2 * Driver for mt2063 Micronas tuner
4 * Copyright (c) 2011 Mauro Carvalho Chehab
6 * This driver came from a driver originally written by:
7 * Henry Wang <Henry.wang@AzureWave.com>
8 * Made publicly available by Terratec, at:
9 * http://linux.terratec.de/files/TERRATEC_H7/20110323_TERRATEC_H7_Linux.tar.gz
10 * The original driver's license is GPL, as declared with MODULE_LICENSE()
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation under version 2 of the License.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
22 #include <linux/init.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/string.h>
26 #include <linux/videodev2.h>
30 static unsigned int debug
;
31 module_param(debug
, int, 0644);
32 MODULE_PARM_DESC(debug
, "Set Verbosity level");
34 #define dprintk(level, fmt, arg...) do { \
36 printk(KERN_DEBUG "mt2063 %s: " fmt, __func__, ## arg); \
40 /* positive error codes used internally */
42 /* Info: Unavoidable LO-related spur may be present in the output */
43 #define MT2063_SPUR_PRESENT_ERR (0x00800000)
45 /* Info: Mask of bits used for # of LO-related spurs that were avoided during tuning */
46 #define MT2063_SPUR_CNT_MASK (0x001f0000)
47 #define MT2063_SPUR_SHIFT (16)
49 /* Info: Upconverter frequency is out of range (may be reason for MT_UPC_UNLOCK) */
50 #define MT2063_UPC_RANGE (0x04000000)
52 /* Info: Downconverter frequency is out of range (may be reason for MT_DPC_UNLOCK) */
53 #define MT2063_DNC_RANGE (0x08000000)
56 * Constant defining the version of the following structure
57 * and therefore the API for this code.
59 * When compiling the tuner driver, the preprocessor will
60 * check against this version number to make sure that
61 * it matches the version that the tuner driver knows about.
64 /* DECT Frequency Avoidance */
65 #define MT2063_DECT_AVOID_US_FREQS 0x00000001
67 #define MT2063_DECT_AVOID_EURO_FREQS 0x00000002
69 #define MT2063_EXCLUDE_US_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_US_FREQS) != 0)
71 #define MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_EURO_FREQS) != 0)
73 enum MT2063_DECT_Avoid_Type
{
74 MT2063_NO_DECT_AVOIDANCE
= 0, /* Do not create DECT exclusion zones. */
75 MT2063_AVOID_US_DECT
= MT2063_DECT_AVOID_US_FREQS
, /* Avoid US DECT frequencies. */
76 MT2063_AVOID_EURO_DECT
= MT2063_DECT_AVOID_EURO_FREQS
, /* Avoid European DECT frequencies. */
77 MT2063_AVOID_BOTH
/* Avoid both regions. Not typically used. */
80 #define MT2063_MAX_ZONES 48
82 struct MT2063_ExclZone_t
{
85 struct MT2063_ExclZone_t
*next_
;
89 * Structure of data needed for Spur Avoidance
91 struct MT2063_AvoidSpursData_t
{
103 u32 f_LO1_FracN_Avoid
;
104 u32 f_LO2_FracN_Avoid
;
106 u32 f_min_LO_Separation
;
109 enum MT2063_DECT_Avoid_Type avoidDECT
;
114 struct MT2063_ExclZone_t
*freeZones
;
115 struct MT2063_ExclZone_t
*usedZones
;
116 struct MT2063_ExclZone_t MT2063_ExclZones
[MT2063_MAX_ZONES
];
120 * Parameter for function MT2063_SetPowerMask that specifies the power down
121 * of various sections of the MT2063.
123 enum MT2063_Mask_Bits
{
124 MT2063_REG_SD
= 0x0040, /* Shutdown regulator */
125 MT2063_SRO_SD
= 0x0020, /* Shutdown SRO */
126 MT2063_AFC_SD
= 0x0010, /* Shutdown AFC A/D */
127 MT2063_PD_SD
= 0x0002, /* Enable power detector shutdown */
128 MT2063_PDADC_SD
= 0x0001, /* Enable power detector A/D shutdown */
129 MT2063_VCO_SD
= 0x8000, /* Enable VCO shutdown */
130 MT2063_LTX_SD
= 0x4000, /* Enable LTX shutdown */
131 MT2063_LT1_SD
= 0x2000, /* Enable LT1 shutdown */
132 MT2063_LNA_SD
= 0x1000, /* Enable LNA shutdown */
133 MT2063_UPC_SD
= 0x0800, /* Enable upconverter shutdown */
134 MT2063_DNC_SD
= 0x0400, /* Enable downconverter shutdown */
135 MT2063_VGA_SD
= 0x0200, /* Enable VGA shutdown */
136 MT2063_AMP_SD
= 0x0100, /* Enable AMP shutdown */
137 MT2063_ALL_SD
= 0xFF73, /* All shutdown bits for this tuner */
138 MT2063_NONE_SD
= 0x0000 /* No shutdown bits */
142 * Possible values for MT2063_DNC_OUTPUT
144 enum MT2063_DNC_Output_Enable
{
152 * Two-wire serial bus subaddresses of the tuner registers.
153 * Also known as the tuner's register addresses.
155 enum MT2063_Register_Offsets
{
156 MT2063_REG_PART_REV
= 0, /* 0x00: Part/Rev Code */
157 MT2063_REG_LO1CQ_1
, /* 0x01: LO1C Queued Byte 1 */
158 MT2063_REG_LO1CQ_2
, /* 0x02: LO1C Queued Byte 2 */
159 MT2063_REG_LO2CQ_1
, /* 0x03: LO2C Queued Byte 1 */
160 MT2063_REG_LO2CQ_2
, /* 0x04: LO2C Queued Byte 2 */
161 MT2063_REG_LO2CQ_3
, /* 0x05: LO2C Queued Byte 3 */
162 MT2063_REG_RSVD_06
, /* 0x06: Reserved */
163 MT2063_REG_LO_STATUS
, /* 0x07: LO Status */
164 MT2063_REG_FIFFC
, /* 0x08: FIFF Center */
165 MT2063_REG_CLEARTUNE
, /* 0x09: ClearTune Filter */
166 MT2063_REG_ADC_OUT
, /* 0x0A: ADC_OUT */
167 MT2063_REG_LO1C_1
, /* 0x0B: LO1C Byte 1 */
168 MT2063_REG_LO1C_2
, /* 0x0C: LO1C Byte 2 */
169 MT2063_REG_LO2C_1
, /* 0x0D: LO2C Byte 1 */
170 MT2063_REG_LO2C_2
, /* 0x0E: LO2C Byte 2 */
171 MT2063_REG_LO2C_3
, /* 0x0F: LO2C Byte 3 */
172 MT2063_REG_RSVD_10
, /* 0x10: Reserved */
173 MT2063_REG_PWR_1
, /* 0x11: PWR Byte 1 */
174 MT2063_REG_PWR_2
, /* 0x12: PWR Byte 2 */
175 MT2063_REG_TEMP_STATUS
, /* 0x13: Temp Status */
176 MT2063_REG_XO_STATUS
, /* 0x14: Crystal Status */
177 MT2063_REG_RF_STATUS
, /* 0x15: RF Attn Status */
178 MT2063_REG_FIF_STATUS
, /* 0x16: FIF Attn Status */
179 MT2063_REG_LNA_OV
, /* 0x17: LNA Attn Override */
180 MT2063_REG_RF_OV
, /* 0x18: RF Attn Override */
181 MT2063_REG_FIF_OV
, /* 0x19: FIF Attn Override */
182 MT2063_REG_LNA_TGT
, /* 0x1A: Reserved */
183 MT2063_REG_PD1_TGT
, /* 0x1B: Pwr Det 1 Target */
184 MT2063_REG_PD2_TGT
, /* 0x1C: Pwr Det 2 Target */
185 MT2063_REG_RSVD_1D
, /* 0x1D: Reserved */
186 MT2063_REG_RSVD_1E
, /* 0x1E: Reserved */
187 MT2063_REG_RSVD_1F
, /* 0x1F: Reserved */
188 MT2063_REG_RSVD_20
, /* 0x20: Reserved */
189 MT2063_REG_BYP_CTRL
, /* 0x21: Bypass Control */
190 MT2063_REG_RSVD_22
, /* 0x22: Reserved */
191 MT2063_REG_RSVD_23
, /* 0x23: Reserved */
192 MT2063_REG_RSVD_24
, /* 0x24: Reserved */
193 MT2063_REG_RSVD_25
, /* 0x25: Reserved */
194 MT2063_REG_RSVD_26
, /* 0x26: Reserved */
195 MT2063_REG_RSVD_27
, /* 0x27: Reserved */
196 MT2063_REG_FIFF_CTRL
, /* 0x28: FIFF Control */
197 MT2063_REG_FIFF_OFFSET
, /* 0x29: FIFF Offset */
198 MT2063_REG_CTUNE_CTRL
, /* 0x2A: Reserved */
199 MT2063_REG_CTUNE_OV
, /* 0x2B: Reserved */
200 MT2063_REG_CTRL_2C
, /* 0x2C: Reserved */
201 MT2063_REG_FIFF_CTRL2
, /* 0x2D: Fiff Control */
202 MT2063_REG_RSVD_2E
, /* 0x2E: Reserved */
203 MT2063_REG_DNC_GAIN
, /* 0x2F: DNC Control */
204 MT2063_REG_VGA_GAIN
, /* 0x30: VGA Gain Ctrl */
205 MT2063_REG_RSVD_31
, /* 0x31: Reserved */
206 MT2063_REG_TEMP_SEL
, /* 0x32: Temperature Selection */
207 MT2063_REG_RSVD_33
, /* 0x33: Reserved */
208 MT2063_REG_RSVD_34
, /* 0x34: Reserved */
209 MT2063_REG_RSVD_35
, /* 0x35: Reserved */
210 MT2063_REG_RSVD_36
, /* 0x36: Reserved */
211 MT2063_REG_RSVD_37
, /* 0x37: Reserved */
212 MT2063_REG_RSVD_38
, /* 0x38: Reserved */
213 MT2063_REG_RSVD_39
, /* 0x39: Reserved */
214 MT2063_REG_RSVD_3A
, /* 0x3A: Reserved */
215 MT2063_REG_RSVD_3B
, /* 0x3B: Reserved */
216 MT2063_REG_RSVD_3C
, /* 0x3C: Reserved */
220 struct mt2063_state
{
221 struct i2c_adapter
*i2c
;
225 const struct mt2063_config
*config
;
226 struct dvb_tuner_ops ops
;
227 struct dvb_frontend
*frontend
;
235 struct MT2063_AvoidSpursData_t AS_Data
;
241 u8 reg
[MT2063_REG_END_REGS
];
245 * mt2063_write - Write data into the I2C bus
247 static int mt2063_write(struct mt2063_state
*state
, u8 reg
, u8
*data
, u32 len
)
249 struct dvb_frontend
*fe
= state
->frontend
;
252 struct i2c_msg msg
= {
253 .addr
= state
->config
->tuner_address
,
262 memcpy(msg
.buf
+ 1, data
, len
);
264 if (fe
->ops
.i2c_gate_ctrl
)
265 fe
->ops
.i2c_gate_ctrl(fe
, 1);
266 ret
= i2c_transfer(state
->i2c
, &msg
, 1);
267 if (fe
->ops
.i2c_gate_ctrl
)
268 fe
->ops
.i2c_gate_ctrl(fe
, 0);
271 printk(KERN_ERR
"%s error ret=%d\n", __func__
, ret
);
277 * mt2063_write - Write register data into the I2C bus, caching the value
279 static int mt2063_setreg(struct mt2063_state
*state
, u8 reg
, u8 val
)
285 if (reg
>= MT2063_REG_END_REGS
)
288 status
= mt2063_write(state
, reg
, &val
, 1);
292 state
->reg
[reg
] = val
;
298 * mt2063_read - Read data from the I2C bus
300 static int mt2063_read(struct mt2063_state
*state
,
301 u8 subAddress
, u8
*pData
, u32 cnt
)
303 int status
= 0; /* Status to be returned */
304 struct dvb_frontend
*fe
= state
->frontend
;
307 dprintk(2, "addr 0x%02x, cnt %d\n", subAddress
, cnt
);
309 if (fe
->ops
.i2c_gate_ctrl
)
310 fe
->ops
.i2c_gate_ctrl(fe
, 1);
312 for (i
= 0; i
< cnt
; i
++) {
313 u8 b0
[] = { subAddress
+ i
};
314 struct i2c_msg msg
[] = {
316 .addr
= state
->config
->tuner_address
,
321 .addr
= state
->config
->tuner_address
,
328 status
= i2c_transfer(state
->i2c
, msg
, 2);
329 dprintk(2, "addr 0x%02x, ret = %d, val = 0x%02x\n",
330 subAddress
+ i
, status
, *(pData
+ i
));
334 if (fe
->ops
.i2c_gate_ctrl
)
335 fe
->ops
.i2c_gate_ctrl(fe
, 0);
338 printk(KERN_ERR
"Can't read from address 0x%02x,\n",
345 * FIXME: Is this really needed?
