4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/spi.h>
44 static void spidev_release(struct device
*dev
)
46 struct spi_device
*spi
= to_spi_device(dev
);
48 /* spi masters may cleanup for released devices */
49 if (spi
->master
->cleanup
)
50 spi
->master
->cleanup(spi
);
52 spi_master_put(spi
->master
);
57 modalias_show(struct device
*dev
, struct device_attribute
*a
, char *buf
)
59 const struct spi_device
*spi
= to_spi_device(dev
);
62 len
= acpi_device_modalias(dev
, buf
, PAGE_SIZE
- 1);
66 return sprintf(buf
, "%s%s\n", SPI_MODULE_PREFIX
, spi
->modalias
);
68 static DEVICE_ATTR_RO(modalias
);
70 #define SPI_STATISTICS_ATTRS(field, file) \
71 static ssize_t spi_master_##field##_show(struct device *dev, \
72 struct device_attribute *attr, \
75 struct spi_master *master = container_of(dev, \
76 struct spi_master, dev); \
77 return spi_statistics_##field##_show(&master->statistics, buf); \
79 static struct device_attribute dev_attr_spi_master_##field = { \
80 .attr = { .name = file, .mode = S_IRUGO }, \
81 .show = spi_master_##field##_show, \
83 static ssize_t spi_device_##field##_show(struct device *dev, \
84 struct device_attribute *attr, \
87 struct spi_device *spi = to_spi_device(dev); \
88 return spi_statistics_##field##_show(&spi->statistics, buf); \
90 static struct device_attribute dev_attr_spi_device_##field = { \
91 .attr = { .name = file, .mode = S_IRUGO }, \
92 .show = spi_device_##field##_show, \
95 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
96 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
99 unsigned long flags; \
101 spin_lock_irqsave(&stat->lock, flags); \
102 len = sprintf(buf, format_string, stat->field); \
103 spin_unlock_irqrestore(&stat->lock, flags); \
106 SPI_STATISTICS_ATTRS(name, file)
108 #define SPI_STATISTICS_SHOW(field, format_string) \
109 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
110 field, format_string)
112 SPI_STATISTICS_SHOW(messages
, "%lu");
113 SPI_STATISTICS_SHOW(transfers
, "%lu");
114 SPI_STATISTICS_SHOW(errors
, "%lu");
115 SPI_STATISTICS_SHOW(timedout
, "%lu");
117 SPI_STATISTICS_SHOW(spi_sync
, "%lu");
118 SPI_STATISTICS_SHOW(spi_sync_immediate
, "%lu");
119 SPI_STATISTICS_SHOW(spi_async
, "%lu");
121 SPI_STATISTICS_SHOW(bytes
, "%llu");
122 SPI_STATISTICS_SHOW(bytes_rx
, "%llu");
123 SPI_STATISTICS_SHOW(bytes_tx
, "%llu");
125 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
126 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
127 "transfer_bytes_histo_" number, \
128 transfer_bytes_histo[index], "%lu")
129 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
130 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
131 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
147 SPI_STATISTICS_SHOW(transfers_split_maxsize
, "%lu");
149 static struct attribute
*spi_dev_attrs
[] = {
150 &dev_attr_modalias
.attr
,
154 static const struct attribute_group spi_dev_group
= {
155 .attrs
= spi_dev_attrs
,
158 static struct attribute
*spi_device_statistics_attrs
[] = {
159 &dev_attr_spi_device_messages
.attr
,
160 &dev_attr_spi_device_transfers
.attr
,
161 &dev_attr_spi_device_errors
.attr
,
162 &dev_attr_spi_device_timedout
.attr
,
163 &dev_attr_spi_device_spi_sync
.attr
,
164 &dev_attr_spi_device_spi_sync_immediate
.attr
,
165 &dev_attr_spi_device_spi_async
.attr
,
166 &dev_attr_spi_device_bytes
.attr
,
167 &dev_attr_spi_device_bytes_rx
.attr
,
168 &dev_attr_spi_device_bytes_tx
.attr
,
169 &dev_attr_spi_device_transfer_bytes_histo0
.attr
,
170 &dev_attr_spi_device_transfer_bytes_histo1
.attr
,
171 &dev_attr_spi_device_transfer_bytes_histo2
.attr
,
172 &dev_attr_spi_device_transfer_bytes_histo3
.attr
,
173 &dev_attr_spi_device_transfer_bytes_histo4
.attr
,
174 &dev_attr_spi_device_transfer_bytes_histo5
.attr
,
175 &dev_attr_spi_device_transfer_bytes_histo6
.attr
,
176 &dev_attr_spi_device_transfer_bytes_histo7
.attr
,
177 &dev_attr_spi_device_transfer_bytes_histo8
.attr
,
178 &dev_attr_spi_device_transfer_bytes_histo9
.attr
,
179 &dev_attr_spi_device_transfer_bytes_histo10
.attr
,
180 &dev_attr_spi_device_transfer_bytes_histo11
.attr
,
181 &dev_attr_spi_device_transfer_bytes_histo12
.attr
,
182 &dev_attr_spi_device_transfer_bytes_histo13
.attr
,
183 &dev_attr_spi_device_transfer_bytes_histo14
.attr
,
184 &dev_attr_spi_device_transfer_bytes_histo15
.attr
,
185 &dev_attr_spi_device_transfer_bytes_histo16
.attr
,
186 &dev_attr_spi_device_transfers_split_maxsize
.attr
,
190 static const struct attribute_group spi_device_statistics_group
= {
191 .name
= "statistics",
192 .attrs
= spi_device_statistics_attrs
,
195 static const struct attribute_group
*spi_dev_groups
[] = {
197 &spi_device_statistics_group
,
201 static struct attribute
*spi_master_statistics_attrs
[] = {
202 &dev_attr_spi_master_messages
.attr
,
203 &dev_attr_spi_master_transfers
.attr
,
204 &dev_attr_spi_master_errors
.attr
,
205 &dev_attr_spi_master_timedout
.attr
,
206 &dev_attr_spi_master_spi_sync
.attr
,
207 &dev_attr_spi_master_spi_sync_immediate
.attr
,
208 &dev_attr_spi_master_spi_async
.attr
,
209 &dev_attr_spi_master_bytes
.attr
,
210 &dev_attr_spi_master_bytes_rx
.attr
,
211 &dev_attr_spi_master_bytes_tx
.attr
,
212 &dev_attr_spi_master_transfer_bytes_histo0
.attr
,
213 &dev_attr_spi_master_transfer_bytes_histo1
.attr
,
214 &dev_attr_spi_master_transfer_bytes_histo2
.attr
,
215 &dev_attr_spi_master_transfer_bytes_histo3
.attr
,
216 &dev_attr_spi_master_transfer_bytes_histo4
.attr
,
217 &dev_attr_spi_master_transfer_bytes_histo5
.attr
,
218 &dev_attr_spi_master_transfer_bytes_histo6
.attr
,
219 &dev_attr_spi_master_transfer_bytes_histo7
.attr
,
220 &dev_attr_spi_master_transfer_bytes_histo8
.attr
,
221 &dev_attr_spi_master_transfer_bytes_histo9
.attr
,
222 &dev_attr_spi_master_transfer_bytes_histo10
.attr
,
223 &dev_attr_spi_master_transfer_bytes_histo11
.attr
,
224 &dev_attr_spi_master_transfer_bytes_histo12
.attr
,
225 &dev_attr_spi_master_transfer_bytes_histo13
.attr
,
226 &dev_attr_spi_master_transfer_bytes_histo14
.attr
,
227 &dev_attr_spi_master_transfer_bytes_histo15
.attr
,
228 &dev_attr_spi_master_transfer_bytes_histo16
.attr
,
229 &dev_attr_spi_master_transfers_split_maxsize
.attr
,
233 static const struct attribute_group spi_master_statistics_group
= {
234 .name
= "statistics",
235 .attrs
= spi_master_statistics_attrs
,
238 static const struct attribute_group
*spi_master_groups
[] = {
239 &spi_master_statistics_group
,
243 void spi_statistics_add_transfer_stats(struct spi_statistics
*stats
,
244 struct spi_transfer
*xfer
,
245 struct spi_master
*master
)
248 int l2len
= min(fls(xfer
->len
), SPI_STATISTICS_HISTO_SIZE
) - 1;
253 spin_lock_irqsave(&stats
->lock
, flags
);
256 stats
->transfer_bytes_histo
[l2len
]++;
258 stats
->bytes
+= xfer
->len
;
259 if ((xfer
->tx_buf
) &&
260 (xfer
->tx_buf
!= master
->dummy_tx
))
261 stats
->bytes_tx
+= xfer
->len
;
262 if ((xfer
->rx_buf
) &&
263 (xfer
->rx_buf
!= master
->dummy_rx
))
264 stats
->bytes_rx
+= xfer
->len
;
266 spin_unlock_irqrestore(&stats
->lock
, flags
);
268 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats
);
270 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
271 * and the sysfs version makes coldplug work too.
