Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / drivers / nvdimm / pmem.c
blobcc31c6f1f88e6138f22f8002f70fceb036667179
1 /*
2 * Persistent Memory Driver
4 * Copyright (c) 2014-2015, Intel Corporation.
5 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms and conditions of the GNU General Public License,
10 * version 2, as published by the Free Software Foundation.
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
18 #include <asm/cacheflush.h>
19 #include <linux/blkdev.h>
20 #include <linux/hdreg.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/badblocks.h>
26 #include <linux/memremap.h>
27 #include <linux/vmalloc.h>
28 #include <linux/pfn_t.h>
29 #include <linux/slab.h>
30 #include <linux/pmem.h>
31 #include <linux/nd.h>
32 #include "pfn.h"
33 #include "nd.h"
35 struct pmem_device {
36 struct request_queue *pmem_queue;
37 struct gendisk *pmem_disk;
38 struct nd_namespace_common *ndns;
40 /* One contiguous memory region per device */
41 phys_addr_t phys_addr;
42 /* when non-zero this device is hosting a 'pfn' instance */
43 phys_addr_t data_offset;
44 u64 pfn_flags;
45 void __pmem *virt_addr;
46 /* immutable base size of the namespace */
47 size_t size;
48 /* trim size when namespace capacity has been section aligned */
49 u32 pfn_pad;
50 struct badblocks bb;
53 static bool is_bad_pmem(struct badblocks *bb, sector_t sector, unsigned int len)
55 if (bb->count) {
56 sector_t first_bad;
57 int num_bad;
59 return !!badblocks_check(bb, sector, len / 512, &first_bad,
60 &num_bad);
63 return false;
66 static void pmem_clear_poison(struct pmem_device *pmem, phys_addr_t offset,
67 unsigned int len)
69 struct device *dev = disk_to_dev(pmem->pmem_disk);
70 sector_t sector;
71 long cleared;
73 sector = (offset - pmem->data_offset) / 512;
74 cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
76 if (cleared > 0 && cleared / 512) {
77 dev_dbg(dev, "%s: %llx clear %ld sector%s\n",
78 __func__, (unsigned long long) sector,
79 cleared / 512, cleared / 512 > 1 ? "s" : "");
80 badblocks_clear(&pmem->bb, sector, cleared / 512);
82 invalidate_pmem(pmem->virt_addr + offset, len);
85 static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
86 unsigned int len, unsigned int off, int rw,
87 sector_t sector)
89 int rc = 0;
90 bool bad_pmem = false;
91 void *mem = kmap_atomic(page);
92 phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
93 void __pmem *pmem_addr = pmem->virt_addr + pmem_off;
95 if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
96 bad_pmem = true;
98 if (rw == READ) {
99 if (unlikely(bad_pmem))
100 rc = -EIO;
101 else {
102 rc = memcpy_from_pmem(mem + off, pmem_addr, len);
103 flush_dcache_page(page);
105 } else {
106 flush_dcache_page(page);
107 memcpy_to_pmem(pmem_addr, mem + off, len);
108 if (unlikely(bad_pmem)) {
109 pmem_clear_poison(pmem, pmem_off, len);
110 memcpy_to_pmem(pmem_addr, mem + off, len);
114 kunmap_atomic(mem);
115 return rc;
118 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
120 int rc = 0;
121 bool do_acct;
122 unsigned long start;
123 struct bio_vec bvec;
124 struct bvec_iter iter;
125 struct block_device *bdev = bio->bi_bdev;
126 struct pmem_device *pmem = bdev->bd_disk->private_data;
128 do_acct = nd_iostat_start(bio, &start);
129 bio_for_each_segment(bvec, bio, iter) {
130 rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
131 bvec.bv_offset, bio_data_dir(bio),
132 iter.bi_sector);
133 if (rc) {
134 bio->bi_error = rc;
135 break;
138 if (do_acct)
139 nd_iostat_end(bio, start);
141 if (bio_data_dir(bio))
142 wmb_pmem();
144 bio_endio(bio);
145 return BLK_QC_T_NONE;
148 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
149 struct page *page, int rw)
151 struct pmem_device *pmem = bdev->bd_disk->private_data;
152 int rc;
154 rc = pmem_do_bvec(pmem, page, PAGE_CACHE_SIZE, 0, rw, sector);
155 if (rw & WRITE)
156 wmb_pmem();
159 * The ->rw_page interface is subtle and tricky. The core
160 * retries on any error, so we can only invoke page_endio() in
161 * the successful completion case. Otherwise, we'll see crashes
162 * caused by double completion.
