2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 * Copyright (C) 2010 ST-Ericsson SA
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/highmem.h>
23 #include <linux/log2.h>
24 #include <linux/mmc/pm.h>
25 #include <linux/mmc/host.h>
26 #include <linux/mmc/card.h>
27 #include <linux/mmc/slot-gpio.h>
28 #include <linux/amba/bus.h>
29 #include <linux/clk.h>
30 #include <linux/scatterlist.h>
31 #include <linux/gpio.h>
32 #include <linux/of_gpio.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/amba/mmci.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/types.h>
39 #include <linux/pinctrl/consumer.h>
41 #include <asm/div64.h>
45 #include "mmci_qcom_dml.h"
47 #define DRIVER_NAME "mmci-pl18x"
49 static unsigned int fmax
= 515633;
52 * struct variant_data - MMCI variant-specific quirks
53 * @clkreg: default value for MCICLOCK register
54 * @clkreg_enable: enable value for MMCICLOCK register
55 * @clkreg_8bit_bus_enable: enable value for 8 bit bus
56 * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
57 * @datalength_bits: number of bits in the MMCIDATALENGTH register
58 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
59 * is asserted (likewise for RX)
60 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
61 * is asserted (likewise for RX)
62 * @data_cmd_enable: enable value for data commands.
63 * @st_sdio: enable ST specific SDIO logic
64 * @st_clkdiv: true if using a ST-specific clock divider algorithm
65 * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
66 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
67 * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
69 * @datactrl_mask_sdio: SDIO enable mask in datactrl register
70 * @pwrreg_powerup: power up value for MMCIPOWER register
71 * @f_max: maximum clk frequency supported by the controller.
72 * @signal_direction: input/out direction of bus signals can be indicated
73 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
74 * @busy_detect: true if busy detection on dat0 is supported
75 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
76 * @explicit_mclk_control: enable explicit mclk control in driver.
77 * @qcom_fifo: enables qcom specific fifo pio read logic.
78 * @qcom_dml: enables qcom specific dma glue for dma transfers.
79 * @reversed_irq_handling: handle data irq before cmd irq.
83 unsigned int clkreg_enable
;
84 unsigned int clkreg_8bit_bus_enable
;
85 unsigned int clkreg_neg_edge_enable
;
86 unsigned int datalength_bits
;
87 unsigned int fifosize
;
88 unsigned int fifohalfsize
;
89 unsigned int data_cmd_enable
;
90 unsigned int datactrl_mask_ddrmode
;
91 unsigned int datactrl_mask_sdio
;
94 bool blksz_datactrl16
;
98 bool signal_direction
;
102 bool explicit_mclk_control
;
105 bool reversed_irq_handling
;
108 static struct variant_data variant_arm
= {
110 .fifohalfsize
= 8 * 4,
111 .datalength_bits
= 16,
112 .pwrreg_powerup
= MCI_PWR_UP
,
114 .reversed_irq_handling
= true,
117 static struct variant_data variant_arm_extended_fifo
= {
119 .fifohalfsize
= 64 * 4,
120 .datalength_bits
= 16,
121 .pwrreg_powerup
= MCI_PWR_UP
,
125 static struct variant_data variant_arm_extended_fifo_hwfc
= {
127 .fifohalfsize
= 64 * 4,
128 .clkreg_enable
= MCI_ARM_HWFCEN
,
129 .datalength_bits
= 16,
130 .pwrreg_powerup
= MCI_PWR_UP
,
134 static struct variant_data variant_u300
= {
136 .fifohalfsize
= 8 * 4,
137 .clkreg_enable
= MCI_ST_U300_HWFCEN
,
138 .clkreg_8bit_bus_enable
= MCI_ST_8BIT_BUS
,
139 .datalength_bits
= 16,
140 .datactrl_mask_sdio
= MCI_ST_DPSM_SDIOEN
,
142 .pwrreg_powerup
= MCI_PWR_ON
,
144 .signal_direction
= true,
145 .pwrreg_clkgate
= true,
146 .pwrreg_nopower
= true,
149 static struct variant_data variant_nomadik
= {
151 .fifohalfsize
= 8 * 4,
152 .clkreg
= MCI_CLK_ENABLE
,
153 .clkreg_8bit_bus_enable
= MCI_ST_8BIT_BUS
,
154 .datalength_bits
= 24,
155 .datactrl_mask_sdio
= MCI_ST_DPSM_SDIOEN
,
158 .pwrreg_powerup
= MCI_PWR_ON
,
160 .signal_direction
= true,
161 .pwrreg_clkgate
= true,
162 .pwrreg_nopower
= true,
165 static struct variant_data variant_ux500
= {
167 .fifohalfsize
= 8 * 4,
168 .clkreg
= MCI_CLK_ENABLE
,
169 .clkreg_enable
= MCI_ST_UX500_HWFCEN
,
170 .clkreg_8bit_bus_enable
= MCI_ST_8BIT_BUS
,
171 .clkreg_neg_edge_enable
= MCI_ST_UX500_NEG_EDGE
,
172 .datalength_bits
= 24,
173 .datactrl_mask_sdio
= MCI_ST_DPSM_SDIOEN
,
176 .pwrreg_powerup
= MCI_PWR_ON
,
178 .signal_direction
= true,
179 .pwrreg_clkgate
= true,
181 .pwrreg_nopower
= true,
184 static struct variant_data variant_ux500v2
= {
186 .fifohalfsize
= 8 * 4,
187 .clkreg
= MCI_CLK_ENABLE
,
188 .clkreg_enable
= MCI_ST_UX500_HWFCEN
,
189 .clkreg_8bit_bus_enable
= MCI_ST_8BIT_BUS
,
190 .clkreg_neg_edge_enable
= MCI_ST_UX500_NEG_EDGE
,
191 .datactrl_mask_ddrmode
= MCI_ST_DPSM_DDRMODE
,
192 .datalength_bits
= 24,
193 .datactrl_mask_sdio
= MCI_ST_DPSM_SDIOEN
,
196 .blksz_datactrl16
= true,
197 .pwrreg_powerup
= MCI_PWR_ON
,
199 .signal_direction
= true,
200 .pwrreg_clkgate
= true,
202 .pwrreg_nopower
= true,
205 static struct variant_data variant_qcom
= {
207 .fifohalfsize
= 8 * 4,
208 .clkreg
= MCI_CLK_ENABLE
,
209 .clkreg_enable
= MCI_QCOM_CLK_FLOWENA
|
210 MCI_QCOM_CLK_SELECT_IN_FBCLK
,
211 .clkreg_8bit_bus_enable
= MCI_QCOM_CLK_WIDEBUS_8
,
212 .datactrl_mask_ddrmode
= MCI_QCOM_CLK_SELECT_IN_DDR_MODE
,
213 .data_cmd_enable
= MCI_QCOM_CSPM_DATCMD
,
214 .blksz_datactrl4
= true,
215 .datalength_bits
= 24,
216 .pwrreg_powerup
= MCI_PWR_UP
,
218 .explicit_mclk_control
= true,
223 static int mmci_card_busy(struct mmc_host
*mmc
)
225 struct mmci_host
*host
= mmc_priv(mmc
);
229 pm_runtime_get_sync(mmc_dev(mmc
));
231 spin_lock_irqsave(&host
->lock
, flags
);
232 if (readl(host
->base
+ MMCISTATUS
) & MCI_ST_CARDBUSY
)
234 spin_unlock_irqrestore(&host
->lock
, flags
);
236 pm_runtime_mark_last_busy(mmc_dev(mmc
));
237 pm_runtime_put_autosuspend(mmc_dev(mmc
));
243 * Validate mmc prerequisites
245 static int mmci_validate_data(struct mmci_host
*host
,
246 struct mmc_data
*data
)
251 if (!is_power_of_2(data
->blksz
)) {
252 dev_err(mmc_dev(host
->mmc
),
253 "unsupported block size (%d bytes)\n", data
->blksz
);
260 static void mmci_reg_delay(struct mmci_host
*host
)
263 * According to the spec, at least three feedback clock cycles
264 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
265 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
266 * Worst delay time during card init is at 100 kHz => 30 us.