274 static const struct spi_device_id
*spi_match_id(const struct spi_device_id
*id
,
275 const struct spi_device
*sdev
)
277 while (id
->name
[0]) {
278 if (!strcmp(sdev
->modalias
, id
->name
))
285 const struct spi_device_id
*spi_get_device_id(const struct spi_device
*sdev
)
287 const struct spi_driver
*sdrv
= to_spi_driver(sdev
->dev
.driver
);
289 return spi_match_id(sdrv
->id_table
, sdev
);
291 EXPORT_SYMBOL_GPL(spi_get_device_id
);
293 static int spi_match_device(struct device
*dev
, struct device_driver
*drv
)
295 const struct spi_device
*spi
= to_spi_device(dev
);
296 const struct spi_driver
*sdrv
= to_spi_driver(drv
);
298 /* Attempt an OF style match */
299 if (of_driver_match_device(dev
, drv
))
303 if (acpi_driver_match_device(dev
, drv
))
307 return !!spi_match_id(sdrv
->id_table
, spi
);
309 return strcmp(spi
->modalias
, drv
->name
) == 0;
312 static int spi_uevent(struct device
*dev
, struct kobj_uevent_env
*env
)
314 const struct spi_device
*spi
= to_spi_device(dev
);
317 rc
= acpi_device_uevent_modalias(dev
, env
);
321 add_uevent_var(env
, "MODALIAS=%s%s", SPI_MODULE_PREFIX
, spi
->modalias
);
325 struct bus_type spi_bus_type
= {
327 .dev_groups
= spi_dev_groups
,
328 .match
= spi_match_device
,
329 .uevent
= spi_uevent
,
331 EXPORT_SYMBOL_GPL(spi_bus_type
);
334 static int spi_drv_probe(struct device
*dev
)
336 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
337 struct spi_device
*spi
= to_spi_device(dev
);
340 ret
= of_clk_set_defaults(dev
->of_node
, false);
345 spi
->irq
= of_irq_get(dev
->of_node
, 0);
346 if (spi
->irq
== -EPROBE_DEFER
)
347 return -EPROBE_DEFER
;
352 ret
= dev_pm_domain_attach(dev
, true);
353 if (ret
!= -EPROBE_DEFER
) {
354 ret
= sdrv
->probe(spi
);
356 dev_pm_domain_detach(dev
, true);
362 static int spi_drv_remove(struct device
*dev
)
364 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
367 ret
= sdrv
->remove(to_spi_device(dev
));
368 dev_pm_domain_detach(dev
, true);
373 static void spi_drv_shutdown(struct device
*dev
)
375 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
377 sdrv
->shutdown(to_spi_device(dev
));
381 * __spi_register_driver - register a SPI driver
382 * @owner: owner module of the driver to register
383 * @sdrv: the driver to register
386 * Return: zero on success, else a negative error code.
388 int __spi_register_driver(struct module
*owner
, struct spi_driver
*sdrv
)
390 sdrv
->driver
.owner
= owner
;
391 sdrv
->driver
.bus
= &spi_bus_type
;
393 sdrv
->driver
.probe
= spi_drv_probe
;
395 sdrv
->driver
.remove
= spi_drv_remove
;
397 sdrv
->driver
.shutdown
= spi_drv_shutdown
;
398 return driver_register(&sdrv
->driver
);
400 EXPORT_SYMBOL_GPL(__spi_register_driver
);
402 /*-------------------------------------------------------------------------*/
404 /* SPI devices should normally not be created by SPI device drivers; that
405 * would make them board-specific. Similarly with SPI master drivers.
406 * Device registration normally goes into like arch/.../mach.../board-YYY.c
407 * with other readonly (flashable) information about mainboard devices.
411 struct list_head list
;
412 struct spi_board_info board_info
;
415 static LIST_HEAD(board_list
);
416 static LIST_HEAD(spi_master_list
);
419 * Used to protect add/del opertion for board_info list and
420 * spi_master list, and their matching process
422 static DEFINE_MUTEX(board_lock
);
425 * spi_alloc_device - Allocate a new SPI device
426 * @master: Controller to which device is connected
429 * Allows a driver to allocate and initialize a spi_device without
430 * registering it immediately. This allows a driver to directly
431 * fill the spi_device with device parameters before calling
432 * spi_add_device() on it.
434 * Caller is responsible to call spi_add_device() on the returned
435 * spi_device structure to add it to the SPI master. If the caller
436 * needs to discard the spi_device without adding it, then it should
437 * call spi_dev_put() on it.
439 * Return: a pointer to the new device, or NULL.
