_exit();
2502 module_init(zs_init);
2503 module_exit(zs_exit);
2505 MODULE_LICENSE("Dual BSD/GPL");
2506 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");