2 * TI VPE mem2mem driver, based on the virtual v4l2-mem2mem example driver
4 * Copyright (c) 2013 Texas Instruments Inc.
5 * David Griego, <dagriego@biglakesoftware.com>
6 * Dale Farnsworth, <dale@farnsworth.org>
7 * Archit Taneja, <archit@ti.com>
9 * Copyright (c) 2009-2010 Samsung Electronics Co., Ltd.
10 * Pawel Osciak, <pawel@osciak.com>
11 * Marek Szyprowski, <m.szyprowski@samsung.com>
13 * Based on the virtual v4l2-mem2mem example device
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License version 2 as published by
17 * the Free Software Foundation
20 #include <linux/delay.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/err.h>
24 #include <linux/interrupt.h>
26 #include <linux/ioctl.h>
27 #include <linux/module.h>
29 #include <linux/platform_device.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/sched.h>
32 #include <linux/slab.h>
33 #include <linux/videodev2.h>
34 #include <linux/log2.h>
35 #include <linux/sizes.h>
37 #include <media/v4l2-common.h>
38 #include <media/v4l2-ctrls.h>
39 #include <media/v4l2-device.h>
40 #include <media/v4l2-event.h>
41 #include <media/v4l2-ioctl.h>
42 #include <media/v4l2-mem2mem.h>
43 #include <media/videobuf2-v4l2.h>
44 #include <media/videobuf2-dma-contig.h>
51 #define VPE_MODULE_NAME "vpe"
53 /* minimum and maximum frame sizes */
59 /* required alignments */
60 #define S_ALIGN 0 /* multiple of 1 */
61 #define H_ALIGN 1 /* multiple of 2 */
63 /* flags that indicate a format can be used for capture/output */
64 #define VPE_FMT_TYPE_CAPTURE (1 << 0)
65 #define VPE_FMT_TYPE_OUTPUT (1 << 1)
67 /* used as plane indices */
68 #define VPE_MAX_PLANES 2
72 /* per m2m context info */
73 #define VPE_MAX_SRC_BUFS 3 /* need 3 src fields to de-interlace */
75 #define VPE_DEF_BUFS_PER_JOB 1 /* default one buffer per batch job */
78 * each VPE context can need up to 3 config descriptors, 7 input descriptors,
79 * 3 output descriptors, and 10 control descriptors
81 #define VPE_DESC_LIST_SIZE (10 * VPDMA_DTD_DESC_SIZE + \
82 13 * VPDMA_CFD_CTD_DESC_SIZE)
84 #define vpe_dbg(vpedev, fmt, arg...) \
85 dev_dbg((vpedev)->v4l2_dev.dev, fmt, ##arg)
86 #define vpe_err(vpedev, fmt, arg...) \
87 dev_err((vpedev)->v4l2_dev.dev, fmt, ##arg)
89 struct vpe_us_coeffs
{
90 unsigned short anchor_fid0_c0
;
91 unsigned short anchor_fid0_c1
;
92 unsigned short anchor_fid0_c2
;
93 unsigned short anchor_fid0_c3
;
94 unsigned short interp_fid0_c0
;
95 unsigned short interp_fid0_c1
;
96 unsigned short interp_fid0_c2
;
97 unsigned short interp_fid0_c3
;
98 unsigned short anchor_fid1_c0
;
99 unsigned short anchor_fid1_c1
;
100 unsigned short anchor_fid1_c2
;
101 unsigned short anchor_fid1_c3
;
102 unsigned short interp_fid1_c0
;
103 unsigned short interp_fid1_c1
;
104 unsigned short interp_fid1_c2
;
105 unsigned short interp_fid1_c3
;
109 * Default upsampler coefficients
111 static const struct vpe_us_coeffs us_coeffs
[] = {
113 /* Coefficients for progressive input */
114 0x00C8, 0x0348, 0x0018, 0x3FD8, 0x3FB8, 0x0378, 0x00E8, 0x3FE8,
115 0x00C8, 0x0348, 0x0018, 0x3FD8, 0x3FB8, 0x0378, 0x00E8, 0x3FE8,
118 /* Coefficients for Top Field Interlaced input */
119 0x0051, 0x03D5, 0x3FE3, 0x3FF7, 0x3FB5, 0x02E9, 0x018F, 0x3FD3,
120 /* Coefficients for Bottom Field Interlaced input */
121 0x016B, 0x0247, 0x00B1, 0x3F9D, 0x3FCF, 0x03DB, 0x005D, 0x3FF9,
126 * the following registers are for configuring some of the parameters of the
127 * motion and edge detection blocks inside DEI, these generally remain the same,
128 * these could be passed later via userspace if some one needs to tweak these.
130 struct vpe_dei_regs
{
131 unsigned long mdt_spacial_freq_thr_reg
; /* VPE_DEI_REG2 */
132 unsigned long edi_config_reg
; /* VPE_DEI_REG3 */
133 unsigned long edi_lut_reg0
; /* VPE_DEI_REG4 */
134 unsigned long edi_lut_reg1
; /* VPE_DEI_REG5 */
135 unsigned long edi_lut_reg2
; /* VPE_DEI_REG6 */
136 unsigned long edi_lut_reg3
; /* VPE_DEI_REG7 */
140 * default expert DEI register values, unlikely to be modified.
142 static const struct vpe_dei_regs dei_regs
= {
143 .mdt_spacial_freq_thr_reg
= 0x020C0804u
,
144 .edi_config_reg
= 0x0118100Fu
,
145 .edi_lut_reg0
= 0x08040200u
,
146 .edi_lut_reg1
= 0x1010100Cu
,
147 .edi_lut_reg2
= 0x10101010u
,
148 .edi_lut_reg3
= 0x10101010u
,
152 * The port_data structure contains per-port data.
154 struct vpe_port_data
{
155 enum vpdma_channel channel
; /* VPDMA channel */
156 u8 vb_index
; /* input frame f, f-1, f-2 index */
157 u8 vb_part
; /* plane index for co-panar formats */
161 * Define indices into the port_data tables
163 #define VPE_PORT_LUMA1_IN 0
164 #define VPE_PORT_CHROMA1_IN 1
165 #define VPE_PORT_LUMA2_IN 2
166 #define VPE_PORT_CHROMA2_IN 3
167 #define VPE_PORT_LUMA3_IN 4
168 #define VPE_PORT_CHROMA3_IN 5
169 #define VPE_PORT_MV_IN 6
170 #define VPE_PORT_MV_OUT 7
171 #define VPE_PORT_LUMA_OUT 8
172 #define VPE_PORT_CHROMA_OUT 9
173 #define VPE_PORT_RGB_OUT 10
175 static const struct vpe_port_data port_data
[11] = {
176 [VPE_PORT_LUMA1_IN
] = {
177 .channel
= VPE_CHAN_LUMA1_IN
,
181 [VPE_PORT_CHROMA1_IN
] = {
182 .channel
= VPE_CHAN_CHROMA1_IN
,
184 .vb_part
= VPE_CHROMA
,
186 [VPE_PORT_LUMA2_IN
] = {
187 .channel
= VPE_CHAN_LUMA2_IN
,
191 [VPE_PORT_CHROMA2_IN
] = {
192 .channel
= VPE_CHAN_CHROMA2_IN
,
194 .vb_part
= VPE_CHROMA
,
196 [VPE_PORT_LUMA3_IN
] = {
197 .channel
= VPE_CHAN_LUMA3_IN
,
201 [VPE_PORT_CHROMA3_IN
] = {
202 .channel
= VPE_CHAN_CHROMA3_IN
,
204 .vb_part
= VPE_CHROMA
,
207 .channel
= VPE_CHAN_MV_IN
,
209 [VPE_PORT_MV_OUT
] = {
210 .channel
= VPE_CHAN_MV_OUT
,
212 [VPE_PORT_LUMA_OUT
] = {
213 .channel
= VPE_CHAN_LUMA_OUT
,
216 [VPE_PORT_CHROMA_OUT
] = {
217 .channel
= VPE_CHAN_CHROMA_OUT
,
218 .vb_part
= VPE_CHROMA
,
220 [VPE_PORT_RGB_OUT
] = {
221 .channel
= VPE_CHAN_RGB_OUT
,
227 /* driver info for each of the supported video formats */
229 char *name
; /* human-readable name */
230 u32 fourcc
; /* standard format identifier */
231 u8 types
; /* CAPTURE and/or OUTPUT */
232 u8 coplanar
; /* set for unpacked Luma and Chroma */
233 /* vpdma format info for each plane */
234 struct vpdma_data_format
const *vpdma_fmt
[VPE_MAX_PLANES
];
237 static struct vpe_fmt vpe_formats
[] = {
239 .name
= "YUV 422 co-planar",
240 .fourcc
= V4L2_PIX_FMT_NV16
,
241 .types
= VPE_FMT_TYPE_CAPTURE
| VPE_FMT_TYPE_OUTPUT
,
243 .vpdma_fmt
= { &vpdma_yuv_fmts
[VPDMA_DATA_FMT_Y444
],
244 &vpdma_yuv_fmts
[VPDMA_DATA_FMT_C444
],
248 .name
= "YUV 420 co-planar",
249 .fourcc
= V4L2_PIX_FMT_NV12
,
250 .types
= VPE_FMT_TYPE_CAPTURE
| VPE_FMT_TYPE_OUTPUT
,
252 .vpdma_fmt
= { &vpdma_yuv_fmts
[VPDMA_DATA_FMT_Y420
],
253 &vpdma_yuv_fmts
[VPDMA_DATA_FMT_C420
],
257 .name
= "YUYV 422 packed",
258 .fourcc
= V4L2_PIX_FMT_YUYV
,
259 .types
= VPE_FMT_TYPE_CAPTURE
| VPE_FMT_TYPE_OUTPUT
,
261 .vpdma_fmt
= { &vpdma_yuv_fmts
[VPDMA_DATA_FMT_YC422
],
265 .name
= "UYVY 422 packed",
266 .fourcc
= V4L2_PIX_FMT_UYVY
,
267 .types
= VPE_FMT_TYPE_CAPTURE
| VPE_FMT_TYPE_OUTPUT
,
269 .vpdma_fmt
= { &vpdma_yuv_fmts
[VPDMA_DATA_FMT_CY422
],
273 .name
= "RGB888 packed",
274 .fourcc
= V4L2_PIX_FMT_RGB24
,
275 .types
= VPE_FMT_TYPE_CAPTURE
,
277 .vpdma_fmt
= { &vpdma_rgb_fmts
[VPDMA_DATA_FMT_RGB24
],
282 .fourcc
= V4L2_PIX_FMT_RGB32
,
283 .types
= VPE_FMT_TYPE_CAPTURE
,
285 .vpdma_fmt
= { &vpdma_rgb_fmts
[VPDMA_DATA_FMT_ARGB32
],
289 .name
= "BGR888 packed",
290 .fourcc
= V4L2_PIX_FMT_BGR24
,
291 .types
= VPE_FMT_TYPE_CAPTURE
,
293 .vpdma_fmt
= { &vpdma_rgb_fmts
[VPDMA_DATA_FMT_BGR24
],
298 .fourcc
= V4L2_PIX_FMT_BGR32
,
299 .types
= VPE_FMT_TYPE_CAPTURE
,
301 .vpdma_fmt
= { &vpdma_rgb_fmts
[VPDMA_DATA_FMT_ABGR32
],
307 * per-queue, driver-specific private data.