267 * Worst delay time when up and running is at 25 MHz => 120 ns.
269 if (host
->cclk
< 25000000)
276 * This must be called with host->lock held
278 static void mmci_write_clkreg(struct mmci_host
*host
, u32 clk
)
280 if (host
->clk_reg
!= clk
) {
282 writel(clk
, host
->base
+ MMCICLOCK
);
287 * This must be called with host->lock held
289 static void mmci_write_pwrreg(struct mmci_host
*host
, u32 pwr
)
291 if (host
->pwr_reg
!= pwr
) {
293 writel(pwr
, host
->base
+ MMCIPOWER
);
298 * This must be called with host->lock held
300 static void mmci_write_datactrlreg(struct mmci_host
*host
, u32 datactrl
)
302 /* Keep ST Micro busy mode if enabled */
303 datactrl
|= host
->datactrl_reg
& MCI_ST_DPSM_BUSYMODE
;
305 if (host
->datactrl_reg
!= datactrl
) {
306 host
->datactrl_reg
= datactrl
;
307 writel(datactrl
, host
->base
+ MMCIDATACTRL
);
312 * This must be called with host->lock held
314 static void mmci_set_clkreg(struct mmci_host
*host
, unsigned int desired
)
316 struct variant_data
*variant
= host
->variant
;
317 u32 clk
= variant
->clkreg
;
319 /* Make sure cclk reflects the current calculated clock */
323 if (variant
->explicit_mclk_control
) {
324 host
->cclk
= host
->mclk
;
325 } else if (desired
>= host
->mclk
) {
326 clk
= MCI_CLK_BYPASS
;
327 if (variant
->st_clkdiv
)
328 clk
|= MCI_ST_UX500_NEG_EDGE
;
329 host
->cclk
= host
->mclk
;
330 } else if (variant
->st_clkdiv
) {
332 * DB8500 TRM says f = mclk / (clkdiv + 2)
333 * => clkdiv = (mclk / f) - 2
334 * Round the divider up so we don't exceed the max
337 clk
= DIV_ROUND_UP(host
->mclk
, desired
) - 2;
340 host
->cclk
= host
->mclk
/ (clk
+ 2);
343 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
344 * => clkdiv = mclk / (2 * f) - 1
346 clk
= host
->mclk
/ (2 * desired
) - 1;
349 host
->cclk
= host
->mclk
/ (2 * (clk
+ 1));
352 clk
|= variant
->clkreg_enable
;
353 clk
|= MCI_CLK_ENABLE
;
354 /* This hasn't proven to be worthwhile */
355 /* clk |= MCI_CLK_PWRSAVE; */
358 /* Set actual clock for debug */
359 host
->mmc
->actual_clock
= host
->cclk
;
361 if (host
->mmc
->ios
.bus_width
== MMC_BUS_WIDTH_4
)
363 if (host
->mmc
->ios
.bus_width
== MMC_BUS_WIDTH_8
)
364 clk
|= variant
->clkreg_8bit_bus_enable
;
366 if (host
->mmc
->ios
.timing
== MMC_TIMING_UHS_DDR50
||
367 host
->mmc
->ios
.timing
== MMC_TIMING_MMC_DDR52
)
368 clk
|= variant
->clkreg_neg_edge_enable
;
370 mmci_write_clkreg(host
, clk
);
374 mmci_request_end(struct mmci_host
*host
, struct mmc_request
*mrq
)
376 writel(0, host
->base
+ MMCICOMMAND
);
383 mmc_request_done(host
->mmc
, mrq
);
385 pm_runtime_mark_last_busy(mmc_dev(host
->mmc
));
386 pm_runtime_put_autosuspend(mmc_dev(host
->mmc
));
389 static void mmci_set_mask1(struct mmci_host
*host
, unsigned int mask
)
391 void __iomem
*base
= host
->base
;
393 if (host
->singleirq
) {
394 unsigned int mask0
= readl(base
+ MMCIMASK0
);
396 mask0
&= ~MCI_IRQ1MASK
;
399 writel(mask0
, base
+ MMCIMASK0
);
402 writel(mask
, base
+ MMCIMASK1
);
405 static void mmci_stop_data(struct mmci_host
*host
)
407 mmci_write_datactrlreg(host
, 0);
408 mmci_set_mask1(host
, 0);
412 static void mmci_init_sg(struct mmci_host
*host
, struct mmc_data
*data
)
414 unsigned int flags
= SG_MITER_ATOMIC
;
416 if (data
->flags
& MMC_DATA_READ
)
417 flags
|= SG_MITER_TO_SG
;
419 flags
|= SG_MITER_FROM_SG
;
421 sg_miter_start(&host
->sg_miter
, data
->sg
, data
->sg_len
, flags
);
425 * All the DMA operation mode stuff goes inside this ifdef.
426 * This assumes that you have a generic DMA device interface,
427 * no custom DMA interfaces are supported.
429 #ifdef CONFIG_DMA_ENGINE
430 static void mmci_dma_setup(struct mmci_host
*host
)
432 const char *rxname
, *txname
;
433 struct variant_data
*variant
= host
->variant
;
435 host
->dma_rx_channel
= dma_request_slave_channel(mmc_dev(host
->mmc
), "rx");
436 host
->dma_tx_channel
= dma_request_slave_channel(mmc_dev(host
->mmc
), "tx");
438 /* initialize pre request cookie */
439 host
->next_data
.cookie
= 1;
442 * If only an RX channel is specified, the driver will
443 * attempt to use it bidirectionally, however if it is
444 * is specified but cannot be located, DMA will be disabled.
446 if (host
->dma_rx_channel
&& !host
->dma_tx_channel
)
447 host
->dma_tx_channel
= host
->dma_rx_channel
;
449 if (host
->dma_rx_channel
)
450 rxname
= dma_chan_name(host
->dma_rx_channel
);
454 if (host
->dma_tx_channel
)
455 txname
= dma_chan_name(host
->dma_tx_channel
);
459 dev_info(mmc_dev(host
->mmc
), "DMA channels RX %s, TX %s\n",
463 * Limit the maximum segment size in any SG entry according to
464 * the parameters of the DMA engine device.
466 if (host
->dma_tx_channel
) {
467 struct device
*dev
= host
->dma_tx_channel
->device
->dev
;
468 unsigned int max_seg_size
= dma_get_max_seg_size(dev
);
470 if (max_seg_size
< host
->mmc
->max_seg_size
)
471 host
->mmc
->max_seg_size
= max_seg_size
;
473 if (host
->dma_rx_channel
) {
474 struct device
*dev
= host
->dma_rx_channel
->device
->dev
;
475 unsigned int max_seg_size
= dma_get_max_seg_size(dev
);
477 if (max_seg_size
< host
->mmc
->max_seg_size
)
478 host
->mmc
->max_seg_size
= max_seg_size
;
481 if (variant
->qcom_dml
&& host
->dma_rx_channel
&& host
->dma_tx_channel
)
482 if (dml_hw_init(host
, host
->mmc
->parent
->of_node
))
483 variant
->qcom_dml
= false;
487 * This is used in or so inline it
488 * so it can be discarded.
