2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <jroedel@suse.de>
4 * Leo Duran <leo.duran@amd.com>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/ratelimit.h>
21 #include <linux/pci.h>
22 #include <linux/acpi.h>
23 #include <linux/amba/bus.h>
24 #include <linux/platform_device.h>
25 #include <linux/pci-ats.h>
26 #include <linux/bitmap.h>
27 #include <linux/slab.h>
28 #include <linux/debugfs.h>
29 #include <linux/scatterlist.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/iommu-helper.h>
32 #include <linux/iommu.h>
33 #include <linux/delay.h>
34 #include <linux/amd-iommu.h>
35 #include <linux/notifier.h>
36 #include <linux/export.h>
37 #include <linux/irq.h>
38 #include <linux/msi.h>
39 #include <linux/dma-contiguous.h>
40 #include <linux/irqdomain.h>
41 #include <linux/percpu.h>
42 #include <linux/iova.h>
43 #include <asm/irq_remapping.h>
44 #include <asm/io_apic.h>
46 #include <asm/hw_irq.h>
47 #include <asm/msidef.h>
48 #include <asm/proto.h>
49 #include <asm/iommu.h>
53 #include "amd_iommu_proto.h"
54 #include "amd_iommu_types.h"
55 #include "irq_remapping.h"
57 #define AMD_IOMMU_MAPPING_ERROR 0
59 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
61 #define LOOP_TIMEOUT 100000
63 /* IO virtual address start page frame number */
64 #define IOVA_START_PFN (1)
65 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
66 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
68 /* Reserved IOVA ranges */
69 #define MSI_RANGE_START (0xfee00000)
70 #define MSI_RANGE_END (0xfeefffff)
71 #define HT_RANGE_START (0xfd00000000ULL)
72 #define HT_RANGE_END (0xffffffffffULL)
75 * This bitmap is used to advertise the page sizes our hardware support
76 * to the IOMMU core, which will then use this information to split
77 * physically contiguous memory regions it is mapping into page sizes
80 * 512GB Pages are not supported due to a hardware bug
82 #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
84 static DEFINE_RWLOCK(amd_iommu_devtable_lock
);
86 /* List of all available dev_data structures */
87 static LIST_HEAD(dev_data_list
);
88 static DEFINE_SPINLOCK(dev_data_list_lock
);
90 LIST_HEAD(ioapic_map
);
92 LIST_HEAD(acpihid_map
);
95 * Domain for untranslated devices - only allocated
96 * if iommu=pt passed on kernel cmd line.
98 const struct iommu_ops amd_iommu_ops
;
100 static ATOMIC_NOTIFIER_HEAD(ppr_notifier
);
101 int amd_iommu_max_glx_val
= -1;
103 static const struct dma_map_ops amd_iommu_dma_ops
;
106 * This struct contains device specific data for the IOMMU
108 struct iommu_dev_data
{
109 struct list_head list
; /* For domain->dev_list */
110 struct list_head dev_data_list
; /* For global dev_data_list */
111 struct protection_domain
*domain
; /* Domain the device is bound to */
112 u16 devid
; /* PCI Device ID */
113 u16 alias
; /* Alias Device ID */
114 bool iommu_v2
; /* Device can make use of IOMMUv2 */
115 bool passthrough
; /* Device is identity mapped */
119 } ats
; /* ATS state */
120 bool pri_tlp
; /* PASID TLB required for
122 u32 errata
; /* Bitmap for errata to apply */
123 bool use_vapic
; /* Enable device to use vapic mode */
125 struct ratelimit_state rs
; /* Ratelimit IOPF messages */
129 * general struct to manage commands send to an IOMMU
135 struct kmem_cache
*amd_iommu_irq_cache
;
137 static void update_domain(struct protection_domain
*domain
);
138 static int protection_domain_init(struct protection_domain
*domain
);
139 static void detach_device(struct device
*dev
);
141 #define FLUSH_QUEUE_SIZE 256
143 struct flush_queue_entry
{
144 unsigned long iova_pfn
;
146 u64 counter
; /* Flush counter when this entry was added to the queue */
150 struct flush_queue_entry
*entries
;
156 * Data container for a dma_ops specific protection domain
158 struct dma_ops_domain
{
159 /* generic protection domain information */
160 struct protection_domain domain
;
163 struct iova_domain iovad
;
165 struct flush_queue __percpu
*flush_queue
;
168 * We need two counter here to be race-free wrt. IOTLB flushing and
169 * adding entries to the flush queue.
171 * The flush_start_cnt is incremented _before_ the IOTLB flush starts.
172 * New entries added to the flush ring-buffer get their 'counter' value
173 * from here. This way we can make sure that entries added to the queue
174 * (or other per-cpu queues of the same domain) while the TLB is about
175 * to be flushed are not considered to be flushed already.
177 atomic64_t flush_start_cnt
;
180 * The flush_finish_cnt is incremented when an IOTLB flush is complete.
181 * This value is always smaller than flush_start_cnt. The queue_add
182 * function frees all IOVAs that have a counter value smaller than
183 * flush_finish_cnt. This makes sure that we only free IOVAs that are
184 * flushed out of the IOTLB of the domain.
186 atomic64_t flush_finish_cnt
;
189 * Timer to make sure we don't keep IOVAs around unflushed
192 struct timer_list flush_timer
;
193 atomic_t flush_timer_on
;
196 static struct iova_domain reserved_iova_ranges
;
197 static struct lock_class_key reserved_rbtree_key
;
199 /****************************************************************************
203 ****************************************************************************/
205 static inline int match_hid_uid(struct device
*dev
,
206 struct acpihid_map_entry
*entry
)
208 const char *hid
, *uid
;
210 hid
= acpi_device_hid(ACPI_COMPANION(dev
));
211 uid
= acpi_device_uid(ACPI_COMPANION(dev
));
217 return strcmp(hid
, entry
->hid
);
220 return strcmp(hid
, entry
->hid
);
222 return (strcmp(hid
, entry
->hid
) || strcmp(uid
, entry
->uid
));
225 static inline u16
get_pci_device_id(struct device
*dev
)
227 struct pci_dev
*pdev
= to_pci_dev(dev
);
229 return PCI_DEVID(pdev
->bus
->number
, pdev
->devfn
);
232 static inline int get_acpihid_device_id(struct device
*dev
,
233 struct acpihid_map_entry
**entry
)
235 struct acpihid_map_entry
*p
;
237 list_for_each_entry(p
, &acpihid_map
, list
) {
238 if (!match_hid_uid(dev
, p
)) {
247 static inline int get_device_id(struct device
*dev
)
252 devid
= get_pci_device_id(dev
);
254 devid
= get_acpihid_device_id(dev
, NULL
);
259 static struct protection_domain
*to_pdomain(struct iommu_domain
*dom
)
261 return container_of(dom
, struct protection_domain
, domain
);
264 static struct dma_ops_domain
* to_dma_ops_domain(struct protection_domain
*domain
)
266 BUG_ON(domain
->flags
!= PD_DMA_OPS_MASK
);
267 return container_of(domain
, struct dma_ops_domain
, domain
);
270 static struct iommu_dev_data
*alloc_dev_data(u16 devid
)
272 struct iommu_dev_data
*dev_data
;
275 dev_data
= kzalloc(sizeof(*dev_data
), GFP_KERNEL
);
279 dev_data
->devid
= devid
;
281 spin_lock_irqsave(&dev_data_list_lock
, flags
);
282 list_add_tail(&dev_data
->dev_data_list
, &dev_data_list
);
283 spin_unlock_irqrestore(&dev_data_list_lock
, flags
);
285 ratelimit_default_init(&dev_data
->rs
);
290 static struct iommu_dev_data
*search_dev_data(u16 devid
)
292 struct iommu_dev_data
*dev_data
;
295 spin_lock_irqsave(&dev_data_list_lock
, flags
);
296 list_for_each_entry(dev_data
, &dev_data_list
, dev_data_list
) {
297 if (dev_data
->devid
== devid
)
304 spin_unlock_irqrestore(&dev_data_list_lock
, flags
);
309 static int __last_alias(struct pci_dev
*pdev
, u16 alias
, void *data
)
311 *(u16
*)data
= alias
;
315 static u16
get_alias(struct device
*dev
)
317 struct pci_dev
*pdev
= to_pci_dev(dev
);
318 u16 devid
, ivrs_alias
, pci_alias
;
320 /* The callers make sure that get_device_id() does not fail here */
321 devid
= get_device_id(dev
);
322 ivrs_alias
= amd_iommu_alias_table
[devid
];
323 pci_for_each_dma_alias(pdev
, __last_alias
, &pci_alias
);
325 if (ivrs_alias
== pci_alias
)
331 * The IVRS is fairly reliable in telling us about aliases, but it
332 * can't know about every screwy device. If we don't have an IVRS
333 * reported alias, use the PCI reported alias. In that case we may
334 * still need to initialize the rlookup and dev_table entries if the
335 * alias is to a non-existent device.
337 if (ivrs_alias
== devid
) {
338 if (!amd_iommu_rlookup_table
[pci_alias
]) {
339 amd_iommu_rlookup_table
[pci_alias
] =
340 amd_iommu_rlookup_table
[devid
];
341 memcpy(amd_iommu_dev_table
[pci_alias
].data
,
342 amd_iommu_dev_table
[devid
].data
,
343 sizeof(amd_iommu_dev_table
[pci_alias
].data
));
349 pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
350 "for device %s[%04x:%04x], kernel reported alias "
351 "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias
), PCI_SLOT(ivrs_alias
),
352 PCI_FUNC(ivrs_alias
), dev_name(dev
), pdev
->vendor
, pdev
->device
,
353 PCI_BUS_NUM(pci_alias
), PCI_SLOT(pci_alias
),
354 PCI_FUNC(pci_alias
));
357 * If we don't have a PCI DMA alias and the IVRS alias is on the same
358 * bus, then the IVRS table may know about a quirk that we don't.
360 if (pci_alias
== devid
&&
361 PCI_BUS_NUM(ivrs_alias
) == pdev
->bus
->number
) {
362 pci_add_dma_alias(pdev
, ivrs_alias
& 0xff);
363 pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
364 PCI_SLOT(ivrs_alias
), PCI_FUNC(ivrs_alias
),
371 static struct iommu_dev_data
*find_dev_data(u16 devid
)
373 struct iommu_dev_data
*dev_data
;
375 dev_data
= search_dev_data(devid
);
377 if (dev_data
== NULL
)
378 dev_data
= alloc_dev_data(devid
);
383 static struct iommu_dev_data
*get_dev_data(struct device
*dev
)
385 return dev
->archdata
.iommu
;
389 * Find or create an IOMMU group for a acpihid device.
391 static struct iommu_group
*acpihid_device_group(struct device
*dev
)
393 struct acpihid_map_entry
*p
, *entry
= NULL
;
396 devid
= get_acpihid_device_id(dev
, &entry
);
398 return ERR_PTR(devid
);
400 list_for_each_entry(p
, &acpihid_map
, list
) {
401 if ((devid
== p
->devid
) && p
->group
)
402 entry
->group
= p
->group
;
406 entry
->group
= generic_device_group(dev
);
408 iommu_group_ref_get(entry
->group
);
413 static bool pci_iommuv2_capable(struct pci_dev
*pdev
)
415 static const int caps
[] = {
418 PCI_EXT_CAP_ID_PASID
,
422 for (i
= 0; i
< 3; ++i
) {
423 pos
= pci_find_ext_capability(pdev
, caps
[i
]);
431 static bool pdev_pri_erratum(struct pci_dev
*pdev
, u32 erratum
)
433 struct iommu_dev_data
*dev_data
;
435 dev_data
= get_dev_data(&pdev
->dev
);
437 return dev_data
->errata
& (1 << erratum
) ? true : false;
441 * This function checks if the driver got a valid device from the caller to
442 * avoid dereferencing invalid pointers.
444 static bool check_device(struct device
*dev
)
448 if (!dev
|| !dev
->dma_mask
)
451 devid
= get_device_id(dev
);
455 /* Out of our scope? */
456 if (devid
> amd_iommu_last_bdf
)
459 if (amd_iommu_rlookup_table
[devid
] == NULL
)
465 static void init_iommu_group(struct device
*dev
)
467 struct iommu_group
*group
;
469 group
= iommu_group_get_for_dev(dev
);
473 iommu_group_put(group
);
476 static int iommu_init_device(struct device
*dev
)
478 struct iommu_dev_data
*dev_data
;
479 struct amd_iommu
*iommu
;
482 if (dev
->archdata
.iommu
)
485 devid
= get_device_id(dev
);
489 iommu
= amd_iommu_rlookup_table
[devid
];
491 dev_data
= find_dev_data(devid
);
495 dev_data
->alias
= get_alias(dev
);
497 if (dev_is_pci(dev
) && pci_iommuv2_capable(to_pci_dev(dev
))) {
498 struct amd_iommu
*iommu
;
500 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
501 dev_data
->iommu_v2
= iommu
->is_iommu_v2
;
504 dev
->archdata
.iommu
= dev_data
;
506 iommu_device_link(&iommu
->iommu
, dev
);
511 static void iommu_ignore_device(struct device
*dev
)
516 devid
= get_device_id(dev
);
520 alias
= get_alias(dev
);
522 memset(&amd_iommu_dev_table
[devid
], 0, sizeof(struct dev_table_entry
));
523 memset(&amd_iommu_dev_table
[alias
], 0, sizeof(struct dev_table_entry
));
525 amd_iommu_rlookup_table
[devid
] = NULL
;
526 amd_iommu_rlookup_table
[alias
] = NULL
;
529 static void iommu_uninit_device(struct device
*dev
)
531 struct iommu_dev_data
*dev_data
;
532 struct amd_iommu
*iommu
;
535 devid
= get_device_id(dev
);
539 iommu
= amd_iommu_rlookup_table
[devid
];
541 dev_data
= search_dev_data(devid
);
545 if (dev_data
->domain
)
548 iommu_device_unlink(&iommu
->iommu
, dev
);
550 iommu_group_remove_device(dev
);
556 * We keep dev_data around for unplugged devices and reuse it when the
557 * device is re-plugged - not doing so would introduce a ton of races.