308 * there is one source queue and one destination queue for each m2m context.
311 unsigned int width
; /* frame width */
312 unsigned int height
; /* frame height */
313 unsigned int bytesperline
[VPE_MAX_PLANES
]; /* bytes per line in memory */
314 enum v4l2_colorspace colorspace
;
315 enum v4l2_field field
; /* supported field value */
317 unsigned int sizeimage
[VPE_MAX_PLANES
]; /* image size in memory */
318 struct v4l2_rect c_rect
; /* crop/compose rectangle */
319 struct vpe_fmt
*fmt
; /* format info */
322 /* vpe_q_data flag bits */
323 #define Q_DATA_FRAME_1D (1 << 0)
324 #define Q_DATA_MODE_TILED (1 << 1)
325 #define Q_DATA_INTERLACED (1 << 2)
332 /* find our format description corresponding to the passed v4l2_format */
333 static struct vpe_fmt
*find_format(struct v4l2_format
*f
)
338 for (k
= 0; k
< ARRAY_SIZE(vpe_formats
); k
++) {
339 fmt
= &vpe_formats
[k
];
340 if (fmt
->fourcc
== f
->fmt
.pix
.pixelformat
)
348 * there is one vpe_dev structure in the driver, it is shared by
352 struct v4l2_device v4l2_dev
;
353 struct video_device vfd
;
354 struct v4l2_m2m_dev
*m2m_dev
;
356 atomic_t num_instances
; /* count of driver instances */
357 dma_addr_t loaded_mmrs
; /* shadow mmrs in device */
358 struct mutex dev_mutex
;
363 struct resource
*res
;
365 struct vb2_alloc_ctx
*alloc_ctx
;
366 struct vpdma_data
*vpdma
; /* vpdma data handle */
367 struct sc_data
*sc
; /* scaler data handle */
368 struct csc_data
*csc
; /* csc data handle */
372 * There is one vpe_ctx structure for each m2m context.
377 struct v4l2_ctrl_handler hdl
;
379 unsigned int field
; /* current field */
380 unsigned int sequence
; /* current frame/field seq */
381 unsigned int aborting
; /* abort after next irq */
383 unsigned int bufs_per_job
; /* input buffers per batch */
384 unsigned int bufs_completed
; /* bufs done in this batch */
386 struct vpe_q_data q_data
[2]; /* src & dst queue data */
387 struct vb2_v4l2_buffer
*src_vbs
[VPE_MAX_SRC_BUFS
];
388 struct vb2_v4l2_buffer
*dst_vb
;
390 dma_addr_t mv_buf_dma
[2]; /* dma addrs of motion vector in/out bufs */
391 void *mv_buf
[2]; /* virtual addrs of motion vector bufs */
392 size_t mv_buf_size
; /* current motion vector buffer size */
393 struct vpdma_buf mmr_adb
; /* shadow reg addr/data block */
394 struct vpdma_buf sc_coeff_h
; /* h coeff buffer */
395 struct vpdma_buf sc_coeff_v
; /* v coeff buffer */
396 struct vpdma_desc_list desc_list
; /* DMA descriptor list */
398 bool deinterlacing
; /* using de-interlacer */
399 bool load_mmrs
; /* have new shadow reg values */
401 unsigned int src_mv_buf_selector
;
406 * M2M devices get 2 queues.
407 * Return the queue given the type.
409 static struct vpe_q_data
*get_q_data(struct vpe_ctx
*ctx
,
410 enum v4l2_buf_type type
)
413 case V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE
:
414 case V4L2_BUF_TYPE_VIDEO_OUTPUT
:
415 return &ctx
->q_data
[Q_DATA_SRC
];
416 case V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE
:
417 case V4L2_BUF_TYPE_VIDEO_CAPTURE
:
418 return &ctx
->q_data
[Q_DATA_DST
];
425 static u32
read_reg(struct vpe_dev
*dev
, int offset
)
427 return ioread32(dev
->base
+ offset
);
430 static void write_reg(struct vpe_dev
*dev
, int offset
, u32 value
)
432 iowrite32(value
, dev
->base
+ offset
);
435 /* register field read/write helpers */
436 static int get_field(u32 value
, u32 mask
, int shift
)
438 return (value
& (mask
<< shift
)) >> shift
;
441 static int read_field_reg(struct vpe_dev
*dev
, int offset
, u32 mask
, int shift
)
443 return get_field(read_reg(dev
, offset
), mask
, shift
);
446 static void write_field(u32
*valp
, u32 field
, u32 mask
, int shift
)
450 val
&= ~(mask
<< shift
);
451 val
|= (field
& mask
) << shift
;
455 static void write_field_reg(struct vpe_dev
*dev
, int offset
, u32 field
,
458 u32 val
= read_reg(dev
, offset
);
460 write_field(&val
, field
, mask
, shift
);
462 write_reg(dev
, offset
, val
);
466 * DMA address/data block for the shadow registers
469 struct vpdma_adb_hdr out_fmt_hdr
;
472 struct vpdma_adb_hdr us1_hdr
;
474 struct vpdma_adb_hdr us2_hdr
;
476 struct vpdma_adb_hdr us3_hdr
;
478 struct vpdma_adb_hdr dei_hdr
;
480 struct vpdma_adb_hdr sc_hdr0
;
483 struct vpdma_adb_hdr sc_hdr8
;
486 struct vpdma_adb_hdr sc_hdr17
;
489 struct vpdma_adb_hdr csc_hdr
;
494 #define GET_OFFSET_TOP(ctx, obj, reg) \
495 ((obj)->res->start - ctx->dev->res->start + reg)
497 #define VPE_SET_MMR_ADB_HDR(ctx, hdr, regs, offset_a) \
498 VPDMA_SET_MMR_ADB_HDR(ctx->mmr_adb, vpe_mmr_adb, hdr, regs, offset_a)
500 * Set the headers for all of the address/data block structures.
502 static void init_adb_hdrs(struct vpe_ctx
*ctx
)
504 VPE_SET_MMR_ADB_HDR(ctx
, out_fmt_hdr
, out_fmt_reg
, VPE_CLK_FORMAT_SELECT
);
505 VPE_SET_MMR_ADB_HDR(ctx
, us1_hdr
, us1_regs
, VPE_US1_R0
);
506 VPE_SET_MMR_ADB_HDR(ctx
, us2_hdr
, us2_regs
, VPE_US2_R0
);
507 VPE_SET_MMR_ADB_HDR(ctx
, us3_hdr
, us3_regs
, VPE_US3_R0
);
508 VPE_SET_MMR_ADB_HDR(ctx
, dei_hdr
, dei_regs
, VPE_DEI_FRAME_SIZE
);
509 VPE_SET_MMR_ADB_HDR(ctx
, sc_hdr0
, sc_regs0
,
510 GET_OFFSET_TOP(ctx
, ctx
->dev
->sc
, CFG_SC0
));
511 VPE_SET_MMR_ADB_HDR(ctx
, sc_hdr8
, sc_regs8
,
512 GET_OFFSET_TOP(ctx
, ctx
->dev
->sc
, CFG_SC8
));
513 VPE_SET_MMR_ADB_HDR(ctx
, sc_hdr17
, sc_regs17
,
514 GET_OFFSET_TOP(ctx
, ctx
->dev
->sc
, CFG_SC17
));
515 VPE_SET_MMR_ADB_HDR(ctx
, csc_hdr
, csc_regs
,
516 GET_OFFSET_TOP(ctx
, ctx
->dev
->csc
, CSC_CSC00
));
520 * Allocate or re-allocate the motion vector DMA buffers
521 * There are two buffers, one for input and one for output.
522 * However, the roles are reversed after each field is processed.
523 * In other words, after each field is processed, the previous
524 * output (dst) MV buffer becomes the new input (src) MV buffer.
526 static int realloc_mv_buffers(struct vpe_ctx
*ctx
, size_t size
)
528 struct device
*dev
= ctx
->dev
->v4l2_dev
.dev
;
530 if (ctx
->mv_buf_size
== size
)
534 dma_free_coherent(dev
, ctx
->mv_buf_size
, ctx
->mv_buf
[0],
538 dma_free_coherent(dev
, ctx
->mv_buf_size
, ctx
->mv_buf
[1],
544 ctx
->mv_buf
[0] = dma_alloc_coherent(dev
, size
, &ctx
->mv_buf_dma
[0],
546 if (!ctx
->mv_buf
[0]) {
547 vpe_err(ctx
->dev
, "failed to allocate motion vector buffer\n");
551 ctx
->mv_buf
[1] = dma_alloc_coherent(dev
, size
, &ctx
->mv_buf_dma
[1],
553 if (!ctx
->mv_buf
[1]) {
554 vpe_err(ctx
->dev
, "failed to allocate motion vector buffer\n");
555 dma_free_coherent(dev
, size
, ctx
->mv_buf
[0],
561 ctx
->mv_buf_size
= size
;
562 ctx
->src_mv_buf_selector
= 0;
567 static void free_mv_buffers(struct vpe_ctx
*ctx
)
569 realloc_mv_buffers(ctx
, 0);
573 * While de-interlacing, we keep the two most recent input buffers
574 * around. This function frees those two buffers when we have
575 * finished processing the current stream.