490 static inline void mmci_dma_release(struct mmci_host
*host
)
492 if (host
->dma_rx_channel
)
493 dma_release_channel(host
->dma_rx_channel
);
494 if (host
->dma_tx_channel
)
495 dma_release_channel(host
->dma_tx_channel
);
496 host
->dma_rx_channel
= host
->dma_tx_channel
= NULL
;
499 static void mmci_dma_data_error(struct mmci_host
*host
)
501 dev_err(mmc_dev(host
->mmc
), "error during DMA transfer!\n");
502 dmaengine_terminate_all(host
->dma_current
);
503 host
->dma_current
= NULL
;
504 host
->dma_desc_current
= NULL
;
505 host
->data
->host_cookie
= 0;
508 static void mmci_dma_unmap(struct mmci_host
*host
, struct mmc_data
*data
)
510 struct dma_chan
*chan
;
511 enum dma_data_direction dir
;
513 if (data
->flags
& MMC_DATA_READ
) {
514 dir
= DMA_FROM_DEVICE
;
515 chan
= host
->dma_rx_channel
;
518 chan
= host
->dma_tx_channel
;
521 dma_unmap_sg(chan
->device
->dev
, data
->sg
, data
->sg_len
, dir
);
524 static void mmci_dma_finalize(struct mmci_host
*host
, struct mmc_data
*data
)
529 /* Wait up to 1ms for the DMA to complete */
531 status
= readl(host
->base
+ MMCISTATUS
);
532 if (!(status
& MCI_RXDATAAVLBLMASK
) || i
>= 100)
538 * Check to see whether we still have some data left in the FIFO -
539 * this catches DMA controllers which are unable to monitor the
540 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
541 * contiguous buffers. On TX, we'll get a FIFO underrun error.
543 if (status
& MCI_RXDATAAVLBLMASK
) {
544 mmci_dma_data_error(host
);
549 if (!data
->host_cookie
)
550 mmci_dma_unmap(host
, data
);
553 * Use of DMA with scatter-gather is impossible.
554 * Give up with DMA and switch back to PIO mode.
556 if (status
& MCI_RXDATAAVLBLMASK
) {
557 dev_err(mmc_dev(host
->mmc
), "buggy DMA detected. Taking evasive action.\n");
558 mmci_dma_release(host
);
561 host
->dma_current
= NULL
;
562 host
->dma_desc_current
= NULL
;
565 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
566 static int __mmci_dma_prep_data(struct mmci_host
*host
, struct mmc_data
*data
,
567 struct dma_chan
**dma_chan
,
568 struct dma_async_tx_descriptor
**dma_desc
)
570 struct variant_data
*variant
= host
->variant
;
571 struct dma_slave_config conf
= {
572 .src_addr
= host
->phybase
+ MMCIFIFO
,
573 .dst_addr
= host
->phybase
+ MMCIFIFO
,
574 .src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
,
575 .dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
,
576 .src_maxburst
= variant
->fifohalfsize
>> 2, /* # of words */
577 .dst_maxburst
= variant
->fifohalfsize
>> 2, /* # of words */
580 struct dma_chan
*chan
;
581 struct dma_device
*device
;
582 struct dma_async_tx_descriptor
*desc
;
583 enum dma_data_direction buffer_dirn
;
585 unsigned long flags
= DMA_CTRL_ACK
;
587 if (data
->flags
& MMC_DATA_READ
) {
588 conf
.direction
= DMA_DEV_TO_MEM
;
589 buffer_dirn
= DMA_FROM_DEVICE
;
590 chan
= host
->dma_rx_channel
;
592 conf
.direction
= DMA_MEM_TO_DEV
;
593 buffer_dirn
= DMA_TO_DEVICE
;
594 chan
= host
->dma_tx_channel
;
597 /* If there's no DMA channel, fall back to PIO */
601 /* If less than or equal to the fifo size, don't bother with DMA */
602 if (data
->blksz
* data
->blocks
<= variant
->fifosize
)
605 device
= chan
->device
;
606 nr_sg
= dma_map_sg(device
->dev
, data
->sg
, data
->sg_len
, buffer_dirn
);
610 if (host
->variant
->qcom_dml
)
611 flags
|= DMA_PREP_INTERRUPT
;
613 dmaengine_slave_config(chan
, &conf
);
614 desc
= dmaengine_prep_slave_sg(chan
, data
->sg
, nr_sg
,
615 conf
.direction
, flags
);
625 dma_unmap_sg(device
->dev
, data
->sg
, data
->sg_len
, buffer_dirn
);
629 static inline int mmci_dma_prep_data(struct mmci_host
*host
,
630 struct mmc_data
*data
)
632 /* Check if next job is already prepared. */
633 if (host
->dma_current
&& host
->dma_desc_current
)
636 /* No job were prepared thus do it now. */
637 return __mmci_dma_prep_data(host
, data
, &host
->dma_current
,
638 &host
->dma_desc_current
);
641 static inline int mmci_dma_prep_next(struct mmci_host
*host
,
642 struct mmc_data
*data
)
644 struct mmci_host_next
*nd
= &host
->next_data
;
645 return __mmci_dma_prep_data(host
, data
, &nd
->dma_chan
, &nd
->dma_desc
);
648 static int mmci_dma_start_data(struct mmci_host
*host
, unsigned int datactrl
)
651 struct mmc_data
*data
= host
->data
;
653 ret
= mmci_dma_prep_data(host
, host
->data
);
657 /* Okay, go for it. */
658 dev_vdbg(mmc_dev(host
->mmc
),
659 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
660 data
->sg_len
, data
->blksz
, data
->blocks
, data
->flags
);
661 dmaengine_submit(host
->dma_desc_current
);
662 dma_async_issue_pending(host
->dma_current
);
664 if (host
->variant
->qcom_dml
)
665 dml_start_xfer(host
, data
);
667 datactrl
|= MCI_DPSM_DMAENABLE
;
669 /* Trigger the DMA transfer */
670 mmci_write_datactrlreg(host
, datactrl
);
673 * Let the MMCI say when the data is ended and it's time
674 * to fire next DMA request. When that happens, MMCI will
675 * call mmci_data_end()
677 writel(readl(host
->base
+ MMCIMASK0
) | MCI_DATAENDMASK
,
678 host
->base
+ MMCIMASK0
);
682 static void mmci_get_next_data(struct mmci_host
*host
, struct mmc_data
*data
)
684 struct mmci_host_next
*next
= &host
->next_data
;
686 WARN_ON(data
->host_cookie
&& data
->host_cookie
!= next
->cookie
);
687 WARN_ON(!data
->host_cookie
&& (next
->dma_desc
|| next
->dma_chan
));
689 host
->dma_desc_current
= next
->dma_desc
;
690 host
->dma_current
= next
->dma_chan
;
691 next
->dma_desc
= NULL
;
692 next
->dma_chan
= NULL
;
695 static void mmci_pre_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
,
698 struct mmci_host
*host
= mmc_priv(mmc
);
699 struct mmc_data
*data
= mrq
->data
;
700 struct mmci_host_next