561 /****************************************************************************
563 * Interrupt handling functions
565 ****************************************************************************/
567 static void dump_dte_entry(u16 devid
)
571 for (i
= 0; i
< 4; ++i
)
572 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i
,
573 amd_iommu_dev_table
[devid
].data
[i
]);
576 static void dump_command(unsigned long phys_addr
)
578 struct iommu_cmd
*cmd
= iommu_phys_to_virt(phys_addr
);
581 for (i
= 0; i
< 4; ++i
)
582 pr_err("AMD-Vi: CMD[%d]: %08x\n", i
, cmd
->data
[i
]);
585 static void amd_iommu_report_page_fault(u16 devid
, u16 domain_id
,
586 u64 address
, int flags
)
588 struct iommu_dev_data
*dev_data
= NULL
;
589 struct pci_dev
*pdev
;
591 pdev
= pci_get_bus_and_slot(PCI_BUS_NUM(devid
), devid
& 0xff);
593 dev_data
= get_dev_data(&pdev
->dev
);
595 if (dev_data
&& __ratelimit(&dev_data
->rs
)) {
596 dev_err(&pdev
->dev
, "AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
597 domain_id
, address
, flags
);
598 } else if (printk_ratelimit()) {
599 pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
600 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
601 domain_id
, address
, flags
);
608 static void iommu_print_event(struct amd_iommu
*iommu
, void *__evt
)
610 int type
, devid
, domid
, flags
;
611 volatile u32
*event
= __evt
;
616 type
= (event
[1] >> EVENT_TYPE_SHIFT
) & EVENT_TYPE_MASK
;
617 devid
= (event
[0] >> EVENT_DEVID_SHIFT
) & EVENT_DEVID_MASK
;
618 domid
= (event
[1] >> EVENT_DOMID_SHIFT
) & EVENT_DOMID_MASK
;
619 flags
= (event
[1] >> EVENT_FLAGS_SHIFT
) & EVENT_FLAGS_MASK
;
620 address
= (u64
)(((u64
)event
[3]) << 32) | event
[2];
623 /* Did we hit the erratum? */
624 if (++count
== LOOP_TIMEOUT
) {
625 pr_err("AMD-Vi: No event written to event log\n");
632 if (type
== EVENT_TYPE_IO_FAULT
) {
633 amd_iommu_report_page_fault(devid
, domid
, address
, flags
);
636 printk(KERN_ERR
"AMD-Vi: Event logged [");
640 case EVENT_TYPE_ILL_DEV
:
641 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
642 "address=0x%016llx flags=0x%04x]\n",
643 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
645 dump_dte_entry(devid
);
647 case EVENT_TYPE_DEV_TAB_ERR
:
648 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
649 "address=0x%016llx flags=0x%04x]\n",
650 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
653 case EVENT_TYPE_PAGE_TAB_ERR
:
654 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
655 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
656 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
657 domid
, address
, flags
);
659 case EVENT_TYPE_ILL_CMD
:
660 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address
);
661 dump_command(address
);
663 case EVENT_TYPE_CMD_HARD_ERR
:
664 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
665 "flags=0x%04x]\n", address
, flags
);
667 case EVENT_TYPE_IOTLB_INV_TO
:
668 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
669 "address=0x%016llx]\n",
670 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
673 case EVENT_TYPE_INV_DEV_REQ
:
674 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
675 "address=0x%016llx flags=0x%04x]\n",
676 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
680 printk(KERN_ERR
"UNKNOWN type=0x%02x]\n", type
);
683 memset(__evt
, 0, 4 * sizeof(u32
));
686 static void iommu_poll_events(struct amd_iommu
*iommu
)
690 head
= readl(iommu
->mmio_base
+ MMIO_EVT_HEAD_OFFSET
);
691 tail
= readl(iommu
->mmio_base
+ MMIO_EVT_TAIL_OFFSET
);
693 while (head
!= tail
) {
694 iommu_print_event(iommu
, iommu
->evt_buf
+ head
);
695 head
= (head
+ EVENT_ENTRY_SIZE
) % EVT_BUFFER_SIZE
;
698 writel(head
, iommu
->mmio_base
+ MMIO_EVT_HEAD_OFFSET
);
701 static void iommu_handle_ppr_entry(struct amd_iommu
*iommu
, u64
*raw
)
703 struct amd_iommu_fault fault
;
705 if (PPR_REQ_TYPE(raw
[0]) != PPR_REQ_FAULT
) {
706 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
710 fault
.address
= raw
[1];
711 fault
.pasid
= PPR_PASID(raw
[0]);
712 fault
.device_id
= PPR_DEVID(raw
[0]);
713 fault
.tag
= PPR_TAG(raw
[0]);
714 fault
.flags
= PPR_FLAGS(raw
[0]);
716 atomic_notifier_call_chain(&ppr_notifier
, 0, &fault
);
719 static void iommu_poll_ppr_log(struct amd_iommu
*iommu
)
723 if (iommu
->ppr_log
== NULL
)
726 head
= readl(iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
727 tail
= readl(iommu
->mmio_base
+ MMIO_PPR_TAIL_OFFSET
);
729 while (head
!= tail
) {
734 raw
= (u64
*)(iommu
->ppr_log
+ head
);
737 * Hardware bug: Interrupt may arrive before the entry is
738 * written to memory. If this happens we need to wait for the
741 for (i
= 0; i
< LOOP_TIMEOUT
; ++i
) {
742 if (PPR_REQ_TYPE(raw
[0]) != 0)
747 /* Avoid memcpy function-call overhead */
752 * To detect the hardware bug we need to clear the entry
755 raw
[0] = raw
[1] = 0UL;
757 /* Update head pointer of hardware ring-buffer */
758 head
= (head
+ PPR_ENTRY_SIZE
) % PPR_LOG_SIZE
;
759 writel(head
, iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
761 /* Handle PPR entry */
762 iommu_handle_ppr_entry(iommu
, entry
);
764 /* Refresh ring-buffer information */
765 head
= readl(iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
766 tail
= readl(iommu
->mmio_base
+ MMIO_PPR_TAIL_OFFSET
);
770 #ifdef CONFIG_IRQ_REMAP
771 static int (*iommu_ga_log_notifier
)(u32
);
773 int amd_iommu_register_ga_log_notifier(int (*notifier
)(u32
))
775 iommu_ga_log_notifier
= notifier
;
779 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier
);
781 static void iommu_poll_ga_log(struct amd_iommu
*iommu
)
783 u32 head
, tail
, cnt
= 0;
785 if (iommu
->ga_log
== NULL
)
788 head
= readl(iommu
->mmio_base
+ MMIO_GA_HEAD_OFFSET
);
789 tail
= readl(iommu
->mmio_base
+ MMIO_GA_TAIL_OFFSET
);
791 while (head
!= tail
) {
795 raw
= (u64
*)(iommu
->ga_log
+ head
);
798 /* Avoid memcpy function-call overhead */
801 /* Update head pointer of hardware ring-buffer */
802 head
= (head
+ GA_ENTRY_SIZE
) % GA_LOG_SIZE
;
803 writel(head
, iommu
->mmio_base
+ MMIO_GA_HEAD_OFFSET
);
805 /* Handle GA entry */
806 switch (GA_REQ_TYPE(log_entry
)) {
808 if (!iommu_ga_log_notifier
)
811 pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
812 __func__
, GA_DEVID(log_entry
),
815 if (iommu_ga_log_notifier(GA_TAG(log_entry
)) != 0)
816 pr_err("AMD-Vi: GA log notifier failed.\n");
823 #endif /* CONFIG_IRQ_REMAP */
825 #define AMD_IOMMU_INT_MASK \
826 (MMIO_STATUS_EVT_INT_MASK | \
827 MMIO_STATUS_PPR_INT_MASK | \
828 MMIO_STATUS_GALOG_INT_MASK)
830 irqreturn_t
amd_iommu_int_thread(int irq
, void *data
)
832 struct amd_iommu
*iommu
= (struct amd_iommu
*) data
;
833 u32 status
= readl(iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
835 while (status
& AMD_IOMMU_INT_MASK
) {
836 /* Enable EVT and PPR and GA interrupts again */
837 writel(AMD_IOMMU_INT_MASK
,
838 iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
840 if (status
& MMIO_STATUS_EVT_INT_MASK
) {
841 pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
842 iommu_poll_events(iommu
);
845 if (status
& MMIO_STATUS_PPR_INT_MASK
) {
846 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
847 iommu_poll_ppr_log(iommu
);
850 #ifdef CONFIG_IRQ_REMAP
851 if (status
& MMIO_STATUS_GALOG_INT_MASK
) {
852 pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
853 iommu_poll_ga_log(iommu
);
858 * Hardware bug: ERBT1312
859 * When re-enabling interrupt (by writing 1
860 * to clear the bit), the hardware might also try to set
861 * the interrupt bit in the event status register.
862 * In this scenario, the bit will be set, and disable
863 * subsequent interrupts.
865 * Workaround: The IOMMU driver should read back the
866 * status register and check if the interrupt bits are cleared.
867 * If not, driver will need to go through the interrupt handler
868 * again and re-clear the bits
870 status
= readl(iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
875 irqreturn_t
amd_iommu_int_handler(int irq
, void *data
)
877 return IRQ_WAKE_THREAD
;
880 /****************************************************************************
882 * IOMMU command queuing functions
884 ****************************************************************************/
886 static int wait_on_sem(volatile u64
*sem
)
890 while (*sem
== 0 && i
< LOOP_TIMEOUT
) {
895 if (i
== LOOP_TIMEOUT
) {
896 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
903 static void copy_cmd_to_buffer(struct amd_iommu
*iommu
,
904 struct iommu_cmd
*cmd
)
908 target
= iommu
->cmd_buf
+ iommu
->cmd_buf_tail
;
910 iommu
->cmd_buf_tail
+= sizeof(*cmd
);
911 iommu
->cmd_buf_tail
%= CMD_BUFFER_SIZE
;
913 /* Copy command to buffer */
914 memcpy(target
, cmd
, sizeof(*cmd
));
916 /* Tell the IOMMU about it */
917 writel(iommu
->cmd_buf_tail
, iommu
->mmio_base
+ MMIO_CMD_TAIL_OFFSET
);
920 static void build_completion_wait(struct iommu_cmd
*cmd
, u64 address
)
922 u64 paddr
= iommu_virt_to_phys((void *)address
);
924 WARN_ON(address
& 0x7ULL
);
926 memset(cmd
, 0, sizeof(*cmd
));
927 cmd
->data
[0] = lower_32_bits(paddr
) | CMD_COMPL_WAIT_STORE_MASK
;
928 cmd
->data
[1] = upper_32_bits(paddr
);
930 CMD_SET_TYPE(cmd
, CMD_COMPL_WAIT
);
933 static void build_inv_dte(struct iommu_cmd
*cmd
, u16 devid
)
935 memset(cmd
, 0, sizeof(*cmd
));
936 cmd
->data
[0] = devid
;
937 CMD_SET_TYPE(cmd
, CMD_INV_DEV_ENTRY
);
940 static void build_inv_iommu_pages(struct iommu_cmd
*cmd
, u64 address
,
941 size_t size
, u16 domid
, int pde
)
946 pages
= iommu_num_pages(address
, size
, PAGE_SIZE
);
951 * If we have to flush more than one page, flush all
952 * TLB entries for this domain
954 address
= CMD_INV_IOMMU_ALL_PAGES_ADDRESS
;
958 address
&= PAGE_MASK
;
960 memset(cmd
, 0, sizeof(*cmd
));
961 cmd
->data
[1] |= domid
;
962 cmd
->data
[2] = lower_32_bits(address
);
963 cmd
->data
[3] = upper_32_bits(address
);
964 CMD_SET_TYPE(cmd
, CMD_INV_IOMMU_PAGES
);
965 if (s
) /* size bit - we flush more than one 4kb page */
966 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
967 if (pde
) /* PDE bit - we want to flush everything, not only the PTEs */
968 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK
;
971 static void build_inv_iotlb_pages(struct iommu_cmd
*cmd
, u16 devid
, int qdep
,
972 u64 address
, size_t size
)
977 pages
= iommu_num_pages(address
, size
, PAGE_SIZE
);
982 * If we have to flush more than one page, flush all
983 * TLB entries for this domain
985 address
= CMD_INV_IOMMU_ALL_PAGES_ADDRESS
;
989 address
&= PAGE_MASK
;
991 memset(cmd
, 0, sizeof(*cmd
));
992 cmd
->data
[0] = devid
;
993 cmd
->data
[0] |= (qdep
& 0xff) << 24;
994 cmd
->data
[1] = devid
;
995 cmd
->data
[2] = lower_32_bits(address
);
996 cmd
->data
[3] = upper_32_bits(address
);
997 CMD_SET_TYPE(cmd
, CMD_INV_IOTLB_PAGES
);
999 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
1002 static void build_inv_iommu_pasid(struct iommu_cmd
*cmd
, u16 domid
, int pasid
,
1003 u64 address
, bool size
)
1005 memset(cmd
, 0, sizeof(*cmd
));
1007 address
&= ~(0xfffULL
);
1009 cmd
->data
[0] = pasid
;
1010 cmd
->data
[1] = domid
;
1011 cmd
->data
[2] = lower_32_bits(address
);
1012 cmd
->data
[3] = upper_32_bits(address
);
1013 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK
;
1014 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_GN_MASK
;
1016 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
1017 CMD_SET_TYPE(cmd
, CMD_INV_IOMMU_PAGES
);
1020 static void build_inv_iotlb_pasid(struct iommu_cmd
*cmd
, u16 devid
, int pasid
,
1021 int qdep
, u64 address
, bool size
)
1023 memset(cmd
, 0, sizeof(*cmd
));
1025 address
&= ~(0xfffULL
);
1027 cmd
->data
[0] = devid
;
1028 cmd
->data
[0] |= ((pasid
>> 8) & 0xff) << 16;
1029 cmd
->data
[0] |= (qdep
& 0xff) << 24;
1030 cmd
->data
[1] = devid
;
1031 cmd
->data
[1] |= (pasid
& 0xff) << 16;
1032 cmd
->data
[2] = lower_32_bits(address
);
1033 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_GN_MASK
;
1034 cmd
->data
[3] = upper_32_bits(address
);
1036 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
1037 CMD_SET_TYPE(cmd
, CMD_INV_IOTLB_PAGES
);
1040 static void build_complete_ppr(struct iommu_cmd
*cmd
, u16 devid
, int pasid
,
1041 int status
, int tag
, bool gn
)
1043 memset(cmd
, 0, sizeof(*cmd
));
1045 cmd
->data
[0] = devid
;
1047 cmd
->data
[1] = pasid
;
1048 cmd
->data
[2] = CMD_INV_IOMMU_PAGES_GN_MASK
;
1050 cmd
->data
[3] = tag
& 0x1ff;
1051 cmd
->data
[3] |= (status
& PPR_STATUS_MASK
) << PPR_STATUS_SHIFT
;
1053 CMD_SET_TYPE(cmd
, CMD_COMPLETE_PPR
);
1056 static void build_inv_all(struct iommu_cmd
*cmd
)
1058 memset(cmd
, 0, sizeof(*cmd
));
1059 CMD_SET_TYPE(cmd
, CMD_INV_ALL
);
1062 static void build_inv_irt(struct iommu_cmd
*cmd
, u16 devid
)
1064 memset(cmd
, 0, sizeof(*cmd
));
1065 cmd
->data
[0] = devid
;
1066 CMD_SET_TYPE(cmd
, CMD_INV_IRT
);
1070 * Writes the command to the IOMMUs command buffer and informs the
1071 * hardware about the new command.
1073 static int __iommu_queue_command_sync(struct amd_iommu
*iommu
,
1074 struct iommu_cmd
*cmd
,
1077 unsigned int count
= 0;
1078 u32 left
, next_tail
;
1080 next_tail
= (iommu
->cmd_buf_tail
+ sizeof(*cmd
)) % CMD_BUFFER_SIZE
;
1082 left
= (iommu
->cmd_buf_head
- next_tail
) % CMD_BUFFER_SIZE
;
1085 /* Skip udelay() the first time around */
1087 if (count
== LOOP_TIMEOUT
) {
1088 pr_err("AMD-Vi: Command buffer timeout\n");
1095 /* Update head and recheck remaining space */
1096 iommu
->cmd_buf_head
= readl(iommu
->mmio_base
+
1097 MMIO_CMD_HEAD_OFFSET
);
1102 copy_cmd_to_buffer(iommu
, cmd
);
1104 /* Do we need to make sure all commands are processed? */
1105 iommu
->need_sync
= sync
;
1110 static int iommu_queue_command_sync(struct amd_iommu
*iommu
,
1111 struct iommu_cmd
*cmd
,
1114 unsigned long flags
;
1117 spin_lock_irqsave(&iommu
->lock
, flags
);
1118 ret
= __iommu_queue_command_sync(iommu
, cmd
, sync
);
1119 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1124 static int iommu_queue_command(struct amd_iommu
*iommu
, struct iommu_cmd
*cmd
)
1126 return iommu_queue_command_sync(iommu
, cmd
, true);
1130 * This function queues a completion wait command into the command
1131 * buffer of an IOMMU
1133 static int iommu_completion_wait(struct amd_iommu
*iommu
)
1135 struct iommu_cmd cmd
;
1136 unsigned long flags
;
1139 if (!iommu
->need_sync
)
1143 build_completion_wait(&cmd
, (u64
)&iommu
->cmd_sem
);
1145 spin_lock_irqsave(&iommu
->lock
, flags
);
1149 ret
= __iommu_queue_command_sync(iommu
, &cmd
, false);
1153 ret
= wait_on_sem(&iommu
->cmd_sem
);
1156 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1161 static int iommu_flush_dte(struct amd_iommu
*iommu
, u16 devid
)
1163 struct iommu_cmd cmd
;
1165 build_inv_dte(&cmd
, devid
);
1167 return iommu_queue_command(iommu
, &cmd
);
1170 static void iommu_flush_dte_all(struct amd_iommu
*iommu
)
1174 for (devid
= 0; devid
<= 0xffff; ++devid
)
1175 iommu_flush_dte(iommu
, devid
);
1177 iommu_completion_wait(iommu
);
1181 * This function uses heavy locking and may disable irqs for some time. But
1182 * this is no issue because it is only called during resume.