347 static int MT2063_Sleep(struct dvb_frontend
*fe
)
350 * ToDo: Add code here to implement a OS blocking
358 * Microtune spur avoidance
361 /* Implement ceiling, floor functions. */
362 #define ceil(n, d) (((n) < 0) ? (-((-(n))/(d))) : (n)/(d) + ((n)%(d) != 0))
363 #define floor(n, d) (((n) < 0) ? (-((-(n))/(d))) - ((n)%(d) != 0) : (n)/(d))
365 struct MT2063_FIFZone_t
{
370 static struct MT2063_ExclZone_t
*InsertNode(struct MT2063_AvoidSpursData_t
372 struct MT2063_ExclZone_t
*pPrevNode
)
374 struct MT2063_ExclZone_t
*pNode
;
378 /* Check for a node in the free list */
379 if (pAS_Info
->freeZones
!= NULL
) {
380 /* Use one from the free list */
381 pNode
= pAS_Info
->freeZones
;
382 pAS_Info
->freeZones
= pNode
->next_
;
384 /* Grab a node from the array */
385 pNode
= &pAS_Info
->MT2063_ExclZones
[pAS_Info
->nZones
];
388 if (pPrevNode
!= NULL
) {
389 pNode
->next_
= pPrevNode
->next_
;
390 pPrevNode
->next_
= pNode
;
391 } else { /* insert at the beginning of the list */
393 pNode
->next_
= pAS_Info
->usedZones
;
394 pAS_Info
->usedZones
= pNode
;
401 static struct MT2063_ExclZone_t
*RemoveNode(struct MT2063_AvoidSpursData_t
403 struct MT2063_ExclZone_t
*pPrevNode
,
404 struct MT2063_ExclZone_t
407 struct MT2063_ExclZone_t
*pNext
= pNodeToRemove
->next_
;
411 /* Make previous node point to the subsequent node */
412 if (pPrevNode
!= NULL
)
413 pPrevNode
->next_
= pNext
;
415 /* Add pNodeToRemove to the beginning of the freeZones */
416 pNodeToRemove
->next_
= pAS_Info
->freeZones
;
417 pAS_Info
->freeZones
= pNodeToRemove
;
419 /* Decrement node count */
428 * Add (and merge) an exclusion zone into the list.
429 * If the range (f_min, f_max) is totally outside the
430 * 1st IF BW, ignore the entry.
431 * If the range (f_min, f_max) is negative, ignore the entry.
433 static void MT2063_AddExclZone(struct MT2063_AvoidSpursData_t
*pAS_Info
,
434 u32 f_min
, u32 f_max
)
436 struct MT2063_ExclZone_t
*pNode
= pAS_Info
->usedZones
;
437 struct MT2063_ExclZone_t
*pPrev
= NULL
;
438 struct MT2063_ExclZone_t
*pNext
= NULL
;
442 /* Check to see if this overlaps the 1st IF filter */
443 if ((f_max
> (pAS_Info
->f_if1_Center
- (pAS_Info
->f_if1_bw
/ 2)))
444 && (f_min
< (pAS_Info
->f_if1_Center
+ (pAS_Info
->f_if1_bw
/ 2)))
445 && (f_min
< f_max
)) {
449 * New entry: |---| |--| |--| |-| |---| |--|
451 * Existing: |--| |--| |--| |---| |-| |--|
454 /* Check for our place in the list */
455 while ((pNode
!= NULL
) && (pNode
->max_
< f_min
)) {
457 pNode
= pNode
->next_
;
460 if ((pNode
!= NULL
) && (pNode
->min_
< f_max
)) {
461 /* Combine me with pNode */
462 if (f_min
< pNode
->min_
)
464 if (f_max
> pNode
->max_
)
467 pNode
= InsertNode(pAS_Info
, pPrev
);
472 /* Look for merging possibilities */
473 pNext
= pNode
->next_
;
474 while ((pNext
!= NULL
) && (pNext
->min_
< pNode
->max_
)) {
475 if (pNext
->max_
> pNode
->max_
)
476 pNode
->max_
= pNext
->max_
;
477 /* Remove pNext, return ptr to pNext->next */
478 pNext
= RemoveNode(pAS_Info
, pNode
, pNext
);
484 * Reset all exclusion zones.
485 * Add zones to protect the PLL FracN regions near zero
487 static void MT2063_ResetExclZones(struct MT2063_AvoidSpursData_t
*pAS_Info
)
493 pAS_Info
->nZones
= 0; /* this clears the used list */
494 pAS_Info
->usedZones
= NULL
; /* reset ptr */
495 pAS_Info
->freeZones
= NULL
; /* reset ptr */
499 ((pAS_Info
->f_if1_Center
- pAS_Info
->f_if1_bw
/ 2 +
500 pAS_Info
->f_in
) / pAS_Info
->f_ref
) - pAS_Info
->f_in
;
502 pAS_Info
->f_if1_Center
+ pAS_Info
->f_if1_bw
/ 2 +
503 pAS_Info
->f_LO1_FracN_Avoid
) {
504 /* Exclude LO1 FracN */
505 MT2063_AddExclZone(pAS_Info
,
506 center
- pAS_Info
->f_LO1_FracN_Avoid
,
508 MT2063_AddExclZone(pAS_Info
, center
+ 1,
509 center
+ pAS_Info
->f_LO1_FracN_Avoid
);
510 center
+= pAS_Info
->f_ref
;
515 ((pAS_Info
->f_if1_Center
- pAS_Info
->f_if1_bw
/ 2 -
516 pAS_Info
->f_out
) / pAS_Info
->f_ref
) + pAS_Info
->f_out
;
518 pAS_Info
->f_if1_Center
+ pAS_Info
->f_if1_bw
/ 2 +
519 pAS_Info
->f_LO2_FracN_Avoid
) {
520 /* Exclude LO2 FracN */
521 MT2063_AddExclZone(pAS_Info
,
522 center
- pAS_Info
->f_LO2_FracN_Avoid
,
524 MT2063_AddExclZone(pAS_Info
, center
+ 1,
525 center
+ pAS_Info
->f_LO2_FracN_Avoid
);
526 center
+= pAS_Info
->f_ref
;
529 if (MT2063_EXCLUDE_US_DECT_FREQUENCIES(pAS_Info
->avoidDECT
)) {
530 /* Exclude LO1 values that conflict with DECT channels */
531 MT2063_AddExclZone(pAS_Info
, 1920836000 - pAS_Info
->f_in
, 1922236000 - pAS_Info
->f_in
); /* Ctr = 1921.536 */
532 MT2063_AddExclZone(pAS_Info
, 1922564000 - pAS_Info
->f_in
, 1923964000 - pAS_Info
->f_in
); /* Ctr = 1923.264 */
533 MT2063_AddExclZone(pAS_Info
, 1924292000 - pAS_Info
->f_in
, 1925692000 - pAS_Info
->f_in
); /* Ctr = 1924.992 */
534 MT2063_AddExclZone(pAS_Info
, 1926020000 - pAS_Info
->f_in
, 1927420000 - pAS_Info
->f_in
); /* Ctr = 1926.720 */
535 MT2063_AddExclZone(pAS_Info
, 1927748000 - pAS_Info
->f_in
, 1929148000 - pAS_Info
->f_in
); /* Ctr = 1928.448 */
538 if (MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(pAS_Info
->avoidDECT
)) {
539 MT2063_AddExclZone(pAS_Info
, 1896644000 - pAS_Info
->f_in
, 1898044000 - pAS_Info
->f_in
); /* Ctr = 1897.344 */
540 MT2063_AddExclZone(pAS_Info
, 1894916000 - pAS_Info
->f_in
, 1896316000 - pAS_Info
->f_in
); /* Ctr = 1895.616 */
541 MT2063_AddExclZone(pAS_Info
, 1893188000 - pAS_Info
->f_in
, 1894588000 - pAS_Info
->f_in
); /* Ctr = 1893.888 */
542 MT2063_AddExclZone(pAS_Info
, 1891460000 - pAS_Info
->f_in
, 1892860000 - pAS_Info
->f_in
); /* Ctr = 1892.16 */
543 MT2063_AddExclZone(pAS_Info
, 1889732000 - pAS_Info
->f_in
, 1891132000 - pAS_Info
->f_in
); /* Ctr = 1890.432 */
544 MT2063_AddExclZone(pAS_Info
, 1888004000 - pAS_Info
->f_in
, 1889404000 - pAS_Info
->f_in
); /* Ctr = 1888.704 */
545 MT2063_AddExclZone(pAS_Info
, 1886276000 - pAS_Info
->f_in
, 1887676000 - pAS_Info
->f_in
); /* Ctr = 1886.976 */
546 MT2063_AddExclZone(pAS_Info
, 1884548000 - pAS_Info
->f_in
, 1885948000 - pAS_Info
->f_in
); /* Ctr = 1885.248 */
547 MT2063_AddExclZone(pAS_Info
, 1882820000 - pAS_Info
->f_in
, 1884220000 - pAS_Info
->f_in
); /* Ctr = 1883.52 */
548 MT2063_AddExclZone(pAS_Info
, 1881092000 - pAS_Info
->f_in
, 1882492000 - pAS_Info
->f_in
); /* Ctr = 1881.792 */
553 * MT_ChooseFirstIF - Choose the best available 1st IF
554 * If f_Desired is not excluded, choose that first.