*nd
= &host
->next_data
;
705 BUG_ON(data
->host_cookie
);
707 if (mmci_validate_data(host
, data
))
710 if (!mmci_dma_prep_next(host
, data
))
711 data
->host_cookie
= ++nd
->cookie
< 0 ? 1 : nd
->cookie
;
714 static void mmci_post_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
,
717 struct mmci_host
*host
= mmc_priv(mmc
);
718 struct mmc_data
*data
= mrq
->data
;
720 if (!data
|| !data
->host_cookie
)
723 mmci_dma_unmap(host
, data
);
726 struct mmci_host_next
*next
= &host
->next_data
;
727 struct dma_chan
*chan
;
728 if (data
->flags
& MMC_DATA_READ
)
729 chan
= host
->dma_rx_channel
;
731 chan
= host
->dma_tx_channel
;
732 dmaengine_terminate_all(chan
);
734 if (host
->dma_desc_current
== next
->dma_desc
)
735 host
->dma_desc_current
= NULL
;
737 if (host
->dma_current
== next
->dma_chan
)
738 host
->dma_current
= NULL
;
740 next
->dma_desc
= NULL
;
741 next
->dma_chan
= NULL
;
742 data
->host_cookie
= 0;
747 /* Blank functions if the DMA engine is not available */
748 static void mmci_get_next_data(struct mmci_host
*host
, struct mmc_data
*data
)
751 static inline void mmci_dma_setup(struct mmci_host
*host
)
755 static inline void mmci_dma_release(struct mmci_host
*host
)
759 static inline void mmci_dma_unmap(struct mmci_host
*host
, struct mmc_data
*data
)
763 static inline void mmci_dma_finalize(struct mmci_host
*host
,
764 struct mmc_data
*data
)
768 static inline void mmci_dma_data_error(struct mmci_host
*host
)
772 static inline int mmci_dma_start_data(struct mmci_host
*host
, unsigned int datactrl
)
777 #define mmci_pre_request NULL
778 #define mmci_post_request NULL
782 static void mmci_start_data(struct mmci_host
*host
, struct mmc_data
*data
)
784 struct variant_data
*variant
= host
->variant
;
785 unsigned int datactrl
, timeout
, irqmask
;
786 unsigned long long clks
;
790 dev_dbg(mmc_dev(host
->mmc
), "blksz %04x blks %04x flags %08x\n",
791 data
->blksz
, data
->blocks
, data
->flags
);
794 host
->size
= data
->blksz
* data
->blocks
;
795 data
->bytes_xfered
= 0;
797 clks
= (unsigned long long)data
->timeout_ns
* host
->cclk
;
798 do_div(clks
, NSEC_PER_SEC
);
800 timeout
= data
->timeout_clks
+ (unsigned int)clks
;
803 writel(timeout
, base
+ MMCIDATATIMER
);
804 writel(host
->size
, base
+ MMCIDATALENGTH
);
806 blksz_bits
= ffs(data
->blksz
) - 1;
807 BUG_ON(1 << blksz_bits
!= data
->blksz
);
809 if (variant
->blksz_datactrl16
)
810 datactrl
= MCI_DPSM_ENABLE
| (data
->blksz
<< 16);
811 else if (variant
->blksz_datactrl4
)
812 datactrl
= MCI_DPSM_ENABLE
| (data
->blksz
<< 4);
814 datactrl
= MCI_DPSM_ENABLE
| blksz_bits
<< 4;
816 if (data
->flags
& MMC_DATA_READ
)
817 datactrl
|= MCI_DPSM_DIRECTION
;
819 if (host
->mmc
->card
&& mmc_card_sdio(host
->mmc
->card
)) {
822 datactrl
|= variant
->datactrl_mask_sdio
;
825 * The ST Micro variant for SDIO small write transfers
826 * needs to have clock H/W flow control disabled,
827 * otherwise the transfer will not start. The threshold
828 * depends on the rate of MCLK.
830 if (variant
->st_sdio
&& data
->flags
& MMC_DATA_WRITE
&&
832 (host
->size
<= 8 && host
->mclk
> 50000000)))
833 clk
= host
->clk_reg
& ~variant
->clkreg_enable
;
835 clk
= host
->clk_reg
| variant
->clkreg_enable
;
837 mmci_write_clkreg(host
, clk
);
840 if (host
->mmc
->ios
.timing
== MMC_TIMING_UHS_DDR50
||
841 host
->mmc
->ios
.timing
== MMC_TIMING_MMC_DDR52
)
842 datactrl
|= variant
->datactrl_mask_ddrmode
;
845 * Attempt to use DMA operation mode, if this
846 * should fail, fall back to PIO mode
848 if (!mmci_dma_start_data(host
, datactrl
))
851 /* IRQ mode, map the SG list for CPU reading/writing */
852 mmci_init_sg(host
, data
);
854 if (data
->flags
& MMC_DATA_READ
) {
855 irqmask
= MCI_RXFIFOHALFFULLMASK
;
858 * If we have less than the fifo 'half-full' threshold to
859 * transfer, trigger a PIO interrupt as soon as any data
862 if (host
->size
< variant
->fifohalfsize
)
863 irqmask
|= MCI_RXDATAAVLBLMASK
;
866 * We don't actually need to include "FIFO empty" here
867 * since its implicit in "FIFO half empty".
869 irqmask
= MCI_TXFIFOHALFEMPTYMASK
;
872 mmci_write_datactrlreg(host
, datactrl
);
873 writel(readl(base
+ MMCIMASK0
) & ~MCI_DATAENDMASK
, base
+ MMCIMASK0
);
874 mmci_set_mask1(host
, irqmask
);
878 mmci_start_command(struct mmci_host
*host
, struct mmc_command
*cmd
, u32 c
)
880 void __iomem
*base
= host
->base
;
882 dev_dbg(mmc_dev(host
->mmc
), "op %02x arg %08x flags %08x\n",
883 cmd
->opcode
, cmd
->arg
, cmd
->flags
);
885 if (readl(base
+ MMCICOMMAND
) & MCI_CPSM_ENABLE
) {
886 writel(0, base
+ MMCICOMMAND
);
887 mmci_reg_delay(host
);
890 c
|= cmd
->opcode
| MCI_CPSM_ENABLE
;
891 if (cmd
->flags
& MMC_RSP_PRESENT
) {
892 if (cmd
->flags
& MMC_RSP_136
)
893 c
|= MCI_CPSM_LONGRSP
;
894 c
|= MCI_CPSM_RESPONSE
;
897 c
|= MCI_CPSM_INTERRUPT
;
899 if (mmc_cmd_type(cmd
) == MMC_CMD_ADTC
)
900 c
|= host
->variant
->data_cmd_enable
;
904 writel(cmd
->arg
, base
+ MMCIARGUMENT
);
905 writel(c
, base
+ MMCICOMMAND
);
909 mmci_data_irq(struct mmci_host
*host
, struct mmc_data
*data
,
912 /* Make sure we have data to handle */
916 /* First check for errors */
917 if (status
& (MCI_DATACRCFAIL
|MCI_DATATIMEOUT
|MCI_STARTBITERR
|
918 MCI_TXUNDERRUN
|MCI_RXOVERRUN
)) {
921 /* Terminate the DMA transfer */
922 if (dma_inprogress(host
)) {
923 mmci_dma_data_error(host
);
924 mmci_dma_unmap(host
, data
);
928 * Calculate how far we are into the transfer. Note that
929 * the data counter gives the number of bytes transferred
930 * on the MMC bus, not on the host side. On reads, this
931 * can be as much as a FIFO-worth of data ahead. This
932 * matters for FIFO overruns only.