577 static void free_vbs(struct vpe_ctx
*ctx
)
579 struct vpe_dev
*dev
= ctx
->dev
;
582 if (ctx
->src_vbs
[2] == NULL
)
585 spin_lock_irqsave(&dev
->lock
, flags
);
586 if (ctx
->src_vbs
[2]) {
587 v4l2_m2m_buf_done(ctx
->src_vbs
[2], VB2_BUF_STATE_DONE
);
588 v4l2_m2m_buf_done(ctx
->src_vbs
[1], VB2_BUF_STATE_DONE
);
590 spin_unlock_irqrestore(&dev
->lock
, flags
);
594 * Enable or disable the VPE clocks
596 static void vpe_set_clock_enable(struct vpe_dev
*dev
, bool on
)
601 val
= VPE_DATA_PATH_CLK_ENABLE
| VPE_VPEDMA_CLK_ENABLE
;
602 write_reg(dev
, VPE_CLK_ENABLE
, val
);
605 static void vpe_top_reset(struct vpe_dev
*dev
)
608 write_field_reg(dev
, VPE_CLK_RESET
, 1, VPE_DATA_PATH_CLK_RESET_MASK
,
609 VPE_DATA_PATH_CLK_RESET_SHIFT
);
611 usleep_range(100, 150);
613 write_field_reg(dev
, VPE_CLK_RESET
, 0, VPE_DATA_PATH_CLK_RESET_MASK
,
614 VPE_DATA_PATH_CLK_RESET_SHIFT
);
617 static void vpe_top_vpdma_reset(struct vpe_dev
*dev
)
619 write_field_reg(dev
, VPE_CLK_RESET
, 1, VPE_VPDMA_CLK_RESET_MASK
,
620 VPE_VPDMA_CLK_RESET_SHIFT
);
622 usleep_range(100, 150);
624 write_field_reg(dev
, VPE_CLK_RESET
, 0, VPE_VPDMA_CLK_RESET_MASK
,
625 VPE_VPDMA_CLK_RESET_SHIFT
);
629 * Load the correct of upsampler coefficients into the shadow MMRs
631 static void set_us_coefficients(struct vpe_ctx
*ctx
)
633 struct vpe_mmr_adb
*mmr_adb
= ctx
->mmr_adb
.addr
;
634 struct vpe_q_data
*s_q_data
= &ctx
->q_data
[Q_DATA_SRC
];
635 u32
*us1_reg
= &mmr_adb
->us1_regs
[0];
636 u32
*us2_reg
= &mmr_adb
->us2_regs
[0];
637 u32
*us3_reg
= &mmr_adb
->us3_regs
[0];
638 const unsigned short *cp
, *end_cp
;
640 cp
= &us_coeffs
[0].anchor_fid0_c0
;
642 if (s_q_data
->flags
& Q_DATA_INTERLACED
) /* interlaced */
643 cp
+= sizeof(us_coeffs
[0]) / sizeof(*cp
);
645 end_cp
= cp
+ sizeof(us_coeffs
[0]) / sizeof(*cp
);
647 while (cp
< end_cp
) {
648 write_field(us1_reg
, *cp
++, VPE_US_C0_MASK
, VPE_US_C0_SHIFT
);
649 write_field(us1_reg
, *cp
++, VPE_US_C1_MASK
, VPE_US_C1_SHIFT
);
650 *us2_reg
++ = *us1_reg
;
651 *us3_reg
++ = *us1_reg
++;
653 ctx
->load_mmrs
= true;
657 * Set the upsampler config mode and the VPDMA line mode in the shadow MMRs.
659 static void set_cfg_and_line_modes(struct vpe_ctx
*ctx
)
661 struct vpe_fmt
*fmt
= ctx
->q_data
[Q_DATA_SRC
].fmt
;
662 struct vpe_mmr_adb
*mmr_adb
= ctx
->mmr_adb
.addr
;
663 u32
*us1_reg0
= &mmr_adb
->us1_regs
[0];
664 u32
*us2_reg0
= &mmr_adb
->us2_regs
[0];
665 u32
*us3_reg0
= &mmr_adb
->us3_regs
[0];
670 * Cfg Mode 0: YUV420 source, enable upsampler, DEI is de-interlacing.
671 * Cfg Mode 1: YUV422 source, disable upsampler, DEI is de-interlacing.
674 if (fmt
->fourcc
== V4L2_PIX_FMT_NV12
) {
676 line_mode
= 0; /* double lines to line buffer */
679 write_field(us1_reg0
, cfg_mode
, VPE_US_MODE_MASK
, VPE_US_MODE_SHIFT
);
680 write_field(us2_reg0
, cfg_mode
, VPE_US_MODE_MASK
, VPE_US_MODE_SHIFT
);
681 write_field(us3_reg0
, cfg_mode
, VPE_US_MODE_MASK
, VPE_US_MODE_SHIFT
);
684 vpdma_set_line_mode(ctx
->dev
->vpdma
, line_mode
, VPE_CHAN_CHROMA1_IN
);
685 vpdma_set_line_mode(ctx
->dev
->vpdma
, line_mode
, VPE_CHAN_CHROMA2_IN
);
686 vpdma_set_line_mode(ctx
->dev
->vpdma
, line_mode
, VPE_CHAN_CHROMA3_IN
);
688 /* frame start for input luma */
689 vpdma_set_frame_start_event(ctx
->dev
->vpdma
, VPDMA_FSEVENT_CHANNEL_ACTIVE
,
691 vpdma_set_frame_start_event(ctx
->dev
->vpdma
, VPDMA_FSEVENT_CHANNEL_ACTIVE
,
693 vpdma_set_frame_start_event(ctx
->dev
->vpdma
, VPDMA_FSEVENT_CHANNEL_ACTIVE
,
696 /* frame start for input chroma */
697 vpdma_set_frame_start_event(ctx
->dev
->vpdma
, VPDMA_FSEVENT_CHANNEL_ACTIVE
,
698 VPE_CHAN_CHROMA1_IN
);
699 vpdma_set_frame_start_event(ctx
->dev
->vpdma
, VPDMA_FSEVENT_CHANNEL_ACTIVE
,
700 VPE_CHAN_CHROMA2_IN
);
701 vpdma_set_frame_start_event(ctx
->dev
->vpdma
, VPDMA_FSEVENT_CHANNEL_ACTIVE
,
702 VPE_CHAN_CHROMA3_IN
);
704 /* frame start for MV in client */
705 vpdma_set_frame_start_event(ctx
->dev
->vpdma
, VPDMA_FSEVENT_CHANNEL_ACTIVE
,
708 ctx
->load_mmrs
= true;
712 * Set the shadow registers that are modified when the source
715 static void set_src_registers(struct vpe_ctx
*ctx
)
717 set_us_coefficients(ctx
);
721 * Set the shadow registers that are modified when the destination
724 static void set_dst_registers(struct vpe_ctx
*ctx
)
726 struct vpe_mmr_adb
*mmr_adb
= ctx
->mmr_adb
.addr
;
727 enum v4l2_colorspace clrspc
= ctx
->q_data
[Q_DATA_DST
].colorspace
;
728 struct vpe_fmt
*fmt
= ctx
->q_data
[Q_DATA_DST
].fmt
;
731 if (clrspc
== V4L2_COLORSPACE_SRGB
)
732 val
|= VPE_RGB_OUT_SELECT
;
733 else if (fmt
->fourcc
== V4L2_PIX_FMT_NV16
)
734 val
|= VPE_COLOR_SEPARATE_422
;
737 * the source of CHR_DS and CSC is always the scaler, irrespective of
738 * whether it's used or not
740 val
|= VPE_DS_SRC_DEI_SCALER
| VPE_CSC_SRC_DEI_SCALER
;
742 if (fmt
->fourcc
!= V4L2_PIX_FMT_NV12
)
743 val
|= VPE_DS_BYPASS
;
745 mmr_adb
->out_fmt_reg
[0] = val
;
747 ctx
->load_mmrs
= true;
751 * Set the de-interlacer shadow register values
753 static void set_dei_regs(struct vpe_ctx
*ctx
)
755 struct vpe_mmr_adb
*mmr_adb
= ctx
->mmr_adb
.addr
;
756 struct vpe_q_data
*s_q_data
= &ctx
->q_data
[Q_DATA_SRC
];
757 unsigned int src_h
= s_q_data
->c_rect
.height
;
758 unsigned int src_w
= s_q_data
->c_rect
.width
;
759 u32
*dei_mmr0
= &mmr_adb
->dei_regs
[0];
760 bool deinterlace
= true;
764 * according to TRM, we should set DEI in progressive bypass mode when
765 * the input content is progressive, however, DEI is bypassed correctly
766 * for both progressive and interlace content in interlace bypass mode.
767 * It has been recommended not to use progressive bypass mode.
769 if ((!ctx
->deinterlacing
&& (s_q_data
->flags
& Q_DATA_INTERLACED
)) ||
770 !(s_q_data
->flags
& Q_DATA_INTERLACED
)) {
772 val
= VPE_DEI_INTERLACE_BYPASS
;
775 src_h
= deinterlace
? src_h
* 2 : src_h
;
777 val
|= (src_h
<< VPE_DEI_HEIGHT_SHIFT
) |
778 (src_w
<< VPE_DEI_WIDTH_SHIFT
) |
783 ctx
->load_mmrs
= true;
786 static void set_dei_shadow_registers(struct vpe_ctx
*ctx
)
788 struct vpe_mmr_adb
*mmr_adb
= ctx
->mmr_adb
.addr
;
789 u32
*dei_mmr
= &mmr_adb
->dei_regs
[0];
790 const struct vpe_dei_regs
*cur
= &dei_regs
;
792 dei_mmr
[2] = cur
->mdt_spacial_freq_thr_reg
;
793 dei_mmr
[3] = cur
->edi_config_reg
;
794 dei_mmr
[4] = cur
->edi_lut_reg0
;
795 dei_mmr
[5] = cur
->edi_lut_reg1
;
796 dei_mmr
[6] = cur
->edi_lut_reg2
;
797 dei_mmr
[7] = cur
->edi_lut_reg3
;
799 ctx
->load_mmrs
= true;
803 * Set the shadow registers whose values are modified when either the
804 * source or destination format is changed.