1184 static void iommu_flush_tlb_all(struct amd_iommu
*iommu
)
1188 for (dom_id
= 0; dom_id
<= 0xffff; ++dom_id
) {
1189 struct iommu_cmd cmd
;
1190 build_inv_iommu_pages(&cmd
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
,
1192 iommu_queue_command(iommu
, &cmd
);
1195 iommu_completion_wait(iommu
);
1198 static void iommu_flush_all(struct amd_iommu
*iommu
)
1200 struct iommu_cmd cmd
;
1202 build_inv_all(&cmd
);
1204 iommu_queue_command(iommu
, &cmd
);
1205 iommu_completion_wait(iommu
);
1208 static void iommu_flush_irt(struct amd_iommu
*iommu
, u16 devid
)
1210 struct iommu_cmd cmd
;
1212 build_inv_irt(&cmd
, devid
);
1214 iommu_queue_command(iommu
, &cmd
);
1217 static void iommu_flush_irt_all(struct amd_iommu
*iommu
)
1221 for (devid
= 0; devid
<= MAX_DEV_TABLE_ENTRIES
; devid
++)
1222 iommu_flush_irt(iommu
, devid
);
1224 iommu_completion_wait(iommu
);
1227 void iommu_flush_all_caches(struct amd_iommu
*iommu
)
1229 if (iommu_feature(iommu
, FEATURE_IA
)) {
1230 iommu_flush_all(iommu
);
1232 iommu_flush_dte_all(iommu
);
1233 iommu_flush_irt_all(iommu
);
1234 iommu_flush_tlb_all(iommu
);
1239 * Command send function for flushing on-device TLB
1241 static int device_flush_iotlb(struct iommu_dev_data
*dev_data
,
1242 u64 address
, size_t size
)
1244 struct amd_iommu
*iommu
;
1245 struct iommu_cmd cmd
;
1248 qdep
= dev_data
->ats
.qdep
;
1249 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1251 build_inv_iotlb_pages(&cmd
, dev_data
->devid
, qdep
, address
, size
);
1253 return iommu_queue_command(iommu
, &cmd
);
1257 * Command send function for invalidating a device table entry
1259 static int device_flush_dte(struct iommu_dev_data
*dev_data
)
1261 struct amd_iommu
*iommu
;
1265 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1266 alias
= dev_data
->alias
;
1268 ret
= iommu_flush_dte(iommu
, dev_data
->devid
);
1269 if (!ret
&& alias
!= dev_data
->devid
)
1270 ret
= iommu_flush_dte(iommu
, alias
);
1274 if (dev_data
->ats
.enabled
)
1275 ret
= device_flush_iotlb(dev_data
, 0, ~0UL);
1281 * TLB invalidation function which is called from the mapping functions.
1282 * It invalidates a single PTE if the range to flush is within a single
1283 * page. Otherwise it flushes the whole TLB of the IOMMU.
1285 static void __domain_flush_pages(struct protection_domain
*domain
,
1286 u64 address
, size_t size
, int pde
)
1288 struct iommu_dev_data
*dev_data
;
1289 struct iommu_cmd cmd
;
1292 build_inv_iommu_pages(&cmd
, address
, size
, domain
->id
, pde
);
1294 for (i
= 0; i
< amd_iommu_get_num_iommus(); ++i
) {
1295 if (!domain
->dev_iommu
[i
])
1299 * Devices of this domain are behind this IOMMU
1300 * We need a TLB flush
1302 ret
|= iommu_queue_command(amd_iommus
[i
], &cmd
);
1305 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
1307 if (!dev_data
->ats
.enabled
)
1310 ret
|= device_flush_iotlb(dev_data
, address
, size
);
1316 static void domain_flush_pages(struct protection_domain
*domain
,
1317 u64 address
, size_t size
)
1319 __domain_flush_pages(domain
, address
, size
, 0);
1322 /* Flush the whole IO/TLB for a given protection domain */
1323 static void domain_flush_tlb(struct protection_domain
*domain
)
1325 __domain_flush_pages(domain
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
, 0);
1328 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1329 static void domain_flush_tlb_pde(struct protection_domain
*domain
)
1331 __domain_flush_pages(domain
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
, 1);
1334 static void domain_flush_complete(struct protection_domain
*domain
)
1338 for (i
= 0; i
< amd_iommu_get_num_iommus(); ++i
) {
1339 if (domain
&& !domain
->dev_iommu
[i
])
1343 * Devices of this domain are behind this IOMMU
1344 * We need to wait for completion of all commands.
1346 iommu_completion_wait(amd_iommus
[i
]);
1352 * This function flushes the DTEs for all devices in domain
1354 static void domain_flush_devices(struct protection_domain
*domain
)
1356 struct iommu_dev_data
*dev_data
;
1358 list_for_each_entry(dev_data
, &domain
->dev_list
, list
)
1359 device_flush_dte(dev_data
);
1362 /****************************************************************************
1364 * The functions below are used the create the page table mappings for
1365 * unity mapped regions.
1367 ****************************************************************************/
1370 * This function is used to add another level to an IO page table. Adding
1371 * another level increases the size of the address space by 9 bits to a size up
1374 static bool increase_address_space(struct protection_domain
*domain
,
1379 if (domain
->mode
== PAGE_MODE_6_LEVEL
)
1380 /* address space already 64 bit large */
1383 pte
= (void *)get_zeroed_page(gfp
);
1387 *pte
= PM_LEVEL_PDE(domain
->mode
,
1388 iommu_virt_to_phys(domain
->pt_root
));
1389 domain
->pt_root
= pte
;
1391 domain
->updated
= true;
1396 static u64
*alloc_pte(struct protection_domain
*domain
,
1397 unsigned long address
,
1398 unsigned long page_size
,
1405 BUG_ON(!is_power_of_2(page_size
));
1407 while (address
> PM_LEVEL_SIZE(domain
->mode
))
1408 increase_address_space(domain
, gfp
);
1410 level
= domain
->mode
- 1;
1411 pte
= &domain
->pt_root
[PM_LEVEL_INDEX(level
, address
)];
1412 address
= PAGE_SIZE_ALIGN(address
, page_size
);
1413 end_lvl
= PAGE_SIZE_LEVEL(page_size
);
1415 while (level
> end_lvl
) {
1420 if (!IOMMU_PTE_PRESENT(__pte
)) {
1421 page
= (u64
*)get_zeroed_page(gfp
);
1425 __npte
= PM_LEVEL_PDE(level
, iommu_virt_to_phys(page
));
1427 /* pte could have been changed somewhere. */
1428 if (cmpxchg64(pte
, __pte
, __npte
) != __pte
) {
1429 free_page((unsigned long)page
);
1434 /* No level skipping support yet */
1435 if (PM_PTE_LEVEL(*pte
) != level
)
1440 pte
= IOMMU_PTE_PAGE(*pte
);
1442 if (pte_page
&& level
== end_lvl
)
1445 pte
= &pte
[PM_LEVEL_INDEX(level
, address
)];
1452 * This function checks if there is a PTE for a given dma address. If
1453 * there is one, it returns the pointer to it.
1455 static u64
*fetch_pte(struct protection_domain
*domain
,
1456 unsigned long address
,
1457 unsigned long *page_size
)
1462 if (address
> PM_LEVEL_SIZE(domain
->mode
))
1465 level
= domain
->mode
- 1;
1466 pte
= &domain
->pt_root
[PM_LEVEL_INDEX(level
, address
)];
1467 *page_size
= PTE_LEVEL_PAGE_SIZE(level
);
1472 if (!IOMMU_PTE_PRESENT(*pte
))
1476 if (PM_PTE_LEVEL(*pte
) == 7 ||
1477 PM_PTE_LEVEL(*pte
) == 0)
1480 /* No level skipping support yet */
1481 if (PM_PTE_LEVEL(*pte
) != level
)
1486 /* Walk to the next level */
1487 pte
= IOMMU_PTE_PAGE(*pte
);
1488 pte
= &pte
[PM_LEVEL_INDEX(level
, address
)];
1489 *page_size
= PTE_LEVEL_PAGE_SIZE(level
);
1492 if (PM_PTE_LEVEL(*pte
) == 0x07) {
1493 unsigned long pte_mask
;
1496 * If we have a series of large PTEs, make
1497 * sure to return a pointer to the first one.
1499 *page_size
= pte_mask
= PTE_PAGE_SIZE(*pte
);
1500 pte_mask
= ~((PAGE_SIZE_PTE_COUNT(pte_mask
) << 3) - 1);
1501 pte
= (u64
*)(((unsigned long)pte
) & pte_mask
);
1508 * Generic mapping functions. It maps a physical address into a DMA
1509 * address space. It allocates the page table pages if necessary.
1510 * In the future it can be extended to a generic mapping function
1511 * supporting all features of AMD IOMMU page tables like level skipping
1512 * and full 64 bit address spaces.
1514 static int iommu_map_page(struct protection_domain
*dom
,
1515 unsigned long bus_addr
,
1516 unsigned long phys_addr
,
1517 unsigned long page_size
,
1524 BUG_ON(!IS_ALIGNED(bus_addr
, page_size
));
1525 BUG_ON(!IS_ALIGNED(phys_addr
, page_size
));
1527 if (!(prot
& IOMMU_PROT_MASK
))
1530 count
= PAGE_SIZE_PTE_COUNT(page_size
);
1531 pte
= alloc_pte(dom
, bus_addr
, page_size
, NULL
, gfp
);
1536 for (i
= 0; i
< count
; ++i
)
1537 if (IOMMU_PTE_PRESENT(pte
[i
]))
1541 __pte
= PAGE_SIZE_PTE(__sme_set(phys_addr
), page_size
);
1542 __pte
|= PM_LEVEL_ENC(7) | IOMMU_PTE_P
| IOMMU_PTE_FC
;
1544 __pte
= __sme_set(phys_addr
) | IOMMU_PTE_P
| IOMMU_PTE_FC
;
1546 if (prot
& IOMMU_PROT_IR
)
1547 __pte
|= IOMMU_PTE_IR
;
1548 if (prot
& IOMMU_PROT_IW
)
1549 __pte
|= IOMMU_PTE_IW
;
1551 for (i
= 0; i
< count
; ++i
)
1559 static unsigned long iommu_unmap_page(struct protection_domain
*dom
,
1560 unsigned long bus_addr
,
1561 unsigned long page_size
)
1563 unsigned long long unmapped
;
1564 unsigned long unmap_size
;
1567 BUG_ON(!is_power_of_2(page_size
));
1571 while (unmapped
< page_size
) {
1573 pte
= fetch_pte(dom
, bus_addr
, &unmap_size
);
1578 count
= PAGE_SIZE_PTE_COUNT(unmap_size
);
1579 for (i
= 0; i
< count
; i
++)
1583 bus_addr
= (bus_addr
& ~(unmap_size
- 1)) + unmap_size
;
1584 unmapped
+= unmap_size
;
1587 BUG_ON(unmapped
&& !is_power_of_2(unmapped
));
1592 /****************************************************************************
1594 * The next functions belong to the address allocator for the dma_ops
1595 * interface functions.
1597 ****************************************************************************/
1600 static unsigned long dma_ops_alloc_iova(struct device
*dev
,
1601 struct dma_ops_domain
*dma_dom
,
1602 unsigned int pages
, u64 dma_mask
)
1604 unsigned long pfn
= 0;
1606 pages
= __roundup_pow_of_two(pages
);
1608 if (dma_mask
> DMA_BIT_MASK(32))
1609 pfn
= alloc_iova_fast(&dma_dom
->iovad
, pages
,
1610 IOVA_PFN(DMA_BIT_MASK(32)));
1613 pfn
= alloc_iova_fast(&dma_dom
->iovad
, pages
, IOVA_PFN(dma_mask
));
1615 return (pfn
<< PAGE_SHIFT
);
1618 static void dma_ops_free_iova(struct dma_ops_domain
*dma_dom
,
1619 unsigned long address
,
1622 pages
= __roundup_pow_of_two(pages
);
1623 address
>>= PAGE_SHIFT
;
1625 free_iova_fast(&dma_dom
->iovad
, address
, pages
);
1628 /****************************************************************************
1630 * The next functions belong to the domain allocation. A domain is
1631 * allocated for every IOMMU as the default domain. If device isolation
1632 * is enabled, every device get its own domain. The most important thing
1633 * about domains is the page table mapping the DMA address space they
1636 ****************************************************************************/
1639 * This function adds a protection domain to the global protection domain list
1641 static void add_domain_to_list(struct protection_domain
*domain
)
1643 unsigned long flags
;
1645 spin_lock_irqsave(&amd_iommu_pd_lock
, flags
);
1646 list_add(&domain
->list
, &amd_iommu_pd_list
);
1647 spin_unlock_irqrestore(&amd_iommu_pd_lock
, flags
);
1651 * This function removes a protection domain to the global
1652 * protection domain list
1654 static void del_domain_from_list(struct protection_domain
*domain
)
1656 unsigned long flags
;
1658 spin_lock_irqsave(&amd_iommu_pd_lock
, flags
);
1659 list_del(&domain
->list
);
1660 spin_unlock_irqrestore(&amd_iommu_pd_lock
, flags
);
1663 static u16
domain_id_alloc(void)
1665 unsigned long flags
;
1668 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
1669 id
= find_first_zero_bit(amd_iommu_pd_alloc_bitmap
, MAX_DOMAIN_ID
);
1671 if (id
> 0 && id
< MAX_DOMAIN_ID
)
1672 __set_bit(id
, amd_iommu_pd_alloc_bitmap
);
1675 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
1680 static void domain_id_free(int id
)
1682 unsigned long flags
;
1684 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
1685 if (id
> 0 && id
< MAX_DOMAIN_ID
)
1686 __clear_bit(id
, amd_iommu_pd_alloc_bitmap
);
1687 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
1690 #define DEFINE_FREE_PT_FN(LVL, FN) \
1691 static void free_pt_##LVL (unsigned long __pt) \
1699 for (i = 0; i < 512; ++i) { \
1700 /* PTE present? */ \
1701 if (!IOMMU_PTE_PRESENT(pt[i])) \
1705 if (PM_PTE_LEVEL(pt[i]) == 0 || \
1706 PM_PTE_LEVEL(pt[i]) == 7) \
1709 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1712 free_page((unsigned long)pt); \
1715 DEFINE_FREE_PT_FN(l2
, free_page
)
1716 DEFINE_FREE_PT_FN(l3
, free_pt_l2
)
1717 DEFINE_FREE_PT_FN(l4
, free_pt_l3
)
1718 DEFINE_FREE_PT_FN(l5
, free_pt_l4
)
1719 DEFINE_FREE_PT_FN(l6
, free_pt_l5
)
1721 static void free_pagetable(struct protection_domain
*domain
)
1723 unsigned long root
= (unsigned long)domain
->pt_root
;
1725 switch (domain
->mode
) {
1726 case PAGE_MODE_NONE
:
1728 case PAGE_MODE_1_LEVEL
:
1731 case PAGE_MODE_2_LEVEL
:
1734 case PAGE_MODE_3_LEVEL
:
1737 case PAGE_MODE_4_LEVEL
:
1740 case PAGE_MODE_5_LEVEL
:
1743 case PAGE_MODE_6_LEVEL
:
1751 static void free_gcr3_tbl_level1(u64
*tbl
)
1756 for (i
= 0; i
< 512; ++i
) {
1757 if (!(tbl
[i
] & GCR3_VALID
))
1760 ptr
= iommu_phys_to_virt(tbl
[i
] & PAGE_MASK
);
1762 free_page((unsigned long)ptr
);
1766 static void free_gcr3_tbl_level2(u64
*tbl
)
1771 for (i
= 0; i
< 512; ++i
) {
1772 if (!(tbl
[i
] & GCR3_VALID
))
1775 ptr
= iommu_phys_to_virt(tbl
[i
] & PAGE_MASK
);
1777 free_gcr3_tbl_level1(ptr
);
1781 static void free_gcr3_table(struct protection_domain
*domain
)
1783 if (domain
->glx
== 2)
1784 free_gcr3_tbl_level2(domain
->gcr3_tbl
);
1785 else if (domain
->glx
== 1)
1786 free_gcr3_tbl_level1(domain
->gcr3_tbl
);
1788 BUG_ON(domain
->glx
!= 0);
1790 free_page((unsigned long)domain
->gcr3_tbl
);
1793 static void dma_ops_domain_free_flush_queue(struct dma_ops_domain
*dom
)
1797 for_each_possible_cpu(cpu
) {
1798 struct flush_queue
*queue
;
1800 queue
= per_cpu_ptr(dom
->flush_queue
, cpu
);
1801 kfree(queue
->entries
);
1804 free_percpu(dom
->flush_queue
);
1806 dom
->flush_queue
= NULL
;
1809 static int dma_ops_domain_alloc_flush_queue(struct dma_ops_domain
*dom
)
1813 atomic64_set(&dom
->flush_start_cnt
, 0);
1814 atomic64_set(&dom
->flush_finish_cnt
, 0);
1816 dom
->flush_queue
= alloc_percpu(struct flush_queue
);
1817 if (!dom
->flush_queue
)
1820 /* First make sure everything is cleared */
1821 for_each_possible_cpu(cpu
) {
1822 struct flush_queue
*queue
;
1824 queue
= per_cpu_ptr(dom
->flush_queue
, cpu
);
1827 queue
->entries
= NULL
;
1830 /* Now start doing the allocation */
1831 for_each_possible_cpu(cpu
) {
1832 struct flush_queue
*queue
;
1834 queue
= per_cpu_ptr(dom
->flush_queue
, cpu
);
1835 queue
->entries
= kzalloc(FLUSH_QUEUE_SIZE
* sizeof(*queue
->entries
),
1837 if (!queue
->entries
) {
1838 dma_ops_domain_free_flush_queue(dom
);
1842 spin_lock_init(&queue
->lock
);
1848 static void dma_ops_domain_flush_tlb(struct dma_ops_domain
*dom
)
1850 atomic64_inc(&dom
->flush_start_cnt
);
1851 domain_flush_tlb(&dom
->domain
);
1852 domain_flush_complete(&dom
->domain
);
1853 atomic64_inc(&dom
->flush_finish_cnt
);
1856 static inline bool queue_ring_full(struct flush_queue
*queue
)
1858 assert_spin_locked(&queue
->lock
);
1860 return (((queue
->tail
+ 1) % FLUSH_QUEUE_SIZE
) == queue
->head
);
1863 #define queue_ring_for_each(i, q) \
1864 for (i = (q)->head; i != (q)->tail; i = (i + 1) % FLUSH_QUEUE_SIZE)
1866 static inline unsigned queue_ring_add(struct flush_queue
*queue
)
1868 unsigned idx
= queue
->tail
;
1870 assert_spin_locked(&queue
->lock
);
1871 queue
->tail
= (idx
+ 1) % FLUSH_QUEUE_SIZE
;
1876 static inline void queue_ring_remove_head(struct flush_queue
*queue
)
1878 assert_spin_locked(&queue
->lock
);
1879 queue
->head
= (queue
->head
+ 1) % FLUSH_QUEUE_SIZE
;
1882 static void queue_ring_free_flushed(struct dma_ops_domain
*dom
,
1883 struct flush_queue
*queue
)
1885 u64 counter
= atomic64_read(&dom
->flush_finish_cnt
);
1888 queue_ring_for_each(idx
, queue
) {
1890 * This assumes that counter values in the ring-buffer are
1891 * monotonously rising.