555 * Otherwise, return the value closest to f_Center that is
558 static u32
MT2063_ChooseFirstIF(struct MT2063_AvoidSpursData_t
*pAS_Info
)
561 * Update "f_Desired" to be the nearest "combinational-multiple" of
563 * The resulting number, F_LO1 must be a multiple of f_LO1_Step.
564 * And F_LO1 is the arithmetic sum of f_in + f_Center.
565 * Neither f_in, nor f_Center must be a multiple of f_LO1_Step.
566 * However, the sum must be.
568 const u32 f_Desired
=
569 pAS_Info
->f_LO1_Step
*
570 ((pAS_Info
->f_if1_Request
+ pAS_Info
->f_in
+
571 pAS_Info
->f_LO1_Step
/ 2) / pAS_Info
->f_LO1_Step
) -
574 (pAS_Info
->f_LO1_Step
>
575 pAS_Info
->f_LO2_Step
) ? pAS_Info
->f_LO1_Step
: pAS_Info
->
580 u32 bDesiredExcluded
= 0;
581 u32 bZeroExcluded
= 0;
584 struct MT2063_ExclZone_t
*pNode
= pAS_Info
->usedZones
;
585 struct MT2063_FIFZone_t zones
[MT2063_MAX_ZONES
];
589 if (pAS_Info
->nZones
== 0)
593 * f_Center needs to be an integer multiple of f_Step away
596 if (pAS_Info
->f_if1_Center
> f_Desired
)
600 ((pAS_Info
->f_if1_Center
- f_Desired
+
601 f_Step
/ 2) / f_Step
);
606 ((f_Desired
- pAS_Info
->f_if1_Center
+
607 f_Step
/ 2) / f_Step
);
610 * Take MT_ExclZones, center around f_Center and change the
611 * resolution to f_Step
613 while (pNode
!= NULL
) {
616 floor((s32
) (pNode
->min_
- f_Center
), (s32
) f_Step
);
620 ceil((s32
) (pNode
->max_
- f_Center
), (s32
) f_Step
);
622 if ((pNode
->min_
< f_Desired
) && (pNode
->max_
> f_Desired
))
623 bDesiredExcluded
= 1;
625 if ((tmpMin
< 0) && (tmpMax
> 0))
628 /* See if this zone overlaps the previous */
629 if ((j
> 0) && (tmpMin
< zones
[j
- 1].max_
))
630 zones
[j
- 1].max_
= tmpMax
;
633 zones
[j
].min_
= tmpMin
;
634 zones
[j
].max_
= tmpMax
;
637 pNode
= pNode
->next_
;
641 * If the desired is okay, return with it
643 if (bDesiredExcluded
== 0)
647 * If the desired is excluded and the center is okay, return with it
649 if (bZeroExcluded
== 0)
652 /* Find the value closest to 0 (f_Center) */
653 bestDiff
= zones
[0].min_
;
654 for (i
= 0; i
< j
; i
++) {
655 if (abs(zones
[i
].min_
) < abs(bestDiff
))
656 bestDiff
= zones
[i
].min_
;
657 if (abs(zones
[i
].max_
) < abs(bestDiff
))
658 bestDiff
= zones
[i
].max_
;
662 return f_Center
- ((u32
) (-bestDiff
) * f_Step
);
664 return f_Center
+ (bestDiff
* f_Step
);
668 * gcd() - Uses Euclid's algorithm
670 * @u, @v: Unsigned values whose GCD is desired.
672 * Returns THE greatest common divisor of u and v, if either value is 0,
673 * the other value is returned as the result.
675 static u32
MT2063_gcd(u32 u
, u32 v
)
689 * IsSpurInBand() - Checks to see if a spur will be present within the IF's
690 * bandwidth. (fIFOut +/- fIFBW, -fIFOut +/- fIFBW)
693 * <--+-+-+-------------------+-------------------+-+-+-->
695 * ^ b=-fIFOut+fIFBW/2 -b=+fIFOut-fIFBW/2 ^
696 * a=-fIFOut-fIFBW/2 -a=+fIFOut+fIFBW/2
698 * Note that some equations are doubled to prevent round-off
699 * problems when calculating fIFBW/2
701 * @pAS_Info: Avoid Spurs information block
702 * @fm: If spur, amount f_IF1 has to move negative
703 * @fp: If spur, amount f_IF1 has to move positive
705 * Returns 1 if an LO spur would be present, otherwise 0.
707 static u32
IsSpurInBand(struct MT2063_AvoidSpursData_t
*pAS_Info
,
711 ** Calculate LO frequency settings.
714 const u32 f_LO1
= pAS_Info
->f_LO1
;
715 const u32 f_LO2
= pAS_Info
->f_LO2
;
716 const u32 d
= pAS_Info
->f_out
+ pAS_Info
->f_out_bw
/ 2;
717 const u32 c
= d
- pAS_Info
->f_out_bw
;
718 const u32 f
= pAS_Info
->f_zif_bw
/ 2;
719 const u32 f_Scale
= (f_LO1
/ (UINT_MAX
/ 2 / pAS_Info
->maxH1
)) + 1;
720 s32 f_nsLO1
, f_nsLO2
;
722 u32 ma
, mb
, mc
, md
, me
, mf
;
723 u32 lo_gcd
, gd_Scale
, gc_Scale
, gf_Scale
, hgds
, hgfs
, hgcs
;
730 ** For each edge (d, c & f), calculate a scale, based on the gcd
731 ** of f_LO1, f_LO2 and the edge value. Use the larger of this
732 ** gcd-based scale factor or f_Scale.
734 lo_gcd
= MT2063_gcd(f_LO1
, f_LO2
);
735 gd_Scale
= max((u32
) MT2063_gcd(lo_gcd
, d
), f_Scale
);
737 gc_Scale
= max((u32
) MT2063_gcd(lo_gcd
, c
), f_Scale
);
739 gf_Scale
= max((u32
) MT2063_gcd(lo_gcd
, f
), f_Scale
);
742 n0
= DIV_ROUND_UP(f_LO2
- d
, f_LO1
- f_LO2
);
744 /* Check out all multiples of LO1 from n0 to m_maxLOSpurHarmonic */
745 for (n
= n0
; n
<= pAS_Info
->maxH1
; ++n
) {
746 md
= (n
* ((f_LO1
+ hgds
) / gd_Scale
) -
747 ((d
+ hgds
) / gd_Scale
)) / ((f_LO2
+ hgds
) / gd_Scale
);
749 /* If # fLO2 harmonics > m_maxLOSpurHarmonic, then no spurs present */
750 if (md
>= pAS_Info
->maxH1
)
753 ma
= (n
* ((f_LO1
+ hgds
) / gd_Scale
) +
754 ((d
+ hgds
) / gd_Scale
)) / ((f_LO2
+ hgds
) / gd_Scale
);
756 /* If no spurs between +/- (f_out + f_IFBW/2), then try next harmonic */
760 mc
= (n
* ((f_LO1
+ hgcs
) / gc_Scale
) -
761 ((c
+ hgcs
) / gc_Scale
)) / ((f_LO2
+ hgcs
) / gc_Scale
);
763 f_nsLO1
= (s32
) (n
* (f_LO1
/ gc_Scale
));
764 f_nsLO2
= (s32
) (mc
* (f_LO2
/ gc_Scale
));
766 (gc_Scale
* (f_nsLO1
- f_nsLO2
)) +
767 n
* (f_LO1
% gc_Scale
) - mc
* (f_LO2
% gc_Scale
);
769 *fp
= ((f_Spur
- (s32
) c
) / (mc
- n
)) + 1;
770 *fm
= (((s32
) d
- f_Spur
) / (mc
- n
)) + 1;
774 /* Location of Zero-IF-spur to be checked */
775 me
= (n
* ((f_LO1
+ hgfs
) / gf_Scale
) +
776 ((f
+ hgfs
) / gf_Scale
)) / ((f_LO2
+ hgfs
) / gf_Scale
);
777 mf
= (n
* ((f_LO1
+ hgfs
) / gf_Scale
) -
778 ((f
+ hgfs
) / gf_Scale
)) / ((f_LO2
+ hgfs
) / gf_Scale
);
780 f_nsLO1
= n
* (f_LO1
/ gf_Scale
);
781 f_nsLO2
= me
* (f_LO2
/ gf_Scale
);
783 (gf_Scale
* (f_nsLO1
- f_nsLO2
)) +
784 n
* (f_LO1
% gf_Scale
) - me
* (f_LO2
% gf_Scale
);
786 *fp
= ((f_Spur
+ (s32
) f
) / (me
- n
)) + 1;
787 *fm
= (((s32
) f
- f_Spur
) / (me
- n
)) + 1;
791 mb
= (n
* ((f_LO1
+ hgcs
) / gc_Scale
) +
792 ((c
+ hgcs
) / gc_Scale
)) / ((f_LO2
+ hgcs
) / gc_Scale
);
794 f_nsLO1
= n
* (f_LO1
/ gc_Scale
);
795 f_nsLO2
= ma
* (f_LO2
/ gc_Scale
);
797 (gc_Scale
* (f_nsLO1
- f_nsLO2
)) +
798 n
* (f_LO1
% gc_Scale
) - ma
* (f_LO2
% gc_Scale
);
800 *fp
= (((s32
) d
+ f_Spur
) / (ma
- n
)) + 1;
801 *fm
= (-(f_Spur
+ (s32
) c
) / (ma
- n
)) + 1;
811 * MT_AvoidSpurs() - Main entry point to avoid spurs.
812 * Checks for existing spurs in present LO1, LO2 freqs
813 * and if present, chooses spur-free LO1, LO2 combination
814 * that tunes the same input/output frequencies.
816 static u32
MT2063_AvoidSpurs(struct MT2063_AvoidSpursData_t
*pAS_Info
)
819 u32 fm
, fp
; /* restricted range on LO's */
820 pAS_Info
->bSpurAvoided
= 0;
821 pAS_Info
->nSpursFound
= 0;
825 if (pAS_Info
->maxH1
== 0)
829 * Avoid LO Generated Spurs
831 * Make sure that have no LO-related spurs within the IF output
834 * If there is an LO spur in this band, start at the current IF1 frequency
835 * and work out until we find a spur-free frequency or run up against the
836 * 1st IF SAW band edge. Use temporary copies of fLO1 and fLO2 so that they
837 * will be unchanged if a spur-free setting is not found.