806 static int set_srcdst_params(struct vpe_ctx
*ctx
)
808 struct vpe_q_data
*s_q_data
= &ctx
->q_data
[Q_DATA_SRC
];
809 struct vpe_q_data
*d_q_data
= &ctx
->q_data
[Q_DATA_DST
];
810 struct vpe_mmr_adb
*mmr_adb
= ctx
->mmr_adb
.addr
;
811 unsigned int src_w
= s_q_data
->c_rect
.width
;
812 unsigned int src_h
= s_q_data
->c_rect
.height
;
813 unsigned int dst_w
= d_q_data
->c_rect
.width
;
814 unsigned int dst_h
= d_q_data
->c_rect
.height
;
819 ctx
->field
= V4L2_FIELD_TOP
;
821 if ((s_q_data
->flags
& Q_DATA_INTERLACED
) &&
822 !(d_q_data
->flags
& Q_DATA_INTERLACED
)) {
824 const struct vpdma_data_format
*mv
=
825 &vpdma_misc_fmts
[VPDMA_DATA_FMT_MV
];
828 * we make sure that the source image has a 16 byte aligned
829 * stride, we need to do the same for the motion vector buffer
830 * by aligning it's stride to the next 16 byte boundry. this
831 * extra space will not be used by the de-interlacer, but will
832 * ensure that vpdma operates correctly
834 bytes_per_line
= ALIGN((s_q_data
->width
* mv
->depth
) >> 3,
836 mv_buf_size
= bytes_per_line
* s_q_data
->height
;
838 ctx
->deinterlacing
= true;
841 ctx
->deinterlacing
= false;
847 ret
= realloc_mv_buffers(ctx
, mv_buf_size
);
851 set_cfg_and_line_modes(ctx
);
854 csc_set_coeff(ctx
->dev
->csc
, &mmr_adb
->csc_regs
[0],
855 s_q_data
->colorspace
, d_q_data
->colorspace
);
857 sc_set_hs_coeffs(ctx
->dev
->sc
, ctx
->sc_coeff_h
.addr
, src_w
, dst_w
);
858 sc_set_vs_coeffs(ctx
->dev
->sc
, ctx
->sc_coeff_v
.addr
, src_h
, dst_h
);
860 sc_config_scaler(ctx
->dev
->sc
, &mmr_adb
->sc_regs0
[0],
861 &mmr_adb
->sc_regs8
[0], &mmr_adb
->sc_regs17
[0],
862 src_w
, src_h
, dst_w
, dst_h
);
868 * Return the vpe_ctx structure for a given struct file
870 static struct vpe_ctx
*file2ctx(struct file
*file
)
872 return container_of(file
->private_data
, struct vpe_ctx
, fh
);
880 * job_ready() - check whether an instance is ready to be scheduled to run
882 static int job_ready(void *priv
)
884 struct vpe_ctx
*ctx
= priv
;
885 int needed
= ctx
->bufs_per_job
;
887 if (ctx
->deinterlacing
&& ctx
->src_vbs
[2] == NULL
)
888 needed
+= 2; /* need additional two most recent fields */
890 if (v4l2_m2m_num_src_bufs_ready(ctx
->fh
.m2m_ctx
) < needed
)
893 if (v4l2_m2m_num_dst_bufs_ready(ctx
->fh
.m2m_ctx
) < needed
)
899 static void job_abort(void *priv
)
901 struct vpe_ctx
*ctx
= priv
;
903 /* Will cancel the transaction in the next interrupt handler */
908 * Lock access to the device
910 static void vpe_lock(void *priv
)
912 struct vpe_ctx
*ctx
= priv
;
913 struct vpe_dev
*dev
= ctx
->dev
;
914 mutex_lock(&dev
->dev_mutex
);
917 static void vpe_unlock(void *priv
)
919 struct vpe_ctx
*ctx
= priv
;
920 struct vpe_dev
*dev
= ctx
->dev
;
921 mutex_unlock(&dev
->dev_mutex
);
924 static void vpe_dump_regs(struct vpe_dev
*dev
)
926 #define DUMPREG(r) vpe_dbg(dev, "%-35s %08x\n", #r, read_reg(dev, VPE_##r))
928 vpe_dbg(dev
, "VPE Registers:\n");
932 DUMPREG(INT0_STATUS0_RAW
);
933 DUMPREG(INT0_STATUS0
);
934 DUMPREG(INT0_ENABLE0
);
935 DUMPREG(INT0_STATUS1_RAW
);
936 DUMPREG(INT0_STATUS1
);
937 DUMPREG(INT0_ENABLE1
);
940 DUMPREG(CLK_FORMAT_SELECT
);
941 DUMPREG(CLK_RANGE_MAP
);
966 DUMPREG(DEI_FRAME_SIZE
);
968 DUMPREG(MDT_SF_THRESHOLD
);
970 DUMPREG(DEI_EDI_LUT_R0
);
971 DUMPREG(DEI_EDI_LUT_R1
);
972 DUMPREG(DEI_EDI_LUT_R2
);
973 DUMPREG(DEI_EDI_LUT_R3
);
974 DUMPREG(DEI_FMD_WINDOW_R0
);
975 DUMPREG(DEI_FMD_WINDOW_R1
);
976 DUMPREG(DEI_FMD_CONTROL_R0
);
977 DUMPREG(DEI_FMD_CONTROL_R1
);
978 DUMPREG(DEI_FMD_STATUS_R0
);
979 DUMPREG(DEI_FMD_STATUS_R1
);
980 DUMPREG(DEI_FMD_STATUS_R2
);
983 sc_dump_regs(dev
->sc
);
984 csc_dump_regs(dev
->csc
);
987 static void add_out_dtd(struct vpe_ctx
*ctx
, int port
)
989 struct vpe_q_data
*q_data
= &ctx
->q_data
[Q_DATA_DST
];
990 const struct vpe_port_data
*p_data
= &port_data
[port
];
991 struct vb2_buffer
*vb
= &ctx
->dst_vb
->vb2_buf
;
992 struct vpe_fmt
*fmt
= q_data
->fmt
;
993 const struct vpdma_data_format
*vpdma_fmt
;
994 int mv_buf_selector
= !ctx
->src_mv_buf_selector
;
998 if (port
== VPE_PORT_MV_OUT
) {
999 vpdma_fmt
= &vpdma_misc_fmts
[VPDMA_DATA_FMT_MV
];
1000 dma_addr
= ctx
->mv_buf_dma
[mv_buf_selector
];
1002 /* to incorporate interleaved formats */
1003 int plane
= fmt
->coplanar
? p_data
->vb_part
: 0;
1005 vpdma_fmt
= fmt
->vpdma_fmt
[plane
];
1006 dma_addr
= vb2_dma_contig_plane_dma_addr(vb
, plane
);
1009 "acquiring output buffer(%d) dma_addr failed\n",
1015 if (q_data
->flags
& Q_DATA_FRAME_1D
)
1016 flags
|= VPDMA_DATA_FRAME_1D
;
1017 if (q_data
->flags
& Q_DATA_MODE_TILED
)
1018 flags
|= VPDMA_DATA_MODE_TILED
;
1020 vpdma_add_out_dtd(&ctx
->desc_list
, q_data
->width
, &q_data
->c_rect
,
1021 vpdma_fmt
, dma_addr
, p_data
->channel
, flags
);
1024 static void add_in_dtd(struct vpe_ctx
*ctx
, int port
)
1026 struct vpe_q_data
*q_data
= &ctx
->q_data
[Q_DATA_SRC
];
1027 const struct vpe_port_data
*p_data
= &port_data
[port
];
1028 struct vb2_buffer
*vb
= &ctx
->src_vbs
[p_data
->vb_index
]->vb2_buf
;
1029 struct vb2_v4l2_buffer
*vbuf
= to_vb2_v4l2_buffer(vb
);
1030 struct vpe_fmt
*fmt
= q_data
->fmt
;
1031 const struct vpdma_data_format
*vpdma_fmt
;
1032 int mv_buf_selector
= ctx
->src_mv_buf_selector
;
1033 int field
= vbuf
->field
== V4L2_FIELD_BOTTOM
;
1034 int frame_width
, frame_height
;
1035 dma_addr_t dma_addr
;
1038 if (port
== VPE_PORT_MV_IN
) {
1039 vpdma_fmt
= &vpdma_misc_fmts
[VPDMA_DATA_FMT_MV
];
1040 dma_addr
= ctx
->mv_buf_dma
[mv_buf_selector
];
1042 /* to incorporate interleaved formats */
1043 int plane
= fmt
->coplanar
? p_data
->vb_part
: 0;
1045 vpdma_fmt
= fmt
->vpdma_fmt
[plane
];
1047 dma_addr
= vb2_dma_contig_plane_dma_addr(vb
, plane
);
1050 "acquiring input buffer(%d) dma_addr failed\n",
1056 if (q_data
->flags
& Q_DATA_FRAME_1D
)
1057 flags
|= VPDMA_DATA_FRAME_1D
;
1058 if (q_data
->flags
& Q_DATA_MODE_TILED
)
1059 flags
|= VPDMA_DATA_MODE_TILED
;
1061 frame_width
= q_data
->c_rect
.width
;
1062 frame_height
= q_data
->c_rect
.height
;
1064 if (p_data
->vb_part
&& fmt
->fourcc
== V4L2_PIX_FMT_NV12
)
1067 vpdma_add_in_dtd(&ctx
->desc_list
, q_data
->width
, &q_data
->c_rect
,
1068 vpdma_fmt
, dma_addr
, p_data
->channel
, field
, flags
, frame_width
,
1069 frame_height
, 0, 0);
1073 * Enable the expected IRQ sources
1075 static void enable_irqs(struct vpe_ctx
*ctx
)
1077 write_reg(ctx
->dev
, VPE_INT0_ENABLE0_SET
, VPE_INT0_LIST0_COMPLETE
);
1078 write_reg(ctx
->dev
, VPE_INT0_ENABLE1_SET
, VPE_DEI_ERROR_INT
|
1079 VPE_DS1_UV_ERROR_INT
);
1081 vpdma_enable_list_complete_irq(ctx
->dev
->vpdma
, 0, true);
1084 static void disable_irqs(struct vpe_ctx
*ctx
)
1086 write_reg(ctx
->dev
, VPE_INT0_ENABLE0_CLR
, 0xffffffff);
1087 write_reg(ctx
->dev
, VPE_INT0_ENABLE1_CLR
, 0xffffffff);
1089 vpdma_enable_list_complete_irq(ctx
->dev
->vpdma
, 0, false);
1092 /* device_run() - prepares and starts the device
1094 * This function is only called when both the source and destination
1095 * buffers are in place.