164 if (rc == 0)
165 page_endio(page, rw & WRITE, 0);
167 return rc;
170 static long pmem_direct_access(struct block_device *bdev, sector_t sector,
171 void __pmem **kaddr, pfn_t *pfn)
173 struct pmem_device *pmem = bdev->bd_disk->private_data;
174 resource_size_t offset = sector * 512 + pmem->data_offset;
176 *kaddr = pmem->virt_addr + offset;
177 *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
179 return pmem->size - pmem->pfn_pad - offset;
182 static const struct block_device_operations pmem_fops = {
183 .owner = THIS_MODULE,
184 .rw_page = pmem_rw_page,
185 .direct_access = pmem_direct_access,
186 .revalidate_disk = nvdimm_revalidate_disk,
189 static struct pmem_device *pmem_alloc(struct device *dev,
190 struct resource *res, int id)
192 struct pmem_device *pmem;
193 struct request_queue *q;
195 pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
196 if (!pmem)
197 return ERR_PTR(-ENOMEM);
199 pmem->phys_addr = res->start;
200 pmem->size = resource_size(res);
201 if (!arch_has_wmb_pmem())
202 dev_warn(dev, "unable to guarantee persistence of writes\n");
204 if (!devm_request_mem_region(dev, pmem->phys_addr, pmem->size,
205 dev_name(dev))) {
206 dev_warn(dev, "could not reserve region [0x%pa:0x%zx]\n",
207 &pmem->phys_addr, pmem->size);
208 return ERR_PTR(-EBUSY);
211 q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
212 if (!q)
213 return ERR_PTR(-ENOMEM);
215 pmem->pfn_flags = PFN_DEV;
216 if (pmem_should_map_pages(dev)) {
217 pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, res,
218 &q->q_usage_counter, NULL);
219 pmem->pfn_flags |= PFN_MAP;
220 } else
221 pmem->virt_addr = (void __pmem *) devm_memremap(dev,
222 pmem->phys_addr, pmem->size,
223 ARCH_MEMREMAP_PMEM);
225 if (IS_ERR(pmem->virt_addr)) {
226 blk_cleanup_queue(q);
227 return (void __force *) pmem->virt_addr;
230 pmem->pmem_queue = q;
231 return pmem;
234 static void pmem_detach_disk(struct pmem_device *pmem)
236 if (!pmem->pmem_disk)
237 return;
239 del_gendisk(pmem->pmem_disk);
240 put_disk(pmem->pmem_disk);
241 blk_cleanup_queue(pmem->pmem_queue);
244 static int pmem_attach_disk(struct device *dev,
245 struct nd_namespace_common *ndns, struct pmem_device *pmem)
247 int nid = dev_to_node(dev);
248 struct gendisk *disk;
250 blk_queue_make_request(pmem->pmem_queue, pmem_make_request);
251 blk_queue_physical_block_size(pmem->pmem_queue, PAGE_SIZE);
252 blk_queue_max_hw_sectors(pmem->pmem_queue, UINT_MAX);
253 blk_queue_bounce_limit(pmem->pmem_queue, BLK_BOUNCE_ANY);
254 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, pmem->pmem_queue);
256 disk = alloc_disk_node(0, nid);
257 if (!disk) {
258 blk_cleanup_queue(pmem->pmem_queue);
259 return -ENOMEM;
262 disk->fops = &pmem_fops;
263 disk->private_data = pmem;
264 disk->queue = pmem->pmem_queue;
265 disk->flags = GENHD_FL_EXT_DEVT;
266 nvdimm_namespace_disk_name(ndns, disk->disk_name);
267 disk->driverfs_dev = dev;
268 set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