441 struct spi_device
*spi_alloc_device(struct spi_master
*master
)
443 struct spi_device
*spi
;
445 if (!spi_master_get(master
))
448 spi
= kzalloc(sizeof(*spi
), GFP_KERNEL
);
450 spi_master_put(master
);
454 spi
->master
= master
;
455 spi
->dev
.parent
= &master
->dev
;
456 spi
->dev
.bus
= &spi_bus_type
;
457 spi
->dev
.release
= spidev_release
;
458 spi
->cs_gpio
= -ENOENT
;
460 spin_lock_init(&spi
->statistics
.lock
);
462 device_initialize(&spi
->dev
);
465 EXPORT_SYMBOL_GPL(spi_alloc_device
);
467 static void spi_dev_set_name(struct spi_device
*spi
)
469 struct acpi_device
*adev
= ACPI_COMPANION(&spi
->dev
);
472 dev_set_name(&spi
->dev
, "spi-%s", acpi_dev_name(adev
));
476 dev_set_name(&spi
->dev
, "%s.%u", dev_name(&spi
->master
->dev
),
480 static int spi_dev_check(struct device
*dev
, void *data
)
482 struct spi_device
*spi
= to_spi_device(dev
);
483 struct spi_device
*new_spi
= data
;
485 if (spi
->master
== new_spi
->master
&&
486 spi
->chip_select
== new_spi
->chip_select
)
492 * spi_add_device - Add spi_device allocated with spi_alloc_device
493 * @spi: spi_device to register
495 * Companion function to spi_alloc_device. Devices allocated with
496 * spi_alloc_device can be added onto the spi bus with this function.
498 * Return: 0 on success; negative errno on failure
500 int spi_add_device(struct spi_device
*spi
)
502 static DEFINE_MUTEX(spi_add_lock
);
503 struct spi_master
*master
= spi
->master
;
504 struct device
*dev
= master
->dev
.parent
;
507 /* Chipselects are numbered 0..max; validate. */
508 if (spi
->chip_select
>= master
->num_chipselect
) {
509 dev_err(dev
, "cs%d >= max %d\n",
511 master
->num_chipselect
);
515 /* Set the bus ID string */
516 spi_dev_set_name(spi
);
518 /* We need to make sure there's no other device with this
519 * chipselect **BEFORE** we call setup(), else we'll trash
520 * its configuration. Lock against concurrent add() calls.
522 mutex_lock(&spi_add_lock
);
524 status
= bus_for_each_dev(&spi_bus_type
, NULL
, spi
, spi_dev_check
);
526 dev_err(dev
, "chipselect %d already in use\n",
531 if (master
->cs_gpios
)
532 spi
->cs_gpio
= master
->cs_gpios
[spi
->chip_select
];
534 /* Drivers may modify this initial i/o setup, but will
535 * normally rely on the device being setup. Devices
536 * using SPI_CS_HIGH can't coexist well otherwise...
538 status
= spi_setup(spi
);
540 dev_err(dev
, "can't setup %s, status %d\n",
541 dev_name(&spi
->dev
), status
);
545 /* Device may be bound to an active driver when this returns */
546 status
= device_add(&spi
->dev
);
548 dev_err(dev
, "can't add %s, status %d\n",
549 dev_name(&spi
->dev
), status
);
551 dev_dbg(dev
, "registered child %s\n", dev_name(&spi
->dev
));
554 mutex_unlock(&spi_add_lock
);
557 EXPORT_SYMBOL_GPL(spi_add_device
);
560 * spi_new_device - instantiate one new SPI device
561 * @master: Controller to which device is connected
562 * @chip: Describes the SPI device
565 * On typical mainboards, this is purely internal; and it's not needed
566 * after board init creates the hard-wired devices. Some development
567 * platforms may not be able to use spi_register_board_info though, and
568 * this is exported so that for example a USB or parport based adapter
569 * driver could add devices (which it would learn about out-of-band).
571 * Return: the new device, or NULL.
573 struct spi_device
*spi_new_device(struct spi_master
*master
,
574 struct spi_board_info
*chip
)
576 struct spi_device
*proxy
;
579 /* NOTE: caller did any chip->bus_num checks necessary.
581 * Also, unless we change the return value convention to use
582 * error-or-pointer (not NULL-or-pointer), troubleshootability
583 * suggests syslogged diagnostics are best here (ugh).
586 proxy
= spi_alloc_device(master
);
590 WARN_ON(strlen(chip
->modalias
) >= sizeof(proxy
->modalias
));
592 proxy
->chip_select
= chip
->chip_select
;
593 proxy
->max_speed_hz
= chip
->max_speed_hz
;
594 proxy
->mode
= chip
->mode
;
595 proxy
->irq
= chip
->irq
;
596 strlcpy(proxy
->modalias
, chip
->modalias
, sizeof(proxy
->modalias
));
597 proxy
->dev
.platform_data
= (void *) chip
->platform_data
;
598 proxy
->controller_data
= chip
->controller_data
;
599 proxy
->controller_state
= NULL
;
601 status
= spi_add_device(proxy
);
609 EXPORT_SYMBOL_GPL(spi_new_device
);
612 * spi_unregister_device - unregister a single SPI device
613 * @spi: spi_device to unregister
615 * Start making the passed SPI device vanish. Normally this would be handled
616 * by spi_unregister_master().
618 void spi_unregister_device(struct spi_device
*spi
)
623 if (spi
->dev
.of_node
)
624 of_node_clear_flag(spi
->dev
.of_node
, OF_POPULATED
);
625 device_unregister(&spi
->dev
);
627 EXPORT_SYMBOL_GPL(spi_unregister_device
);
629 static void spi_match_master_to_boardinfo(struct spi_master
*master
,
630 struct spi_board_info
*bi
)
632 struct spi_device
*dev
;
634 if (master
->bus_num
!= bi
->bus_num
)
637 dev
= spi_new_device(master
, bi
);
639 dev_err(master
->dev
.parent
, "can't create new device for %s\n",
644 * spi_register_board_info - register SPI devices for a given board
645 * @info: array of chip descriptors
646 * @n: how many descriptors are provided
649 * Board-specific early init code calls this (probably during arch_initcall)
650 * with segments of the SPI device table. Any device nodes are created later,
651 * after the relevant parent SPI controller (bus_num) is defined. We keep
652 * this table of devices forever, so that reloading a controller driver will
653 * not make Linux forget about these hard-wired devices.
655 * Other code can also call this, e.g. a particular add-on board might provide
656 * SPI devices through its expansion connector, so code initializing that board
657 * would naturally declare its SPI devices.
659 * The board info passed can safely be __initdata ... but be careful of
660 * any embedded pointers (platform_data, etc), they're copied as-is.
662 * Return: zero on success, else a negative error code.