1893 if (queue
->entries
[idx
].counter
>= counter
)
1896 free_iova_fast(&dom
->iovad
,
1897 queue
->entries
[idx
].iova_pfn
,
1898 queue
->entries
[idx
].pages
);
1900 queue_ring_remove_head(queue
);
1904 static void queue_add(struct dma_ops_domain
*dom
,
1905 unsigned long address
, unsigned long pages
)
1907 struct flush_queue
*queue
;
1908 unsigned long flags
;
1911 pages
= __roundup_pow_of_two(pages
);
1912 address
>>= PAGE_SHIFT
;
1914 queue
= get_cpu_ptr(dom
->flush_queue
);
1915 spin_lock_irqsave(&queue
->lock
, flags
);
1918 * First remove the enries from the ring-buffer that are already
1919 * flushed to make the below queue_ring_full() check less likely
1921 queue_ring_free_flushed(dom
, queue
);
1924 * When ring-queue is full, flush the entries from the IOTLB so
1925 * that we can free all entries with queue_ring_free_flushed()
1928 if (queue_ring_full(queue
)) {
1929 dma_ops_domain_flush_tlb(dom
);
1930 queue_ring_free_flushed(dom
, queue
);
1933 idx
= queue_ring_add(queue
);
1935 queue
->entries
[idx
].iova_pfn
= address
;
1936 queue
->entries
[idx
].pages
= pages
;
1937 queue
->entries
[idx
].counter
= atomic64_read(&dom
->flush_start_cnt
);
1939 spin_unlock_irqrestore(&queue
->lock
, flags
);
1941 if (atomic_cmpxchg(&dom
->flush_timer_on
, 0, 1) == 0)
1942 mod_timer(&dom
->flush_timer
, jiffies
+ msecs_to_jiffies(10));
1944 put_cpu_ptr(dom
->flush_queue
);
1947 static void queue_flush_timeout(unsigned long data
)
1949 struct dma_ops_domain
*dom
= (struct dma_ops_domain
*)data
;
1952 atomic_set(&dom
->flush_timer_on
, 0);
1954 dma_ops_domain_flush_tlb(dom
);
1956 for_each_possible_cpu(cpu
) {
1957 struct flush_queue
*queue
;
1958 unsigned long flags
;
1960 queue
= per_cpu_ptr(dom
->flush_queue
, cpu
);
1961 spin_lock_irqsave(&queue
->lock
, flags
);
1962 queue_ring_free_flushed(dom
, queue
);
1963 spin_unlock_irqrestore(&queue
->lock
, flags
);
1968 * Free a domain, only used if something went wrong in the
1969 * allocation path and we need to free an already allocated page table
1971 static void dma_ops_domain_free(struct dma_ops_domain
*dom
)
1976 del_domain_from_list(&dom
->domain
);
1978 if (timer_pending(&dom
->flush_timer
))
1979 del_timer(&dom
->flush_timer
);
1981 dma_ops_domain_free_flush_queue(dom
);
1983 put_iova_domain(&dom
->iovad
);
1985 free_pagetable(&dom
->domain
);
1988 domain_id_free(dom
->domain
.id
);
1994 * Allocates a new protection domain usable for the dma_ops functions.
1995 * It also initializes the page table and the address allocator data
1996 * structures required for the dma_ops interface
1998 static struct dma_ops_domain
*dma_ops_domain_alloc(void)
2000 struct dma_ops_domain
*dma_dom
;
2002 dma_dom
= kzalloc(sizeof(struct dma_ops_domain
), GFP_KERNEL
);
2006 if (protection_domain_init(&dma_dom
->domain
))
2009 dma_dom
->domain
.mode
= PAGE_MODE_3_LEVEL
;
2010 dma_dom
->domain
.pt_root
= (void *)get_zeroed_page(GFP_KERNEL
);
2011 dma_dom
->domain
.flags
= PD_DMA_OPS_MASK
;
2012 if (!dma_dom
->domain
.pt_root
)
2015 init_iova_domain(&dma_dom
->iovad
, PAGE_SIZE
,
2016 IOVA_START_PFN
, DMA_32BIT_PFN
);
2018 /* Initialize reserved ranges */
2019 copy_reserved_iova(&reserved_iova_ranges
, &dma_dom
->iovad
);
2021 if (dma_ops_domain_alloc_flush_queue(dma_dom
))
2024 setup_timer(&dma_dom
->flush_timer
, queue_flush_timeout
,
2025 (unsigned long)dma_dom
);
2027 atomic_set(&dma_dom
->flush_timer_on
, 0);
2029 add_domain_to_list(&dma_dom
->domain
);
2034 dma_ops_domain_free(dma_dom
);
2040 * little helper function to check whether a given protection domain is a
2043 static bool dma_ops_domain(struct protection_domain
*domain
)
2045 return domain
->flags
& PD_DMA_OPS_MASK
;
2048 static void set_dte_entry(u16 devid
, struct protection_domain
*domain
, bool ats
)
2053 if (domain
->mode
!= PAGE_MODE_NONE
)
2054 pte_root
= iommu_virt_to_phys(domain
->pt_root
);
2056 pte_root
|= (domain
->mode
& DEV_ENTRY_MODE_MASK
)
2057 << DEV_ENTRY_MODE_SHIFT
;
2058 pte_root
|= IOMMU_PTE_IR
| IOMMU_PTE_IW
| IOMMU_PTE_P
| IOMMU_PTE_TV
;
2060 flags
= amd_iommu_dev_table
[devid
].data
[1];
2063 flags
|= DTE_FLAG_IOTLB
;
2065 if (domain
->flags
& PD_IOMMUV2_MASK
) {
2066 u64 gcr3
= iommu_virt_to_phys(domain
->gcr3_tbl
);
2067 u64 glx
= domain
->glx
;
2070 pte_root
|= DTE_FLAG_GV
;
2071 pte_root
|= (glx
& DTE_GLX_MASK
) << DTE_GLX_SHIFT
;
2073 /* First mask out possible old values for GCR3 table */
2074 tmp
= DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B
;
2077 tmp
= DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C
;
2080 /* Encode GCR3 table into DTE */
2081 tmp
= DTE_GCR3_VAL_A(gcr3
) << DTE_GCR3_SHIFT_A
;
2084 tmp
= DTE_GCR3_VAL_B(gcr3
) << DTE_GCR3_SHIFT_B
;
2087 tmp
= DTE_GCR3_VAL_C(gcr3
) << DTE_GCR3_SHIFT_C
;
2092 flags
&= ~(DTE_FLAG_SA
| 0xffffULL
);
2093 flags
|= domain
->id
;
2095 amd_iommu_dev_table
[devid
].data
[1] = flags
;
2096 amd_iommu_dev_table
[devid
].data
[0] = pte_root
;
2099 static void clear_dte_entry(u16 devid
)
2101 /* remove entry from the device table seen by the hardware */
2102 amd_iommu_dev_table
[devid
].data
[0] = IOMMU_PTE_P
| IOMMU_PTE_TV
;
2103 amd_iommu_dev_table
[devid
].data
[1] &= DTE_FLAG_MASK
;
2105 amd_iommu_apply_erratum_63(devid
);
2108 static void do_attach(struct iommu_dev_data
*dev_data
,
2109 struct protection_domain
*domain
)
2111 struct amd_iommu
*iommu
;
2115 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
2116 alias
= dev_data
->alias
;
2117 ats
= dev_data
->ats
.enabled
;
2119 /* Update data structures */
2120 dev_data
->domain
= domain
;
2121 list_add(&dev_data
->list
, &domain
->dev_list
);
2123 /* Do reference counting */
2124 domain
->dev_iommu
[iommu
->index
] += 1;
2125 domain
->dev_cnt
+= 1;
2127 /* Update device table */
2128 set_dte_entry(dev_data
->devid
, domain
, ats
);
2129 if (alias
!= dev_data
->devid
)
2130 set_dte_entry(alias
, domain
, ats
);
2132 device_flush_dte(dev_data
);
2135 static void do_detach(struct iommu_dev_data
*dev_data
)
2137 struct amd_iommu
*iommu
;
2141 * First check if the device is still attached. It might already
2142 * be detached from its domain because the generic
2143 * iommu_detach_group code detached it and we try again here in
2144 * our alias handling.
2146 if (!dev_data
->domain
)
2149 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
2150 alias
= dev_data
->alias
;
2152 /* decrease reference counters */
2153 dev_data
->domain
->dev_iommu
[iommu
->index
] -= 1;
2154 dev_data
->domain
->dev_cnt
-= 1;
2156 /* Update data structures */
2157 dev_data
->domain
= NULL
;
2158 list_del(&dev_data
->list
);
2159 clear_dte_entry(dev_data
->devid
);
2160 if (alias
!= dev_data
->devid
)
2161 clear_dte_entry(alias
);
2163 /* Flush the DTE entry */
2164 device_flush_dte(dev_data
);
2168 * If a device is not yet associated with a domain, this function does
2169 * assigns it visible for the hardware
2171 static int __attach_device(struct iommu_dev_data
*dev_data
,
2172 struct protection_domain
*domain
)
2177 * Must be called with IRQs disabled. Warn here to detect early
2180 WARN_ON(!irqs_disabled());
2183 spin_lock(&domain
->lock
);
2186 if (dev_data
->domain
!= NULL
)
2189 /* Attach alias group root */
2190 do_attach(dev_data
, domain
);
2197 spin_unlock(&domain
->lock
);
2203 static void pdev_iommuv2_disable(struct pci_dev
*pdev
)
2205 pci_disable_ats(pdev
);
2206 pci_disable_pri(pdev
);
2207 pci_disable_pasid(pdev
);
2210 /* FIXME: Change generic reset-function to do the same */
2211 static int pri_reset_while_enabled(struct pci_dev
*pdev
)
2216 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
2220 pci_read_config_word(pdev
, pos
+ PCI_PRI_CTRL
, &control
);
2221 control
|= PCI_PRI_CTRL_RESET
;
2222 pci_write_config_word(pdev
, pos
+ PCI_PRI_CTRL
, control
);
2227 static int pdev_iommuv2_enable(struct pci_dev
*pdev
)
2232 /* FIXME: Hardcode number of outstanding requests for now */
2234 if (pdev_pri_erratum(pdev
, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE
))
2236 reset_enable
= pdev_pri_erratum(pdev
, AMD_PRI_DEV_ERRATUM_ENABLE_RESET
);
2238 /* Only allow access to user-accessible pages */
2239 ret
= pci_enable_pasid(pdev
, 0);
2243 /* First reset the PRI state of the device */
2244 ret
= pci_reset_pri(pdev
);
2249 ret
= pci_enable_pri(pdev
, reqs
);
2254 ret
= pri_reset_while_enabled(pdev
);
2259 ret
= pci_enable_ats(pdev
, PAGE_SHIFT
);
2266 pci_disable_pri(pdev
);
2267 pci_disable_pasid(pdev
);
2272 /* FIXME: Move this to PCI code */
2273 #define PCI_PRI_TLP_OFF (1 << 15)
2275 static bool pci_pri_tlp_required(struct pci_dev
*pdev
)
2280 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
2284 pci_read_config_word(pdev
, pos
+ PCI_PRI_STATUS
, &status
);
2286 return (status
& PCI_PRI_TLP_OFF
) ? true : false;
2290 * If a device is not yet associated with a domain, this function
2291 * assigns it visible for the hardware
2293 static int attach_device(struct device
*dev
,
2294 struct protection_domain
*domain
)
2296 struct pci_dev
*pdev
;
2297 struct iommu_dev_data
*dev_data
;
2298 unsigned long flags
;
2301 dev_data
= get_dev_data(dev
);
2303 if (!dev_is_pci(dev
))
2304 goto skip_ats_check
;
2306 pdev
= to_pci_dev(dev
);
2307 if (domain
->flags
& PD_IOMMUV2_MASK
) {
2308 if (!dev_data
->passthrough
)
2311 if (dev_data
->iommu_v2
) {
2312 if (pdev_iommuv2_enable(pdev
) != 0)
2315 dev_data
->ats
.enabled
= true;
2316 dev_data
->ats
.qdep
= pci_ats_queue_depth(pdev
);
2317 dev_data
->pri_tlp
= pci_pri_tlp_required(pdev
);
2319 } else if (amd_iommu_iotlb_sup
&&
2320 pci_enable_ats(pdev
, PAGE_SHIFT
) == 0) {
2321 dev_data
->ats
.enabled
= true;
2322 dev_data
->ats
.qdep
= pci_ats_queue_depth(pdev
);
2326 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
2327 ret
= __attach_device(dev_data
, domain
);
2328 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
2331 * We might boot into a crash-kernel here. The crashed kernel
2332 * left the caches in the IOMMU dirty. So we have to flush
2333 * here to evict all dirty stuff.