269 / 512);
270 pmem->pmem_disk = disk;
271 devm_exit_badblocks(dev, &pmem->bb);
272 if (devm_init_badblocks(dev, &pmem->bb))
273 return -ENOMEM;
274 nvdimm_namespace_add_poison(ndns, &pmem->bb, pmem->data_offset);
276 disk->bb = &pmem->bb;
277 add_disk(disk);
278 revalidate_disk(disk);
280 return 0;
283 static int pmem_rw_bytes(struct nd_namespace_common *ndns,
284 resource_size_t offset, void *buf, size_t size, int rw)
286 struct pmem_device *pmem = dev_get_drvdata(ndns->claim);
288 if (unlikely(offset + size > pmem->size)) {
289 dev_WARN_ONCE(&ndns->dev, 1, "request out of range\n");
290 return -EFAULT;
293 if (rw == READ) {
294 unsigned int sz_align = ALIGN(size + (offset & (512 - 1)), 512);
296 if (unlikely(is_bad_pmem(&pmem->bb, offset / 512, sz_align)))
297 return -EIO;
298 return memcpy_from_pmem(buf, pmem->virt_addr + offset, size);
299 } else {
300 memcpy_to_pmem(pmem->virt_addr + offset, buf, size);
301 wmb_pmem();
304 return 0;
307 static int nd_pfn_init(struct nd_pfn *nd_pfn)
309 struct nd_pfn_sb *pfn_sb = kzalloc(sizeof(*pfn_sb), GFP_KERNEL);
310 struct pmem_device *pmem = dev_get_drvdata(&nd_pfn->dev);
311 struct nd_namespace_common *ndns = nd_pfn->ndns;
312 u32 start_pad = 0, end_trunc = 0;
313 resource_size_t start, size;
314 struct nd_namespace_io *nsio;
315 struct nd_region *nd_region;
316 unsigned long npfns;
317 phys_addr_t offset;
318 u64 checksum;
319 int rc;
321 if (!pfn_sb)
322 return -ENOMEM;
324 nd_pfn->pfn_sb = pfn_sb;
325 rc = nd_pfn_validate(nd_pfn);
326 if (rc == -ENODEV)
327 /* no info block, do init */;
328 else
329 return rc;
331 nd_region = to_nd_region(nd_pfn->dev.parent);
332 if (nd_region->ro) {
333 dev_info(&nd_pfn->dev,
334 "%s is read-only, unable to init metadata\n",
335 dev_name(&nd_region->dev));
336 goto err;
339 memset(pfn_sb, 0, sizeof(*pfn_sb));
342 * Check if pmem collides with 'System RAM' when section aligned and
343 * trim it accordingly
345 nsio = to_nd_namespace_io(&ndns->dev);
346 start = PHYS_SECTION_ALIGN_DOWN(nsio->res.start);
347 size = resource_size(&nsio->res);
348 if (region_intersects(start, size, IORESOURCE_SYSTEM_RAM,
349 IORES_DESC_NONE) == REGION_MIXED) {
351 start = nsio->res.start;
352 start_pad = PHYS_SECTION_ALIGN_UP(start) - start;
355 start = nsio->res.start;
356 size = PHYS_SECTION_ALIGN_UP(start + size) - start;
357 if (region_intersects(start, size, IORESOURCE_SYSTEM_RAM,
358 IORES_DESC_NONE) == REGION_MIXED) {
359 size = resource_size(&nsio->res);
360 end_trunc = start + size - PHYS_SECTION_ALIGN_DOWN(start + size);
363 if (start_pad + end_trunc)
364 dev_info(&nd_pfn->dev, "%s section collision, truncate %d bytes\n",
365 dev_name(&ndns->dev), start_pad + end_trunc);
368 * Note, we use 64 here for the standard size of struct page,
369 * debugging options may cause it to be larger in which case the
370 * implementation will limit the pfns advertised through
371 * ->direct_access() to those that are included in the memmap.