664 int spi_register_board_info(struct spi_board_info
const *info
, unsigned n
)
666 struct boardinfo
*bi
;
672 bi
= kzalloc(n
* sizeof(*bi
), GFP_KERNEL
);
676 for (i
= 0; i
< n
; i
++, bi
++, info
++) {
677 struct spi_master
*master
;
679 memcpy(&bi
->board_info
, info
, sizeof(*info
));
680 mutex_lock(&board_lock
);
681 list_add_tail(&bi
->list
, &board_list
);
682 list_for_each_entry(master
, &spi_master_list
, list
)
683 spi_match_master_to_boardinfo(master
, &bi
->board_info
);
684 mutex_unlock(&board_lock
);
690 /*-------------------------------------------------------------------------*/
692 static void spi_set_cs(struct spi_device
*spi
, bool enable
)
694 if (spi
->mode
& SPI_CS_HIGH
)
697 if (gpio_is_valid(spi
->cs_gpio
))
698 gpio_set_value(spi
->cs_gpio
, !enable
);
699 else if (spi
->master
->set_cs
)
700 spi
->master
->set_cs(spi
, !enable
);
703 #ifdef CONFIG_HAS_DMA
704 static int spi_map_buf(struct spi_master
*master
, struct device
*dev
,
705 struct sg_table
*sgt
, void *buf
, size_t len
,
706 enum dma_data_direction dir
)
708 const bool vmalloced_buf
= is_vmalloc_addr(buf
);
709 unsigned int max_seg_size
= dma_get_max_seg_size(dev
);
712 struct page
*vm_page
;
718 desc_len
= min_t(int, max_seg_size
, PAGE_SIZE
);
719 sgs
= DIV_ROUND_UP(len
+ offset_in_page(buf
), desc_len
);
721 desc_len
= min_t(int, max_seg_size
, master
->max_dma_len
);
722 sgs
= DIV_ROUND_UP(len
, desc_len
);
725 ret
= sg_alloc_table(sgt
, sgs
, GFP_KERNEL
);
729 for (i
= 0; i
< sgs
; i
++) {
733 len
, desc_len
- offset_in_page(buf
));
734 vm_page
= vmalloc_to_page(buf
);
739 sg_set_page(&sgt
->sgl
[i
], vm_page
,
740 min
, offset_in_page(buf
));
742 min
= min_t(size_t, len
, desc_len
);
744 sg_set_buf(&sgt
->sgl
[i
], sg_buf
, min
);
751 ret
= dma_map_sg(dev
, sgt
->sgl
, sgt
->nents
, dir
);
764 static void spi_unmap_buf(struct spi_master
*master
, struct device
*dev
,
765 struct sg_table
*sgt
, enum dma_data_direction dir
)
767 if (sgt
->orig_nents
) {
768 dma_unmap_sg(dev
, sgt
->sgl
, sgt
->orig_nents
, dir
);
773 static int __spi_map_msg(struct spi_master
*master
, struct spi_message
*msg
)
775 struct device
*tx_dev
, *rx_dev
;
776 struct spi_transfer
*xfer
;
779 if (!master
->can_dma
)
783 tx_dev
= master
->dma_tx
->device
->dev
;
785 tx_dev
= &master
->dev
;
788 rx_dev
= master
->dma_rx
->device
->dev
;
790 rx_dev
= &master
->dev
;
792 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
793 if (!master
->can_dma(master
, msg
->spi
, xfer
))
796 if (xfer
->tx_buf
!= NULL
) {
797 ret
= spi_map_buf(master
, tx_dev
, &xfer
->tx_sg
,
798 (void *)xfer
->tx_buf
, xfer
->len
,
804 if (xfer
->rx_buf
!= NULL
) {
805 ret
= spi_map_buf(master
, rx_dev
, &xfer
->rx_sg
,
806 xfer
->rx_buf
, xfer
->len
,
809 spi_unmap_buf(master
, tx_dev
, &xfer
->tx_sg
,
816 master
->cur_msg_mapped
= true;
821 static int __spi_unmap_msg(struct spi_master
*master
, struct spi_message
*msg
)
823 struct spi_transfer
*xfer
;
824 struct device
*tx_dev
, *rx_dev
;
826 if (!master
->cur_msg_mapped
|| !master
->can_dma
)
830 tx_dev
= master
->dma_tx
->device
->dev
;
832 tx_dev
= &master
->dev
;
835 rx_dev
= master
->dma_rx
->device
->dev
;
837 rx_dev
= &master
->dev
;
839 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
840 if (!master
->can_dma(master
, msg
->spi
, xfer
))
843 spi_unmap_buf(master
, rx_dev
, &xfer
->rx_sg
, DMA_FROM_DEVICE
);
844 spi_unmap_buf(master
, tx_dev
, &xfer
->tx_sg
, DMA_TO_DEVICE
);
849 #else /* !CONFIG_HAS_DMA */
850 static inline int __spi_map_msg(struct spi_master
*master
,
851 struct spi_message
*msg
)
856 static inline int __spi_unmap_msg(struct spi_master
*master
,
857 struct spi_message
*msg
)
861 #endif /* !CONFIG_HAS_DMA */
863 static inline int spi_unmap_msg(struct spi_master
*master
,
864 struct spi_message
*msg
)
866 struct spi_transfer
*xfer
;
868 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
870 * Restore the original value of tx_buf or rx_buf if they are
873 if (xfer
->tx_buf
== master
->dummy_tx
)
875 if (xfer
->rx_buf
== master
->dummy_rx
)
879 return __spi_unmap_msg(master
, msg
);
882 static int spi_map_msg(struct spi_master
*master
, struct spi_message
*msg
)
884 struct spi_transfer
*xfer
;
886 unsigned int max_tx
, max_rx
;
888 if (master
->flags
& (SPI_MASTER_MUST_RX
| SPI_MASTER_MUST_TX
)) {
892 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
893 if ((master
->flags
& SPI_MASTER_MUST_TX
) &&
895 max_tx
= max(xfer
->len
, max_tx
);
896 if ((master
->flags
& SPI_MASTER_MUST_RX
) &&
898 max_rx
= max(xfer
->len
, max_rx
);
902 tmp
= krealloc(master
->dummy_tx
, max_tx
,
903 GFP_KERNEL
| GFP_DMA
);
906 master
->dummy_tx
= tmp
;
907 memset(tmp
, 0, max_tx
);
911 tmp
= krealloc(master
->dummy_rx
, max_rx
,
912 GFP_KERNEL
| GFP_DMA
);
915 master
->dummy_rx
= tmp
;
918 if (max_tx
|| max_rx
) {
919 list_for_each_entry(xfer
, &msg
->transfers
,
922 xfer
->tx_buf
= master
->dummy_tx
;
924 xfer
->rx_buf
= master
->dummy_rx
;
929 return __spi_map_msg(master
, msg
);
933 * spi_transfer_one_message - Default implementation of transfer_one_message()
935 * This is a standard implementation of transfer_one_message() for
936 * drivers which impelment a transfer_one() operation. It provides
937 * standard handling of delays and chip select management.