2335 domain_flush_tlb_pde(domain
);
2341 * Removes a device from a protection domain (unlocked)
2343 static void __detach_device(struct iommu_dev_data
*dev_data
)
2345 struct protection_domain
*domain
;
2348 * Must be called with IRQs disabled. Warn here to detect early
2351 WARN_ON(!irqs_disabled());
2353 if (WARN_ON(!dev_data
->domain
))
2356 domain
= dev_data
->domain
;
2358 spin_lock(&domain
->lock
);
2360 do_detach(dev_data
);
2362 spin_unlock(&domain
->lock
);
2366 * Removes a device from a protection domain (with devtable_lock held)
2368 static void detach_device(struct device
*dev
)
2370 struct protection_domain
*domain
;
2371 struct iommu_dev_data
*dev_data
;
2372 unsigned long flags
;
2374 dev_data
= get_dev_data(dev
);
2375 domain
= dev_data
->domain
;
2377 /* lock device table */
2378 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
2379 __detach_device(dev_data
);
2380 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
2382 if (!dev_is_pci(dev
))
2385 if (domain
->flags
& PD_IOMMUV2_MASK
&& dev_data
->iommu_v2
)
2386 pdev_iommuv2_disable(to_pci_dev(dev
));
2387 else if (dev_data
->ats
.enabled
)
2388 pci_disable_ats(to_pci_dev(dev
));
2390 dev_data
->ats
.enabled
= false;
2393 static int amd_iommu_add_device(struct device
*dev
)
2395 struct iommu_dev_data
*dev_data
;
2396 struct iommu_domain
*domain
;
2397 struct amd_iommu
*iommu
;
2400 if (!check_device(dev
) || get_dev_data(dev
))
2403 devid
= get_device_id(dev
);
2407 iommu
= amd_iommu_rlookup_table
[devid
];
2409 ret
= iommu_init_device(dev
);
2411 if (ret
!= -ENOTSUPP
)
2412 pr_err("Failed to initialize device %s - trying to proceed anyway\n",
2415 iommu_ignore_device(dev
);
2416 dev
->dma_ops
= &nommu_dma_ops
;
2419 init_iommu_group(dev
);
2421 dev_data
= get_dev_data(dev
);
2425 if (iommu_pass_through
|| dev_data
->iommu_v2
)
2426 iommu_request_dm_for_dev(dev
);
2428 /* Domains are initialized for this device - have a look what we ended up with */
2429 domain
= iommu_get_domain_for_dev(dev
);
2430 if (domain
->type
== IOMMU_DOMAIN_IDENTITY
)
2431 dev_data
->passthrough
= true;
2433 dev
->dma_ops
= &amd_iommu_dma_ops
;
2436 iommu_completion_wait(iommu
);
2441 static void amd_iommu_remove_device(struct device
*dev
)
2443 struct amd_iommu
*iommu
;
2446 if (!check_device(dev
))
2449 devid
= get_device_id(dev
);
2453 iommu
= amd_iommu_rlookup_table
[devid
];
2455 iommu_uninit_device(dev
);
2456 iommu_completion_wait(iommu
);
2459 static struct iommu_group
*amd_iommu_device_group(struct device
*dev
)
2461 if (dev_is_pci(dev
))
2462 return pci_device_group(dev
);
2464 return acpihid_device_group(dev
);
2467 /*****************************************************************************
2469 * The next functions belong to the dma_ops mapping/unmapping code.
2471 *****************************************************************************/
2474 * In the dma_ops path we only have the struct device. This function
2475 * finds the corresponding IOMMU, the protection domain and the
2476 * requestor id for a given device.
2477 * If the device is not yet associated with a domain this is also done
2480 static struct protection_domain
*get_domain(struct device
*dev
)
2482 struct protection_domain
*domain
;
2484 if (!check_device(dev
))
2485 return ERR_PTR(-EINVAL
);
2487 domain
= get_dev_data(dev
)->domain
;
2488 if (!dma_ops_domain(domain
))
2489 return ERR_PTR(-EBUSY
);
2494 static void update_device_table(struct protection_domain
*domain
)
2496 struct iommu_dev_data
*dev_data
;
2498 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
2499 set_dte_entry(dev_data
->devid
, domain
, dev_data
->ats
.enabled
);
2501 if (dev_data
->devid
== dev_data
->alias
)
2504 /* There is an alias, update device table entry for it */
2505 set_dte_entry(dev_data
->alias
, domain
, dev_data
->ats
.enabled
);
2509 static void update_domain(struct protection_domain
*domain
)
2511 if (!domain
->updated
)
2514 update_device_table(domain
);
2516 domain_flush_devices(domain
);
2517 domain_flush_tlb_pde(domain
);
2519 domain
->updated
= false;
2522 static int dir2prot(enum dma_data_direction direction
)
2524 if (direction
== DMA_TO_DEVICE
)
2525 return IOMMU_PROT_IR
;
2526 else if (direction
== DMA_FROM_DEVICE
)
2527 return IOMMU_PROT_IW
;
2528 else if (direction
== DMA_BIDIRECTIONAL
)
2529 return IOMMU_PROT_IW
| IOMMU_PROT_IR
;
2534 * This function contains common code for mapping of a physically
2535 * contiguous memory region into DMA address space. It is used by all
2536 * mapping functions provided with this IOMMU driver.
2537 * Must be called with the domain lock held.
2539 static dma_addr_t
__map_single(struct device
*dev
,
2540 struct dma_ops_domain
*dma_dom
,
2543 enum dma_data_direction direction
,
2546 dma_addr_t offset
= paddr
& ~PAGE_MASK
;
2547 dma_addr_t address
, start
, ret
;
2552 pages
= iommu_num_pages(paddr
, size
, PAGE_SIZE
);
2555 address
= dma_ops_alloc_iova(dev
, dma_dom
, pages
, dma_mask
);
2556 if (address
== AMD_IOMMU_MAPPING_ERROR
)
2559 prot
= dir2prot(direction
);
2562 for (i
= 0; i
< pages
; ++i
) {
2563 ret
= iommu_map_page(&dma_dom
->domain
, start
, paddr
,
2564 PAGE_SIZE
, prot
, GFP_ATOMIC
);
2573 if (unlikely(amd_iommu_np_cache
)) {
2574 domain_flush_pages(&dma_dom
->domain
, address
, size
);
2575 domain_flush_complete(&dma_dom
->domain
);
2583 for (--i
; i
>= 0; --i
) {
2585 iommu_unmap_page(&dma_dom
->domain
, start
, PAGE_SIZE
);
2588 domain_flush_tlb(&dma_dom
->domain
);
2589 domain_flush_complete(&dma_dom
->domain
);
2591 dma_ops_free_iova(dma_dom
, address
, pages
);
2593 return AMD_IOMMU_MAPPING_ERROR
;
2597 * Does the reverse of the __map_single function. Must be called with
2598 * the domain lock held too
2600 static void __unmap_single(struct dma_ops_domain
*dma_dom
,
2601 dma_addr_t dma_addr
,
2605 dma_addr_t flush_addr
;
2606 dma_addr_t i
, start
;
2609 flush_addr
= dma_addr
;
2610 pages
= iommu_num_pages(dma_addr
, size
, PAGE_SIZE
);
2611 dma_addr
&= PAGE_MASK
;
2614 for (i
= 0; i
< pages
; ++i
) {
2615 iommu_unmap_page(&dma_dom
->domain
, start
, PAGE_SIZE
);
2619 if (amd_iommu_unmap_flush
) {
2620 dma_ops_free_iova(dma_dom
, dma_addr
, pages
);
2621 domain_flush_tlb(&dma_dom
->domain
);
2622 domain_flush_complete(&dma_dom
->domain
);
2624 queue_add(dma_dom
, dma_addr
, pages
);
2629 * The exported map_single function for dma_ops.
2631 static dma_addr_t
map_page(struct device
*dev
, struct page
*page
,
2632 unsigned long offset
, size_t size
,
2633 enum dma_data_direction dir
,
2634 unsigned long attrs
)
2636 phys_addr_t paddr
= page_to_phys(page
) + offset
;
2637 struct protection_domain
*domain
;
2638 struct dma_ops_domain
*dma_dom
;
2641 domain
= get_domain(dev
);
2642 if (PTR_ERR(domain
) == -EINVAL
)
2643 return (dma_addr_t
)paddr
;
2644 else if (IS_ERR(domain
))
2645 return AMD_IOMMU_MAPPING_ERROR
;
2647 dma_mask
= *dev
->dma_mask
;
2648 dma_dom
= to_dma_ops_domain(domain
);
2650 return __map_single(dev
, dma_dom
, paddr
, size
, dir
, dma_mask
);
2654 * The exported unmap_single function for dma_ops.
2656 static void unmap_page(struct device
*dev
, dma_addr_t dma_addr
, size_t size
,
2657 enum dma_data_direction dir
, unsigned long attrs
)
2659 struct protection_domain
*domain
;
2660 struct dma_ops_domain
*dma_dom
;
2662 domain
= get_domain(dev
);
2666 dma_dom
= to_dma_ops_domain(domain
);
2668 __unmap_single(dma_dom
, dma_addr
, size
, dir
);
2671 static int sg_num_pages(struct device
*dev
,
2672 struct scatterlist
*sglist
,
2675 unsigned long mask
, boundary_size
;
2676 struct scatterlist
*s
;
2679 mask
= dma_get_seg_boundary(dev
);
2680 boundary_size
= mask
+ 1 ? ALIGN(mask
+ 1, PAGE_SIZE
) >> PAGE_SHIFT
:
2681 1UL << (BITS_PER_LONG
- PAGE_SHIFT
);
2683 for_each_sg(sglist
, s
, nelems
, i
) {
2686 s
->dma_address
= npages
<< PAGE_SHIFT
;
2687 p
= npages
% boundary_size
;
2688 n
= iommu_num_pages(sg_phys(s
), s
->length
, PAGE_SIZE
);
2689 if (p
+ n
> boundary_size
)
2690 npages
+= boundary_size
- p
;
2698 * The exported map_sg function for dma_ops (handles scatter-gather
2701 static int map_sg(struct device
*dev
, struct scatterlist
*sglist
,
2702 int nelems
, enum dma_data_direction direction
,
2703 unsigned long attrs
)
2705 int mapped_pages
= 0, npages
= 0, prot
= 0, i
;
2706 struct protection_domain
*domain
;
2707 struct dma_ops_domain
*dma_dom
;
2708 struct scatterlist
*s
;
2709 unsigned long address
;
2712 domain
= get_domain(dev
);
2716 dma_dom
= to_dma_ops_domain(domain
);
2717 dma_mask
= *dev
->dma_mask
;
2719 npages
= sg_num_pages(dev
, sglist
, nelems
);
2721 address
= dma_ops_alloc_iova(dev
, dma_dom
, npages
, dma_mask
);
2722 if (address
== AMD_IOMMU_MAPPING_ERROR
)
2725 prot
= dir2prot(direction
);
2727 /* Map all sg entries */
2728 for_each_sg(sglist
, s
, nelems
, i
) {
2729 int j
, pages
= iommu_num_pages(sg_phys(s
), s
->length
, PAGE_SIZE
);
2731 for (j
= 0; j
< pages
; ++j
) {
2732 unsigned long bus_addr
, phys_addr
;
2735 bus_addr
= address
+ s
->dma_address
+ (j
<< PAGE_SHIFT
);
2736 phys_addr
= (sg_phys(s
) & PAGE_MASK
) + (j
<< PAGE_SHIFT
);
2737 ret
= iommu_map_page(domain
, bus_addr
, phys_addr
, PAGE_SIZE
, prot
, GFP_ATOMIC
);
2745 /* Everything is mapped - write the right values into s->dma_address */
2746 for_each_sg(sglist
, s
, nelems
, i
) {
2747 s
->dma_address
+= address
+ s
->offset
;
2748 s
->dma_length
= s
->length
;
2754 pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
2755 dev_name(dev
), npages
);
2757 for_each_sg(sglist
, s
, nelems
, i
) {
2758 int j
, pages
= iommu_num_pages(sg_phys(s
), s
->length
, PAGE_SIZE
);
2760 for (j
= 0; j
< pages
; ++j
) {
2761 unsigned long bus_addr
;
2763 bus_addr
= address
+ s
->dma_address
+ (j
<< PAGE_SHIFT
);
2764 iommu_unmap_page(domain
, bus_addr
, PAGE_SIZE
);
2772 free_iova_fast(&dma_dom
->iovad
, address
, npages
);
2779 * The exported map_sg function for dma_ops (handles scatter-gather
2782 static void unmap_sg(struct device
*dev
, struct scatterlist
*sglist
,
2783 int nelems
, enum dma_data_direction dir
,
2784 unsigned long attrs
)
2786 struct protection_domain
*domain
;
2787 struct dma_ops_domain
*dma_dom
;
2788 unsigned long startaddr
;
2791 domain
= get_domain(dev
);
2795 startaddr
= sg_dma_address(sglist
) & PAGE_MASK
;
2796 dma_dom
= to_dma_ops_domain(domain
);
2797 npages
= sg_num_pages(dev
, sglist
, nelems
);
2799 __unmap_single(dma_dom
, startaddr
, npages
<< PAGE_SHIFT
, dir
);
2803 * The exported alloc_coherent function for dma_ops.
2805 static void *alloc_coherent(struct device
*dev
, size_t size
,
2806 dma_addr_t
*dma_addr
, gfp_t flag
,
2807 unsigned long attrs
)
2809 u64 dma_mask
= dev
->coherent_dma_mask
;
2810 struct protection_domain
*domain
;
2811 struct dma_ops_domain
*dma_dom
;
2814 domain
= get_domain(dev
);
2815 if (PTR_ERR(domain
) == -EINVAL
) {
2816 page
= alloc_pages(flag
, get_order(size
));
2817 *dma_addr
= page_to_phys(page
);
2818 return page_address(page
);
2819 } else if (IS_ERR(domain
))
2822 dma_dom
= to_dma_ops_domain(domain
);
2823 size
= PAGE_ALIGN(size
);
2824 dma_mask
= dev
->coherent_dma_mask
;
2825 flag
&= ~(__GFP_DMA
| __GFP_HIGHMEM
| __GFP_DMA32
);
2828 page
= alloc_pages(flag
| __GFP_NOWARN
, get_order(size
));
2830 if (!gfpflags_allow_blocking(flag
))
2833 page
= dma_alloc_from_contiguous(dev
, size
>> PAGE_SHIFT
,
2834 get_order(size
), flag
);
2840 dma_mask
= *dev
->dma_mask
;
2842 *dma_addr
= __map_single(dev
, dma_dom
, page_to_phys(page
),
2843 size
, DMA_BIDIRECTIONAL
, dma_mask
);
2845 if (*dma_addr
== AMD_IOMMU_MAPPING_ERROR
)
2848 return page_address(page
);
2852 if (!dma_release_from_contiguous(dev
, page
, size
>> PAGE_SHIFT
))
2853 __free_pages(page
, get_order(size
));
2859 * The exported free_coherent function for dma_ops.
2861 static void free_coherent(struct device
*dev
, size_t size
,
2862 void *virt_addr
, dma_addr_t dma_addr
,
2863 unsigned long attrs
)
2865 struct protection_domain
*domain
;
2866 struct dma_ops_domain
*dma_dom
;
2869 page
= virt_to_page(virt_addr
);
2870 size
= PAGE_ALIGN(size
);
2872 domain
= get_domain(dev
);
2876 dma_dom
= to_dma_ops_domain(domain
);
2878 __unmap_single(dma_dom
, dma_addr
, size
, DMA_BIDIRECTIONAL
);
2881 if (!dma_release_from_contiguous(dev
, page
, size
>> PAGE_SHIFT
))
2882 __free_pages(page
, get_order(size
));
2886 * This function is called by the DMA layer to find out if we can handle a
2887 * particular device. It is part of the dma_ops.