1097 static void device_run(void *priv
)
1099 struct vpe_ctx
*ctx
= priv
;
1100 struct sc_data
*sc
= ctx
->dev
->sc
;
1101 struct vpe_q_data
*d_q_data
= &ctx
->q_data
[Q_DATA_DST
];
1103 if (ctx
->deinterlacing
&& ctx
->src_vbs
[2] == NULL
) {
1104 ctx
->src_vbs
[2] = v4l2_m2m_src_buf_remove(ctx
->fh
.m2m_ctx
);
1105 WARN_ON(ctx
->src_vbs
[2] == NULL
);
1106 ctx
->src_vbs
[1] = v4l2_m2m_src_buf_remove(ctx
->fh
.m2m_ctx
);
1107 WARN_ON(ctx
->src_vbs
[1] == NULL
);
1110 ctx
->src_vbs
[0] = v4l2_m2m_src_buf_remove(ctx
->fh
.m2m_ctx
);
1111 WARN_ON(ctx
->src_vbs
[0] == NULL
);
1112 ctx
->dst_vb
= v4l2_m2m_dst_buf_remove(ctx
->fh
.m2m_ctx
);
1113 WARN_ON(ctx
->dst_vb
== NULL
);
1115 /* config descriptors */
1116 if (ctx
->dev
->loaded_mmrs
!= ctx
->mmr_adb
.dma_addr
|| ctx
->load_mmrs
) {
1117 vpdma_map_desc_buf(ctx
->dev
->vpdma
, &ctx
->mmr_adb
);
1118 vpdma_add_cfd_adb(&ctx
->desc_list
, CFD_MMR_CLIENT
, &ctx
->mmr_adb
);
1119 ctx
->dev
->loaded_mmrs
= ctx
->mmr_adb
.dma_addr
;
1120 ctx
->load_mmrs
= false;
1123 if (sc
->loaded_coeff_h
!= ctx
->sc_coeff_h
.dma_addr
||
1125 vpdma_map_desc_buf(ctx
->dev
->vpdma
, &ctx
->sc_coeff_h
);
1126 vpdma_add_cfd_block(&ctx
->desc_list
, CFD_SC_CLIENT
,
1127 &ctx
->sc_coeff_h
, 0);
1129 sc
->loaded_coeff_h
= ctx
->sc_coeff_h
.dma_addr
;
1130 sc
->load_coeff_h
= false;
1133 if (sc
->loaded_coeff_v
!= ctx
->sc_coeff_v
.dma_addr
||
1135 vpdma_map_desc_buf(ctx
->dev
->vpdma
, &ctx
->sc_coeff_v
);
1136 vpdma_add_cfd_block(&ctx
->desc_list
, CFD_SC_CLIENT
,
1137 &ctx
->sc_coeff_v
, SC_COEF_SRAM_SIZE
>> 4);
1139 sc
->loaded_coeff_v
= ctx
->sc_coeff_v
.dma_addr
;
1140 sc
->load_coeff_v
= false;
1143 /* output data descriptors */
1144 if (ctx
->deinterlacing
)
1145 add_out_dtd(ctx
, VPE_PORT_MV_OUT
);
1147 if (d_q_data
->colorspace
== V4L2_COLORSPACE_SRGB
) {
1148 add_out_dtd(ctx
, VPE_PORT_RGB_OUT
);
1150 add_out_dtd(ctx
, VPE_PORT_LUMA_OUT
);
1151 if (d_q_data
->fmt
->coplanar
)
1152 add_out_dtd(ctx
, VPE_PORT_CHROMA_OUT
);
1155 /* input data descriptors */
1156 if (ctx
->deinterlacing
) {
1157 add_in_dtd(ctx
, VPE_PORT_LUMA3_IN
);
1158 add_in_dtd(ctx
, VPE_PORT_CHROMA3_IN
);
1160 add_in_dtd(ctx
, VPE_PORT_LUMA2_IN
);
1161 add_in_dtd(ctx
, VPE_PORT_CHROMA2_IN
);
1164 add_in_dtd(ctx
, VPE_PORT_LUMA1_IN
);
1165 add_in_dtd(ctx
, VPE_PORT_CHROMA1_IN
);
1167 if (ctx
->deinterlacing
)
1168 add_in_dtd(ctx
, VPE_PORT_MV_IN
);
1170 /* sync on channel control descriptors for input ports */
1171 vpdma_add_sync_on_channel_ctd(&ctx
->desc_list
, VPE_CHAN_LUMA1_IN
);
1172 vpdma_add_sync_on_channel_ctd(&ctx
->desc_list
, VPE_CHAN_CHROMA1_IN
);
1174 if (ctx
->deinterlacing
) {
1175 vpdma_add_sync_on_channel_ctd(&ctx
->desc_list
,
1177 vpdma_add_sync_on_channel_ctd(&ctx
->desc_list
,
1178 VPE_CHAN_CHROMA2_IN
);
1180 vpdma_add_sync_on_channel_ctd(&ctx
->desc_list
,
1182 vpdma_add_sync_on_channel_ctd(&ctx
->desc_list
,
1183 VPE_CHAN_CHROMA3_IN
);
1185 vpdma_add_sync_on_channel_ctd(&ctx
->desc_list
, VPE_CHAN_MV_IN
);
1188 /* sync on channel control descriptors for output ports */
1189 if (d_q_data
->colorspace
== V4L2_COLORSPACE_SRGB
) {
1190 vpdma_add_sync_on_channel_ctd(&ctx
->desc_list
,
1193 vpdma_add_sync_on_channel_ctd(&ctx
->desc_list
,
1195 if (d_q_data
->fmt
->coplanar
)
1196 vpdma_add_sync_on_channel_ctd(&ctx
->desc_list
,
1197 VPE_CHAN_CHROMA_OUT
);
1200 if (ctx
->deinterlacing
)
1201 vpdma_add_sync_on_channel_ctd(&ctx
->desc_list
, VPE_CHAN_MV_OUT
);
1205 vpdma_map_desc_buf(ctx
->dev
->vpdma
, &ctx
->desc_list
.buf
);
1206 vpdma_submit_descs(ctx
->dev
->vpdma
, &ctx
->desc_list
);
1209 static void dei_error(struct vpe_ctx
*ctx
)
1211 dev_warn(ctx
->dev
->v4l2_dev
.dev
,
1212 "received DEI error interrupt\n");
1215 static void ds1_uv_error(struct vpe_ctx
*ctx
)
1217 dev_warn(ctx
->dev
->v4l2_dev
.dev
,
1218 "received downsampler error interrupt\n");
1221 static irqreturn_t
vpe_irq(int irq_vpe
, void *data
)
1223 struct vpe_dev
*dev
= (struct vpe_dev
*)data
;
1224 struct vpe_ctx
*ctx
;
1225 struct vpe_q_data
*d_q_data
;
1226 struct vb2_v4l2_buffer
*s_vb
, *d_vb
;
1227 unsigned long flags
;
1230 irqst0
= read_reg(dev
, VPE_INT0_STATUS0
);
1232 write_reg(dev
, VPE_INT0_STATUS0_CLR
, irqst0
);
1233 vpe_dbg(dev
, "INT0_STATUS0 = 0x%08x\n", irqst0
);
1236 irqst1
= read_reg(dev
, VPE_INT0_STATUS1
);
1238 write_reg(dev
, VPE_INT0_STATUS1_CLR
, irqst1
);
1239 vpe_dbg(dev
, "INT0_STATUS1 = 0x%08x\n", irqst1
);
1242 ctx
= v4l2_m2m_get_curr_priv(dev
->m2m_dev
);
1244 vpe_err(dev
, "instance released before end of transaction\n");
1249 if (irqst1
& VPE_DEI_ERROR_INT
) {
1250 irqst1
&= ~VPE_DEI_ERROR_INT
;
1253 if (irqst1
& VPE_DS1_UV_ERROR_INT
) {
1254 irqst1
&= ~VPE_DS1_UV_ERROR_INT
;
1260 if (irqst0
& VPE_INT0_LIST0_COMPLETE
)
1261 vpdma_clear_list_stat(ctx
->dev
->vpdma
);
1263 irqst0
&= ~(VPE_INT0_LIST0_COMPLETE
);
1266 if (irqst0
| irqst1
) {
1267 dev_warn(dev
->v4l2_dev
.dev
, "Unexpected interrupt: "
1268 "INT0_STATUS0 = 0x%08x, INT0_STATUS1 = 0x%08x\n",
1274 vpdma_unmap_desc_buf(dev
->vpdma
, &ctx
->desc_list
.buf
);
1275 vpdma_unmap_desc_buf(dev
->vpdma
, &ctx
->mmr_adb
);
1276 vpdma_unmap_desc_buf(dev
->vpdma
, &ctx
->sc_coeff_h
);
1277 vpdma_unmap_desc_buf(dev
->vpdma
, &ctx
->sc_coeff_v
);
1279 vpdma_reset_desc_list(&ctx
->desc_list
);
1281 /* the previous dst mv buffer becomes the next src mv buffer */
1282 ctx
->src_mv_buf_selector
= !ctx
->src_mv_buf_selector
;
1287 s_vb
= ctx
->src_vbs
[0];
1290 d_vb
->flags
= s_vb
->flags
;
1291 d_vb
->vb2_buf
.timestamp
= s_vb
->vb2_buf
.timestamp
;
1293 if (s_vb
->flags
& V4L2_BUF_FLAG_TIMECODE
)
1294 d_vb
->timecode
= s_vb
->timecode
;
1296 d_vb
->sequence
= ctx
->sequence
;
1298 d_q_data
= &ctx
->q_data
[Q_DATA_DST
];
1299 if (d_q_data
->flags
& Q_DATA_INTERLACED
) {
1300 d_vb
->field
= ctx
->field
;
1301 if (ctx
->field
== V4L2_FIELD_BOTTOM
) {
1303 ctx
->field
= V4L2_FIELD_TOP
;
1305 WARN_ON(ctx
->field
!= V4L2_FIELD_TOP
);
1306 ctx
->field
= V4L2_FIELD_BOTTOM
;
1309 d_vb
->field
= V4L2_FIELD_NONE
;
1313 if (ctx
->deinterlacing
)
1314 s_vb
= ctx
->src_vbs
[2];
1316 spin_lock_irqsave(&dev
->lock
, flags
);
1317 v4l2_m2m_buf_done(s_vb
, VB2_BUF_STATE_DONE
);
1318 v4l2_m2m_buf_done(d_vb
, VB2_BUF_STATE_DONE
);
1319 spin_unlock_irqrestore(&dev
->lock
, flags
);
1321 if (ctx
->deinterlacing
) {
1322 ctx
->src_vbs
[2] = ctx
->src_vbs
[1];
1323 ctx
->src_vbs
[1] = ctx
->src_vbs
[0];
1326 ctx
->bufs_completed
++;
1327 if (ctx
->bufs_completed
< ctx
->bufs_per_job
) {
1333 vpe_dbg(ctx
->dev
, "finishing transaction\n");
1334 ctx
->bufs_completed
= 0;
1335 v4l2_m2m_job_finish(dev
->m2m_dev
, ctx
->fh
.m2m_ctx
);
1343 static int vpe_querycap(struct file
*file
, void *priv
,
1344 struct v4l2_capability
*cap
)
1346 strncpy(cap
->driver
, VPE_MODULE_NAME
, sizeof(cap
->driver
) - 1);
1347 strncpy(cap
->card
, VPE_MODULE_NAME
, sizeof(cap
->card
) - 1);
1348 snprintf(cap
->bus_info
, sizeof(cap
->bus_info
), "platform:%s",
1350 cap
->device_caps
= V4L2_CAP_VIDEO_M2M_MPLANE
| V4L2_CAP_STREAMING
;
1351 cap
->capabilities
= cap
->device_caps
| V4L2_CAP_DEVICE_CAPS
;
1355 static int __enum_fmt(struct v4l2_fmtdesc
*f
, u32 type
)
1358 struct vpe_fmt
*fmt
= NULL
;
1361 for (i
= 0; i
< ARRAY_SIZE(vpe_formats
); ++i
) {
1362 if (vpe_formats
[i
].types
& type
) {
1363 if (index
== f
->index
) {
1364 fmt
= &vpe_formats
[i
];
1374 strncpy(f
->description
, fmt
->name
, sizeof(f
->description
) - 1);
1375 f
->pixelformat
= fmt
->fourcc
;
1379 static int vpe_enum_fmt(struct file
*file
, void *priv
,
1380 struct v4l2_fmtdesc
*f
)