939 static int spi_transfer_one_message(struct spi_master
*master
,
940 struct spi_message
*msg
)
942 struct spi_transfer
*xfer
;
943 bool keep_cs
= false;
945 unsigned long ms
= 1;
946 struct spi_statistics
*statm
= &master
->statistics
;
947 struct spi_statistics
*stats
= &msg
->spi
->statistics
;
949 spi_set_cs(msg
->spi
, true);
951 SPI_STATISTICS_INCREMENT_FIELD(statm
, messages
);
952 SPI_STATISTICS_INCREMENT_FIELD(stats
, messages
);
954 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
955 trace_spi_transfer_start(msg
, xfer
);
957 spi_statistics_add_transfer_stats(statm
, xfer
, master
);
958 spi_statistics_add_transfer_stats(stats
, xfer
, master
);
960 if (xfer
->tx_buf
|| xfer
->rx_buf
) {
961 reinit_completion(&master
->xfer_completion
);
963 ret
= master
->transfer_one(master
, msg
->spi
, xfer
);
965 SPI_STATISTICS_INCREMENT_FIELD(statm
,
967 SPI_STATISTICS_INCREMENT_FIELD(stats
,
969 dev_err(&msg
->spi
->dev
,
970 "SPI transfer failed: %d\n", ret
);
976 ms
= xfer
->len
* 8 * 1000 / xfer
->speed_hz
;
977 ms
+= ms
+ 100; /* some tolerance */
979 ms
= wait_for_completion_timeout(&master
->xfer_completion
,
980 msecs_to_jiffies(ms
));
984 SPI_STATISTICS_INCREMENT_FIELD(statm
,
986 SPI_STATISTICS_INCREMENT_FIELD(stats
,
988 dev_err(&msg
->spi
->dev
,
989 "SPI transfer timed out\n");
990 msg
->status
= -ETIMEDOUT
;
994 dev_err(&msg
->spi
->dev
,
995 "Bufferless transfer has length %u\n",
999 trace_spi_transfer_stop(msg
, xfer
);
1001 if (msg
->status
!= -EINPROGRESS
)
1004 if (xfer
->delay_usecs
)
1005 udelay(xfer
->delay_usecs
);
1007 if (xfer
->cs_change
) {
1008 if (list_is_last(&xfer
->transfer_list
,
1012 spi_set_cs(msg
->spi
, false);
1014 spi_set_cs(msg
->spi
, true);
1018 msg
->actual_length
+= xfer
->len
;
1022 if (ret
!= 0 || !keep_cs
)
1023 spi_set_cs(msg
->spi
, false);
1025 if (msg
->status
== -EINPROGRESS
)
1028 if (msg
->status
&& master
->handle_err
)
1029 master
->handle_err(master
, msg
);
1031 spi_res_release(master
, msg
);
1033 spi_finalize_current_message(master
);
1039 * spi_finalize_current_transfer - report completion of a transfer
1040 * @master: the master reporting completion
1042 * Called by SPI drivers using the core transfer_one_message()
1043 * implementation to notify it that the current interrupt driven
1044 * transfer has finished and the next one may be scheduled.
1046 void spi_finalize_current_transfer(struct spi_master
*master
)
1048 complete(&master
->xfer_completion
);
1050 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer
);
1053 * __spi_pump_messages - function which processes spi message queue
1054 * @master: master to process queue for
1055 * @in_kthread: true if we are in the context of the message pump thread
1056 * @bus_locked: true if the bus mutex is held when calling this function
1058 * This function checks if there is any spi message in the queue that
1059 * needs processing and if so call out to the driver to initialize hardware
1060 * and transfer each message.
1062 * Note that it is called both from the kthread itself and also from
1063 * inside spi_sync(); the queue extraction handling at the top of the
1064 * function should deal with this safely.
1066 static void __spi_pump_messages(struct spi_master
*master
, bool in_kthread
,
1069 unsigned long flags
;
1070 bool was_busy
= false;
1074 spin_lock_irqsave(&master
->queue_lock
, flags
);
1076 /* Make sure we are not already running a message */
1077 if (master
->cur_msg
) {
1078 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1082 /* If another context is idling the device then defer */
1083 if (master
->idling
) {
1084 queue_kthread_work(&master
->kworker
, &master
->pump_messages
);
1085 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1089 /* Check if the queue is idle */
1090 if (list_empty(&master
->queue
) || !master
->running
) {
1091 if (!master
->busy
) {
1092 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1096 /* Only do teardown in the thread */
1098 queue_kthread_work(&master
->kworker
,
1099 &master
->pump_messages
);
1100 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1104 master
->busy
= false;
1105 master
->idling
= true;
1106 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1108 kfree(master
->dummy_rx
);
1109 master
->dummy_rx
= NULL
;
1110 kfree(master
->dummy_tx
);
1111 master
->dummy_tx
= NULL
;
1112 if (master
->unprepare_transfer_hardware
&&
1113 master
->unprepare_transfer_hardware(master
))
1114 dev_err(&master
->dev
,
1115 "failed to unprepare transfer hardware\n");
1116 if (master
->auto_runtime_pm
) {
1117 pm_runtime_mark_last_busy(master
->dev
.parent
);
1118 pm_runtime_put_autosuspend(master
->dev
.parent
);
1120 trace_spi_master_idle(master
);
1122 spin_lock_irqsave(&master
->queue_lock
, flags
);
1123 master
->idling
= false;
1124 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1128 /* Extract head of queue */
1130 list_first_entry(&master
->queue
, struct spi_message
, queue
);
1132 list_del_init(&master
->cur_msg
->queue
);
1136 master
->busy
= true;
1137 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1139 if (!was_busy
&& master
->auto_runtime_pm
) {
1140 ret
= pm_runtime_get_sync(master
->dev
.parent
);
1142 dev_err(&master
->dev
, "Failed to power device: %d\n",
1149 trace_spi_master_busy(master
);
1151 if (!was_busy
&& master
->prepare_transfer_hardware
) {
1152 ret
= master
->prepare_transfer_hardware(master
);
1154 dev_err(&master
->dev
,
1155 "failed to prepare transfer hardware\n");
1157 if (master
->auto_runtime_pm
)
1158 pm_runtime_put(master
->dev
.parent
);
1164 mutex_lock(&master
->bus_lock_mutex
);
1166 trace_spi_message_start(master
->cur_msg
);
1168 if (master
->prepare_message
) {
1169 ret
= master
->prepare_message(master
, master
->cur_msg
);
1171 dev_err(&master
->dev
,
1172 "failed to prepare message: %d\n", ret
);
1173 master
->cur_msg
->status
= ret
;
1174 spi_finalize_current_message(master
);
1177 master
->cur_msg_prepared
= true;
1180 ret
= spi_map_msg(master
, master
->cur_msg
);
1182 master
->cur_msg
->status
= ret
;
1183 spi_finalize_current_message(master
);
1187 ret
= master
->transfer_one_message(master
, master
->cur_msg
);
1189 dev_err(&master
->dev
,
1190 "failed to transfer one message from queue\n");
1196 mutex_unlock(&master
->bus_lock_mutex
);
1198 /* Prod the scheduler in case transfer_one() was busy waiting */
1204 * spi_pump_messages - kthread work function which processes spi message queue
1205 * @work: pointer to kthread work struct contained in the master struct
1207 static void spi_pump_messages(struct kthread_work
*work
)
1209 struct spi_master
*master
=
1210 container_of(work
, struct spi_master
, pump_messages
);
1212 __spi_pump_messages(master
, true, false);
1215 static int spi_init_queue(struct spi_master
*master
)
1217 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
1219 master
->running
= false;
1220 master
->busy
= false;
1222 init_kthread_worker(&master
->kworker
);
1223 master
->kworker_task
= kthread_run(kthread_worker_fn
,
1224 &master
->kworker
, "%s",
1225 dev_name(&master
->dev
));
1226 if (IS_ERR(master
->kworker_task
)) {
1227 dev_err(&master
->dev
, "failed to create message pump task\n");
1228 return PTR_ERR(master
->kworker_task
);
1230 init_kthread_work(&master
->pump_messages
, spi_pump_messages
);
1233 * Master config will indicate if this controller should run the
1234 * message pump with high (realtime) priority to reduce the transfer
1235 * latency on the bus by minimising the delay between a transfer
1236 * request and the scheduling of the message pump thread. Without this
1237 * setting the message pump thread will remain at default priority.