934 remain
= readl(host
->base
+ MMCIDATACNT
);
935 success
= data
->blksz
* data
->blocks
- remain
;
937 dev_dbg(mmc_dev(host
->mmc
), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
939 if (status
& MCI_DATACRCFAIL
) {
940 /* Last block was not successful */
942 data
->error
= -EILSEQ
;
943 } else if (status
& MCI_DATATIMEOUT
) {
944 data
->error
= -ETIMEDOUT
;
945 } else if (status
& MCI_STARTBITERR
) {
946 data
->error
= -ECOMM
;
947 } else if (status
& MCI_TXUNDERRUN
) {
949 } else if (status
& MCI_RXOVERRUN
) {
950 if (success
> host
->variant
->fifosize
)
951 success
-= host
->variant
->fifosize
;
956 data
->bytes_xfered
= round_down(success
, data
->blksz
);
959 if (status
& MCI_DATABLOCKEND
)
960 dev_err(mmc_dev(host
->mmc
), "stray MCI_DATABLOCKEND interrupt\n");
962 if (status
& MCI_DATAEND
|| data
->error
) {
963 if (dma_inprogress(host
))
964 mmci_dma_finalize(host
, data
);
965 mmci_stop_data(host
);
968 /* The error clause is handled above, success! */
969 data
->bytes_xfered
= data
->blksz
* data
->blocks
;
971 if (!data
->stop
|| host
->mrq
->sbc
) {
972 mmci_request_end(host
, data
->mrq
);
974 mmci_start_command(host
, data
->stop
, 0);
980 mmci_cmd_irq(struct mmci_host
*host
, struct mmc_command
*cmd
,
983 void __iomem
*base
= host
->base
;
989 sbc
= (cmd
== host
->mrq
->sbc
);
990 busy_resp
= host
->variant
->busy_detect
&& (cmd
->flags
& MMC_RSP_BUSY
);
992 if (!((status
|host
->busy_status
) & (MCI_CMDCRCFAIL
|MCI_CMDTIMEOUT
|
993 MCI_CMDSENT
|MCI_CMDRESPEND
)))
996 /* Check if we need to wait for busy completion. */
997 if (host
->busy_status
&& (status
& MCI_ST_CARDBUSY
))
1000 /* Enable busy completion if needed and supported. */
1001 if (!host
->busy_status
&& busy_resp
&&
1002 !(status
& (MCI_CMDCRCFAIL
|MCI_CMDTIMEOUT
)) &&
1003 (readl(base
+ MMCISTATUS
) & MCI_ST_CARDBUSY
)) {
1004 writel(readl(base
+ MMCIMASK0
) | MCI_ST_BUSYEND
,
1006 host
->busy_status
= status
& (MCI_CMDSENT
|MCI_CMDRESPEND
);
1010 /* At busy completion, mask the IRQ and complete the request. */
1011 if (host
->busy_status
) {
1012 writel(readl(base
+ MMCIMASK0
) & ~MCI_ST_BUSYEND
,
1014 host
->busy_status
= 0;
1019 if (status
& MCI_CMDTIMEOUT
) {
1020 cmd
->error
= -ETIMEDOUT
;
1021 } else if (status
& MCI_CMDCRCFAIL
&& cmd
->flags
& MMC_RSP_CRC
) {
1022 cmd
->error
= -EILSEQ
;
1024 cmd
->resp
[0] = readl(base
+ MMCIRESPONSE0
);
1025 cmd
->resp
[1] = readl(base
+ MMCIRESPONSE1
);
1026 cmd
->resp
[2] = readl(base
+ MMCIRESPONSE2
);
1027 cmd
->resp
[3] = readl(base
+ MMCIRESPONSE3
);
1030 if ((!sbc
&& !cmd
->data
) || cmd
->error
) {
1032 /* Terminate the DMA transfer */
1033 if (dma_inprogress(host
)) {
1034 mmci_dma_data_error(host
);
1035 mmci_dma_unmap(host
, host
->data
);
1037 mmci_stop_data(host
);
1039 mmci_request_end(host
, host
->mrq
);
1041 mmci_start_command(host
, host
->mrq
->cmd
, 0);
1042 } else if (!(cmd
->data
->flags
& MMC_DATA_READ
)) {
1043 mmci_start_data(host
, cmd
->data
);
1047 static int mmci_get_rx_fifocnt(struct mmci_host
*host
, u32 status
, int remain
)
1049 return remain
- (readl(host
->base
+ MMCIFIFOCNT
) << 2);
1052 static int mmci_qcom_get_rx_fifocnt(struct mmci_host
*host
, u32 status
, int r
)
1055 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1056 * from the fifo range should be used
1058 if (status
& MCI_RXFIFOHALFFULL
)
1059 return host
->variant
->fifohalfsize
;
1060 else if (status
& MCI_RXDATAAVLBL
)
1066 static int mmci_pio_read(struct mmci_host
*host
, char *buffer
, unsigned int remain
)
1068 void __iomem
*base
= host
->base
;
1070 u32 status
= readl(host
->base
+ MMCISTATUS
);
1071 int host_remain
= host
->size
;
1074 int count
= host
->get_rx_fifocnt(host
, status
, host_remain
);
1083 * SDIO especially may want to send something that is
1084 * not divisible by 4 (as opposed to card sectors
1085 * etc). Therefore make sure to always read the last bytes
1086 * while only doing full 32-bit reads towards the FIFO.
1088 if (unlikely(count
& 0x3)) {
1090 unsigned char buf
[4];
1091 ioread32_rep(base
+ MMCIFIFO
, buf
, 1);
1092 memcpy(ptr
, buf
, count
);
1094 ioread32_rep(base
+ MMCIFIFO
, ptr
, count
>> 2);
1098 ioread32_rep(base
+ MMCIFIFO
, ptr
, count
>> 2);
1103 host_remain
-= count
;
1108 status
= readl(base
+ MMCISTATUS
);
1109 } while (status
& MCI_RXDATAAVLBL
);
1111 return ptr
- buffer
;
1114 static int mmci_pio_write(struct mmci_host
*host
, char *buffer
, unsigned int remain
, u32 status
)
1116 struct variant_data
*variant
= host
->variant
;
1117 void __iomem
*base
= host
->base
;
1121 unsigned int count
, maxcnt
;
1123 maxcnt
= status
& MCI_TXFIFOEMPTY
?
1124 variant
->fifosize
: variant
->fifohalfsize
;
1125 count
= min(remain
, maxcnt
);
1128 * SDIO especially may want to send something that is
1129 * not divisible by 4 (as opposed to card sectors
1130 * etc), and the FIFO only accept full 32-bit writes.
1131 * So compensate by adding +3 on the count, a single
1132 * byte become a 32bit write, 7 bytes will be two
1135 iowrite32_rep(base
+ MMCIFIFO
, ptr
, (count
+ 3) >> 2);
1143 status
= readl(base
+ MMCISTATUS
);
1144 } while (status
& MCI_TXFIFOHALFEMPTY
);
1146 return ptr
- buffer
;
1150 * PIO data transfer IRQ handler.
1152 static irqreturn_t
mmci_pio_irq(int irq
, void *dev_id
)
1154 struct mmci_host
*host
= dev_id
;
1155 struct sg_mapping_iter
*sg_miter
= &host
->sg_miter
;
1156 struct variant_data
*variant
= host
->variant
;
1157 void __iomem
*base
= host
->base
;
1158 unsigned long flags
;
1161 status
= readl(base
+ MMCISTATUS
);
1163 dev_dbg(mmc_dev(host
->mmc
), "irq1 (pio) %08x\n", status
);
1165 local_irq_save(flags
);
1168 unsigned int remain
, len
;
1172 * For write, we only need to test the half-empty flag
1173 * here - if the FIFO is completely empty, then by
1174 * definition it is more than half empty.
1176 * For read, check for data available.
1178 if (!(status
& (MCI_TXFIFOHALFEMPTY
|MCI_RXDATAAVLBL
)))
1181 if (!sg_miter_next(sg_miter
))
1184 buffer
= sg_miter
->addr
;
1185 remain
= sg_miter
->length
;
1188 if (status
& MCI_RXACTIVE
)
1189 len
= mmci_pio_read(host
, buffer
, remain
);
1190 if (status
& MCI_TXACTIVE
)
1191 len
= mmci_pio_write(host
, buffer
, remain
, status
);
1193 sg_miter
->consumed
= len
;
1201 status
= readl(base
+ MMCISTATUS
);
1204 sg_miter_stop(sg_miter
);
1206 local_irq_restore(flags
);
1209 * If we have less than the fifo 'half-full' threshold to transfer,
1210 * trigger a PIO interrupt as soon as any data is available.