839 pAS_Info
->bSpurPresent
= IsSpurInBand(pAS_Info
, &fm
, &fp
);
840 if (pAS_Info
->bSpurPresent
) {
841 u32 zfIF1
= pAS_Info
->f_LO1
- pAS_Info
->f_in
; /* current attempt at a 1st IF */
842 u32 zfLO1
= pAS_Info
->f_LO1
; /* current attempt at an LO1 freq */
843 u32 zfLO2
= pAS_Info
->f_LO2
; /* current attempt at an LO2 freq */
848 ** Spur was found, attempt to find a spur-free 1st IF
851 pAS_Info
->nSpursFound
++;
853 /* Raise f_IF1_upper, if needed */
854 MT2063_AddExclZone(pAS_Info
, zfIF1
- fm
, zfIF1
+ fp
);
856 /* Choose next IF1 that is closest to f_IF1_CENTER */
857 new_IF1
= MT2063_ChooseFirstIF(pAS_Info
);
859 if (new_IF1
> zfIF1
) {
860 pAS_Info
->f_LO1
+= (new_IF1
- zfIF1
);
861 pAS_Info
->f_LO2
+= (new_IF1
- zfIF1
);
863 pAS_Info
->f_LO1
-= (zfIF1
- new_IF1
);
864 pAS_Info
->f_LO2
-= (zfIF1
- new_IF1
);
868 if (zfIF1
> pAS_Info
->f_if1_Center
)
869 delta_IF1
= zfIF1
- pAS_Info
->f_if1_Center
;
871 delta_IF1
= pAS_Info
->f_if1_Center
- zfIF1
;
873 pAS_Info
->bSpurPresent
= IsSpurInBand(pAS_Info
, &fm
, &fp
);
875 * Continue while the new 1st IF is still within the 1st IF bandwidth
876 * and there is a spur in the band (again)
878 } while ((2 * delta_IF1
+ pAS_Info
->f_out_bw
<= pAS_Info
->f_if1_bw
) && pAS_Info
->bSpurPresent
);
881 * Use the LO-spur free values found. If the search went all
882 * the way to the 1st IF band edge and always found spurs, just
883 * leave the original choice. It's as "good" as any other.
885 if (pAS_Info
->bSpurPresent
== 1) {
886 status
|= MT2063_SPUR_PRESENT_ERR
;
887 pAS_Info
->f_LO1
= zfLO1
;
888 pAS_Info
->f_LO2
= zfLO2
;
890 pAS_Info
->bSpurAvoided
= 1;
895 nSpursFound
<< MT2063_SPUR_SHIFT
) & MT2063_SPUR_CNT_MASK
);
901 * Constants used by the tuning algorithm
903 #define MT2063_REF_FREQ (16000000UL) /* Reference oscillator Frequency (in Hz) */
904 #define MT2063_IF1_BW (22000000UL) /* The IF1 filter bandwidth (in Hz) */
905 #define MT2063_TUNE_STEP_SIZE (50000UL) /* Tune in steps of 50 kHz */
906 #define MT2063_SPUR_STEP_HZ (250000UL) /* Step size (in Hz) to move IF1 when avoiding spurs */
907 #define MT2063_ZIF_BW (2000000UL) /* Zero-IF spur-free bandwidth (in Hz) */
908 #define MT2063_MAX_HARMONICS_1 (15UL) /* Highest intra-tuner LO Spur Harmonic to be avoided */
909 #define MT2063_MAX_HARMONICS_2 (5UL) /* Highest inter-tuner LO Spur Harmonic to be avoided */
910 #define MT2063_MIN_LO_SEP (1000000UL) /* Minimum inter-tuner LO frequency separation */
911 #define MT2063_LO1_FRACN_AVOID (0UL) /* LO1 FracN numerator avoid region (in Hz) */
912 #define MT2063_LO2_FRACN_AVOID (199999UL) /* LO2 FracN numerator avoid region (in Hz) */
913 #define MT2063_MIN_FIN_FREQ (44000000UL) /* Minimum input frequency (in Hz) */
914 #define MT2063_MAX_FIN_FREQ (1100000000UL) /* Maximum input frequency (in Hz) */
915 #define MT2063_MIN_FOUT_FREQ (36000000UL) /* Minimum output frequency (in Hz) */
916 #define MT2063_MAX_FOUT_FREQ (57000000UL) /* Maximum output frequency (in Hz) */
917 #define MT2063_MIN_DNC_FREQ (1293000000UL) /* Minimum LO2 frequency (in Hz) */
918 #define MT2063_MAX_DNC_FREQ (1614000000UL) /* Maximum LO2 frequency (in Hz) */
919 #define MT2063_MIN_UPC_FREQ (1396000000UL) /* Minimum LO1 frequency (in Hz) */
920 #define MT2063_MAX_UPC_FREQ (2750000000UL) /* Maximum LO1 frequency (in Hz) */
923 * Define the supported Part/Rev codes for the MT2063
925 #define MT2063_B0 (0x9B)
926 #define MT2063_B1 (0x9C)
927 #define MT2063_B2 (0x9D)
928 #define MT2063_B3 (0x9E)
931 * mt2063_lockStatus - Checks to see if LO1 and LO2 are locked
933 * @state: struct mt2063_state pointer
935 * This function returns 0, if no lock, 1 if locked and a value < 1 if error
937 static int mt2063_lockStatus(struct mt2063_state
*state
)
939 const u32 nMaxWait
= 100; /* wait a maximum of 100 msec */
940 const u32 nPollRate
= 2; /* poll status bits every 2 ms */
941 const u32 nMaxLoops
= nMaxWait
/ nPollRate
;
942 const u8 LO1LK
= 0x80;
949 /* LO2 Lock bit was in a different place for B0 version */
950 if (state
->tuner_id
== MT2063_B0
)
954 status
= mt2063_read(state
, MT2063_REG_LO_STATUS
,
955 &state
->reg
[MT2063_REG_LO_STATUS
], 1);
960 if ((state
->reg
[MT2063_REG_LO_STATUS
] & (LO1LK
| LO2LK
)) ==
962 return TUNER_STATUS_LOCKED
| TUNER_STATUS_STEREO
;
964 msleep(nPollRate
); /* Wait between retries */
965 } while (++nDelays
< nMaxLoops
);
968 * Got no lock or partial lock
974 * Constants for setting receiver modes.
975 * (6 modes defined at this time, enumerated by mt2063_delivery_sys)
976 * (DNC1GC & DNC2GC are the values, which are used, when the specific
977 * DNC Output is selected, the other is always off)
979 * enum mt2063_delivery_sys
980 * -------------+----------------------------------------------
981 * Mode 0 : | MT2063_CABLE_QAM
982 * Mode 1 : | MT2063_CABLE_ANALOG
983 * Mode 2 : | MT2063_OFFAIR_COFDM
984 * Mode 3 : | MT2063_OFFAIR_COFDM_SAWLESS
985 * Mode 4 : | MT2063_OFFAIR_ANALOG
986 * Mode 5 : | MT2063_OFFAIR_8VSB
987 * --------------+----------------------------------------------
989 * |<---------- Mode -------------->|
990 * Reg Field | 0 | 1 | 2 | 3 | 4 | 5 |
991 * ------------+-----+-----+-----+-----+-----+-----+
992 * RFAGCen | OFF | OFF | OFF | OFF | OFF | OFF
993 * LNARin | 0 | 0 | 3 | 3 | 3 | 3
994 * FIFFQen | 1 | 1 | 1 | 1 | 1 | 1
995 * FIFFq | 0 | 0 | 0 | 0 | 0 | 0
996 * DNC1gc | 0 | 0 | 0 | 0 | 0 | 0
997 * DNC2gc | 0 | 0 | 0 | 0 | 0 | 0
998 * GCU Auto | 1 | 1 | 1 | 1 | 1 | 1
999 * LNA max Atn | 31 | 31 | 31 | 31 | 31 | 31
1000 * LNA Target | 44 | 43 | 43 | 43 | 43 | 43
1001 * ign RF Ovl | 0 | 0 | 0 | 0 | 0 | 0
1002 * RF max Atn | 31 | 31 | 31 | 31 | 31 | 31
1003 * PD1 Target | 36 | 36 | 38 | 38 | 36 | 38
1004 * ign FIF Ovl | 0 | 0 | 0 | 0 | 0 | 0
1005 * FIF max Atn | 5 | 5 | 5 | 5 | 5 | 5
1006 * PD2 Target | 40 | 33 | 42 | 42 | 33 | 42
1009 enum mt2063_delivery_sys
{
1010 MT2063_CABLE_QAM
= 0,
1011 MT2063_CABLE_ANALOG
,
1012 MT2063_OFFAIR_COFDM
,
1013 MT2063_OFFAIR_COFDM_SAWLESS
,
1014 MT2063_OFFAIR_ANALOG
,
1016 MT2063_NUM_RCVR_MODES
1019 static const char *mt2063_mode_name
[] = {
1020 [MT2063_CABLE_QAM
] = "digital cable",
1021 [MT2063_CABLE_ANALOG
] = "analog cable",
1022 [MT2063_OFFAIR_COFDM
] = "digital offair",
1023 [MT2063_OFFAIR_COFDM_SAWLESS
] = "digital offair without SAW",
1024 [MT2063_OFFAIR_ANALOG
] = "analog offair",
1025 [MT2063_OFFAIR_8VSB
] = "analog offair 8vsb",
1028 static const u8 RFAGCEN
[] = { 0, 0, 0, 0, 0, 0 };
1029 static const u8 LNARIN
[] = { 0, 0, 3, 3, 3, 3 };
1030 static const u8 FIFFQEN
[] = { 1, 1, 1, 1, 1, 1 };
1031 static const u8 FIFFQ
[] = { 0, 0, 0, 0, 0, 0 };
1032 static const u8 DNC1GC
[] = { 0, 0, 0, 0, 0, 0 };
1033 static const u8 DNC2GC
[] = { 0, 0, 0, 0, 0, 0 };
1034 static const u8 ACLNAMAX
[] = { 31, 31, 31, 31, 31, 31 };
1035 static const u8 LNATGT
[] = { 44, 43, 43, 43, 43, 43 };
1036 static const u8 RFOVDIS
[] = { 0, 0, 0, 0, 0, 0 };
1037 static const u8 ACRFMAX
[] = { 31, 31, 31, 31, 31, 31 };
1038 static const u8 PD1TGT
[] = { 36, 36, 38, 38, 36, 38 };
1039 static const u8 FIFOVDIS