2889 static int amd_iommu_dma_supported(struct device
*dev
, u64 mask
)
2891 if (!x86_dma_supported(dev
, mask
))
2893 return check_device(dev
);
2896 static int amd_iommu_mapping_error(struct device
*dev
, dma_addr_t dma_addr
)
2898 return dma_addr
== AMD_IOMMU_MAPPING_ERROR
;
2901 static const struct dma_map_ops amd_iommu_dma_ops
= {
2902 .alloc
= alloc_coherent
,
2903 .free
= free_coherent
,
2904 .map_page
= map_page
,
2905 .unmap_page
= unmap_page
,
2907 .unmap_sg
= unmap_sg
,
2908 .dma_supported
= amd_iommu_dma_supported
,
2909 .mapping_error
= amd_iommu_mapping_error
,
2912 static int init_reserved_iova_ranges(void)
2914 struct pci_dev
*pdev
= NULL
;
2917 init_iova_domain(&reserved_iova_ranges
, PAGE_SIZE
,
2918 IOVA_START_PFN
, DMA_32BIT_PFN
);
2920 lockdep_set_class(&reserved_iova_ranges
.iova_rbtree_lock
,
2921 &reserved_rbtree_key
);
2923 /* MSI memory range */
2924 val
= reserve_iova(&reserved_iova_ranges
,
2925 IOVA_PFN(MSI_RANGE_START
), IOVA_PFN(MSI_RANGE_END
));
2927 pr_err("Reserving MSI range failed\n");
2931 /* HT memory range */
2932 val
= reserve_iova(&reserved_iova_ranges
,
2933 IOVA_PFN(HT_RANGE_START
), IOVA_PFN(HT_RANGE_END
));
2935 pr_err("Reserving HT range failed\n");
2940 * Memory used for PCI resources
2941 * FIXME: Check whether we can reserve the PCI-hole completly
2943 for_each_pci_dev(pdev
) {
2946 for (i
= 0; i
< PCI_NUM_RESOURCES
; ++i
) {
2947 struct resource
*r
= &pdev
->resource
[i
];
2949 if (!(r
->flags
& IORESOURCE_MEM
))
2952 val
= reserve_iova(&reserved_iova_ranges
,
2956 pr_err("Reserve pci-resource range failed\n");
2965 int __init
amd_iommu_init_api(void)
2969 ret
= iova_cache_get();
2973 ret
= init_reserved_iova_ranges();
2977 err
= bus_set_iommu(&pci_bus_type
, &amd_iommu_ops
);
2980 #ifdef CONFIG_ARM_AMBA
2981 err
= bus_set_iommu(&amba_bustype
, &amd_iommu_ops
);
2985 err
= bus_set_iommu(&platform_bus_type
, &amd_iommu_ops
);
2992 int __init
amd_iommu_init_dma_ops(void)
2994 swiotlb
= iommu_pass_through
? 1 : 0;
2998 * In case we don't initialize SWIOTLB (actually the common case
2999 * when AMD IOMMU is enabled), make sure there are global
3000 * dma_ops set as a fall-back for devices not handled by this
3001 * driver (for example non-PCI devices).
3004 dma_ops
= &nommu_dma_ops
;
3006 if (amd_iommu_unmap_flush
)
3007 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
3009 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
3015 /*****************************************************************************
3017 * The following functions belong to the exported interface of AMD IOMMU
3019 * This interface allows access to lower level functions of the IOMMU
3020 * like protection domain handling and assignement of devices to domains
3021 * which is not possible with the dma_ops interface.
3023 *****************************************************************************/
3025 static void cleanup_domain(struct protection_domain
*domain
)
3027 struct iommu_dev_data
*entry
;
3028 unsigned long flags
;
3030 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
3032 while (!list_empty(&domain
->dev_list
)) {
3033 entry
= list_first_entry(&domain
->dev_list
,
3034 struct iommu_dev_data
, list
);
3035 __detach_device(entry
);
3038 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
3041 static void protection_domain_free(struct protection_domain
*domain
)
3046 del_domain_from_list(domain
);
3049 domain_id_free(domain
->id
);
3054 static int protection_domain_init(struct protection_domain
*domain
)
3056 spin_lock_init(&domain
->lock
);
3057 mutex_init(&domain
->api_lock
);
3058 domain
->id
= domain_id_alloc();
3061 INIT_LIST_HEAD(&domain
->dev_list
);
3066 static struct protection_domain
*protection_domain_alloc(void)
3068 struct protection_domain
*domain
;
3070 domain
= kzalloc(sizeof(*domain
), GFP_KERNEL
);
3074 if (protection_domain_init(domain
))
3077 add_domain_to_list(domain
);
3087 static struct iommu_domain
*amd_iommu_domain_alloc(unsigned type
)
3089 struct protection_domain
*pdomain
;
3090 struct dma_ops_domain
*dma_domain
;
3093 case IOMMU_DOMAIN_UNMANAGED
:
3094 pdomain
= protection_domain_alloc();
3098 pdomain
->mode
= PAGE_MODE_3_LEVEL
;
3099 pdomain
->pt_root
= (void *)get_zeroed_page(GFP_KERNEL
);
3100 if (!pdomain
->pt_root
) {
3101 protection_domain_free(pdomain
);
3105 pdomain
->domain
.geometry
.aperture_start
= 0;
3106 pdomain
->domain
.geometry
.aperture_end
= ~0ULL;
3107 pdomain
->domain
.geometry
.force_aperture
= true;
3110 case IOMMU_DOMAIN_DMA
:
3111 dma_domain
= dma_ops_domain_alloc();
3113 pr_err("AMD-Vi: Failed to allocate\n");
3116 pdomain
= &dma_domain
->domain
;
3118 case IOMMU_DOMAIN_IDENTITY
:
3119 pdomain
= protection_domain_alloc();
3123 pdomain
->mode
= PAGE_MODE_NONE
;
3129 return &pdomain
->domain
;
3132 static void amd_iommu_domain_free(struct iommu_domain
*dom
)
3134 struct protection_domain
*domain
;
3135 struct dma_ops_domain
*dma_dom
;
3137 domain
= to_pdomain(dom
);
3139 if (domain
->dev_cnt
> 0)
3140 cleanup_domain(domain
);
3142 BUG_ON(domain
->dev_cnt
!= 0);
3147 switch (dom
->type
) {
3148 case IOMMU_DOMAIN_DMA
:
3149 /* Now release the domain */
3150 dma_dom
= to_dma_ops_domain(domain
);
3151 dma_ops_domain_free(dma_dom
);
3154 if (domain
->mode
!= PAGE_MODE_NONE
)
3155 free_pagetable(domain
);
3157 if (domain
->flags
& PD_IOMMUV2_MASK
)
3158 free_gcr3_table(domain
);
3160 protection_domain_free(domain
);
3165 static void amd_iommu_detach_device(struct iommu_domain
*dom
,
3168 struct iommu_dev_data
*dev_data
= dev
->archdata
.iommu
;
3169 struct amd_iommu
*iommu
;
3172 if (!check_device(dev
))
3175 devid
= get_device_id(dev
);
3179 if (dev_data
->domain
!= NULL
)
3182 iommu
= amd_iommu_rlookup_table
[devid
];
3186 #ifdef CONFIG_IRQ_REMAP
3187 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir
) &&
3188 (dom
->type
== IOMMU_DOMAIN_UNMANAGED
))
3189 dev_data
->use_vapic
= 0;
3192 iommu_completion_wait(iommu
);
3195 static int amd_iommu_attach_device(struct iommu_domain
*dom
,
3198 struct protection_domain
*domain
= to_pdomain(dom
);
3199 struct iommu_dev_data
*dev_data
;
3200 struct amd_iommu
*iommu
;
3203 if (!check_device(dev
))
3206 dev_data
= dev
->archdata
.iommu
;
3208 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
3212 if (dev_data
->domain
)
3215 ret
= attach_device(dev
, domain
);
3217 #ifdef CONFIG_IRQ_REMAP
3218 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir
)) {
3219 if (dom
->type
== IOMMU_DOMAIN_UNMANAGED
)
3220 dev_data
->use_vapic
= 1;
3222 dev_data
->use_vapic
= 0;
3226 iommu_completion_wait(iommu
);
3231 static int amd_iommu_map(struct iommu_domain
*dom
, unsigned long iova
,
3232 phys_addr_t paddr
, size_t page_size
, int iommu_prot
)
3234 struct protection_domain
*domain
= to_pdomain(dom
);
3238 if (domain
->mode
== PAGE_MODE_NONE
)
3241 if (iommu_prot
& IOMMU_READ
)
3242 prot
|= IOMMU_PROT_IR
;
3243 if (iommu_prot
& IOMMU_WRITE
)
3244 prot
|= IOMMU_PROT_IW
;
3246 mutex_lock(&domain
->api_lock
);
3247 ret
= iommu_map_page(domain
, iova
, paddr
, page_size
, prot
, GFP_KERNEL
);
3248 mutex_unlock(&domain
->api_lock
);
3253 static size_t amd_iommu_unmap(struct iommu_domain
*dom
, unsigned long iova
,
3256 struct protection_domain
*domain
= to_pdomain(dom
);
3259 if (domain
->mode
== PAGE_MODE_NONE
)
3262 mutex_lock(&domain
->api_lock
);
3263 unmap_size
= iommu_unmap_page(domain
, iova
, page_size
);
3264 mutex_unlock(&domain
->api_lock
);
3266 domain_flush_tlb_pde(domain
);
3271 static phys_addr_t
amd_iommu_iova_to_phys(struct iommu_domain
*dom
,
3274 struct protection_domain
*domain
= to_pdomain(dom
);
3275 unsigned long offset_mask
, pte_pgsize
;
3278 if (domain
->mode
== PAGE_MODE_NONE
)
3281 pte
= fetch_pte(domain
, iova
, &pte_pgsize
);
3283 if (!pte
|| !IOMMU_PTE_PRESENT(*pte
))
3286 offset_mask
= pte_pgsize
- 1;
3287 __pte
= *pte
& PM_ADDR_MASK
;
3289 return (__pte
& ~offset_mask
) | (iova
& offset_mask
);
3292 static bool amd_iommu_capable(enum iommu_cap cap
)
3295 case IOMMU_CAP_CACHE_COHERENCY
:
3297 case IOMMU_CAP_INTR_REMAP
:
3298 return (irq_remapping_enabled
== 1);
3299 case IOMMU_CAP_NOEXEC
:
3306 static void amd_iommu_get_resv_regions(struct device
*dev
,
3307 struct list_head
*head
)
3309 struct iommu_resv_region
*region
;
3310 struct unity_map_entry
*entry
;
3313 devid
= get_device_id(dev
);
3317 list_for_each_entry(entry
, &amd_iommu_unity_map
, list
) {
3321 if (devid
< entry
->devid_start
|| devid
> entry
->devid_end
)
3324 length
= entry
->address_end
- entry
->address_start
;
3325 if (entry
->prot
& IOMMU_PROT_IR
)
3327 if (entry
->prot
& IOMMU_PROT_IW
)
3328 prot
|= IOMMU_WRITE
;
3330 region
= iommu_alloc_resv_region(entry
->address_start
,
3334 pr_err("Out of memory allocating dm-regions for %s\n",
3338 list_add_tail(®ion
->list
, head
);
3341 region
= iommu_alloc_resv_region(MSI_RANGE_START
,
3342 MSI_RANGE_END
- MSI_RANGE_START
+ 1,
3346 list_add_tail(®ion
->list
, head
);
3348 region
= iommu_alloc_resv_region(HT_RANGE_START
,
3349 HT_RANGE_END
- HT_RANGE_START
+ 1,
3350 0, IOMMU_RESV_RESERVED
);
3353 list_add_tail(®ion
->list
, head
);
3356 static void amd_iommu_put_resv_regions(struct device
*dev
,
3357 struct list_head
*head
)
3359 struct iommu_resv_region
*entry
, *next
;
3361 list_for_each_entry_safe(entry
, next
, head
, list
)
3365 static void amd_iommu_apply_resv_region(struct device
*dev
,
3366 struct iommu_domain
*domain
,
3367 struct iommu_resv_region
*region
)
3369 struct dma_ops_domain
*dma_dom
= to_dma_ops_domain(to_pdomain(domain
));
3370 unsigned long start
, end
;
3372 start
= IOVA_PFN(region
->start
);
3373 end
= IOVA_PFN(region
->start
+ region
->length
);
3375 WARN_ON_ONCE(reserve_iova(&dma_dom
->iovad
, start
, end
) == NULL
);
3378 const struct iommu_ops amd_iommu_ops
= {
3379 .capable
= amd_iommu_capable
,
3380 .domain_alloc
= amd_iommu_domain_alloc
,
3381 .domain_free
= amd_iommu_domain_free
,
3382 .attach_dev
= amd_iommu_attach_device
,
3383 .detach_dev
= amd_iommu_detach_device
,
3384 .map
= amd_iommu_map
,
3385 .unmap
= amd_iommu_unmap
,
3386 .map_sg
= default_iommu_map_sg
,
3387 .iova_to_phys
= amd_iommu_iova_to_phys
,
3388 .add_device
= amd_iommu_add_device
,
3389 .remove_device
= amd_iommu_remove_device
,
3390 .device_group
= amd_iommu_device_group
,
3391 .get_resv_regions
= amd_iommu_get_resv_regions
,
3392 .put_resv_regions
= amd_iommu_put_resv_regions
,
3393 .apply_resv_region
= amd_iommu_apply_resv_region
,
3394 .pgsize_bitmap
= AMD_IOMMU_PGSIZES
,
3397 /*****************************************************************************
3399 * The next functions do a basic initialization of IOMMU for pass through
3402 * In passthrough mode the IOMMU is initialized and enabled but not used for
3403 * DMA-API translation.
3405 *****************************************************************************/
3407 /* IOMMUv2 specific functions */
3408 int amd_iommu_register_ppr_notifier(struct notifier_block
*nb
)
3410 return atomic_notifier_chain_register(&ppr_notifier
, nb
);
3412 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier
);
3414 int amd_iommu_unregister_ppr_notifier(struct notifier_block
*nb
)
3416 return atomic_notifier_chain_unregister(&ppr_notifier
, nb
);
3418 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier
);
3420 void amd_iommu_domain_direct_map(struct iommu_domain
*dom
)
3422 struct protection_domain
*domain
= to_pdomain(dom
);
3423 unsigned long flags
;
3425 spin_lock_irqsave(&domain
->lock
, flags
);
3427 /* Update data structure */
3428 domain
->mode
= PAGE_MODE_NONE
;
3429 domain
->updated
= true;
3431 /* Make changes visible to IOMMUs */
3432 update_domain(domain
);
3434 /* Page-table is not visible to IOMMU anymore, so free it */
3435 free_pagetable(domain
);
3437 spin_unlock_irqrestore(&domain
->lock
, flags
);
3439 EXPORT_SYMBOL(amd_iommu_domain_direct_map
);
3441 int amd_iommu_domain_enable_v2(struct iommu_domain
*dom
, int pasids
)
3443 struct protection_domain
*domain
= to_pdomain(dom
);
3444 unsigned long flags
;
3447 if (pasids
<= 0 || pasids
> (PASID_MASK
+ 1))
3450 /* Number of GCR3 table levels required */
3451 for (levels
= 0; (pasids
- 1) & ~0x1ff; pasids
>>= 9)
3454 if (levels
> amd_iommu_max_glx_val
)
3457 spin_lock_irqsave(&domain
->lock
, flags
);
3460 * Save us all sanity checks whether devices already in the
3461 * domain support IOMMUv2. Just force that the domain has no
3462 * devices attached when it is switched into IOMMUv2 mode.