1382 if (V4L2_TYPE_IS_OUTPUT(f
->type
))
1383 return __enum_fmt(f
, VPE_FMT_TYPE_OUTPUT
);
1385 return __enum_fmt(f
, VPE_FMT_TYPE_CAPTURE
);
1388 static int vpe_g_fmt(struct file
*file
, void *priv
, struct v4l2_format
*f
)
1390 struct v4l2_pix_format_mplane
*pix
= &f
->fmt
.pix_mp
;
1391 struct vpe_ctx
*ctx
= file2ctx(file
);
1392 struct vb2_queue
*vq
;
1393 struct vpe_q_data
*q_data
;
1396 vq
= v4l2_m2m_get_vq(ctx
->fh
.m2m_ctx
, f
->type
);
1400 q_data
= get_q_data(ctx
, f
->type
);
1402 pix
->width
= q_data
->width
;
1403 pix
->height
= q_data
->height
;
1404 pix
->pixelformat
= q_data
->fmt
->fourcc
;
1405 pix
->field
= q_data
->field
;
1407 if (V4L2_TYPE_IS_OUTPUT(f
->type
)) {
1408 pix
->colorspace
= q_data
->colorspace
;
1410 struct vpe_q_data
*s_q_data
;
1412 /* get colorspace from the source queue */
1413 s_q_data
= get_q_data(ctx
, V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE
);
1415 pix
->colorspace
= s_q_data
->colorspace
;
1418 pix
->num_planes
= q_data
->fmt
->coplanar
? 2 : 1;
1420 for (i
= 0; i
< pix
->num_planes
; i
++) {
1421 pix
->plane_fmt
[i
].bytesperline
= q_data
->bytesperline
[i
];
1422 pix
->plane_fmt
[i
].sizeimage
= q_data
->sizeimage
[i
];
1428 static int __vpe_try_fmt(struct vpe_ctx
*ctx
, struct v4l2_format
*f
,
1429 struct vpe_fmt
*fmt
, int type
)
1431 struct v4l2_pix_format_mplane
*pix
= &f
->fmt
.pix_mp
;
1432 struct v4l2_plane_pix_format
*plane_fmt
;
1433 unsigned int w_align
;
1434 int i
, depth
, depth_bytes
;
1436 if (!fmt
|| !(fmt
->types
& type
)) {
1437 vpe_err(ctx
->dev
, "Fourcc format (0x%08x) invalid.\n",
1442 if (pix
->field
!= V4L2_FIELD_NONE
&& pix
->field
!= V4L2_FIELD_ALTERNATE
)
1443 pix
->field
= V4L2_FIELD_NONE
;
1445 depth
= fmt
->vpdma_fmt
[VPE_LUMA
]->depth
;
1448 * the line stride should 16 byte aligned for VPDMA to work, based on
1449 * the bytes per pixel, figure out how much the width should be aligned
1450 * to make sure line stride is 16 byte aligned
1452 depth_bytes
= depth
>> 3;
1454 if (depth_bytes
== 3)
1456 * if bpp is 3(as in some RGB formats), the pixel width doesn't
1457 * really help in ensuring line stride is 16 byte aligned
1462 * for the remainder bpp(4, 2 and 1), the pixel width alignment
1463 * can ensure a line stride alignment of 16 bytes. For example,
1464 * if bpp is 2, then the line stride can be 16 byte aligned if
1465 * the width is 8 byte aligned
1467 w_align
= order_base_2(VPDMA_DESC_ALIGN
/ depth_bytes
);
1469 v4l_bound_align_image(&pix
->width
, MIN_W
, MAX_W
, w_align
,
1470 &pix
->height
, MIN_H
, MAX_H
, H_ALIGN
,
1473 pix
->num_planes
= fmt
->coplanar
? 2 : 1;
1474 pix
->pixelformat
= fmt
->fourcc
;
1476 if (!pix
->colorspace
) {
1477 if (fmt
->fourcc
== V4L2_PIX_FMT_RGB24
||
1478 fmt
->fourcc
== V4L2_PIX_FMT_BGR24
||
1479 fmt
->fourcc
== V4L2_PIX_FMT_RGB32
||
1480 fmt
->fourcc
== V4L2_PIX_FMT_BGR32
) {
1481 pix
->colorspace
= V4L2_COLORSPACE_SRGB
;
1483 if (pix
->height
> 1280) /* HD */
1484 pix
->colorspace
= V4L2_COLORSPACE_REC709
;
1486 pix
->colorspace
= V4L2_COLORSPACE_SMPTE170M
;
1490 memset(pix
->reserved
, 0, sizeof(pix
->reserved
));
1491 for (i
= 0; i
< pix
->num_planes
; i
++) {
1492 plane_fmt
= &pix
->plane_fmt
[i
];
1493 depth
= fmt
->vpdma_fmt
[i
]->depth
;
1496 plane_fmt
->bytesperline
= (pix
->width
* depth
) >> 3;
1498 plane_fmt
->bytesperline
= pix
->width
;
1500 plane_fmt
->sizeimage
=
1501 (pix
->height
* pix
->width
* depth
) >> 3;
1503 memset(plane_fmt
->reserved
, 0, sizeof(plane_fmt
->reserved
));
1509 static int vpe_try_fmt(struct file
*file
, void *priv
, struct v4l2_format
*f
)
1511 struct vpe_ctx
*ctx
= file2ctx(file
);
1512 struct vpe_fmt
*fmt
= find_format(f
);
1514 if (V4L2_TYPE_IS_OUTPUT(f
->type
))
1515 return __vpe_try_fmt(ctx
, f
, fmt
, VPE_FMT_TYPE_OUTPUT
);
1517 return __vpe_try_fmt(ctx
, f
, fmt
, VPE_FMT_TYPE_CAPTURE
);
1520 static int __vpe_s_fmt(struct vpe_ctx
*ctx
, struct v4l2_format
*f
)
1522 struct v4l2_pix_format_mplane
*pix
= &f
->fmt
.pix_mp
;
1523 struct v4l2_plane_pix_format
*plane_fmt
;
1524 struct vpe_q_data
*q_data
;
1525 struct vb2_queue
*vq
;
1528 vq
= v4l2_m2m_get_vq(ctx
->fh
.m2m_ctx
, f
->type
);
1532 if (vb2_is_busy(vq
)) {
1533 vpe_err(ctx
->dev
, "queue busy\n");
1537 q_data
= get_q_data(ctx
, f
->type
);
1541 q_data
->fmt
= find_format(f
);
1542 q_data
->width
= pix
->width
;
1543 q_data
->height
= pix
->height
;
1544 q_data
->colorspace
= pix
->colorspace
;
1545 q_data
->field
= pix
->field
;
1547 for (i
= 0; i
< pix
->num_planes
; i
++) {
1548 plane_fmt
= &pix
->plane_fmt
[i
];
1550 q_data
->bytesperline
[i
] = plane_fmt
->bytesperline
;
1551 q_data
->sizeimage
[i
] = plane_fmt
->sizeimage
;
1554 q_data
->c_rect
.left
= 0;
1555 q_data
->c_rect
.top
= 0;
1556 q_data
->c_rect
.width
= q_data
->width
;
1557 q_data
->c_rect
.height
= q_data
->height
;
1559 if (q_data
->field
== V4L2_FIELD_ALTERNATE
)
1560 q_data
->flags
|= Q_DATA_INTERLACED
;
1562 q_data
->flags
&= ~Q_DATA_INTERLACED
;
1564 vpe_dbg(ctx
->dev
, "Setting format for type %d, wxh: %dx%d, fmt: %d bpl_y %d",
1565 f
->type
, q_data
->width
, q_data
->height
, q_data
->fmt
->fourcc
,
1566 q_data
->bytesperline
[VPE_LUMA
]);
1567 if (q_data
->fmt
->coplanar
)
1568 vpe_dbg(ctx
->dev
, " bpl_uv %d\n",
1569 q_data
->bytesperline
[VPE_CHROMA
]);
1574 static int vpe_s_fmt(struct file
*file
, void *priv
, struct v4l2_format
*f
)
1577 struct vpe_ctx
*ctx
= file2ctx(file
);
1579 ret
= vpe_try_fmt(file
, priv
, f
);
1583 ret
= __vpe_s_fmt(ctx
, f
);
1587 if (V4L2_TYPE_IS_OUTPUT(f
->type
))
1588 set_src_registers(ctx
);
1590 set_dst_registers(ctx
);
1592 return set_srcdst_params(ctx
);
1595 static int __vpe_try_selection(struct vpe_ctx
*ctx
, struct v4l2_selection
*s
)
1597 struct vpe_q_data
*q_data
;
1599 if ((s
->type
!= V4L2_BUF_TYPE_VIDEO_CAPTURE
) &&
1600 (s
->type
!= V4L2_BUF_TYPE_VIDEO_OUTPUT
))
1603 q_data
= get_q_data(ctx
, s
->type
);
1607 switch (s
->target
) {
1608 case V4L2_SEL_TGT_COMPOSE
:
1610 * COMPOSE target is only valid for capture buffer type, return
1611 * error for output buffer type
1613 if (s
->type
== V4L2_BUF_TYPE_VIDEO_OUTPUT
)
1616 case V4L2_SEL_TGT_CROP
:
1618 * CROP target is only valid for output buffer type, return
1619 * error for capture buffer type
1621 if (s
->type
== V4L2_BUF_TYPE_VIDEO_CAPTURE
)
1625 * bound and default crop/compose targets are invalid targets to
1632 if (s
->r
.top
< 0 || s
->r
.left
< 0) {
1633 vpe_err(ctx
->dev
, "negative values for top and left\n");
1634 s
->r
.top
= s
->r
.left
= 0;
1637 v4l_bound_align_image(&s
->r
.width
, MIN_W
, q_data
->width
, 1,
1638 &s
->r
.height
, MIN_H
, q_data
->height
, H_ALIGN
, S_ALIGN
);
1640 /* adjust left/top if cropping rectangle is out of bounds */
1641 if (s
->r
.left
+ s
->r
.width
> q_data
->width
)
1642 s
->r
.left
= q_data
->width
- s
->r
.width
;
1643 if (s
->r
.top
+ s
->r
.height
> q_data
->height
)
1644 s
->r
.top
= q_data
->height
- s
->r
.height
;
1649 static int vpe_g_selection(struct file
*file
, void *fh
,
1650 struct v4l2_selection
*s
)
1652 struct vpe_ctx
*ctx
= file2ctx(file
);
1653 struct vpe_q_data
*q_data
;
1654 bool use_c_rect
= false;
1656 if ((s
->type
!= V4L2_BUF_TYPE_VIDEO_CAPTURE
) &&
1657 (s
->type
!= V4L2_BUF_TYPE_VIDEO_OUTPUT
))
1660 q_data
= get_q_data(ctx
, s
->type
);
1664 switch (s
->target
) {
1665 case V4L2_SEL_TGT_COMPOSE_DEFAULT
:
1666 case V4L2_SEL_TGT_COMPOSE_BOUNDS
:
1667 if (s
->type
== V4L2_BUF_TYPE_VIDEO_OUTPUT
)
1670 case V4L2_SEL_TGT_CROP_BOUNDS
:
1671 case V4L2_SEL_TGT_CROP_DEFAULT
:
1672 if (s
->type
== V4L2_BUF_TYPE_VIDEO_CAPTURE