[] = { 0, 0, 0, 0, 0, 0 };
1040 static const u8 ACFIFMAX
[] = { 29, 29, 29, 29, 29, 29 };
1041 static const u8 PD2TGT
[] = { 40, 33, 38, 42, 30, 38 };
1044 * mt2063_set_dnc_output_enable()
1046 static u32
mt2063_get_dnc_output_enable(struct mt2063_state
*state
,
1047 enum MT2063_DNC_Output_Enable
*pValue
)
1051 if ((state
->reg
[MT2063_REG_DNC_GAIN
] & 0x03) == 0x03) { /* if DNC1 is off */
1052 if ((state
->reg
[MT2063_REG_VGA_GAIN
] & 0x03) == 0x03) /* if DNC2 is off */
1053 *pValue
= MT2063_DNC_NONE
;
1055 *pValue
= MT2063_DNC_2
;
1056 } else { /* DNC1 is on */
1057 if ((state
->reg
[MT2063_REG_VGA_GAIN
] & 0x03) == 0x03) /* if DNC2 is off */
1058 *pValue
= MT2063_DNC_1
;
1060 *pValue
= MT2063_DNC_BOTH
;
1066 * mt2063_set_dnc_output_enable()
1068 static u32
mt2063_set_dnc_output_enable(struct mt2063_state
*state
,
1069 enum MT2063_DNC_Output_Enable nValue
)
1071 int status
= 0; /* Status to be returned */
1076 /* selects, which DNC output is used */
1078 case MT2063_DNC_NONE
:
1079 val
= (state
->reg
[MT2063_REG_DNC_GAIN
] & 0xFC) | 0x03; /* Set DNC1GC=3 */
1080 if (state
->reg
[MT2063_REG_DNC_GAIN
] !=
1083 mt2063_setreg(state
,
1084 MT2063_REG_DNC_GAIN
,
1087 val
= (state
->reg
[MT2063_REG_VGA_GAIN
] & 0xFC) | 0x03; /* Set DNC2GC=3 */
1088 if (state
->reg
[MT2063_REG_VGA_GAIN
] !=
1091 mt2063_setreg(state
,
1092 MT2063_REG_VGA_GAIN
,
1095 val
= (state
->reg
[MT2063_REG_RSVD_20
] & ~0x40); /* Set PD2MUX=0 */
1096 if (state
->reg
[MT2063_REG_RSVD_20
] !=
1099 mt2063_setreg(state
,
1105 val
= (state
->reg
[MT2063_REG_DNC_GAIN
] & 0xFC) | (DNC1GC
[state
->rcvr_mode
] & 0x03); /* Set DNC1GC=x */
1106 if (state
->reg
[MT2063_REG_DNC_GAIN
] !=
1109 mt2063_setreg(state
,
1110 MT2063_REG_DNC_GAIN
,
1113 val
= (state
->reg
[MT2063_REG_VGA_GAIN
] & 0xFC) | 0x03; /* Set DNC2GC=3 */
1114 if (state
->reg
[MT2063_REG_VGA_GAIN
] !=
1117 mt2063_setreg(state
,
1118 MT2063_REG_VGA_GAIN
,
1121 val
= (state
->reg
[MT2063_REG_RSVD_20
] & ~0x40); /* Set PD2MUX=0 */
1122 if (state
->reg
[MT2063_REG_RSVD_20
] !=
1125 mt2063_setreg(state
,
1131 val
= (state
->reg
[MT2063_REG_DNC_GAIN
] & 0xFC) | 0x03; /* Set DNC1GC=3 */
1132 if (state
->reg
[MT2063_REG_DNC_GAIN
] !=
1135 mt2063_setreg(state
,
1136 MT2063_REG_DNC_GAIN
,
1139 val
= (state
->reg
[MT2063_REG_VGA_GAIN
] & 0xFC) | (DNC2GC
[state
->rcvr_mode
] & 0x03); /* Set DNC2GC=x */
1140 if (state
->reg
[MT2063_REG_VGA_GAIN
] !=
1143 mt2063_setreg(state
,
1144 MT2063_REG_VGA_GAIN
,
1147 val
= (state
->reg
[MT2063_REG_RSVD_20
] | 0x40); /* Set PD2MUX=1 */
1148 if (state
->reg
[MT2063_REG_RSVD_20
] !=
1151 mt2063_setreg(state
,
1156 case MT2063_DNC_BOTH
:
1157 val
= (state
->reg
[MT2063_REG_DNC_GAIN
] & 0xFC) | (DNC1GC
[state
->rcvr_mode
] & 0x03); /* Set DNC1GC=x */
1158 if (state
->reg
[MT2063_REG_DNC_GAIN
] !=
1161 mt2063_setreg(state
,
1162 MT2063_REG_DNC_GAIN
,
1165 val
= (state
->reg
[MT2063_REG_VGA_GAIN
] & 0xFC) | (DNC2GC
[state
->rcvr_mode
] & 0x03); /* Set DNC2GC=x */
1166 if (state
->reg
[MT2063_REG_VGA_GAIN
] !=
1169 mt2063_setreg(state
,
1170 MT2063_REG_VGA_GAIN
,
1173 val
= (state
->reg
[MT2063_REG_RSVD_20
] | 0x40); /* Set PD2MUX=1 */
1174 if (state
->reg
[MT2063_REG_RSVD_20
] !=
1177 mt2063_setreg(state
,
1190 * MT2063_SetReceiverMode() - Set the MT2063 receiver mode, according with
1191 * the selected enum mt2063_delivery_sys type.
1193 * (DNC1GC & DNC2GC are the values, which are used, when the specific
1194 * DNC Output is selected, the other is always off)
1196 * @state: ptr to mt2063_state structure
1197 * @Mode: desired receiver delivery system
1199 * Note: Register cache must be valid for it to work
1202 static u32
MT2063_SetReceiverMode(struct mt2063_state
*state
,
1203 enum mt2063_delivery_sys Mode
)
1205 int status
= 0; /* Status to be returned */
1211 if (Mode
>= MT2063_NUM_RCVR_MODES
)
1218 reg
[MT2063_REG_PD1_TGT
] & ~0x40) | (RFAGCEN
[Mode
]
1221 if (state
->reg
[MT2063_REG_PD1_TGT
] != val
)
1222 status
|= mt2063_setreg(state
, MT2063_REG_PD1_TGT
, val
);
1227 u8 val
= (state
->reg
[MT2063_REG_CTRL_2C
] & ~0x03) |
1228 (LNARIN
[Mode
] & 0x03);
1229 if (state
->reg
[MT2063_REG_CTRL_2C
] != val
)
1230 status
|= mt2063_setreg(state
, MT2063_REG_CTRL_2C
, val
);
1233 /* FIFFQEN and FIFFQ */
1237 reg
[MT2063_REG_FIFF_CTRL2
] & ~0xF0) |
1238 (FIFFQEN
[Mode
] << 7) | (FIFFQ
[Mode
] << 4);
1239 if (state
->reg
[MT2063_REG_FIFF_CTRL2
] != val
) {
1241 mt2063_setreg(state
, MT2063_REG_FIFF_CTRL2
, val
);
1242 /* trigger FIFF calibration, needed after changing FIFFQ */
1244 (state
->reg
[MT2063_REG_FIFF_CTRL
] | 0x01);
1246 mt2063_setreg(state
, MT2063_REG_FIFF_CTRL
, val
);
1249 reg
[MT2063_REG_FIFF_CTRL
] & ~0x01);
1251 mt2063_setreg(state
, MT2063_REG_FIFF_CTRL
, val
);
1255 /* DNC1GC & DNC2GC */
1256 status
|= mt2063_get_dnc_output_enable(state
, &longval
);
1257 status
|= mt2063_set_dnc_output_enable(state
, longval
);
1261 u8 val
= (state
->reg
[MT2063_REG_LNA_OV
] & ~0x1F) |
1262 (ACLNAMAX
[Mode
] & 0x1F);
1263 if (state
->reg
[MT2063_REG_LNA_OV
] != val
)
1264 status
|= mt2063_setreg(state
, MT2063_REG_LNA_OV
, val
);
1269 u8 val
= (state
->reg
[MT2063_REG_LNA_TGT
] & ~0x3F) |
1270 (LNATGT
[Mode
] & 0x3F);
1271 if (state
->reg
[MT2063_REG_LNA_TGT
] != val
)
1272 status
|= mt2063_setreg(state
, MT2063_REG_LNA_TGT
, val
);
1277 u8 val
= (state
->reg
[MT2063_REG_RF_OV
] & ~0x1F) |
1278 (ACRFMAX
[Mode
] & 0x1F);
1279 if (state
->reg
[MT2063_REG_RF_OV
] != val
)
1280 status
|= mt2063_setreg(state
, MT2063_REG_RF_OV
, val
);
1285 u8 val
= (state
->reg
[MT2063_REG_PD1_TGT
] & ~0x3F) |
1286 (PD1TGT
[Mode
] & 0x3F);
1287 if (state
->reg
[MT2063_REG_PD1_TGT
] != val
)
1288 status
|= mt2063_setreg(state
, MT2063_REG_PD1_TGT
, val
);
1293 u8 val
= ACFIFMAX
[Mode
];
1294 if (state
->reg
[MT2063_REG_PART_REV
] != MT2063_B3
&& val
> 5)
1296 val
= (state
->reg
[MT2063_REG_FIF_OV
] & ~0x1F) |
1298 if (state
->reg
[MT2063_REG_FIF_OV
] != val
)
1299 status
|= mt2063_setreg(state
, MT2063_REG_FIF_OV
, val
);
1304 u8 val
= (state
->reg
[MT2063_REG_PD2_TGT
] & ~0x3F) |
1305 (PD2TGT
[Mode
] & 0x3F);
1306 if (state
->reg
[MT2063_REG_PD2_TGT
] != val
)
1307 status
|= mt2063_setreg(state
, MT2063_REG_PD2_TGT
, val
);
1310 /* Ignore ATN Overload */
1312 val
= (state
->reg
[MT2063_REG_LNA_TGT
] & ~0x80) |
1313 (RFOVDIS
[Mode
] ? 0x80 : 0x00);
1314 if (state
->reg
[MT2063_REG_LNA_TGT
] != val
)
1315 status
|= mt2063_setreg(state
, MT2063_REG_LNA_TGT
, val
);
1318 /* Ignore FIF Overload */
1320 val
= (state
->reg
[MT2063_REG_PD1_TGT
] & ~0x80) |
1321 (FIFOVDIS
[Mode
] ? 0x80 : 0x00);
1322 if (state
->reg
[MT2063_REG_PD1_TGT
] != val
)
1323 status
|= mt2063_setreg(state
, MT2063_REG_PD1_TGT
, val
);
1327 state
->rcvr_mode
= Mode
;
1328 dprintk(1, "mt2063 mode changed to %s\n",
1329 mt2063_mode_name
[state
->rcvr_mode
]);
1336 * MT2063_ClearPowerMaskBits () - Clears the power-down mask bits for various
1337 * sections of the MT2063
1339 * @Bits: Mask bits to be cleared.
1341 * See definition of MT2063_Mask_Bits type for description
1342 * of each of the power bits.