1240 dev_info(&master
->dev
,
1241 "will run message pump with realtime priority\n");
1242 sched_setscheduler(master
->kworker_task
, SCHED_FIFO
, ¶m
);
1249 * spi_get_next_queued_message() - called by driver to check for queued
1251 * @master: the master to check for queued messages
1253 * If there are more messages in the queue, the next message is returned from
1256 * Return: the next message in the queue, else NULL if the queue is empty.
1258 struct spi_message
*spi_get_next_queued_message(struct spi_master
*master
)
1260 struct spi_message
*next
;
1261 unsigned long flags
;
1263 /* get a pointer to the next message, if any */
1264 spin_lock_irqsave(&master
->queue_lock
, flags
);
1265 next
= list_first_entry_or_null(&master
->queue
, struct spi_message
,
1267 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1271 EXPORT_SYMBOL_GPL(spi_get_next_queued_message
);
1274 * spi_finalize_current_message() - the current message is complete
1275 * @master: the master to return the message to
1277 * Called by the driver to notify the core that the message in the front of the
1278 * queue is complete and can be removed from the queue.
1280 void spi_finalize_current_message(struct spi_master
*master
)
1282 struct spi_message
*mesg
;
1283 unsigned long flags
;
1286 spin_lock_irqsave(&master
->queue_lock
, flags
);
1287 mesg
= master
->cur_msg
;
1288 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1290 spi_unmap_msg(master
, mesg
);
1292 if (master
->cur_msg_prepared
&& master
->unprepare_message
) {
1293 ret
= master
->unprepare_message(master
, mesg
);
1295 dev_err(&master
->dev
,
1296 "failed to unprepare message: %d\n", ret
);
1300 spin_lock_irqsave(&master
->queue_lock
, flags
);
1301 master
->cur_msg
= NULL
;
1302 master
->cur_msg_prepared
= false;
1303 queue_kthread_work(&master
->kworker
, &master
->pump_messages
);
1304 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1306 trace_spi_message_done(mesg
);
1310 mesg
->complete(mesg
->context
);
1312 EXPORT_SYMBOL_GPL(spi_finalize_current_message
);
1314 static int spi_start_queue(struct spi_master
*master
)
1316 unsigned long flags
;
1318 spin_lock_irqsave(&master
->queue_lock
, flags
);
1320 if (master
->running
|| master
->busy
) {
1321 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1325 master
->running
= true;
1326 master
->cur_msg
= NULL
;
1327 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1329 queue_kthread_work(&master
->kworker
, &master
->pump_messages
);
1334 static int spi_stop_queue(struct spi_master
*master
)
1336 unsigned long flags
;
1337 unsigned limit
= 500;
1340 spin_lock_irqsave(&master
->queue_lock
, flags
);
1343 * This is a bit lame, but is optimized for the common execution path.
1344 * A wait_queue on the master->busy could be used, but then the common
1345 * execution path (pump_messages) would be required to call wake_up or
1346 * friends on every SPI message. Do this instead.
1348 while ((!list_empty(&master
->queue
) || master
->busy
) && limit
--) {
1349 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1350 usleep_range(10000, 11000);
1351 spin_lock_irqsave(&master
->queue_lock
, flags
);
1354 if (!list_empty(&master
->queue
) || master
->busy
)
1357 master
->running
= false;
1359 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1362 dev_warn(&master
->dev
,
1363 "could not stop message queue\n");
1369 static int spi_destroy_queue(struct spi_master
*master
)
1373 ret
= spi_stop_queue(master
);
1376 * flush_kthread_worker will block until all work is done.
1377 * If the reason that stop_queue timed out is that the work will never
1378 * finish, then it does no good to call flush/stop thread, so
1382 dev_err(&master
->dev
, "problem destroying queue\n");
1386 flush_kthread_worker(&master
->kworker
);
1387 kthread_stop(master
->kworker_task
);
1392 static int __spi_queued_transfer(struct spi_device
*spi
,
1393 struct spi_message
*msg
,
1396 struct spi_master
*master
= spi
->master
;
1397 unsigned long flags
;
1399 spin_lock_irqsave(&master
->queue_lock
, flags
);
1401 if (!master
->running
) {
1402 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1405 msg
->actual_length
= 0;
1406 msg
->status
= -EINPROGRESS
;
1408 list_add_tail(&msg
->queue
, &master
->queue
);
1409 if (!master
->busy
&& need_pump
)
1410 queue_kthread_work(&master
->kworker
, &master
->pump_messages
);
1412 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1417 * spi_queued_transfer - transfer function for queued transfers
1418 * @spi: spi device which is requesting transfer
1419 * @msg: spi message which is to handled is queued to driver queue
1421 * Return: zero on success, else a negative error code.