1212 if (status
& MCI_RXACTIVE
&& host
->size
< variant
->fifohalfsize
)
1213 mmci_set_mask1(host
, MCI_RXDATAAVLBLMASK
);
1216 * If we run out of data, disable the data IRQs; this
1217 * prevents a race where the FIFO becomes empty before
1218 * the chip itself has disabled the data path, and
1219 * stops us racing with our data end IRQ.
1221 if (host
->size
== 0) {
1222 mmci_set_mask1(host
, 0);
1223 writel(readl(base
+ MMCIMASK0
) | MCI_DATAENDMASK
, base
+ MMCIMASK0
);
1230 * Handle completion of command and data transfers.
1232 static irqreturn_t
mmci_irq(int irq
, void *dev_id
)
1234 struct mmci_host
*host
= dev_id
;
1238 spin_lock(&host
->lock
);
1241 status
= readl(host
->base
+ MMCISTATUS
);
1243 if (host
->singleirq
) {
1244 if (status
& readl(host
->base
+ MMCIMASK1
))
1245 mmci_pio_irq(irq
, dev_id
);
1247 status
&= ~MCI_IRQ1MASK
;
1251 * We intentionally clear the MCI_ST_CARDBUSY IRQ here (if it's
1252 * enabled) since the HW seems to be triggering the IRQ on both
1253 * edges while monitoring DAT0 for busy completion.
1255 status
&= readl(host
->base
+ MMCIMASK0
);
1256 writel(status
, host
->base
+ MMCICLEAR
);
1258 dev_dbg(mmc_dev(host
->mmc
), "irq0 (data+cmd) %08x\n", status
);
1260 if (host
->variant
->reversed_irq_handling
) {
1261 mmci_data_irq(host
, host
->data
, status
);
1262 mmci_cmd_irq(host
, host
->cmd
, status
);
1264 mmci_cmd_irq(host
, host
->cmd
, status
);
1265 mmci_data_irq(host
, host
->data
, status
);
1268 /* Don't poll for busy completion in irq context. */
1269 if (host
->busy_status
)
1270 status
&= ~MCI_ST_CARDBUSY
;
1275 spin_unlock(&host
->lock
);
1277 return IRQ_RETVAL(ret
);
1280 static void mmci_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
)
1282 struct mmci_host
*host
= mmc_priv(mmc
);
1283 unsigned long flags
;
1285 WARN_ON(host
->mrq
!= NULL
);
1287 mrq
->cmd
->error
= mmci_validate_data(host
, mrq
->data
);
1288 if (mrq
->cmd
->error
) {
1289 mmc_request_done(mmc
, mrq
);
1293 pm_runtime_get_sync(mmc_dev(mmc
));
1295 spin_lock_irqsave(&host
->lock
, flags
);
1300 mmci_get_next_data(host
, mrq
->data
);
1302 if (mrq
->data
&& mrq
->data
->flags
& MMC_DATA_READ
)
1303 mmci_start_data(host
, mrq
->data
);
1306 mmci_start_command(host
, mrq
->sbc
, 0);
1308 mmci_start_command(host
, mrq
->cmd
, 0);
1310 spin_unlock_irqrestore(&host
->lock
, flags
);
1313 static void mmci_set_ios(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1315 struct mmci_host
*host
= mmc_priv(mmc
);
1316 struct variant_data
*variant
= host
->variant
;
1318 unsigned long flags
;
1321 pm_runtime_get_sync(mmc_dev(mmc
));
1323 if (host
->plat
->ios_handler
&&
1324 host
->plat
->ios_handler(mmc_dev(mmc
), ios
))
1325 dev_err(mmc_dev(mmc
), "platform ios_handler failed\n");
1327 switch (ios
->power_mode
) {
1329 if (!IS_ERR(mmc
->supply
.vmmc
))
1330 mmc_regulator_set_ocr(mmc
, mmc
->supply
.vmmc
, 0);
1332 if (!IS_ERR(mmc
->supply
.vqmmc
) && host
->vqmmc_enabled
) {
1333 regulator_disable(mmc
->supply
.vqmmc
);
1334 host
->vqmmc_enabled
= false;
1339 if (!IS_ERR(mmc
->supply
.vmmc
))
1340 mmc_regulator_set_ocr(mmc
, mmc
->supply
.vmmc
, ios
->vdd
);
1343 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1344 * and instead uses MCI_PWR_ON so apply whatever value is
1345 * configured in the variant data.
1347 pwr
|= variant
->pwrreg_powerup
;
1351 if (!IS_ERR(mmc
->supply
.vqmmc
) && !host
->vqmmc_enabled
) {
1352 ret
= regulator_enable(mmc
->supply
.vqmmc
);
1354 dev_err(mmc_dev(mmc
),
1355 "failed to enable vqmmc regulator\n");
1357 host
->vqmmc_enabled
= true;
1364 if (variant
->signal_direction
&& ios
->power_mode
!= MMC_POWER_OFF
) {
1366 * The ST Micro variant has some additional bits
1367 * indicating signal direction for the signals in
1368 * the SD/MMC bus and feedback-clock usage.
1370 pwr
|= host
->pwr_reg_add
;
1372 if (ios
->bus_width
== MMC_BUS_WIDTH_4
)
1373 pwr
&= ~MCI_ST_DATA74DIREN
;
1374 else if (ios
->bus_width
== MMC_BUS_WIDTH_1
)
1375 pwr
&= (~MCI_ST_DATA74DIREN
&
1376 ~MCI_ST_DATA31DIREN
&
1377 ~MCI_ST_DATA2DIREN
);
1380 if (ios
->bus_mode
== MMC_BUSMODE_OPENDRAIN
) {
1381 if (host
->hw_designer
!= AMBA_VENDOR_ST
)
1385 * The ST Micro variant use the ROD bit for something
1386 * else and only has OD (Open Drain).
1393 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1394 * gating the clock, the MCI_PWR_ON bit is cleared.