1344 static u32
MT2063_ClearPowerMaskBits(struct mt2063_state
*state
,
1345 enum MT2063_Mask_Bits Bits
)
1350 Bits
= (enum MT2063_Mask_Bits
)(Bits
& MT2063_ALL_SD
); /* Only valid bits for this tuner */
1351 if ((Bits
& 0xFF00) != 0) {
1352 state
->reg
[MT2063_REG_PWR_2
] &= ~(u8
) (Bits
>> 8);
1356 &state
->reg
[MT2063_REG_PWR_2
], 1);
1358 if ((Bits
& 0xFF) != 0) {
1359 state
->reg
[MT2063_REG_PWR_1
] &= ~(u8
) (Bits
& 0xFF);
1363 &state
->reg
[MT2063_REG_PWR_1
], 1);
1370 * MT2063_SoftwareShutdown() - Enables or disables software shutdown function.
1371 * When Shutdown is 1, any section whose power
1372 * mask is set will be shutdown.
1374 static u32
MT2063_SoftwareShutdown(struct mt2063_state
*state
, u8 Shutdown
)
1380 state
->reg
[MT2063_REG_PWR_1
] |= 0x04;
1382 state
->reg
[MT2063_REG_PWR_1
] &= ~0x04;
1384 status
= mt2063_write(state
,
1386 &state
->reg
[MT2063_REG_PWR_1
], 1);
1388 if (Shutdown
!= 1) {
1389 state
->reg
[MT2063_REG_BYP_CTRL
] =
1390 (state
->reg
[MT2063_REG_BYP_CTRL
] & 0x9F) | 0x40;
1393 MT2063_REG_BYP_CTRL
,
1394 &state
->reg
[MT2063_REG_BYP_CTRL
],
1396 state
->reg
[MT2063_REG_BYP_CTRL
] =
1397 (state
->reg
[MT2063_REG_BYP_CTRL
] & 0x9F);
1400 MT2063_REG_BYP_CTRL
,
1401 &state
->reg
[MT2063_REG_BYP_CTRL
],
1408 static u32
MT2063_Round_fLO(u32 f_LO
, u32 f_LO_Step
, u32 f_ref
)
1410 return f_ref
* (f_LO
/ f_ref
)
1411 + f_LO_Step
* (((f_LO
% f_ref
) + (f_LO_Step
/ 2)) / f_LO_Step
);
1415 * fLO_FractionalTerm() - Calculates the portion contributed by FracN / denom.
1416 * This function preserves maximum precision without
1417 * risk of overflow. It accurately calculates
1418 * f_ref * num / denom to within 1 HZ with fixed math.
1420 * @num : Fractional portion of the multiplier
1421 * @denom: denominator portion of the ratio
1422 * @f_Ref: SRO frequency.
1424 * This calculation handles f_ref as two separate 14-bit fields.
1425 * Therefore, a maximum value of 2^28-1 may safely be used for f_ref.
1426 * This is the genesis of the magic number "14" and the magic mask value of
1429 * This routine successfully handles denom values up to and including 2^18.
1430 * Returns: f_ref * num / denom
1432 static u32
MT2063_fLO_FractionalTerm(u32 f_ref
, u32 num
, u32 denom
)
1434 u32 t1
= (f_ref
>> 14) * num
;
1435 u32 term1
= t1
/ denom
;
1436 u32 loss
= t1
% denom
;
1438 (((f_ref
& 0x00003FFF) * num
+ (loss
<< 14)) + (denom
/ 2)) / denom
;
1439 return (term1
<< 14) + term2
;
1443 * CalcLO1Mult()- Calculates Integer divider value and the numerator
1444 * value for a FracN PLL.
1446 * This function assumes that the f_LO and f_Ref are
1447 * evenly divisible by f_LO_Step.
1449 * @Div: OUTPUT: Whole number portion of the multiplier
1450 * @FracN: OUTPUT: Fractional portion of the multiplier
1451 * @f_LO: desired LO frequency.
1452 * @f_LO_Step: Minimum step size for the LO (in Hz).
1453 * @f_Ref: SRO frequency.
1454 * @f_Avoid: Range of PLL frequencies to avoid near integer multiples
1457 * Returns: Recalculated LO frequency.
1459 static u32
MT2063_CalcLO1Mult(u32
*Div
,
1462 u32 f_LO_Step
, u32 f_Ref
)
1464 /* Calculate the whole number portion of the divider */
1465 *Div
= f_LO
/ f_Ref
;
1467 /* Calculate the numerator value (round to nearest f_LO_Step) */
1469 (64 * (((f_LO
% f_Ref
) + (f_LO_Step
/ 2)) / f_LO_Step
) +
1470 (f_Ref
/ f_LO_Step
/ 2)) / (f_Ref
/ f_LO_Step
);
1472 return (f_Ref
* (*Div
)) + MT2063_fLO_FractionalTerm(f_Ref
, *FracN
, 64);
1476 * CalcLO2Mult() - Calculates Integer divider value and the numerator
1477 * value for a FracN PLL.
1479 * This function assumes that the f_LO and f_Ref are
1480 * evenly divisible by f_LO_Step.
1482 * @Div: OUTPUT: Whole number portion of the multiplier
1483 * @FracN: OUTPUT: Fractional portion of the multiplier
1484 * @f_LO: desired LO frequency.
1485 * @f_LO_Step: Minimum step size for the LO (in Hz).
1486 * @f_Ref: SRO frequency.
1487 * @f_Avoid: Range of PLL frequencies to avoid near
1488 * integer multiples of f_Ref (in Hz).
1490 * Returns: Recalculated LO frequency.
1492 static u32
MT2063_CalcLO2Mult(u32
*Div
,
1495 u32 f_LO_Step
, u32 f_Ref
)
1497 /* Calculate the whole number portion of the divider */
1498 *Div
= f_LO
/ f_Ref
;
1500 /* Calculate the numerator value (round to nearest f_LO_Step) */
1502 (8191 * (((f_LO
% f_Ref
) + (f_LO_Step
/ 2)) / f_LO_Step
) +
1503 (f_Ref
/ f_LO_Step
/ 2)) / (f_Ref
/ f_LO_Step
);
1505 return (f_Ref
* (*Div
)) + MT2063_fLO_FractionalTerm(f_Ref
, *FracN
,
1510 * FindClearTuneFilter() - Calculate the corrrect ClearTune filter to be
1511 * used for a given input frequency.
1513 * @state: ptr to tuner data structure
1514 * @f_in: RF input center frequency (in Hz).
1516 * Returns: ClearTune filter number (0-31)
1518 static u32
FindClearTuneFilter(struct mt2063_state
*state
, u32 f_in
)
1521 u32 idx
; /* index loop */
1524 ** Find RF Band setting
1526 RFBand
= 31; /* def when f_in > all */
1527 for (idx
= 0; idx
< 31; ++idx
) {
1528 if (state
->CTFiltMax
[idx
] >= f_in
) {
1537 * MT2063_Tune() - Change the tuner's tuned frequency to RFin.
1539 static u32
MT2063_Tune(struct mt2063_state
*state
, u32 f_in
)
1540 { /* RF input center frequency */
1543 u32 LO1
; /* 1st LO register value */
1544 u32 Num1
; /* Numerator for LO1 reg. value */
1545 u32 f_IF1
; /* 1st IF requested */
1546 u32 LO2
; /* 2nd LO register value */
1547 u32 Num2
; /* Numerator for LO2 reg. value */
1548 u32 ofLO1
, ofLO2
; /* last time's LO frequencies */
1549 u8 fiffc
= 0x80; /* FIFF center freq from tuner */
1550 u32 fiffof
; /* Offset from FIFF center freq */
1551 const u8 LO1LK
= 0x80; /* Mask for LO1 Lock bit */
1552 u8 LO2LK
= 0x08; /* Mask for LO2 Lock bit */
1557 /* Check the input and output frequency ranges */
1558 if ((f_in
< MT2063_MIN_FIN_FREQ
) || (f_in
> MT2063_MAX_FIN_FREQ
))
1561 if ((state
->AS_Data
.f_out
< MT2063_MIN_FOUT_FREQ
)
1562 || (state
->AS_Data
.f_out
> MT2063_MAX_FOUT_FREQ
))
1566 * Save original LO1 and LO2 register values
1568 ofLO1
= state
->AS_Data
.f_LO1
;
1569 ofLO2
= state
->AS_Data
.f_LO2
;
1572 * Find and set RF Band setting
1574 if (state
->ctfilt_sw
== 1) {
1575 val
= (state
->reg
[MT2063_REG_CTUNE_CTRL
] | 0x08);
1576 if (state
->reg
[MT2063_REG_CTUNE_CTRL
] != val
) {
1578 mt2063_setreg(state
, MT2063_REG_CTUNE_CTRL
, val
);
1580 val
= state
->reg
[MT2063_REG_CTUNE_OV
];
1581 RFBand
= FindClearTuneFilter(state
, f_in
);
1582 state
->reg
[MT2063_REG_CTUNE_OV
] =
1583 (u8
) ((state
->reg
[MT2063_REG_CTUNE_OV
] & ~0x1F)
1585 if (state
->reg
[MT2063_REG_CTUNE_OV
] != val
) {
1587 mt2063_setreg(state
, MT2063_REG_CTUNE_OV
, val
);
1592 * Read the FIFF Center Frequency from the tuner
1598 &state
->reg
[MT2063_REG_FIFFC
], 1);
1599 fiffc
= state
->reg
[MT2063_REG_FIFFC
];
1602 * Assign in the requested values
1604 state
->AS_Data
.f_in
= f_in
;
1605 /* Request a 1st IF such that LO1 is on a step size */
1606 state
->AS_Data
.f_if1_Request
=
1607 MT2063_Round_fLO(state
->AS_Data
.f_if1_Request
+ f_in
,
1608 state
->AS_Data
.f_LO1_Step
,
1609 state
->AS_Data
.f_ref
) - f_in
;
1612 * Calculate frequency settings. f_IF1_FREQ + f_in is the
1613 * desired LO1 frequency
1615 MT2063_ResetExclZones(&state
->AS_Data
);
1617 f_IF1
= MT2063_ChooseFirstIF(&state
->AS_Data
);
1619 state
->AS_Data
.f_LO1
=
1620 MT2063_Round_fLO(f_IF1
+ f_in
, state
->AS_Data
.f_LO1_Step
,
1621 state
->AS_Data
.f_ref
);
1623 state
->AS_Data
.f_LO2
=
1624 MT2063_Round_fLO(state
->AS_Data
.f_LO1
- state
->AS_Data
.f_out
- f_in
,
1625 state
->AS_Data
.f_LO2_Step
, state
->AS_Data
.f_ref
);
1628 * Check for any LO spurs in the output bandwidth and adjust
1629 * the LO settings to avoid them if needed
1631 status
|= MT2063_AvoidSpurs(&state
->AS_Data
);
1633 * MT_AvoidSpurs spurs may have changed the LO1 & LO2 values.
1634 * Recalculate the LO frequencies and the values to be placed
1635 * in the tuning registers.