3465 if (domain
->dev_cnt
> 0 || domain
->flags
& PD_IOMMUV2_MASK
)
3469 domain
->gcr3_tbl
= (void *)get_zeroed_page(GFP_ATOMIC
);
3470 if (domain
->gcr3_tbl
== NULL
)
3473 domain
->glx
= levels
;
3474 domain
->flags
|= PD_IOMMUV2_MASK
;
3475 domain
->updated
= true;
3477 update_domain(domain
);
3482 spin_unlock_irqrestore(&domain
->lock
, flags
);
3486 EXPORT_SYMBOL(amd_iommu_domain_enable_v2
);
3488 static int __flush_pasid(struct protection_domain
*domain
, int pasid
,
3489 u64 address
, bool size
)
3491 struct iommu_dev_data
*dev_data
;
3492 struct iommu_cmd cmd
;
3495 if (!(domain
->flags
& PD_IOMMUV2_MASK
))
3498 build_inv_iommu_pasid(&cmd
, domain
->id
, pasid
, address
, size
);
3501 * IOMMU TLB needs to be flushed before Device TLB to
3502 * prevent device TLB refill from IOMMU TLB
3504 for (i
= 0; i
< amd_iommu_get_num_iommus(); ++i
) {
3505 if (domain
->dev_iommu
[i
] == 0)
3508 ret
= iommu_queue_command(amd_iommus
[i
], &cmd
);
3513 /* Wait until IOMMU TLB flushes are complete */
3514 domain_flush_complete(domain
);
3516 /* Now flush device TLBs */
3517 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
3518 struct amd_iommu
*iommu
;
3522 There might be non-IOMMUv2 capable devices in an IOMMUv2
3525 if (!dev_data
->ats
.enabled
)
3528 qdep
= dev_data
->ats
.qdep
;
3529 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
3531 build_inv_iotlb_pasid(&cmd
, dev_data
->devid
, pasid
,
3532 qdep
, address
, size
);
3534 ret
= iommu_queue_command(iommu
, &cmd
);
3539 /* Wait until all device TLBs are flushed */
3540 domain_flush_complete(domain
);
3549 static int __amd_iommu_flush_page(struct protection_domain
*domain
, int pasid
,
3552 return __flush_pasid(domain
, pasid
, address
, false);
3555 int amd_iommu_flush_page(struct iommu_domain
*dom
, int pasid
,
3558 struct protection_domain
*domain
= to_pdomain(dom
);
3559 unsigned long flags
;
3562 spin_lock_irqsave(&domain
->lock
, flags
);
3563 ret
= __amd_iommu_flush_page(domain
, pasid
, address
);
3564 spin_unlock_irqrestore(&domain
->lock
, flags
);
3568 EXPORT_SYMBOL(amd_iommu_flush_page
);
3570 static int __amd_iommu_flush_tlb(struct protection_domain
*domain
, int pasid
)
3572 return __flush_pasid(domain
, pasid
, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
,
3576 int amd_iommu_flush_tlb(struct iommu_domain
*dom
, int pasid
)
3578 struct protection_domain
*domain
= to_pdomain(dom
);
3579 unsigned long flags
;
3582 spin_lock_irqsave(&domain
->lock
, flags
);
3583 ret
= __amd_iommu_flush_tlb(domain
, pasid
);
3584 spin_unlock_irqrestore(&domain
->lock
, flags
);
3588 EXPORT_SYMBOL(amd_iommu_flush_tlb
);
3590 static u64
*__get_gcr3_pte(u64
*root
, int level
, int pasid
, bool alloc
)
3597 index
= (pasid
>> (9 * level
)) & 0x1ff;
3603 if (!(*pte
& GCR3_VALID
)) {
3607 root
= (void *)get_zeroed_page(GFP_ATOMIC
);
3611 *pte
= iommu_virt_to_phys(root
) | GCR3_VALID
;
3614 root
= iommu_phys_to_virt(*pte
& PAGE_MASK
);
3622 static int __set_gcr3(struct protection_domain
*domain
, int pasid
,
3627 if (domain
->mode
!= PAGE_MODE_NONE
)
3630 pte
= __get_gcr3_pte(domain
->gcr3_tbl
, domain
->glx
, pasid
, true);
3634 *pte
= (cr3
& PAGE_MASK
) | GCR3_VALID
;
3636 return __amd_iommu_flush_tlb(domain
, pasid
);
3639 static int __clear_gcr3(struct protection_domain
*domain
, int pasid
)
3643 if (domain
->mode
!= PAGE_MODE_NONE
)
3646 pte
= __get_gcr3_pte(domain
->gcr3_tbl
, domain
->glx
, pasid
, false);
3652 return __amd_iommu_flush_tlb(domain
, pasid
);
3655 int amd_iommu_domain_set_gcr3(struct iommu_domain
*dom
, int pasid
,
3658 struct protection_domain
*domain
= to_pdomain(dom
);
3659 unsigned long flags
;
3662 spin_lock_irqsave(&domain
->lock
, flags
);
3663 ret
= __set_gcr3(domain
, pasid
, cr3
);
3664 spin_unlock_irqrestore(&domain
->lock
, flags
);
3668 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3
);
3670 int amd_iommu_domain_clear_gcr3(struct iommu_domain
*dom
, int pasid
)
3672 struct protection_domain
*domain
= to_pdomain(dom
);
3673 unsigned long flags
;
3676 spin_lock_irqsave(&domain
->lock
, flags
);
3677 ret
= __clear_gcr3(domain
, pasid
);
3678 spin_unlock_irqrestore(&domain
->lock
, flags
);
3682 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3
);
3684 int amd_iommu_complete_ppr(struct pci_dev
*pdev
, int pasid
,
3685 int status
, int tag
)
3687 struct iommu_dev_data
*dev_data
;
3688 struct amd_iommu
*iommu
;
3689 struct iommu_cmd cmd
;
3691 dev_data
= get_dev_data(&pdev
->dev
);
3692 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
3694 build_complete_ppr(&cmd
, dev_data
->devid
, pasid
, status
,
3695 tag
, dev_data
->pri_tlp
);
3697 return iommu_queue_command(iommu
, &cmd
);
3699 EXPORT_SYMBOL(amd_iommu_complete_ppr
);
3701 struct iommu_domain
*amd_iommu_get_v2_domain(struct pci_dev
*pdev
)
3703 struct protection_domain
*pdomain
;
3705 pdomain
= get_domain(&pdev
->dev
);
3706 if (IS_ERR(pdomain
))
3709 /* Only return IOMMUv2 domains */
3710 if (!(pdomain
->flags
& PD_IOMMUV2_MASK
))
3713 return &pdomain
->domain
;
3715 EXPORT_SYMBOL(amd_iommu_get_v2_domain
);
3717 void amd_iommu_enable_device_erratum(struct pci_dev
*pdev
, u32 erratum
)
3719 struct iommu_dev_data
*dev_data
;
3721 if (!amd_iommu_v2_supported())
3724 dev_data
= get_dev_data(&pdev
->dev
);
3725 dev_data
->errata
|= (1 << erratum
);
3727 EXPORT_SYMBOL(amd_iommu_enable_device_erratum
);
3729 int amd_iommu_device_info(struct pci_dev
*pdev
,
3730 struct amd_iommu_device_info
*info
)
3735 if (pdev
== NULL
|| info
== NULL
)
3738 if (!amd_iommu_v2_supported())
3741 memset(info
, 0, sizeof(*info
));
3743 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_ATS
);
3745 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_ATS_SUP
;
3747 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
3749 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PRI_SUP
;
3751 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PASID
);
3755 max_pasids
= 1 << (9 * (amd_iommu_max_glx_val
+ 1));
3756 max_pasids
= min(max_pasids
, (1 << 20));
3758 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PASID_SUP
;
3759 info
->max_pasids
= min(pci_max_pasids(pdev
), max_pasids
);
3761 features
= pci_pasid_features(pdev
);
3762 if (features
& PCI_PASID_CAP_EXEC
)
3763 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP
;
3764 if (features
& PCI_PASID_CAP_PRIV
)
3765 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP
;
3770 EXPORT_SYMBOL(amd_iommu_device_info
);
3772 #ifdef CONFIG_IRQ_REMAP
3774 /*****************************************************************************
3776 * Interrupt Remapping Implementation
3778 *****************************************************************************/
3780 static struct irq_chip amd_ir_chip
;
3782 #define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
3783 #define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
3784 #define DTE_IRQ_TABLE_LEN (8ULL << 1)
3785 #define DTE_IRQ_REMAP_ENABLE 1ULL
3787 static void set_dte_irq_entry(u16 devid
, struct irq_remap_table
*table
)
3791 dte
= amd_iommu_dev_table
[devid
].data
[2];
3792 dte
&= ~DTE_IRQ_PHYS_ADDR_MASK
;
3793 dte
|= iommu_virt_to_phys(table
->table
);
3794 dte
|= DTE_IRQ_REMAP_INTCTL
;
3795 dte
|= DTE_IRQ_TABLE_LEN
;
3796 dte
|= DTE_IRQ_REMAP_ENABLE
;
3798 amd_iommu_dev_table
[devid
].data
[2] = dte
;
3801 static struct irq_remap_table
*get_irq_table(u16 devid
, bool ioapic
)
3803 struct irq_remap_table
*table
= NULL
;
3804 struct amd_iommu
*iommu
;
3805 unsigned long flags
;
3808 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
3810 iommu
= amd_iommu_rlookup_table
[devid
];
3814 table
= irq_lookup_table
[devid
];
3818 alias
= amd_iommu_alias_table
[devid
];
3819 table
= irq_lookup_table
[alias
];
3821 irq_lookup_table
[devid
] = table
;
3822 set_dte_irq_entry(devid
, table
);
3823 iommu_flush_dte(iommu
, devid
);
3827 /* Nothing there yet, allocate new irq remapping table */
3828 table
= kzalloc(sizeof(*table
), GFP_ATOMIC
);
3832 /* Initialize table spin-lock */
3833 spin_lock_init(&table
->lock
);
3836 /* Keep the first 32 indexes free for IOAPIC interrupts */
3837 table
->min_index
= 32;
3839 table
->table
= kmem_cache_alloc(amd_iommu_irq_cache
, GFP_ATOMIC
);
3840 if (!table
->table
) {
3846 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir
))
3847 memset(table
->table
, 0,
3848 MAX_IRQS_PER_TABLE
* sizeof(u32
));
3850 memset(table
->table
, 0,
3851 (MAX_IRQS_PER_TABLE
* (sizeof(u64
) * 2)));
3856 for (i
= 0; i
< 32; ++i
)
3857 iommu
->irte_ops
->set_allocated(table
, i
);
3860 irq_lookup_table
[devid
] = table
;
3861 set_dte_irq_entry(devid
, table
);
3862 iommu_flush_dte(iommu
, devid
);
3863 if (devid
!= alias
) {
3864 irq_lookup_table
[alias
] = table
;
3865 set_dte_irq_entry(alias
, table
);
3866 iommu_flush_dte(iommu
, alias
);
3870 iommu_completion_wait(iommu
);
3873 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
3878 static int alloc_irq_index(u16 devid
, int count
)
3880 struct irq_remap_table
*table
;
3881 unsigned long flags
;
3883 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[devid
];
3888 table
= get_irq_table(devid
, false);
3892 spin_lock_irqsave(&table
->lock
, flags
);
3894 /* Scan table for free entries */
3895 for (c
= 0, index
= table
->min_index
;
3896 index
< MAX_IRQS_PER_TABLE
;
3898 if (!iommu
->irte_ops
->is_allocated(table
, index
))
3905 iommu
->irte_ops
->set_allocated(table
, index
- c
+ 1);
3915 spin_unlock_irqrestore(&table
->lock
, flags
);
3920 static int modify_irte_ga(u16 devid
, int index
, struct irte_ga
*irte
,
3921 struct amd_ir_data
*data
)
3923 struct irq_remap_table
*table
;
3924 struct amd_iommu
*iommu
;
3925 unsigned long flags
;
3926 struct irte_ga
*entry
;
3928 iommu
= amd_iommu_rlookup_table
[devid
];
3932 table
= get_irq_table(devid
, false);
3936 spin_lock_irqsave(&table
->lock
, flags
);
3938 entry
= (struct irte_ga
*)table
->table
;
3939 entry
= &entry
[index
];
3940 entry
->lo
.fields_remap
.valid
= 0;
3941 entry
->hi
.val
= irte
->hi
.val
;
3942 entry
->lo
.val
= irte
->lo
.val
;
3943 entry
->lo
.fields_remap
.valid
= 1;
3947 spin_unlock_irqrestore(&table
->lock
, flags
);
3949 iommu_flush_irt(iommu
, devid
);
3950 iommu_completion_wait(iommu
);
3955 static int modify_irte(u16 devid
, int index
, union irte
*irte
)
3957 struct irq_remap_table
*table
;
3958 struct amd_iommu
*iommu
;
3959 unsigned long flags
;
3961 iommu
= amd_iommu_rlookup_table
[devid
];
3965 table
= get_irq_table(devid
, false);
3969 spin_lock_irqsave(&table
->lock
, flags
);
3970 table
->table
[index
] = irte
->val
;
3971 spin_unlock_irqrestore(&table
->lock
, flags
);
3973 iommu_flush_irt(iommu
, devid
);
3974 iommu_completion_wait(iommu
);
3979 static void free_irte(u16 devid
, int index
)
3981 struct irq_remap_table
*table
;
3982 struct amd_iommu
*iommu
;
3983 unsigned long flags
;
3985 iommu
= amd_iommu_rlookup_table
[devid
];
3989 table
= get_irq_table(devid
, false);
3993 spin_lock_irqsave(&table
->lock
, flags
);
3994 iommu
->irte_ops
->clear_allocated(table
, index
);
3995 spin_unlock_irqrestore(&table
->lock
, flags
);
3997 iommu_flush_irt(iommu
, devid
);
3998 iommu_completion_wait(iommu
);
4001 static void irte_prepare(void *entry
,
4002 u32 delivery_mode
, u32 dest_mode
,
4003 u8 vector
, u32 dest_apicid
, int devid
)
4005 union irte
*irte
= (union irte
*) entry
;
4008 irte
->fields
.vector
= vector
;
4009 irte
->fields
.int_type
= delivery_mode
;
4010 irte
->fields
.destination
= dest_apicid
;
4011 irte
->fields
.dm
= dest_mode
;
4012 irte
->fields
.valid
= 1;
4015 static void irte_ga_prepare(void *entry
,
4016 u32 delivery_mode
, u32 dest_mode
,
4017 u8 vector
, u32 dest_apicid
, int devid
)
4019 struct irte_ga
*irte
= (struct irte_ga
*) entry
;
4023 irte
->lo
.fields_remap
.int_type
= delivery_mode
;
4024 irte
->lo
.fields_remap
.dm
= dest_mode
;
4025 irte
->hi
.fields
.vector
= vector
;
4026 irte
->lo
.fields_remap
.destination
= dest_apicid
;
4027 irte
->lo
.fields_remap
.valid
= 1;
4030 static void irte_activate(void *entry
, u16 devid
, u16 index
)
4032 union irte
*irte
= (union irte
*) entry
;
4034 irte
->fields
.valid
= 1;
4035 modify_irte(devid
, index
, irte
);
4038 static void irte_ga_activate(void *entry
, u16 devid
, u16 index
)
4040 struct irte_ga
*irte
= (struct irte_ga
*) entry
;
4042 irte
->lo
.fields_remap
.valid
= 1;
4043 modify_irte_ga(devid
, index
, irte
, NULL
);
4046 static void irte_deactivate(void *entry
, u16 devid
, u16 index
)
4048 union irte
*irte
= (union irte
*) entry
;
4050 irte
->fields
.valid
= 0;
4051 modify_irte(devid
, index
, irte
);
4054 static void irte_ga_deactivate(void *entry
, u16 devid
, u16 index
)
4056 struct irte_ga
*irte
= (struct irte_ga
*) entry
;
4058 irte
->lo
.fields_remap
.valid
= 0;
4059 modify_irte_ga(devid
, index
, irte
, NULL
);
4062 static void irte_set_affinity(void *entry
, u16 devid
, u16 index
,
4063 u8 vector
, u32 dest_apicid
)
4065 union irte
*irte
= (union irte
*) entry
;
4067 irte
->fields
.vector
= vector
;
4068 irte
->fields
.destination
= dest_apicid
;
4069 modify_irte(devid
, index
, irte
);
4072 static void irte_ga_set_affinity(void *entry