373 start += start_pad;
374 npfns = (pmem->size - start_pad - end_trunc - SZ_8K) / SZ_4K;
375 if (nd_pfn->mode == PFN_MODE_PMEM)
376 offset = ALIGN(start + SZ_8K + 64 * npfns, nd_pfn->align)
377 - start;
378 else if (nd_pfn->mode == PFN_MODE_RAM)
379 offset = ALIGN(start + SZ_8K, nd_pfn->align) - start;
380 else
381 goto err;
383 if (offset + start_pad + end_trunc >= pmem->size) {
384 dev_err(&nd_pfn->dev, "%s unable to satisfy requested alignment\n",
385 dev_name(&ndns->dev));
386 goto err;
389 npfns = (pmem->size - offset - start_pad - end_trunc) / SZ_4K;
390 pfn_sb->mode = cpu_to_le32(nd_pfn->mode);
391 pfn_sb->dataoff = cpu_to_le64(offset);
392 pfn_sb->npfns = cpu_to_le64(npfns);
393 memcpy(pfn_sb->signature, PFN_SIG, PFN_SIG_LEN);
394 memcpy(pfn_sb->uuid, nd_pfn->uuid, 16);
395 memcpy(pfn_sb->parent_uuid, nd_dev_to_uuid(&ndns->dev), 16);
396 pfn_sb->version_major = cpu_to_le16(1);
397 pfn_sb->version_minor = cpu_to_le16(1);
398 pfn_sb->start_pad = cpu_to_le32(start_pad);
399 pfn_sb->end_trunc = cpu_to_le32(end_trunc);
400 checksum = nd_sb_checksum((struct nd_gen_sb *) pfn_sb);
401 pfn_sb->checksum = cpu_to_le64(checksum);
403 rc = nvdimm_write_bytes(ndns, SZ_4K, pfn_sb, sizeof(*pfn_sb));
404 if (rc)
405 goto err;
407 return 0;
408 err:
409 nd_pfn->pfn_sb = NULL;
410 kfree(pfn_sb);
411 return -ENXIO;
414 static int nvdimm_namespace_detach_pfn(struct nd_namespace_common *ndns)
416 struct nd_pfn *nd_pfn = to_nd_pfn(ndns->claim);
417 struct pmem_device *pmem;
419 /* free pmem disk */
420 pmem = dev_get_drvdata(&nd_pfn->dev);
421 pmem_detach_disk(pmem);
423 /* release nd_pfn resources */
424 kfree(nd_pfn->pfn_sb);
425 nd_pfn->pfn_sb = NULL;
427 return 0;
431 * We hotplug memory at section granularity, pad the reserved area from
432 * the previous section base to the namespace base address.
434 static unsigned long init_altmap_base(resource_size_t base)
436 unsigned long base_pfn = PHYS_PFN(base);
438 return PFN_SECTION_ALIGN_DOWN(base_pfn);
441 static unsigned long init_altmap_reserve(resource_size_t base)
443 unsigned long reserve = PHYS_PFN(SZ_8K);
444 unsigned long base_pfn = PHYS_PFN(base);
446 reserve += base_pfn - PFN_SECTION_ALIGN_DOWN(base_pfn);
447 return reserve;
450 static int __nvdimm_namespace_attach_pfn(struct nd_pfn *nd_pfn)
452 int rc;
453 struct resource res;
454 struct request_queue *q;
455 struct pmem_device *pmem;
456 struct vmem_altmap *altmap;
457 struct device *dev = &nd_pfn->dev;
458 struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
459 struct nd_namespace_common *ndns = nd_pfn->ndns;
460 u32 start_pad = __le32_to_cpu(pfn_sb->start_pad);
461 u32 end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
462 struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
463 resource_size_t base = nsio->res.start + start_pad;
464 struct vmem_altmap __altmap = {
465 .base_pfn = init_altmap_base(base),
466 .reserve = init_altmap_reserve(base),
469 pmem = dev_get_drvdata(dev);
470 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
471 pmem->pfn_pad = start_pad + end_trunc;
472 nd_pfn->mode = le32_to_cpu(nd_pfn->pfn_sb->mode);
473 if (nd_pfn->mode == PFN_MODE_RAM) {
474 if (pmem->data_offset < SZ_8K)
475 return -EINVAL;
476 nd_pfn->npfns = le64_to_cpu(pfn_sb->npfns);
477 altmap = NULL;
478 } else if (nd_pfn->mode == PFN_MODE_PMEM) {
479 nd_pfn->npfns = (pmem->size - pmem->pfn_pad - pmem->data_offset)
480 / PAGE_SIZE;
481 if (le64_to_cpu(nd_pfn->pfn_sb->npfns) > nd_pfn->npfns)
482 dev_info(&nd_pfn->dev,
483 "number of pfns truncated from %lld to %ld\n",
484 le64_to_cpu(nd_pfn->pfn_sb->npfns),
485 nd_pfn->npfns);
486 altmap = & __altmap;
487 altmap->free = PHYS_PFN(pmem->data_offset - SZ_8K);