1423 static int spi_queued_transfer(struct spi_device
*spi
, struct spi_message
*msg
)
1425 return __spi_queued_transfer(spi
, msg
, true);
1428 static int spi_master_initialize_queue(struct spi_master
*master
)
1432 master
->transfer
= spi_queued_transfer
;
1433 if (!master
->transfer_one_message
)
1434 master
->transfer_one_message
= spi_transfer_one_message
;
1436 /* Initialize and start queue */
1437 ret
= spi_init_queue(master
);
1439 dev_err(&master
->dev
, "problem initializing queue\n");
1440 goto err_init_queue
;
1442 master
->queued
= true;
1443 ret
= spi_start_queue(master
);
1445 dev_err(&master
->dev
, "problem starting queue\n");
1446 goto err_start_queue
;
1452 spi_destroy_queue(master
);
1457 /*-------------------------------------------------------------------------*/
1459 #if defined(CONFIG_OF)
1460 static struct spi_device
*
1461 of_register_spi_device(struct spi_master
*master
, struct device_node
*nc
)
1463 struct spi_device
*spi
;
1467 /* Alloc an spi_device */
1468 spi
= spi_alloc_device(master
);
1470 dev_err(&master
->dev
, "spi_device alloc error for %s\n",
1476 /* Select device driver */
1477 rc
= of_modalias_node(nc
, spi
->modalias
,
1478 sizeof(spi
->modalias
));
1480 dev_err(&master
->dev
, "cannot find modalias for %s\n",
1485 /* Device address */
1486 rc
= of_property_read_u32(nc
, "reg", &value
);
1488 dev_err(&master
->dev
, "%s has no valid 'reg' property (%d)\n",
1492 spi
->chip_select
= value
;
1494 /* Mode (clock phase/polarity/etc.) */
1495 if (of_find_property(nc
, "spi-cpha", NULL
))
1496 spi
->mode
|= SPI_CPHA
;
1497 if (of_find_property(nc
, "spi-cpol", NULL
))
1498 spi
->mode
|= SPI_CPOL
;
1499 if (of_find_property(nc
, "spi-cs-high", NULL
))
1500 spi
->mode
|= SPI_CS_HIGH
;
1501 if (of_find_property(nc
, "spi-3wire", NULL
))
1502 spi
->mode
|= SPI_3WIRE
;
1503 if (of_find_property(nc
, "spi-lsb-first", NULL
))
1504 spi
->mode
|= SPI_LSB_FIRST
;
1506 /* Device DUAL/QUAD mode */
1507 if (!of_property_read_u32(nc
, "spi-tx-bus-width", &value
)) {
1512 spi
->mode
|= SPI_TX_DUAL
;
1515 spi
->mode
|= SPI_TX_QUAD
;
1518 dev_warn(&master
->dev
,
1519 "spi-tx-bus-width %d not supported\n",
1525 if (!of_property_read_u32(nc
, "spi-rx-bus-width", &value
)) {
1530 spi
->mode
|= SPI_RX_DUAL
;
1533 spi
->mode
|= SPI_RX_QUAD
;
1536 dev_warn(&master
->dev
,
1537 "spi-rx-bus-width %d not supported\n",
1544 rc
= of_property_read_u32(nc
, "spi-max-frequency", &value
);
1546 dev_err(&master
->dev
, "%s has no valid 'spi-max-frequency' property (%d)\n",
1550 spi
->max_speed_hz
= value
;
1552 /* Store a pointer to the node in the device structure */
1554 spi
->dev
.of_node
= nc
;
1556 /* Register the new device */
1557 rc
= spi_add_device(spi
);
1559 dev_err(&master
->dev
, "spi_device register error %s\n",
1572 * of_register_spi_devices() - Register child devices onto the SPI bus
1573 * @master: Pointer to spi_master device
1575 * Registers an spi_device for each child node of master node which has a 'reg'
1578 static void of_register_spi_devices(struct spi_master
*master
)
1580 struct spi_device
*spi
;
1581 struct device_node
*nc
;
1583 if (!master
->dev
.of_node
)
1586 for_each_available_child_of_node(master
->dev
.of_node
, nc
) {
1587 if (of_node_test_and_set_flag(nc
, OF_POPULATED
))
1589 spi
= of_register_spi_device(master
, nc
);
1591 dev_warn(&master
->dev
, "Failed to create SPI device for %s\n",
1596 static void of_register_spi_devices(struct spi_master
*master
) { }
1600 static int acpi_spi_add_resource(struct acpi_resource
*ares
, void *data
)
1602 struct spi_device
*spi
= data
;
1603 struct spi_master
*master
= spi
->master
;
1605 if (ares
->type
== ACPI_RESOURCE_TYPE_SERIAL_BUS
) {
1606 struct acpi_resource_spi_serialbus
*sb
;
1608 sb
= &ares
->data
.spi_serial_bus
;
1609 if (sb
->type
== ACPI_RESOURCE_SERIAL_TYPE_SPI
) {
1611 * ACPI DeviceSelection numbering is handled by the
1612 * host controller driver in Windows and can vary
1613 * from driver to driver. In Linux we always expect
1614 * 0 .. max - 1 so we need to ask the driver to
1615 * translate between the two schemes.
1617 if (master
->fw_translate_cs
) {
1618 int cs
= master
->fw_translate_cs(master
,
1619 sb
->device_selection
);
1622 spi
->chip_select
= cs
;
1624 spi
->chip_select
= sb
->device_selection
;
1627 spi
->max_speed_hz
= sb
->connection_speed
;
1629 if (sb
->clock_phase
== ACPI_SPI_SECOND_PHASE
)
1630 spi
->mode
|= SPI_CPHA
;
1631 if (sb
->clock_polarity
== ACPI_SPI_START_HIGH
)
1632 spi
->mode
|= SPI_CPOL
;
1633 if (sb
->device_polarity
== ACPI_SPI_ACTIVE_HIGH
)
1634 spi
->mode
|= SPI_CS_HIGH
;
1636 } else if (spi
->irq
< 0) {
1639 if (acpi_dev_resource_interrupt(ares
, 0, &r
))
1643 /* Always tell the ACPI core to skip this resource */
1647 static acpi_status
acpi_spi_add_device(acpi_handle handle
, u32 level
,
1648 void *data
, void **return_value
)
1650 struct spi_master
*master
= data
;
1651 struct list_head resource_list
;
1652 struct acpi_device
*adev
;
1653 struct spi_device
*spi
;
1656 if (acpi_bus_get_device(handle
, &adev
))
1658 if (acpi_bus_get_status(adev
) || !adev
->status
.present
)
1661 spi
= spi_alloc_device(master
);
1663 dev_err(&master
->dev
, "failed to allocate SPI device for %s\n",
1664 dev_name(&adev
->dev
));
1665 return AE_NO_MEMORY
;
1668 ACPI_COMPANION_SET(&spi
->dev
, adev
);
1671 INIT_LIST_HEAD(&resource_list
);
1672 ret
= acpi_dev_get_resources(adev
, &resource_list
,
1673 acpi_spi_add_resource
, spi
);
1674 acpi_dev_free_resource_list(&resource_list
);
1676 if (ret
< 0 || !spi
->max_speed_hz
) {
1682 spi
->irq
= acpi_dev_gpio_irq_get(adev
, 0);
1684 adev
->power
.flags
.ignore_parent
= true;
1685 strlcpy(spi
->modalias
, acpi_device_hid(adev
), sizeof(spi
->modalias
));
1686 if (spi_add_device(spi
)) {
1687 adev
->power
.flags
.ignore_parent
= false;
1688 dev_err(&master
->dev
, "failed to add SPI device %s from ACPI\n",
1689 dev_name(&adev
->dev
));
1696 static void acpi_register_spi_devices(struct spi_master
*master
)
1701 handle
= ACPI_HANDLE(master
->dev
.parent
);
1705 status
= acpi_walk_namespace(ACPI_TYPE_DEVICE
, handle
, 1,
1706 acpi_spi_add_device
, NULL
,
1708 if (ACPI_FAILURE(status
))
1709 dev_warn(&master
->dev
, "failed to enumerate SPI slaves\n");
1712 static inline void acpi_register_spi_devices(struct spi_master
*master
) {}
1713 #endif /* CONFIG_ACPI */
1715 static void spi_master_release(struct device
*dev
)
1717 struct spi_master
*master
;
1719 master
= container_of(dev
, struct spi_master
, dev
);
1723 static struct class spi_master_class
= {
1724 .name
= "spi_master",
1725 .owner
= THIS_MODULE
,
1726 .dev_release
= spi_master_release
,
1727 .dev_groups
= spi_master_groups
,
1732 * spi_alloc_master - allocate SPI master controller
1733 * @dev: the controller, possibly using the platform_bus
1734 * @size: how much zeroed driver-private data to allocate; the pointer to this
1735 * memory is in the driver_data field of the returned device,
1736 * accessible with spi_master_get_devdata().
1737 * Context: can sleep
1739 * This call is used only by SPI master controller drivers, which are the
1740 * only ones directly touching chip registers. It's how they allocate
1741 * an spi_master structure, prior to calling spi_register_master().