1396 if (!ios
->clock
&& variant
->pwrreg_clkgate
)
1399 if (host
->variant
->explicit_mclk_control
&&
1400 ios
->clock
!= host
->clock_cache
) {
1401 ret
= clk_set_rate(host
->clk
, ios
->clock
);
1403 dev_err(mmc_dev(host
->mmc
),
1404 "Error setting clock rate (%d)\n", ret
);
1406 host
->mclk
= clk_get_rate(host
->clk
);
1408 host
->clock_cache
= ios
->clock
;
1410 spin_lock_irqsave(&host
->lock
, flags
);
1412 mmci_set_clkreg(host
, ios
->clock
);
1413 mmci_write_pwrreg(host
, pwr
);
1414 mmci_reg_delay(host
);
1416 spin_unlock_irqrestore(&host
->lock
, flags
);
1418 pm_runtime_mark_last_busy(mmc_dev(mmc
));
1419 pm_runtime_put_autosuspend(mmc_dev(mmc
));
1422 static int mmci_get_cd(struct mmc_host
*mmc
)
1424 struct mmci_host
*host
= mmc_priv(mmc
);
1425 struct mmci_platform_data
*plat
= host
->plat
;
1426 unsigned int status
= mmc_gpio_get_cd(mmc
);
1428 if (status
== -ENOSYS
) {
1430 return 1; /* Assume always present */
1432 status
= plat
->status(mmc_dev(host
->mmc
));
1437 static int mmci_sig_volt_switch(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1441 if (!IS_ERR(mmc
->supply
.vqmmc
)) {
1443 pm_runtime_get_sync(mmc_dev(mmc
));
1445 switch (ios
->signal_voltage
) {
1446 case MMC_SIGNAL_VOLTAGE_330
:
1447 ret
= regulator_set_voltage(mmc
->supply
.vqmmc
,
1450 case MMC_SIGNAL_VOLTAGE_180
:
1451 ret
= regulator_set_voltage(mmc
->supply
.vqmmc
,
1454 case MMC_SIGNAL_VOLTAGE_120
:
1455 ret
= regulator_set_voltage(mmc
->supply
.vqmmc
,
1461 dev_warn(mmc_dev(mmc
), "Voltage switch failed\n");
1463 pm_runtime_mark_last_busy(mmc_dev(mmc
));
1464 pm_runtime_put_autosuspend(mmc_dev(mmc
));
1470 static struct mmc_host_ops mmci_ops
= {
1471 .request
= mmci_request
,
1472 .pre_req
= mmci_pre_request
,
1473 .post_req
= mmci_post_request
,
1474 .set_ios
= mmci_set_ios
,
1475 .get_ro
= mmc_gpio_get_ro
,
1476 .get_cd
= mmci_get_cd
,
1477 .start_signal_voltage_switch
= mmci_sig_volt_switch
,
1480 static int mmci_of_parse(struct device_node
*np
, struct mmc_host
*mmc
)
1482 struct mmci_host
*host
= mmc_priv(mmc
);
1483 int ret
= mmc_of_parse(mmc
);
1488 if (of_get_property(np
, "st,sig-dir-dat0", NULL
))
1489 host
->pwr_reg_add
|= MCI_ST_DATA0DIREN
;
1490 if (of_get_property(np
, "st,sig-dir-dat2", NULL
))
1491 host
->pwr_reg_add
|= MCI_ST_DATA2DIREN
;
1492 if (of_get_property(np
, "st,sig-dir-dat31", NULL
))
1493 host
->pwr_reg_add
|= MCI_ST_DATA31DIREN
;
1494 if (of_get_property(np
, "st,sig-dir-dat74", NULL
))
1495 host
->pwr_reg_add
|= MCI_ST_DATA74DIREN
;
1496 if (of_get_property(np
, "st,sig-dir-cmd", NULL
))
1497 host
->pwr_reg_add
|= MCI_ST_CMDDIREN
;
1498 if (of_get_property(np
, "st,sig-pin-fbclk", NULL
))
1499 host
->pwr_reg_add
|= MCI_ST_FBCLKEN
;
1501 if (of_get_property(np
, "mmc-cap-mmc-highspeed", NULL
))
1502 mmc
->caps
|= MMC_CAP_MMC_HIGHSPEED
;
1503 if (of_get_property(np
, "mmc-cap-sd-highspeed", NULL
))
1504 mmc
->caps
|= MMC_CAP_SD_HIGHSPEED
;
1509 static int mmci_probe(struct amba_device
*dev
,
1510 const struct amba_id
*id
)
1512 struct mmci_platform_data
*plat
= dev
->dev
.platform_data
;
1513 struct device_node
*np
= dev
->dev
.of_node
;
1514 struct variant_data
*variant
= id
->data
;
1515 struct mmci_host
*host
;
1516 struct mmc_host
*mmc
;
1519 /* Must have platform data or Device Tree. */
1521 dev_err(&dev
->dev
, "No plat data or DT found\n");
1526 plat
= devm_kzalloc(&dev
->dev
, sizeof(*plat
), GFP_KERNEL
);
1531 mmc
= mmc_alloc_host(sizeof(struct mmci_host
), &dev
->dev
);
1535 ret
= mmci_of_parse(np
, mmc
);
1539 host
= mmc_priv(mmc
);
1542 host
->hw_designer
= amba_manf(dev
);
1543 host
->hw_revision
= amba_rev(dev
);
1544 dev_dbg(mmc_dev(mmc
), "designer ID = 0x%02x\n", host
->hw_designer
);
1545 dev_dbg(mmc_dev(mmc
), "revision = 0x%01x\n", host
->hw_revision
);
1547 host
->clk
= devm_clk_get(&dev
->dev
, NULL
);
1548 if (IS_ERR(host
->clk
)) {
1549 ret
= PTR_ERR(host
->clk
);
1553 ret
= clk_prepare_enable(host
->clk
);
1557 if (variant
->qcom_fifo
)
1558 host
->get_rx_fifocnt
= mmci_qcom_get_rx_fifocnt
;
1560 host
->get_rx_fifocnt
= mmci_get_rx_fifocnt
;
1563 host
->variant
= variant
;
1564 host
->mclk
= clk_get_rate(host
->clk
);
1566 * According to the spec, mclk is max 100 MHz,
1567 * so we try to adjust the clock down to this,
1570 if (host
->mclk
> variant
->f_max
) {
1571 ret
= clk_set_rate(host
->clk
, variant
->f_max
);
1574 host
->mclk
= clk_get_rate(host
->clk
);
1575 dev_dbg(mmc_dev(mmc
), "eventual mclk rate: %u Hz\n",
1579 host
->phybase
= dev
->res
.start
;
1580 host
->base
= devm_ioremap_resource(&dev
->dev
, &dev
->res
);
1581 if (IS_ERR(host
->base
)) {
1582 ret
= PTR_ERR(host
->base
);
1587 * The ARM and ST versions of the block have slightly different
1588 * clock divider equations which means that the minimum divider
1590 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1592 if (variant
->st_clkdiv
)
1593 mmc
->f_min
= DIV_ROUND_UP(host
->mclk
, 257);
1594 else if (variant
->explicit_mclk_control
)
1595 mmc
->f_min
= clk_round_rate(host
->clk
, 100000);
1597 mmc
->f_min
= DIV_ROUND_UP(host
->mclk
, 512);
1599 * If no maximum operating frequency is supplied, fall back to use
1600 * the module parameter, which has a (low) default value in case it
1601 * is not specified. Either value must not exceed the clock rate into
1602 * the block, of course.
1605 mmc
->f_max
= variant
->explicit_mclk_control
?
1606 min(variant
->f_max
, mmc
->f_max
) :
1607 min(host
->mclk
, mmc
->f_max
);
1609 mmc
->f_max
= variant
->explicit_mclk_control
?
1610 fmax
: min(host
->mclk
, fmax
);
1613 dev_dbg(mmc_dev(mmc
), "clocking block at %u Hz\n", mmc
->f_max
);
1615 /* Get regulators and the supported OCR mask */
1616 ret
= mmc_regulator_get_supply(mmc
);
1617 if (ret
== -EPROBE_DEFER
)
1620 if (!mmc
->ocr_avail
)
1621 mmc
->ocr_avail
= plat
->ocr_mask
;
1622 else if (plat
->ocr_mask
)
1623 dev_warn(mmc_dev(mmc
), "Platform OCR mask is ignored\n");
1625 /* DT takes precedence over platform data. */
1627 if (!plat
->cd_invert
)
1628 mmc
->caps2
|= MMC_CAP2_CD_ACTIVE_HIGH
;
1629 mmc
->caps2
|= MMC_CAP2_RO_ACTIVE_HIGH
;
1632 /* We support these capabilities. */
1633 mmc
->caps
|= MMC_CAP_CMD23
;
1635 if (variant
->busy_detect
) {
1636 mmci_ops
.card_busy
= mmci_card_busy
;
1637 mmci_write_datactrlreg(host
, MCI_ST_DPSM_BUSYMODE
);
1638 mmc
->caps
|= MMC_CAP_WAIT_WHILE_BUSY
;
1639 mmc
->max_busy_timeout
= 0;
1642 mmc
->ops
= &mmci_ops
;
1644 /* We support these PM capabilities. */
1645 mmc
->pm_caps
|= MMC_PM_KEEP_POWER
;
1650 mmc
->max_segs
= NR_SG
;
1653 * Since only a certain number of bits are valid in the data length
1654 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1657 mmc
->max_req_size
= (1 << variant
->datalength_bits
) - 1;
1660 * Set the maximum segment size. Since we aren't doing DMA
1661 * (yet) we are only limited by the data length register.