, u16 devid
, u16 index
,
4073 u8 vector
, u32 dest_apicid
)
4075 struct irte_ga
*irte
= (struct irte_ga
*) entry
;
4076 struct iommu_dev_data
*dev_data
= search_dev_data(devid
);
4078 if (!dev_data
|| !dev_data
->use_vapic
||
4079 !irte
->lo
.fields_remap
.guest_mode
) {
4080 irte
->hi
.fields
.vector
= vector
;
4081 irte
->lo
.fields_remap
.destination
= dest_apicid
;
4082 modify_irte_ga(devid
, index
, irte
, NULL
);
4086 #define IRTE_ALLOCATED (~1U)
4087 static void irte_set_allocated(struct irq_remap_table
*table
, int index
)
4089 table
->table
[index
] = IRTE_ALLOCATED
;
4092 static void irte_ga_set_allocated(struct irq_remap_table
*table
, int index
)
4094 struct irte_ga
*ptr
= (struct irte_ga
*)table
->table
;
4095 struct irte_ga
*irte
= &ptr
[index
];
4097 memset(&irte
->lo
.val
, 0, sizeof(u64
));
4098 memset(&irte
->hi
.val
, 0, sizeof(u64
));
4099 irte
->hi
.fields
.vector
= 0xff;
4102 static bool irte_is_allocated(struct irq_remap_table
*table
, int index
)
4104 union irte
*ptr
= (union irte
*)table
->table
;
4105 union irte
*irte
= &ptr
[index
];
4107 return irte
->val
!= 0;
4110 static bool irte_ga_is_allocated(struct irq_remap_table
*table
, int index
)
4112 struct irte_ga
*ptr
= (struct irte_ga
*)table
->table
;
4113 struct irte_ga
*irte
= &ptr
[index
];
4115 return irte
->hi
.fields
.vector
!= 0;
4118 static void irte_clear_allocated(struct irq_remap_table
*table
, int index
)
4120 table
->table
[index
] = 0;
4123 static void irte_ga_clear_allocated(struct irq_remap_table
*table
, int index
)
4125 struct irte_ga
*ptr
= (struct irte_ga
*)table
->table
;
4126 struct irte_ga
*irte
= &ptr
[index
];
4128 memset(&irte
->lo
.val
, 0, sizeof(u64
));
4129 memset(&irte
->hi
.val
, 0, sizeof(u64
));
4132 static int get_devid(struct irq_alloc_info
*info
)
4136 switch (info
->type
) {
4137 case X86_IRQ_ALLOC_TYPE_IOAPIC
:
4138 devid
= get_ioapic_devid(info
->ioapic_id
);
4140 case X86_IRQ_ALLOC_TYPE_HPET
:
4141 devid
= get_hpet_devid(info
->hpet_id
);
4143 case X86_IRQ_ALLOC_TYPE_MSI
:
4144 case X86_IRQ_ALLOC_TYPE_MSIX
:
4145 devid
= get_device_id(&info
->msi_dev
->dev
);
4155 static struct irq_domain
*get_ir_irq_domain(struct irq_alloc_info
*info
)
4157 struct amd_iommu
*iommu
;
4163 devid
= get_devid(info
);
4165 iommu
= amd_iommu_rlookup_table
[devid
];
4167 return iommu
->ir_domain
;
4173 static struct irq_domain
*get_irq_domain(struct irq_alloc_info
*info
)
4175 struct amd_iommu
*iommu
;
4181 switch (info
->type
) {
4182 case X86_IRQ_ALLOC_TYPE_MSI
:
4183 case X86_IRQ_ALLOC_TYPE_MSIX
:
4184 devid
= get_device_id(&info
->msi_dev
->dev
);
4188 iommu
= amd_iommu_rlookup_table
[devid
];
4190 return iommu
->msi_domain
;
4199 struct irq_remap_ops amd_iommu_irq_ops
= {
4200 .prepare
= amd_iommu_prepare
,
4201 .enable
= amd_iommu_enable
,
4202 .disable
= amd_iommu_disable
,
4203 .reenable
= amd_iommu_reenable
,
4204 .enable_faulting
= amd_iommu_enable_faulting
,
4205 .get_ir_irq_domain
= get_ir_irq_domain
,
4206 .get_irq_domain
= get_irq_domain
,
4209 static void irq_remapping_prepare_irte(struct amd_ir_data
*data
,
4210 struct irq_cfg
*irq_cfg
,
4211 struct irq_alloc_info
*info
,
4212 int devid
, int index
, int sub_handle
)
4214 struct irq_2_irte
*irte_info
= &data
->irq_2_irte
;
4215 struct msi_msg
*msg
= &data
->msi_entry
;
4216 struct IO_APIC_route_entry
*entry
;
4217 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[devid
];
4222 data
->irq_2_irte
.devid
= devid
;
4223 data
->irq_2_irte
.index
= index
+ sub_handle
;
4224 iommu
->irte_ops
->prepare(data
->entry
, apic
->irq_delivery_mode
,
4225 apic
->irq_dest_mode
, irq_cfg
->vector
,
4226 irq_cfg
->dest_apicid
, devid
);
4228 switch (info
->type
) {
4229 case X86_IRQ_ALLOC_TYPE_IOAPIC
:
4230 /* Setup IOAPIC entry */
4231 entry
= info
->ioapic_entry
;
4232 info
->ioapic_entry
= NULL
;
4233 memset(entry
, 0, sizeof(*entry
));
4234 entry
->vector
= index
;
4236 entry
->trigger
= info
->ioapic_trigger
;
4237 entry
->polarity
= info
->ioapic_polarity
;
4238 /* Mask level triggered irqs. */
4239 if (info
->ioapic_trigger
)
4243 case X86_IRQ_ALLOC_TYPE_HPET
:
4244 case X86_IRQ_ALLOC_TYPE_MSI
:
4245 case X86_IRQ_ALLOC_TYPE_MSIX
:
4246 msg
->address_hi
= MSI_ADDR_BASE_HI
;
4247 msg
->address_lo
= MSI_ADDR_BASE_LO
;
4248 msg
->data
= irte_info
->index
;
4257 struct amd_irte_ops irte_32_ops
= {
4258 .prepare
= irte_prepare
,
4259 .activate
= irte_activate
,
4260 .deactivate
= irte_deactivate
,
4261 .set_affinity
= irte_set_affinity
,
4262 .set_allocated
= irte_set_allocated
,
4263 .is_allocated
= irte_is_allocated
,
4264 .clear_allocated
= irte_clear_allocated
,
4267 struct amd_irte_ops irte_128_ops
= {
4268 .prepare
= irte_ga_prepare
,
4269 .activate
= irte_ga_activate
,
4270 .deactivate
= irte_ga_deactivate
,
4271 .set_affinity
= irte_ga_set_affinity
,
4272 .set_allocated
= irte_ga_set_allocated
,
4273 .is_allocated
= irte_ga_is_allocated
,
4274 .clear_allocated
= irte_ga_clear_allocated
,
4277 static int irq_remapping_alloc(struct irq_domain
*domain
, unsigned int virq
,
4278 unsigned int nr_irqs
, void *arg
)
4280 struct irq_alloc_info
*info
= arg
;
4281 struct irq_data
*irq_data
;
4282 struct amd_ir_data
*data
= NULL
;
4283 struct irq_cfg
*cfg
;
4289 if (nr_irqs
> 1 && info
->type
!= X86_IRQ_ALLOC_TYPE_MSI
&&
4290 info
->type
!= X86_IRQ_ALLOC_TYPE_MSIX
)
4294 * With IRQ remapping enabled, don't need contiguous CPU vectors
4295 * to support multiple MSI interrupts.
4297 if (info
->type
== X86_IRQ_ALLOC_TYPE_MSI
)
4298 info
->flags
&= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS
;
4300 devid
= get_devid(info
);
4304 ret
= irq_domain_alloc_irqs_parent(domain
, virq
, nr_irqs
, arg
);
4308 if (info
->type
== X86_IRQ_ALLOC_TYPE_IOAPIC
) {
4309 if (get_irq_table(devid
, true))
4310 index
= info
->ioapic_pin
;
4314 index
= alloc_irq_index(devid
, nr_irqs
);
4317 pr_warn("Failed to allocate IRTE\n");
4319 goto out_free_parent
;
4322 for (i
= 0; i
< nr_irqs
; i
++) {
4323 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
4324 cfg
= irqd_cfg(irq_data
);
4325 if (!irq_data
|| !cfg
) {
4331 data
= kzalloc(sizeof(*data
), GFP_KERNEL
);
4335 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir
))
4336 data
->entry
= kzalloc(sizeof(union irte
), GFP_KERNEL
);
4338 data
->entry
= kzalloc(sizeof(struct irte_ga
),
4345 irq_data
->hwirq
= (devid
<< 16) + i
;
4346 irq_data
->chip_data
= data
;
4347 irq_data
->chip
= &amd_ir_chip
;
4348 irq_remapping_prepare_irte(data
, cfg
, info
, devid
, index
, i
);
4349 irq_set_status_flags(virq
+ i
, IRQ_MOVE_PCNTXT
);
4355 for (i
--; i
>= 0; i
--) {
4356 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
4358 kfree(irq_data
->chip_data
);
4360 for (i
= 0; i
< nr_irqs
; i
++)
4361 free_irte(devid
, index
+ i
);
4363 irq_domain_free_irqs_common(domain
, virq
, nr_irqs
);
4367 static void irq_remapping_free(struct irq_domain
*domain
, unsigned int virq
,
4368 unsigned int nr_irqs
)
4370 struct irq_2_irte
*irte_info
;
4371 struct irq_data
*irq_data
;
4372 struct amd_ir_data
*data
;
4375 for (i
= 0; i
< nr_irqs
; i
++) {
4376 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
4377 if (irq_data
&& irq_data
->chip_data
) {
4378 data
= irq_data
->chip_data
;
4379 irte_info
= &data
->irq_2_irte
;
4380 free_irte(irte_info
->devid
, irte_info
->index
);
4385 irq_domain_free_irqs_common(domain
, virq
, nr_irqs
);
4388 static void irq_remapping_activate(struct irq_domain
*domain
,
4389 struct irq_data
*irq_data
)
4391 struct amd_ir_data
*data
= irq_data
->chip_data
;
4392 struct irq_2_irte
*irte_info
= &data
->irq_2_irte
;
4393 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[irte_info
->devid
];
4396 iommu
->irte_ops
->activate(data
->entry
, irte_info
->devid
,
4400 static void irq_remapping_deactivate(struct irq_domain
*domain
,
4401 struct irq_data
*irq_data
)
4403 struct amd_ir_data
*data
= irq_data
->chip_data
;
4404 struct irq_2_irte
*irte_info
= &data
->irq_2_irte
;
4405 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[irte_info
->devid
];
4408 iommu
->irte_ops
->deactivate(data
->entry
, irte_info
->devid
,
4412 static const struct irq_domain_ops amd_ir_domain_ops
= {
4413 .alloc
= irq_remapping_alloc
,
4414 .free
= irq_remapping_free
,
4415 .activate
= irq_remapping_activate
,
4416 .deactivate
= irq_remapping_deactivate
,
4419 static int amd_ir_set_vcpu_affinity(struct irq_data
*data
, void *vcpu_info
)
4421 struct amd_iommu
*iommu
;
4422 struct amd_iommu_pi_data
*pi_data
= vcpu_info
;
4423 struct vcpu_data
*vcpu_pi_info
= pi_data
->vcpu_data
;
4424 struct amd_ir_data
*ir_data
= data
->chip_data
;
4425 struct irte_ga
*irte
= (struct irte_ga
*) ir_data
->entry
;
4426 struct irq_2_irte
*irte_info
= &ir_data
->irq_2_irte
;
4427 struct iommu_dev_data
*dev_data
= search_dev_data(irte_info
->devid
);
4430 * This device has never been set up for guest mode.
4431 * we should not modify the IRTE
4433 if (!dev_data
|| !dev_data
->use_vapic
)
4436 pi_data
->ir_data
= ir_data
;
4439 * SVM tries to set up for VAPIC mode, but we are in
4440 * legacy mode. So, we force legacy mode instead.
4442 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir
)) {
4443 pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
4445 pi_data
->is_guest_mode
= false;
4448 iommu
= amd_iommu_rlookup_table
[irte_info
->devid
];
4452 pi_data
->prev_ga_tag
= ir_data
->cached_ga_tag
;
4453 if (pi_data
->is_guest_mode
) {
4455 irte
->hi
.fields
.ga_root_ptr
= (pi_data
->base
>> 12);
4456 irte
->hi
.fields
.vector
= vcpu_pi_info
->vector
;
4457 irte
->lo
.fields_vapic
.ga_log_intr
= 1;
4458 irte
->lo
.fields_vapic
.guest_mode
= 1;
4459 irte
->lo
.fields_vapic
.ga_tag
= pi_data
->ga_tag
;
4461 ir_data
->cached_ga_tag
= pi_data
->ga_tag
;
4464 struct irq_cfg
*cfg
= irqd_cfg(data
);
4468 irte
->hi
.fields
.vector
= cfg
->vector
;
4469 irte
->lo
.fields_remap
.guest_mode
= 0;
4470 irte
->lo
.fields_remap
.destination
= cfg
->dest_apicid
;
4471 irte
->lo
.fields_remap
.int_type
= apic
->irq_delivery_mode
;
4472 irte
->lo
.fields_remap
.dm
= apic
->irq_dest_mode
;
4475 * This communicates the ga_tag back to the caller
4476 * so that it can do all the necessary clean up.
4478 ir_data
->cached_ga_tag
= 0;
4481 return modify_irte_ga(irte_info
->devid
, irte_info
->index
, irte
, ir_data
);
4484 static int amd_ir_set_affinity(struct irq_data
*data
,
4485 const struct cpumask
*mask
, bool force
)
4487 struct amd_ir_data
*ir_data
= data
->chip_data
;
4488 struct irq_2_irte
*irte_info
= &ir_data
->irq_2_irte
;
4489 struct irq_cfg
*cfg
= irqd_cfg(data
);
4490 struct irq_data
*parent
= data
->parent_data
;
4491 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[irte_info
->devid
];
4497 ret
= parent
->chip
->irq_set_affinity(parent
, mask
, force
);
4498 if (ret
< 0 || ret
== IRQ_SET_MASK_OK_DONE
)
4502 * Atomically updates the IRTE with the new destination, vector
4503 * and flushes the interrupt entry cache.
4505 iommu
->irte_ops
->set_affinity(ir_data
->entry
, irte_info
->devid
,
4506 irte_info
->index
, cfg
->vector
, cfg
->dest_apicid
);
4509 * After this point, all the interrupts will start arriving
4510 * at the new destination. So, time to cleanup the previous
4511 * vector allocation.
4513 send_cleanup_vector(cfg
);
4515 return IRQ_SET_MASK_OK_DONE
;
4518 static void ir_compose_msi_msg(struct irq_data
*irq_data
, struct msi_msg
*msg
)
4520 struct amd_ir_data
*ir_data
= irq_data
->chip_data
;
4522 *msg
= ir_data
->msi_entry
;
4525 static struct irq_chip amd_ir_chip
= {
4527 .irq_ack
= ir_ack_apic_edge
,
4528 .irq_set_affinity
= amd_ir_set_affinity
,
4529 .irq_set_vcpu_affinity
= amd_ir_set_vcpu_affinity
,
4530 .irq_compose_msi_msg
= ir_compose_msi_msg
,
4533 int amd_iommu_create_irq_domain(struct amd_iommu
*iommu
)
4535 struct fwnode_handle
*fn
;
4537 fn
= irq_domain_alloc_named_id_fwnode("AMD-IR", iommu
->index
);
4540 iommu
->ir_domain
= irq_domain_create_tree(fn
, &amd_ir_domain_ops
, iommu
);
4541 irq_domain_free_fwnode(fn
);
4542 if (!iommu
->ir_domain
)
4545 iommu
->ir_domain
->parent
= arch_get_ir_parent_domain();
4546 iommu
->msi_domain
= arch_create_remap_msi_irq_domain(iommu
->ir_domain
,
4552 int amd_iommu_update_ga(int cpu
, bool is_run
, void *data
)
4554 unsigned long flags
;
4555 struct amd_iommu
*iommu
;
4556 struct irq_remap_table
*irt
;
4557 struct amd_ir_data
*ir_data
= (struct amd_ir_data
*)data
;
4558 int devid
= ir_data
->irq_2_irte
.devid
;
4559 struct irte_ga
*entry
= (struct irte_ga
*) ir_data
->entry
;
4560 struct irte_ga
*ref
= (struct irte_ga
*) ir_data
->ref
;
4562 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir
) ||
4563 !ref
|| !entry
|| !entry
->lo
.fields_vapic
.guest_mode
)
4566 iommu
= amd_iommu_rlookup_table
[devid
];
4570 irt
= get_irq_table(devid
, false);
4574 spin_lock_irqsave(&irt
->lock
, flags
);
4576 if (ref
->lo
.fields_vapic
.guest_mode
) {
4578 ref
->lo
.fields_vapic
.destination
= cpu
;
4579 ref
->lo
.fields_vapic
.is_run
= is_run
;
4583 spin_unlock_irqrestore(&irt
->lock
, flags
);
4585 iommu_flush_irt(iommu
, devid
);
4586 iommu_completion_wait(iommu
);
4589 EXPORT_SYMBOL(amd_iommu_update_ga
);