)
1675 case V4L2_SEL_TGT_COMPOSE
:
1676 if (s
->type
== V4L2_BUF_TYPE_VIDEO_OUTPUT
)
1680 case V4L2_SEL_TGT_CROP
:
1681 if (s
->type
== V4L2_BUF_TYPE_VIDEO_CAPTURE
)
1691 * for CROP/COMPOSE target type, return c_rect params from the
1692 * respective buffer type
1694 s
->r
= q_data
->c_rect
;
1697 * for DEFAULT/BOUNDS target type, return width and height from
1698 * S_FMT of the respective buffer type
1702 s
->r
.width
= q_data
->width
;
1703 s
->r
.height
= q_data
->height
;
1710 static int vpe_s_selection(struct file
*file
, void *fh
,
1711 struct v4l2_selection
*s
)
1713 struct vpe_ctx
*ctx
= file2ctx(file
);
1714 struct vpe_q_data
*q_data
;
1715 struct v4l2_selection sel
= *s
;
1718 ret
= __vpe_try_selection(ctx
, &sel
);
1722 q_data
= get_q_data(ctx
, sel
.type
);
1726 if ((q_data
->c_rect
.left
== sel
.r
.left
) &&
1727 (q_data
->c_rect
.top
== sel
.r
.top
) &&
1728 (q_data
->c_rect
.width
== sel
.r
.width
) &&
1729 (q_data
->c_rect
.height
== sel
.r
.height
)) {
1731 "requested crop/compose values are already set\n");
1735 q_data
->c_rect
= sel
.r
;
1737 return set_srcdst_params(ctx
);
1741 * defines number of buffers/frames a context can process with VPE before
1742 * switching to a different context. default value is 1 buffer per context
1744 #define V4L2_CID_VPE_BUFS_PER_JOB (V4L2_CID_USER_TI_VPE_BASE + 0)
1746 static int vpe_s_ctrl(struct v4l2_ctrl
*ctrl
)
1748 struct vpe_ctx
*ctx
=
1749 container_of(ctrl
->handler
, struct vpe_ctx
, hdl
);
1752 case V4L2_CID_VPE_BUFS_PER_JOB
:
1753 ctx
->bufs_per_job
= ctrl
->val
;
1757 vpe_err(ctx
->dev
, "Invalid control\n");
1764 static const struct v4l2_ctrl_ops vpe_ctrl_ops
= {
1765 .s_ctrl
= vpe_s_ctrl
,
1768 static const struct v4l2_ioctl_ops vpe_ioctl_ops
= {
1769 .vidioc_querycap
= vpe_querycap
,
1771 .vidioc_enum_fmt_vid_cap_mplane
= vpe_enum_fmt
,
1772 .vidioc_g_fmt_vid_cap_mplane
= vpe_g_fmt
,
1773 .vidioc_try_fmt_vid_cap_mplane
= vpe_try_fmt
,
1774 .vidioc_s_fmt_vid_cap_mplane
= vpe_s_fmt
,
1776 .vidioc_enum_fmt_vid_out_mplane
= vpe_enum_fmt
,
1777 .vidioc_g_fmt_vid_out_mplane
= vpe_g_fmt
,
1778 .vidioc_try_fmt_vid_out_mplane
= vpe_try_fmt
,
1779 .vidioc_s_fmt_vid_out_mplane
= vpe_s_fmt
,
1781 .vidioc_g_selection
= vpe_g_selection
,
1782 .vidioc_s_selection
= vpe_s_selection
,
1784 .vidioc_reqbufs
= v4l2_m2m_ioctl_reqbufs
,
1785 .vidioc_querybuf
= v4l2_m2m_ioctl_querybuf
,
1786 .vidioc_qbuf
= v4l2_m2m_ioctl_qbuf
,
1787 .vidioc_dqbuf
= v4l2_m2m_ioctl_dqbuf
,
1788 .vidioc_streamon
= v4l2_m2m_ioctl_streamon
,
1789 .vidioc_streamoff
= v4l2_m2m_ioctl_streamoff
,
1791 .vidioc_subscribe_event
= v4l2_ctrl_subscribe_event
,
1792 .vidioc_unsubscribe_event
= v4l2_event_unsubscribe
,
1798 static int vpe_queue_setup(struct vb2_queue
*vq
,
1799 unsigned int *nbuffers
, unsigned int *nplanes
,
1800 unsigned int sizes
[], void *alloc_ctxs
[])
1803 struct vpe_ctx
*ctx
= vb2_get_drv_priv(vq
);
1804 struct vpe_q_data
*q_data
;
1806 q_data
= get_q_data(ctx
, vq
->type
);
1808 *nplanes
= q_data
->fmt
->coplanar
? 2 : 1;
1810 for (i
= 0; i
< *nplanes
; i
++) {
1811 sizes
[i
] = q_data
->sizeimage
[i
];
1812 alloc_ctxs
[i
] = ctx
->dev
->alloc_ctx
;
1815 vpe_dbg(ctx
->dev
, "get %d buffer(s) of size %d", *nbuffers
,
1817 if (q_data
->fmt
->coplanar
)
1818 vpe_dbg(ctx
->dev
, " and %d\n", sizes
[VPE_CHROMA
]);
1823 static int vpe_buf_prepare(struct vb2_buffer
*vb
)
1825 struct vb2_v4l2_buffer
*vbuf
= to_vb2_v4l2_buffer(vb
);
1826 struct vpe_ctx
*ctx
= vb2_get_drv_priv(vb
->vb2_queue
);
1827 struct vpe_q_data
*q_data
;
1830 vpe_dbg(ctx
->dev
, "type: %d\n", vb
->vb2_queue
->type
);
1832 q_data
= get_q_data(ctx
, vb
->vb2_queue
->type
);
1833 num_planes
= q_data
->fmt
->coplanar
? 2 : 1;
1835 if (vb
->vb2_queue
->type
== V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE
) {
1836 if (!(q_data
->flags
& Q_DATA_INTERLACED
)) {
1837 vbuf
->field
= V4L2_FIELD_NONE
;
1839 if (vbuf
->field
!= V4L2_FIELD_TOP
&&
1840 vbuf
->field
!= V4L2_FIELD_BOTTOM
)
1845 for (i
= 0; i
< num_planes
; i
++) {
1846 if (vb2_plane_size(vb
, i
) < q_data
->sizeimage
[i
]) {
1848 "data will not fit into plane (%lu < %lu)\n",
1849 vb2_plane_size(vb
, i
),
1850 (long) q_data
->sizeimage
[i
]);
1855 for (i
= 0; i
< num_planes
; i
++)
1856 vb2_set_plane_payload(vb
, i
, q_data
->sizeimage
[i
]);
1861 static void vpe_buf_queue(struct vb2_buffer
*vb
)
1863 struct vb2_v4l2_buffer
*vbuf
= to_vb2_v4l2_buffer(vb
);
1864 struct vpe_ctx
*ctx
= vb2_get_drv_priv(vb
->vb2_queue
);
1866 v4l2_m2m_buf_queue(ctx
->fh
.m2m_ctx
, vbuf
);
1869 static int vpe_start_streaming(struct vb2_queue
*q
, unsigned int count
)
1871 /* currently we do nothing here */
1876 static void vpe_stop_streaming(struct vb2_queue
*q
)
1878 struct vpe_ctx
*ctx
= vb2_get_drv_priv(q
);
1880 vpe_dump_regs(ctx
->dev
);
1881 vpdma_dump_regs(ctx
->dev
->vpdma
);
1884 static struct vb2_ops vpe_qops
= {
1885 .queue_setup
= vpe_queue_setup
,
1886 .buf_prepare
= vpe_buf_prepare
,
1887 .buf_queue
= vpe_buf_queue
,
1888 .wait_prepare
= vb2_ops_wait_prepare
,
1889 .wait_finish
= vb2_ops_wait_finish
,
1890 .start_streaming
= vpe_start_streaming
,
1891 .stop_streaming
= vpe_stop_streaming
,
1894 static int queue_init(void *priv
, struct vb2_queue
*src_vq
,
1895 struct vb2_queue
*dst_vq
)
1897 struct vpe_ctx
*ctx
= priv
;
1898 struct vpe_dev
*dev
= ctx
->dev
;
1901 memset(src_vq
, 0, sizeof(*src_vq
));
1902 src_vq
->type
= V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE
;
1903 src_vq
->io_modes
= VB2_MMAP
| VB2_DMABUF
;
1904 src_vq
->drv_priv
= ctx
;
1905 src_vq
->buf_struct_size
= sizeof(struct v4l2_m2m_buffer
);
1906 src_vq
->ops
= &vpe_qops
;
1907 src_vq
->mem_ops
= &vb2_dma_contig_memops
;
1908 src_vq
->timestamp_flags
= V4L2_BUF_FLAG_TIMESTAMP_COPY
;
1909 src_vq
->lock
= &dev
->dev_mutex
;
1911 ret
= vb2_queue_init(src_vq
);
1915 memset(dst_vq
, 0, sizeof(*dst_vq
));
1916 dst_vq
->type
= V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE
;
1917 dst_vq
->io_modes
= VB2_MMAP
| VB2_DMABUF
;
1918 dst_vq
->drv_priv
= ctx
;
1919 dst_vq
->buf_struct_size
= sizeof(struct v4l2_m2m_buffer
);
1920 dst_vq
->ops
= &vpe_qops
;
1921 dst_vq
->mem_ops
= &vb2_dma_contig_memops
;
1922 dst_vq
->timestamp_flags
= V4L2_BUF_FLAG_TIMESTAMP_COPY
;
1923 dst_vq
->lock
= &dev
->dev_mutex
;
1925 return vb2_queue_init(dst_vq
);
1928 static const struct v4l2_ctrl_config vpe_bufs_per_job
= {
1929 .ops
= &vpe_ctrl_ops
,
1930 .id
= V4L2_CID_VPE_BUFS_PER_JOB
,
1931 .name
= "Buffers Per Transaction",
1932 .type
= V4L2_CTRL_TYPE_INTEGER
,
1933 .def
= VPE_DEF_BUFS_PER_JOB
,
1935 .max
= VIDEO_MAX_FRAME
,
1942 static int vpe_open(struct file
*file
)
1944 struct vpe_dev
*dev
= video_drvdata(file
);
1945 struct vpe_q_data
*s_q_data
;
1946 struct v4l2_ctrl_handler
*hdl
;
1947 struct vpe_ctx
*ctx
;
1950 vpe_dbg(dev
, "vpe_open\n");
1952 ctx
= kzalloc(sizeof(*ctx
), GFP_KERNEL
);
1958 if (mutex_lock_interruptible(&dev
->dev_mutex
)) {
1963 ret
= vpdma_create_desc_list(&ctx
->desc_list
, VPE_DESC_LIST_SIZE
,
1964 VPDMA_LIST_TYPE_NORMAL
);
1968 ret
= vpdma_alloc_desc_buf(&ctx
->mmr_adb
, sizeof(struct vpe_mmr_adb
));
1970 goto free_desc_list
;
1972 ret
= vpdma_alloc_desc_buf(&ctx
->sc_coeff_h
, SC_COEF_SRAM_SIZE
);
1976 ret
= vpdma_alloc_desc_buf(&ctx
->sc_coeff_v
, SC_COEF_SRAM_SIZE
);
1982 v4l2_fh_init(&ctx
->fh
, video_devdata(file
));
1983 file
->private_data
= &ctx
->fh
;
1986 v4l2_ctrl_handler_init(hdl
, 1);
1987 v4l2_ctrl_new_custom(hdl
, &vpe_bufs_per_job
, NULL
);
1992 ctx
->fh
.ctrl_handler
= hdl
;
1993 v4l2_ctrl_handler_setup(hdl