1663 mmc
->max_seg_size
= mmc
->max_req_size
;
1666 * Block size can be up to 2048 bytes, but must be a power of two.
1668 mmc
->max_blk_size
= 1 << 11;
1671 * Limit the number of blocks transferred so that we don't overflow
1672 * the maximum request size.
1674 mmc
->max_blk_count
= mmc
->max_req_size
>> 11;
1676 spin_lock_init(&host
->lock
);
1678 writel(0, host
->base
+ MMCIMASK0
);
1679 writel(0, host
->base
+ MMCIMASK1
);
1680 writel(0xfff, host
->base
+ MMCICLEAR
);
1684 * - not using DT but using a descriptor table, or
1685 * - using a table of descriptors ALONGSIDE DT, or
1686 * look up these descriptors named "cd" and "wp" right here, fail
1687 * silently of these do not exist and proceed to try platform data
1690 ret
= mmc_gpiod_request_cd(mmc
, "cd", 0, false, 0, NULL
);
1692 if (ret
== -EPROBE_DEFER
)
1694 else if (gpio_is_valid(plat
->gpio_cd
)) {
1695 ret
= mmc_gpio_request_cd(mmc
, plat
->gpio_cd
, 0);
1701 ret
= mmc_gpiod_request_ro(mmc
, "wp", 0, false, 0, NULL
);
1703 if (ret
== -EPROBE_DEFER
)
1705 else if (gpio_is_valid(plat
->gpio_wp
)) {
1706 ret
= mmc_gpio_request_ro(mmc
, plat
->gpio_wp
);
1713 ret
= devm_request_irq(&dev
->dev
, dev
->irq
[0], mmci_irq
, IRQF_SHARED
,
1714 DRIVER_NAME
" (cmd)", host
);
1719 host
->singleirq
= true;
1721 ret
= devm_request_irq(&dev
->dev
, dev
->irq
[1], mmci_pio_irq
,
1722 IRQF_SHARED
, DRIVER_NAME
" (pio)", host
);
1727 writel(MCI_IRQENABLE
, host
->base
+ MMCIMASK0
);
1729 amba_set_drvdata(dev
, mmc
);
1731 dev_info(&dev
->dev
, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1732 mmc_hostname(mmc
), amba_part(dev
), amba_manf(dev
),
1733 amba_rev(dev
), (unsigned long long)dev
->res
.start
,
1734 dev
->irq
[0], dev
->irq
[1]);
1736 mmci_dma_setup(host
);
1738 pm_runtime_set_autosuspend_delay(&dev
->dev
, 50);
1739 pm_runtime_use_autosuspend(&dev
->dev
);
1743 pm_runtime_put(&dev
->dev
);
1747 clk_disable_unprepare(host
->clk
);
1753 static int mmci_remove(struct amba_device
*dev
)
1755 struct mmc_host
*mmc
= amba_get_drvdata(dev
);
1758 struct mmci_host
*host
= mmc_priv(mmc
);
1761 * Undo pm_runtime_put() in probe. We use the _sync
1762 * version here so that we can access the primecell.
1764 pm_runtime_get_sync(&dev
->dev
);
1766 mmc_remove_host(mmc
);
1768 writel(0, host
->base
+ MMCIMASK0
);
1769 writel(0, host
->base
+ MMCIMASK1
);
1771 writel(0, host
->base
+ MMCICOMMAND
);
1772 writel(0, host
->base
+ MMCIDATACTRL
);
1774 mmci_dma_release(host
);
1775 clk_disable_unprepare(host
->clk
);
1783 static void mmci_save(struct mmci_host
*host
)
1785 unsigned long flags
;
1787 spin_lock_irqsave(&host
->lock
, flags
);
1789 writel(0, host
->base
+ MMCIMASK0
);
1790 if (host
->variant
->pwrreg_nopower
) {
1791 writel(0, host
->base
+ MMCIDATACTRL
);
1792 writel(0, host
->base
+ MMCIPOWER
);
1793 writel(0, host
->base
+ MMCICLOCK
);
1795 mmci_reg_delay(host
);
1797 spin_unlock_irqrestore(&host
->lock
, flags
);
1800 static void mmci_restore(struct mmci_host
*host
)
1802 unsigned long flags
;
1804 spin_lock_irqsave(&host
->lock
, flags
);
1806 if (host
->variant
->pwrreg_nopower
) {
1807 writel(host
->clk_reg
, host
->base
+ MMCICLOCK
);
1808 writel(host
->datactrl_reg
, host
->base
+ MMCIDATACTRL
);
1809 writel(host
->pwr_reg
, host
->base
+ MMCIPOWER
);
1811 writel(MCI_IRQENABLE
, host
->base
+ MMCIMASK0
);
1812 mmci_reg_delay(host
);
1814 spin_unlock_irqrestore(&host
->lock
, flags
);
1817 static int mmci_runtime_suspend(struct device
*dev
)
1819 struct amba_device
*adev
= to_amba_device(dev
);
1820 struct mmc_host
*mmc
= amba_get_drvdata(adev
);
1823 struct mmci_host
*host
= mmc_priv(mmc
);
1824 pinctrl_pm_select_sleep_state(dev
);
1826 clk_disable_unprepare(host
->clk
);
1832 static int mmci_runtime_resume(struct device
*dev
)
1834 struct amba_device
*adev
= to_amba_device(dev
);
1835 struct mmc_host
*mmc
= amba_get_drvdata(adev
);
1838 struct mmci_host
*host
= mmc_priv(mmc
);
1839 clk_prepare_enable(host
->clk
);
1841 pinctrl_pm_select_default_state(dev
);
1848 static const struct dev_pm_ops mmci_dev_pm_ops
= {
1849 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend
,
1850 pm_runtime_force_resume
)
1851 SET_RUNTIME_PM_OPS(mmci_runtime_suspend
, mmci_runtime_resume
, NULL
)
1854 static struct amba_id mmci_ids
[] = {
1858 .data
= &variant_arm
,
1863 .data
= &variant_arm_extended_fifo
,
1868 .data
= &variant_arm_extended_fifo_hwfc
,
1873 .data
= &variant_arm
,
1875 /* ST Micro variants */
1879 .data
= &variant_u300
,
1884 .data
= &variant_nomadik
,
1889 .data
= &variant_nomadik
,
1894 .data
= &variant_ux500
,
1899 .data
= &variant_ux500v2
,
1901 /* Qualcomm variants */
1905 .data
= &variant_qcom
,
1910 MODULE_DEVICE_TABLE(amba
, mmci_ids
);
1912 static struct amba_driver mmci_driver
= {
1914 .name
= DRIVER_NAME
,
1915 .pm
= &mmci_dev_pm_ops
,
1917 .probe
= mmci_probe
,
1918 .remove
= mmci_remove
,
1919 .id_table
= mmci_ids
,
1922 module_amba_driver(mmci_driver
);
1924 module_param(fmax
, uint
, 0444);
1926 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1927 MODULE_LICENSE("GPL");