488 altmap->alloc = 0;
489 } else {
490 rc = -ENXIO;
491 goto err;
494 /* establish pfn range for lookup, and switch to direct map */
495 q = pmem->pmem_queue;
496 memcpy(&res, &nsio->res, sizeof(res));
497 res.start += start_pad;
498 res.end -= end_trunc;
499 devm_memunmap(dev, (void __force *) pmem->virt_addr);
500 pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, &res,
501 &q->q_usage_counter, altmap);
502 pmem->pfn_flags |= PFN_MAP;
503 if (IS_ERR(pmem->virt_addr)) {
504 rc = PTR_ERR(pmem->virt_addr);
505 goto err;
508 /* attach pmem disk in "pfn-mode" */
509 rc = pmem_attach_disk(dev, ndns, pmem);
510 if (rc)
511 goto err;
513 return rc;
514 err:
515 nvdimm_namespace_detach_pfn(ndns);
516 return rc;
520 static int nvdimm_namespace_attach_pfn(struct nd_namespace_common *ndns)
522 struct nd_pfn *nd_pfn = to_nd_pfn(ndns->claim);
523 int rc;
525 if (!nd_pfn->uuid || !nd_pfn->ndns)
526 return -ENODEV;
528 rc = nd_pfn_init(nd_pfn);
529 if (rc)
530 return rc;
531 /* we need a valid pfn_sb before we can init a vmem_altmap */
532 return __nvdimm_namespace_attach_pfn(nd_pfn);
535 static int nd_pmem_probe(struct device *dev)
537 struct nd_region *nd_region = to_nd_region(dev->parent);
538 struct nd_namespace_common *ndns;
539 struct nd_namespace_io *nsio;
540 struct pmem_device *pmem;
542 ndns = nvdimm_namespace_common_probe(dev);
543 if (IS_ERR(ndns))
544 return PTR_ERR(ndns);
546 nsio = to_nd_namespace_io(&ndns->dev);
547 pmem = pmem_alloc(dev, &nsio->res, nd_region->id);
548 if (IS_ERR(pmem))
549 return PTR_ERR(pmem);
551 pmem->ndns = ndns;
552 dev_set_drvdata(dev, pmem);
553 ndns->rw_bytes = pmem_rw_bytes;
554 if (devm_init_badblocks(dev, &pmem->bb))
555 return -ENOMEM;
556 nvdimm_namespace_add_poison(ndns, &pmem->bb, 0);
558 if (is_nd_btt(dev)) {
559 /* btt allocates its own request_queue */
560 blk_cleanup_queue(pmem->pmem_queue);
561 pmem->pmem_queue = NULL;
562 return nvdimm_namespace_attach_btt(ndns);
565 if (is_nd_pfn(dev))
566 return nvdimm_namespace_attach_pfn(ndns);
568 if (nd_btt_probe(ndns, pmem) == 0 || nd_pfn_probe(ndns, pmem) == 0) {
570 * We'll come back as either btt-pmem, or pfn-pmem, so
571 * drop the queue allocation for now.
573 blk_cleanup_queue(pmem->pmem_queue);
574 return -ENXIO;
577 return pmem_attach_disk(dev, ndns, pmem);
580 static int nd_pmem_remove(struct device *dev)
582 struct pmem_device *pmem = dev_get_drvdata(dev);
584 if (is_nd_btt(dev))
585 nvdimm_namespace_detach_btt(pmem->ndns);
586 else if (is_nd_pfn(dev))
587 nvdimm_namespace_detach_pfn(pmem->ndns);
588 else
589 pmem_detach_disk(pmem);
591 return 0;
594 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
596 struct pmem_device *pmem = dev_get_drvdata(dev);
597 struct nd_namespace_common *ndns = pmem->ndns;
599 if (event != NVDIMM_REVALIDATE_POISON)
600 return;
602 if (is_nd_btt(dev))
603 nvdimm_namespace_add_poison(ndns, &pmem->bb, 0);
604 else
605 nvdimm_namespace_add_poison(ndns, &pmem->bb, pmem->data_offset);
608 MODULE_ALIAS("pmem");
609 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
610 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
611 static struct nd_device_driver nd_pmem_driver = {
612 .probe = nd_pmem_probe,
613 .remove = nd_pmem_remove,
614 .notify = nd_pmem_notify,
615 .drv = {
616 .name = "nd_pmem",
618 .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
621 static int __init pmem_init(void)
623 return nd_driver_register(&nd_pmem_driver);
625 module_init(pmem_init);
627 static void pmem_exit(void)
629 driver_unregister(&nd_pmem_driver.drv);
631 module_exit(pmem_exit);
633 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
634 MODULE_LICENSE("GPL v2");