1637 state
->AS_Data
.f_LO1
=
1638 MT2063_CalcLO1Mult(&LO1
, &Num1
, state
->AS_Data
.f_LO1
,
1639 state
->AS_Data
.f_LO1_Step
, state
->AS_Data
.f_ref
);
1640 state
->AS_Data
.f_LO2
=
1641 MT2063_Round_fLO(state
->AS_Data
.f_LO1
- state
->AS_Data
.f_out
- f_in
,
1642 state
->AS_Data
.f_LO2_Step
, state
->AS_Data
.f_ref
);
1643 state
->AS_Data
.f_LO2
=
1644 MT2063_CalcLO2Mult(&LO2
, &Num2
, state
->AS_Data
.f_LO2
,
1645 state
->AS_Data
.f_LO2_Step
, state
->AS_Data
.f_ref
);
1648 * Check the upconverter and downconverter frequency ranges
1650 if ((state
->AS_Data
.f_LO1
< MT2063_MIN_UPC_FREQ
)
1651 || (state
->AS_Data
.f_LO1
> MT2063_MAX_UPC_FREQ
))
1652 status
|= MT2063_UPC_RANGE
;
1653 if ((state
->AS_Data
.f_LO2
< MT2063_MIN_DNC_FREQ
)
1654 || (state
->AS_Data
.f_LO2
> MT2063_MAX_DNC_FREQ
))
1655 status
|= MT2063_DNC_RANGE
;
1656 /* LO2 Lock bit was in a different place for B0 version */
1657 if (state
->tuner_id
== MT2063_B0
)
1661 * If we have the same LO frequencies and we're already locked,
1662 * then skip re-programming the LO registers.
1664 if ((ofLO1
!= state
->AS_Data
.f_LO1
)
1665 || (ofLO2
!= state
->AS_Data
.f_LO2
)
1666 || ((state
->reg
[MT2063_REG_LO_STATUS
] & (LO1LK
| LO2LK
)) !=
1669 * Calculate the FIFFOF register value
1672 * FIFFOF = ------------ - 8 * FIFFC - 4992
1676 (state
->AS_Data
.f_LO1
-
1677 f_in
) / (state
->AS_Data
.f_ref
/ 64) - 8 * (u32
) fiffc
-
1683 * Place all of the calculated values into the local tuner
1687 state
->reg
[MT2063_REG_LO1CQ_1
] = (u8
) (LO1
& 0xFF); /* DIV1q */
1688 state
->reg
[MT2063_REG_LO1CQ_2
] = (u8
) (Num1
& 0x3F); /* NUM1q */
1689 state
->reg
[MT2063_REG_LO2CQ_1
] = (u8
) (((LO2
& 0x7F) << 1) /* DIV2q */
1690 |(Num2
>> 12)); /* NUM2q (hi) */
1691 state
->reg
[MT2063_REG_LO2CQ_2
] = (u8
) ((Num2
& 0x0FF0) >> 4); /* NUM2q (mid) */
1692 state
->reg
[MT2063_REG_LO2CQ_3
] = (u8
) (0xE0 | (Num2
& 0x000F)); /* NUM2q (lo) */
1695 * Now write out the computed register values
1696 * IMPORTANT: There is a required order for writing
1697 * (0x05 must follow all the others).
1699 status
|= mt2063_write(state
, MT2063_REG_LO1CQ_1
, &state
->reg
[MT2063_REG_LO1CQ_1
], 5); /* 0x01 - 0x05 */
1700 if (state
->tuner_id
== MT2063_B0
) {
1701 /* Re-write the one-shot bits to trigger the tune operation */
1702 status
|= mt2063_write(state
, MT2063_REG_LO2CQ_3
, &state
->reg
[MT2063_REG_LO2CQ_3
], 1); /* 0x05 */
1704 /* Write out the FIFF offset only if it's changing */
1705 if (state
->reg
[MT2063_REG_FIFF_OFFSET
] !=
1707 state
->reg
[MT2063_REG_FIFF_OFFSET
] =
1711 MT2063_REG_FIFF_OFFSET
,
1713 reg
[MT2063_REG_FIFF_OFFSET
],
1719 * Check for LO's locking
1725 status
= mt2063_lockStatus(state
);
1729 return -EINVAL
; /* Couldn't lock */
1732 * If we locked OK, assign calculated data to mt2063_state structure
1734 state
->f_IF1_actual
= state
->AS_Data
.f_LO1
- f_in
;
1740 static const u8 MT2063B0_defaults
[] = {
1754 0x2C, 0x27, /* bit at 0x20 is cleared below */
1756 0x2C, 0x07, /* bit at 0x20 is cleared here */
1759 0x28, 0xE1, /* Set the FIFCrst bit here */
1760 0x28, 0xE0, /* Clear the FIFCrst bit here */
1764 /* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */
1765 static const u8 MT2063B1_defaults
[] = {
1768 0x11, 0x10, /* New Enable AFCsd */
1777 0x22, 0x21, /* New - ver 1.03 */
1778 0x23, 0x3C, /* New - ver 1.10 */
1779 0x24, 0x20, /* New - ver 1.03 */
1780 0x2C, 0x24, /* bit at 0x20 is cleared below */
1781 0x2D, 0x87, /* FIFFQ=0 */
1783 0x30, 0x0C, /* New - ver 1.11 */
1784 0x31, 0x1B, /* New - ver 1.11 */
1785 0x2C, 0x04, /* bit at 0x20 is cleared here */
1786 0x28, 0xE1, /* Set the FIFCrst bit here */
1787 0x28, 0xE0, /* Clear the FIFCrst bit here */
1791 /* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */
1792 static const u8 MT2063B3_defaults
[] = {
1796 0x2C, 0x24, /* bit at 0x20 is cleared below */
1797 0x2C, 0x04, /* bit at 0x20 is cleared here */
1798 0x28, 0xE1, /* Set the FIFCrst bit here */
1799 0x28, 0xE0, /* Clear the FIFCrst bit here */
1803 static int mt2063_init(struct dvb_frontend
*fe
)
1806 struct mt2063_state
*state
= fe
->tuner_priv
;
1807 u8 all_resets
= 0xF0; /* reset/load bits */
1808 const u8
*def
= NULL
;
1817 state
->rcvr_mode
= MT2063_CABLE_QAM
;
1819 /* Read the Part/Rev code from the tuner */
1820 status
= mt2063_read(state
, MT2063_REG_PART_REV
,
1821 &state
->reg
[MT2063_REG_PART_REV
], 1);
1823 printk(KERN_ERR
"Can't read mt2063 part ID\n");
1827 /* Check the part/rev code */
1828 switch (state
->reg
[MT2063_REG_PART_REV
]) {
1842 printk(KERN_ERR
"mt2063: Unknown mt2063 device ID (0x%02x)\n",
1843 state
->reg
[MT2063_REG_PART_REV
]);
1844 return -ENODEV
; /* Wrong tuner Part/Rev code */
1847 /* Check the 2nd byte of the Part/Rev code from the tuner */
1848 status
= mt2063_read(state
, MT2063_REG_RSVD_3B
,
1849 &state
->reg
[MT2063_REG_RSVD_3B
], 1);
1851 /* b7 != 0 ==> NOT MT2063 */
1852 if (status
< 0 || ((state
->reg
[MT2063_REG_RSVD_3B
] & 0x80) != 0x00)) {
1853 printk(KERN_ERR
"mt2063: Unknown part ID (0x%02x%02x)\n",
1854 state
->reg
[MT2063_REG_PART_REV
],
1855 state
->reg
[MT2063_REG_RSVD_3B
]);
1856 return -ENODEV
; /* Wrong tuner Part/Rev code */
1859 printk(KERN_INFO
"mt2063: detected a mt2063 %s\n", step
);
1861 /* Reset the tuner */
1862 status
= mt2063_write(state
, MT2063_REG_LO2CQ_3
, &all_resets
, 1);
1866 /* change all of the default values that vary from the HW reset values */
1867 /* def = (state->reg[PART_REV] == MT2063_B0) ? MT2063B0_defaults : MT2063B1_defaults; */
1868 switch (state
->reg
[MT2063_REG_PART_REV
]) {
1870 def
= MT2063B3_defaults
;
1874 def
= MT2063B1_defaults
;
1878 def
= MT2063B0_defaults
;
1886 while (status
>= 0 && *def
) {
1889 status
= mt2063_write(state
, reg
, &val
, 1);
1894 /* Wait for FIFF location to complete. */
1897 while (status
>= 0 && (FCRUN
!= 0) && (maxReads
-- > 0)) {
1899 status
= mt2063_read(state
,
1900 MT2063_REG_XO_STATUS
,
1902 reg
[MT2063_REG_XO_STATUS
], 1);
1903 FCRUN
= (state
->reg
[MT2063_REG_XO_STATUS
] & 0x40) >> 6;
1906 if (FCRUN
!= 0 || status
< 0)
1909 status
= mt2063_read(state
,
1911 &state
->reg
[MT2063_REG_FIFFC
], 1);
1915 /* Read back all the registers from the tuner */
1916 status
= mt2063_read(state
,
1917 MT2063_REG_PART_REV
,
1918 state
->reg
, MT2063_REG_END_REGS
);
1922 /* Initialize the tuner state. */
1923 state
->tuner_id
= state
->reg
[MT2063_REG_PART_REV
];
1924 state
->AS_Data
.f_ref
= MT2063_REF_FREQ
;
1925 state
->AS_Data
.f_if1_Center
= (state
->AS_Data
.f_ref
/ 8) *
1926 ((u32
) state
->reg
[MT2063_REG_FIFFC
] + 640);
1927 state
->AS_Data
.f_if1_bw
= MT2063_IF1_BW
;
1928 state
->AS_Data
.f_out
= 43750000UL;
1929 state
->AS_Data
.f_out_bw
= 6750000UL;
1930 state
->AS_Data
.f_zif_bw
= MT2063_ZIF_BW
;
1931 state
->AS_Data
.f_LO1_Step
= state
->AS_Data
.f_ref
/ 64;
1932 state
->AS_Data
.f_LO2_Step
= MT2063_TUNE_STEP_SIZE
;
1933 state
->AS_Data
.maxH1
= MT2063_MAX_HARMONICS_1
;
1934 state
->AS_Data
.maxH2
= MT2063_MAX_HARMONICS_2
;
1935 state
->AS_Data
.f_min_LO_Separation
= MT2063_MIN_LO_SEP
;
1936 state
->AS_Data
.f_if1_Request
= state
->AS_Data
.f_if1_Center
;
1937 state
->AS_Data
.f_LO1
= 2181000000UL;
1938 state
->AS_Data
.f_LO2
= 1486249786UL;
1939 state
->f_IF1_actual
= state
->AS_Data
.f_if1_Center
;
1940 state
->AS_Data
.f_in
= state
->AS_Data
.f_LO1
- state
->f_IF1_actual
;
1941 state
->AS_Data
.f_LO1_FracN_Avoid
= MT2063_LO1_FRACN_AVOID
;
1942 state
->AS_Data
.f_LO2_FracN_Avoid
= MT2063_LO2_FRACN_AVOID
;
1943 state
->num_regs
= MT2063_REG_END_REGS
;
1944 state
->AS_Data
.avoidDECT
= MT2063_AVOID_BOTH