);
1995 s_q_data
= &ctx
->q_data
[Q_DATA_SRC
];
1996 s_q_data
->fmt
= &vpe_formats
[2];
1997 s_q_data
->width
= 1920;
1998 s_q_data
->height
= 1080;
1999 s_q_data
->bytesperline
[VPE_LUMA
] = (s_q_data
->width
*
2000 s_q_data
->fmt
->vpdma_fmt
[VPE_LUMA
]->depth
) >> 3;
2001 s_q_data
->sizeimage
[VPE_LUMA
] = (s_q_data
->bytesperline
[VPE_LUMA
] *
2003 s_q_data
->colorspace
= V4L2_COLORSPACE_REC709
;
2004 s_q_data
->field
= V4L2_FIELD_NONE
;
2005 s_q_data
->c_rect
.left
= 0;
2006 s_q_data
->c_rect
.top
= 0;
2007 s_q_data
->c_rect
.width
= s_q_data
->width
;
2008 s_q_data
->c_rect
.height
= s_q_data
->height
;
2009 s_q_data
->flags
= 0;
2011 ctx
->q_data
[Q_DATA_DST
] = *s_q_data
;
2013 set_dei_shadow_registers(ctx
);
2014 set_src_registers(ctx
);
2015 set_dst_registers(ctx
);
2016 ret
= set_srcdst_params(ctx
);
2020 ctx
->fh
.m2m_ctx
= v4l2_m2m_ctx_init(dev
->m2m_dev
, ctx
, &queue_init
);
2022 if (IS_ERR(ctx
->fh
.m2m_ctx
)) {
2023 ret
= PTR_ERR(ctx
->fh
.m2m_ctx
);
2027 v4l2_fh_add(&ctx
->fh
);
2030 * for now, just report the creation of the first instance, we can later
2031 * optimize the driver to enable or disable clocks when the first
2032 * instance is created or the last instance released
2034 if (atomic_inc_return(&dev
->num_instances
) == 1)
2035 vpe_dbg(dev
, "first instance created\n");
2037 ctx
->bufs_per_job
= VPE_DEF_BUFS_PER_JOB
;
2039 ctx
->load_mmrs
= true;
2041 vpe_dbg(dev
, "created instance %p, m2m_ctx: %p\n",
2042 ctx
, ctx
->fh
.m2m_ctx
);
2044 mutex_unlock(&dev
->dev_mutex
);
2048 v4l2_ctrl_handler_free(hdl
);
2049 v4l2_fh_exit(&ctx
->fh
);
2050 vpdma_free_desc_buf(&ctx
->sc_coeff_v
);
2052 vpdma_free_desc_buf(&ctx
->sc_coeff_h
);
2054 vpdma_free_desc_buf(&ctx
->mmr_adb
);
2056 vpdma_free_desc_list(&ctx
->desc_list
);
2058 mutex_unlock(&dev
->dev_mutex
);
2064 static int vpe_release(struct file
*file
)
2066 struct vpe_dev
*dev
= video_drvdata(file
);
2067 struct vpe_ctx
*ctx
= file2ctx(file
);
2069 vpe_dbg(dev
, "releasing instance %p\n", ctx
);
2071 mutex_lock(&dev
->dev_mutex
);
2073 free_mv_buffers(ctx
);
2074 vpdma_free_desc_list(&ctx
->desc_list
);
2075 vpdma_free_desc_buf(&ctx
->mmr_adb
);
2077 v4l2_fh_del(&ctx
->fh
);
2078 v4l2_fh_exit(&ctx
->fh
);
2079 v4l2_ctrl_handler_free(&ctx
->hdl
);
2080 v4l2_m2m_ctx_release(ctx
->fh
.m2m_ctx
);
2085 * for now, just report the release of the last instance, we can later
2086 * optimize the driver to enable or disable clocks when the first
2087 * instance is created or the last instance released
2089 if (atomic_dec_return(&dev
->num_instances
) == 0)
2090 vpe_dbg(dev
, "last instance released\n");
2092 mutex_unlock(&dev
->dev_mutex
);
2097 static const struct v4l2_file_operations vpe_fops
= {
2098 .owner
= THIS_MODULE
,
2100 .release
= vpe_release
,
2101 .poll
= v4l2_m2m_fop_poll
,
2102 .unlocked_ioctl
= video_ioctl2
,
2103 .mmap
= v4l2_m2m_fop_mmap
,
2106 static struct video_device vpe_videodev
= {
2107 .name
= VPE_MODULE_NAME
,
2109 .ioctl_ops
= &vpe_ioctl_ops
,
2111 .release
= video_device_release_empty
,
2112 .vfl_dir
= VFL_DIR_M2M
,
2115 static struct v4l2_m2m_ops m2m_ops
= {
2116 .device_run
= device_run
,
2117 .job_ready
= job_ready
,
2118 .job_abort
= job_abort
,
2120 .unlock
= vpe_unlock
,
2123 static int vpe_runtime_get(struct platform_device
*pdev
)
2127 dev_dbg(&pdev
->dev
, "vpe_runtime_get\n");
2129 r
= pm_runtime_get_sync(&pdev
->dev
);
2131 return r
< 0 ? r
: 0;
2134 static void vpe_runtime_put(struct platform_device
*pdev
)
2139 dev_dbg(&pdev
->dev
, "vpe_runtime_put\n");
2141 r
= pm_runtime_put_sync(&pdev
->dev
);
2142 WARN_ON(r
< 0 && r
!= -ENOSYS
);
2145 static void vpe_fw_cb(struct platform_device
*pdev
)
2147 struct vpe_dev
*dev
= platform_get_drvdata(pdev
);
2148 struct video_device
*vfd
;
2152 *vfd
= vpe_videodev
;
2153 vfd
->lock
= &dev
->dev_mutex
;
2154 vfd
->v4l2_dev
= &dev
->v4l2_dev
;
2156 ret
= video_register_device(vfd
, VFL_TYPE_GRABBER
, 0);
2158 vpe_err(dev
, "Failed to register video device\n");
2160 vpe_set_clock_enable(dev
, 0);
2161 vpe_runtime_put(pdev
);
2162 pm_runtime_disable(&pdev
->dev
);
2163 v4l2_m2m_release(dev
->m2m_dev
);
2164 vb2_dma_contig_cleanup_ctx(dev
->alloc_ctx
);
2165 v4l2_device_unregister(&dev
->v4l2_dev
);
2170 video_set_drvdata(vfd
, dev
);
2171 snprintf(vfd
->name
, sizeof(vfd
->name
), "%s", vpe_videodev
.name
);
2172 dev_info(dev
->v4l2_dev
.dev
, "Device registered as /dev/video%d\n",
2176 static int vpe_probe(struct platform_device
*pdev
)
2178 struct vpe_dev
*dev
;
2181 dev
= devm_kzalloc(&pdev
->dev
, sizeof(*dev
), GFP_KERNEL
);
2185 spin_lock_init(&dev
->lock
);
2187 ret
= v4l2_device_register(&pdev
->dev
, &dev
->v4l2_dev
);
2191 atomic_set(&dev
->num_instances
, 0);
2192 mutex_init(&dev
->dev_mutex
);
2194 dev
->res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
,
2197 * HACK: we get resource info from device tree in the form of a list of
2198 * VPE sub blocks, the driver currently uses only the base of vpe_top
2199 * for register access, the driver should be changed later to access
2200 * registers based on the sub block base addresses
2202 dev
->base
= devm_ioremap(&pdev
->dev
, dev
->res
->start
, SZ_32K
);
2205 goto v4l2_dev_unreg
;
2208 irq
= platform_get_irq(pdev
, 0);
2209 ret
= devm_request_irq(&pdev
->dev
, irq
, vpe_irq
, 0, VPE_MODULE_NAME
,
2212 goto v4l2_dev_unreg
;
2214 platform_set_drvdata(pdev
, dev
);
2216 dev
->alloc_ctx
= vb2_dma_contig_init_ctx(&pdev
->dev
);
2217 if (IS_ERR(dev
->alloc_ctx
)) {
2218 vpe_err(dev
, "Failed to alloc vb2 context\n");
2219 ret
= PTR_ERR(dev
->alloc_ctx
);
2220 goto v4l2_dev_unreg
;
2223 dev
->m2m_dev
= v4l2_m2m_init(&m2m_ops
);
2224 if (IS_ERR(dev
->m2m_dev
)) {
2225 vpe_err(dev
, "Failed to init mem2mem device\n");
2226 ret
= PTR_ERR(dev
->m2m_dev
);
2230 pm_runtime_enable(&pdev
->dev
);
2232 ret
= vpe_runtime_get(pdev
);
2236 /* Perform clk enable followed by reset */
2237 vpe_set_clock_enable(dev
, 1);
2241 func
= read_field_reg(dev
, VPE_PID
, VPE_PID_FUNC_MASK
,
2242 VPE_PID_FUNC_SHIFT
);
2243 vpe_dbg(dev
, "VPE PID function %x\n", func
);
2245 vpe_top_vpdma_reset(dev
);
2247 dev
->sc
= sc_create(pdev
);
2248 if (IS_ERR(dev
->sc
)) {
2249 ret
= PTR_ERR(dev
->sc
);
2253 dev
->csc
= csc_create(pdev
);
2254 if (IS_ERR(dev
->csc
)) {
2255 ret
= PTR_ERR(dev
->csc
);
2259 dev
->vpdma
= vpdma_create(pdev
, vpe_fw_cb
);
2260 if (IS_ERR(dev
->vpdma
)) {
2261 ret
= PTR_ERR(dev
->vpdma
);
2268 vpe_runtime_put(pdev
);
2270 pm_runtime_disable(&pdev
->dev
);
2271 v4l2_m2m_release(dev
->m2m_dev
);
2273 vb2_dma_contig_cleanup_ctx(dev
->alloc_ctx
);
2275 v4l2_device_unregister(&dev
->v4l2_dev
);
2280 static int vpe_remove(struct platform_device
*pdev
)
2282 struct vpe_dev
*dev
= platform_get_drvdata(pdev
);
2284 v4l2_info(&dev
->v4l2_dev
, "Removing " VPE_MODULE_NAME
);
2286 v4l2_m2m_release(dev
->m2m_dev
);
2287 video_unregister_device(&dev
->vfd
);
2288 v4l2_device_unregister(&dev
->v4l2_dev
);
2289 vb2_dma_contig_cleanup_ctx(dev
->alloc_ctx
);
2291 vpe_set_clock_enable(dev
, 0);
2292 vpe_runtime_put(pdev
);
2293 pm_runtime_disable(&pdev
->dev
);
2298 #if defined(CONFIG_OF)
2299 static const struct of_device_id vpe_of_match
[] = {
2301 .compatible
= "ti,vpe",
2307 static struct platform_driver vpe_pdrv
= {
2309 .remove
= vpe_remove
,
2311 .name
= VPE_MODULE_NAME
,
2312 .of_match_table
= of_match_ptr(vpe_of_match
),
2316 module_platform_driver(vpe_pdrv
);
2318 MODULE_DESCRIPTION("TI VPE driver");
2319 MODULE_AUTHOR("Dale Farnsworth, <dale@farnsworth.org>");
2320 MODULE_LICENSE("GPL");