;
1945 state
->ctfilt_sw
= 0;
1947 state
->CTFiltMax
[0] = 69230000;
1948 state
->CTFiltMax
[1] = 105770000;
1949 state
->CTFiltMax
[2] = 140350000;
1950 state
->CTFiltMax
[3] = 177110000;
1951 state
->CTFiltMax
[4] = 212860000;
1952 state
->CTFiltMax
[5] = 241130000;
1953 state
->CTFiltMax
[6] = 274370000;
1954 state
->CTFiltMax
[7] = 309820000;
1955 state
->CTFiltMax
[8] = 342450000;
1956 state
->CTFiltMax
[9] = 378870000;
1957 state
->CTFiltMax
[10] = 416210000;
1958 state
->CTFiltMax
[11] = 456500000;
1959 state
->CTFiltMax
[12] = 495790000;
1960 state
->CTFiltMax
[13] = 534530000;
1961 state
->CTFiltMax
[14] = 572610000;
1962 state
->CTFiltMax
[15] = 598970000;
1963 state
->CTFiltMax
[16] = 635910000;
1964 state
->CTFiltMax
[17] = 672130000;
1965 state
->CTFiltMax
[18] = 714840000;
1966 state
->CTFiltMax
[19] = 739660000;
1967 state
->CTFiltMax
[20] = 770410000;
1968 state
->CTFiltMax
[21] = 814660000;
1969 state
->CTFiltMax
[22] = 846950000;
1970 state
->CTFiltMax
[23] = 867820000;
1971 state
->CTFiltMax
[24] = 915980000;
1972 state
->CTFiltMax
[25] = 947450000;
1973 state
->CTFiltMax
[26] = 983110000;
1974 state
->CTFiltMax
[27] = 1021630000;
1975 state
->CTFiltMax
[28] = 1061870000;
1976 state
->CTFiltMax
[29] = 1098330000;
1977 state
->CTFiltMax
[30] = 1138990000;
1980 ** Fetch the FCU osc value and use it and the fRef value to
1981 ** scale all of the Band Max values
1984 state
->reg
[MT2063_REG_CTUNE_CTRL
] = 0x0A;
1985 status
= mt2063_write(state
, MT2063_REG_CTUNE_CTRL
,
1986 &state
->reg
[MT2063_REG_CTUNE_CTRL
], 1);
1990 /* Read the ClearTune filter calibration value */
1991 status
= mt2063_read(state
, MT2063_REG_FIFFC
,
1992 &state
->reg
[MT2063_REG_FIFFC
], 1);
1996 fcu_osc
= state
->reg
[MT2063_REG_FIFFC
];
1998 state
->reg
[MT2063_REG_CTUNE_CTRL
] = 0x00;
1999 status
= mt2063_write(state
, MT2063_REG_CTUNE_CTRL
,
2000 &state
->reg
[MT2063_REG_CTUNE_CTRL
], 1);
2004 /* Adjust each of the values in the ClearTune filter cross-over table */
2005 for (i
= 0; i
< 31; i
++)
2006 state
->CTFiltMax
[i
] = (state
->CTFiltMax
[i
] / 768) * (fcu_osc
+ 640);
2008 status
= MT2063_SoftwareShutdown(state
, 1);
2011 status
= MT2063_ClearPowerMaskBits(state
, MT2063_ALL_SD
);
2020 static int mt2063_get_status(struct dvb_frontend
*fe
, u32
*tuner_status
)
2022 struct mt2063_state
*state
= fe
->tuner_priv
;
2031 status
= mt2063_lockStatus(state
);
2035 *tuner_status
= TUNER_STATUS_LOCKED
;
2037 dprintk(1, "Tuner status: %d", *tuner_status
);
2042 static int mt2063_release(struct dvb_frontend
*fe
)
2044 struct mt2063_state
*state
= fe
->tuner_priv
;
2048 fe
->tuner_priv
= NULL
;
2054 static int mt2063_set_analog_params(struct dvb_frontend
*fe
,
2055 struct analog_parameters
*params
)
2057 struct mt2063_state
*state
= fe
->tuner_priv
;
2068 status
= mt2063_init(fe
);
2073 switch (params
->mode
) {
2074 case V4L2_TUNER_RADIO
:
2075 pict_car
= 38900000;
2077 pict2chanb_vsb
= -(ch_bw
/ 2);
2078 rcvr_mode
= MT2063_OFFAIR_ANALOG
;
2080 case V4L2_TUNER_ANALOG_TV
:
2081 rcvr_mode
= MT2063_CABLE_ANALOG
;
2082 if (params
->std
& ~V4L2_STD_MN
) {
2083 pict_car
= 38900000;
2085 pict2chanb_vsb
= -1250000;
2086 } else if (params
->std
& V4L2_STD_PAL_G
) {
2087 pict_car
= 38900000;
2089 pict2chanb_vsb
= -1250000;
2090 } else { /* PAL/SECAM standards */
2091 pict_car
= 38900000;
2093 pict2chanb_vsb
= -1250000;
2099 if_mid
= pict_car
- (pict2chanb_vsb
+ (ch_bw
/ 2));
2101 state
->AS_Data
.f_LO2_Step
= 125000; /* FIXME: probably 5000 for FM */
2102 state
->AS_Data
.f_out
= if_mid
;
2103 state
->AS_Data
.f_out_bw
= ch_bw
+ 750000;
2104 status
= MT2063_SetReceiverMode(state
, rcvr_mode
);
2108 dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n",
2109 params
->frequency
, ch_bw
, pict2chanb_vsb
);
2111 status
= MT2063_Tune(state
, (params
->frequency
+ (pict2chanb_vsb
+ (ch_bw
/ 2))));
2115 state
->frequency
= params
->frequency
;
2120 * As defined on EN 300 429, the DVB-C roll-off factor is 0.15.
2121 * So, the amount of the needed bandwidth is given by:
2122 * Bw = Symbol_rate * (1 + 0.15)
2123 * As such, the maximum symbol rate supported by 6 MHz is given by:
2124 * max_symbol_rate = 6 MHz / 1.15 = 5217391 Bauds
2126 #define MAX_SYMBOL_RATE_6MHz 5217391
2128 static int mt2063_set_params(struct dvb_frontend
*fe
)
2130 struct dtv_frontend_properties
*c
= &fe
->dtv_property_cache
;
2131 struct mt2063_state
*state
= fe
->tuner_priv
;
2140 status
= mt2063_init(fe
);
2147 if (c
->bandwidth_hz
== 0)
2149 if (c
->bandwidth_hz
<= 6000000)
2151 else if (c
->bandwidth_hz
<= 7000000)
2156 switch (c
->delivery_system
) {
2158 rcvr_mode
= MT2063_OFFAIR_COFDM
;
2159 pict_car
= 36125000;
2160 pict2chanb_vsb
= -(ch_bw
/ 2);
2162 case SYS_DVBC_ANNEX_A
:
2163 case SYS_DVBC_ANNEX_C
:
2164 rcvr_mode
= MT2063_CABLE_QAM
;
2165 pict_car
= 36125000;
2166 pict2chanb_vsb
= -(ch_bw
/ 2);
2171 if_mid
= pict_car
- (pict2chanb_vsb
+ (ch_bw
/ 2));
2173 state
->AS_Data
.f_LO2_Step
= 125000; /* FIXME: probably 5000 for FM */
2174 state
->AS_Data
.f_out
= if_mid
;
2175 state
->AS_Data
.f_out_bw
= ch_bw
+ 750000;
2176 status
= MT2063_SetReceiverMode(state
, rcvr_mode
);
2180 dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n",
2181 c
->frequency
, ch_bw
, pict2chanb_vsb
);
2183 status
= MT2063_Tune(state
, (c
->frequency
+ (pict2chanb_vsb
+ (ch_bw
/ 2))));
2188 state
->frequency
= c
->frequency
;
2192 static int mt2063_get_if_frequency(struct dvb_frontend
*fe
, u32
*freq
)
2194 struct mt2063_state
*state
= fe
->tuner_priv
;
2201 *freq
= state
->AS_Data
.f_out
;
2203 dprintk(1, "IF frequency: %d\n", *freq
);
2208 static int mt2063_get_bandwidth(struct dvb_frontend
*fe
, u32
*bw
)
2210 struct mt2063_state
*state
= fe
->tuner_priv
;
2217 *bw
= state
->AS_Data
.f_out_bw
- 750000;
2219 dprintk(1, "bandwidth: %d\n", *bw
);
2224 static struct dvb_tuner_ops mt2063_ops
= {
2226 .name
= "MT2063 Silicon Tuner",
2227 .frequency_min
= 45000000,
2228 .frequency_max
= 865000000,
2229 .frequency_step
= 0,
2232 .init
= mt2063_init
,
2233 .sleep
= MT2063_Sleep
,
2234 .get_status
= mt2063_get_status
,
2235 .set_analog_params
= mt2063_set_analog_params
,
2236 .set_params
= mt2063_set_params
,
2237 .get_if_frequency
= mt2063_get_if_frequency
,
2238 .get_bandwidth
= mt2063_get_bandwidth
,
2239 .release
= mt2063_release
,
2242 struct dvb_frontend
*mt2063_attach(struct dvb_frontend
*fe
,
2243 struct mt2063_config
*config
,
2244 struct i2c_adapter
*i2c
)
2246 struct mt2063_state
*state
= NULL
;
2250 state
= kzalloc(sizeof(struct mt2063_state
), GFP_KERNEL
);
2254 state
->config
= config
;
2256 state
->frontend
= fe
;
2257 state
->reference
= config
->refclock
/ 1000; /* kHz */
2258 fe
->tuner_priv
= state
;
2259 fe
->ops
.tuner_ops
= mt2063_ops
;
2261 printk(KERN_INFO
"%s: Attaching MT2063\n", __func__
);
2264 EXPORT_SYMBOL_GPL(mt2063_attach
);
2268 * Ancillary routines visible outside mt2063
2269 * FIXME: Remove them in favor of using standard tuner callbacks
2271 static int tuner_MT2063_SoftwareShutdown(struct dvb_frontend
*fe
)
2273 struct mt2063_state
*state
= fe
->tuner_priv
;
2278 err
= MT2063_SoftwareShutdown(state
, 1);
2280 printk(KERN_ERR
"%s: Couldn't shutdown\n", __func__
);
2285 static int tuner_MT2063_ClearPowerMaskBits(struct dvb_frontend
*fe
)
2287 struct mt2063_state
*state
= fe
->tuner_priv
;
2292 err
= MT2063_ClearPowerMaskBits(state
, MT2063_ALL_SD
);
2294 printk(KERN_ERR
"%s: Invalid parameter\n", __func__
);
2300 MODULE_AUTHOR("Mauro Carvalho Chehab");
2301 MODULE_DESCRIPTION("MT2063 Silicon tuner");
2302 MODULE_LICENSE("GPL");