1743 * This must be called from context that can sleep.
1745 * The caller is responsible for assigning the bus number and initializing
1746 * the master's methods before calling spi_register_master(); and (after errors
1747 * adding the device) calling spi_master_put() to prevent a memory leak.
1749 * Return: the SPI master structure on success, else NULL.
1751 struct spi_master
*spi_alloc_master(struct device
*dev
, unsigned size
)
1753 struct spi_master
*master
;
1758 master
= kzalloc(size
+ sizeof(*master
), GFP_KERNEL
);
1762 device_initialize(&master
->dev
);
1763 master
->bus_num
= -1;
1764 master
->num_chipselect
= 1;
1765 master
->dev
.class = &spi_master_class
;
1766 master
->dev
.parent
= dev
;
1767 spi_master_set_devdata(master
, &master
[1]);
1771 EXPORT_SYMBOL_GPL(spi_alloc_master
);
1774 static int of_spi_register_master(struct spi_master
*master
)
1777 struct device_node
*np
= master
->dev
.of_node
;
1782 nb
= of_gpio_named_count(np
, "cs-gpios");
1783 master
->num_chipselect
= max_t(int, nb
, master
->num_chipselect
);
1785 /* Return error only for an incorrectly formed cs-gpios property */
1786 if (nb
== 0 || nb
== -ENOENT
)
1791 cs
= devm_kzalloc(&master
->dev
,
1792 sizeof(int) * master
->num_chipselect
,
1794 master
->cs_gpios
= cs
;
1796 if (!master
->cs_gpios
)
1799 for (i
= 0; i
< master
->num_chipselect
; i
++)
1802 for (i
= 0; i
< nb
; i
++)
1803 cs
[i
] = of_get_named_gpio(np
, "cs-gpios", i
);
1808 static int of_spi_register_master(struct spi_master
*master
)
1815 * spi_register_master - register SPI master controller
1816 * @master: initialized master, originally from spi_alloc_master()
1817 * Context: can sleep
1819 * SPI master controllers connect to their drivers using some non-SPI bus,
1820 * such as the platform bus. The final stage of probe() in that code
1821 * includes calling spi_register_master() to hook up to this SPI bus glue.
1823 * SPI controllers use board specific (often SOC specific) bus numbers,
1824 * and board-specific addressing for SPI devices combines those numbers
1825 * with chip select numbers. Since SPI does not directly support dynamic
1826 * device identification, boards need configuration tables telling which
1827 * chip is at which address.
1829 * This must be called from context that can sleep. It returns zero on
1830 * success, else a negative error code (dropping the master's refcount).
1831 * After a successful return, the caller is responsible for calling
1832 * spi_unregister_master().
1834 * Return: zero on success, else a negative error code.
1836 int spi_register_master(struct spi_master
*master
)
1838 static atomic_t dyn_bus_id
= ATOMIC_INIT((1<<15) - 1);
1839 struct device
*dev
= master
->dev
.parent
;
1840 struct boardinfo
*bi
;
1841 int status
= -ENODEV
;
1847 status
= of_spi_register_master(master
);
1851 /* even if it's just one always-selected device, there must
1852 * be at least one chipselect
1854 if (master
->num_chipselect
== 0)
1857 if ((master
->bus_num
< 0) && master
->dev
.of_node
)
1858 master
->bus_num
= of_alias_get_id(master
->dev
.of_node
, "spi");
1860 /* convention: dynamically assigned bus IDs count down from the max */
1861 if (master
->bus_num
< 0) {
1862 /* FIXME switch to an IDR based scheme, something like
1863 * I2C now uses, so we can't run out of "dynamic" IDs
1865 master
->bus_num
= atomic_dec_return(&dyn_bus_id
);
1869 INIT_LIST_HEAD(&master
->queue
);
1870 spin_lock_init(&master
->queue_lock
);
1871 spin_lock_init(&master
->bus_lock_spinlock
);
1872 mutex_init(&master
->bus_lock_mutex
);
1873 master
->bus_lock_flag
= 0;
1874 init_completion(&master
->xfer_completion
);
1875 if (!master
->max_dma_len
)
1876 master
->max_dma_len
= INT_MAX
;
1878 /* register the device, then userspace will see it.
1879 * registration fails if the bus ID is in use.
1881 dev_set_name(&master
->dev
, "spi%u", master
->bus_num
);
1882 status
= device_add(&master
->dev
);
1885 dev_dbg(dev
, "registered master %s%s\n", dev_name(&master
->dev
),
1886 dynamic
? " (dynamic)" : "");
1888 /* If we're using a queued driver, start the queue */
1889 if (master
->transfer
)
1890 dev_info(dev
, "master is unqueued, this is deprecated\n");
1892 status
= spi_master_initialize_queue(master
);
1894 device_del(&master
->dev
);
1898 /* add statistics */
1899 spin_lock_init(&master
->statistics
.lock
);
1901 mutex_lock(&board_lock
);
1902 list_add_tail(&master
->list
, &spi_master_list
);
1903 list_for_each_entry(bi
, &board_list
, list
)
1904 spi_match_master_to_boardinfo(master
, &bi
->board_info
);
1905 mutex_unlock(&board_lock
);
1907 /* Register devices from the device tree and ACPI */
1908 of_register_spi_devices(master
);
1909 acpi_register_spi_devices(master
);
1913 EXPORT_SYMBOL_GPL(spi_register_master
);
1915 static void devm_spi_unregister(struct device
*dev
, void *res
)
1917 spi_unregister_master(*(struct spi_master
**)res
);
1921 * dev_spi_register_master - register managed SPI master controller
1922 * @dev: device managing SPI master
1923 * @master: initialized master, originally from spi_alloc_master()
1924 * Context: can sleep
1926 * Register a SPI device as with spi_register_master() which will
1927 * automatically be unregister
1929 * Return: zero on success, else a negative error code.
1931 int devm_spi_register_master(struct device
*dev
, struct spi_master
*master
)
1933 struct spi_master
**ptr
;
1936 ptr
= devres_alloc(devm_spi_unregister
, sizeof(*ptr
), GFP_KERNEL
);
1940 ret
= spi_register_master(master
);
1943 devres_add(dev
, ptr
);
1950 EXPORT_SYMBOL_GPL(devm_spi_register_master
);
1952 static int __unregister(struct device
*dev
, void *null
)
1954 spi_unregister_device(to_spi_device(dev
));
1959 * spi_unregister_master - unregister SPI master controller
1960 * @master: the master being unregistered
1961 * Context: can sleep
1963 * This call is used only by SPI master controller drivers, which are the
1964 * only ones directly touching chip registers.
1966 * This must be called from context that can sleep.
1968 void spi_unregister_master(struct spi_master
*master
)
1972 if (master
->queued
) {
1973 if (spi_destroy_queue(master
))
1974 dev_err(&master
->dev
, "queue remove failed\n");
1977 mutex_lock(&board_lock
);
1978 list_del(&master
->list
);
1979 mutex_unlock(&board_lock
);
1981 dummy
= device_for_each_child(&master
->dev
, NULL
, __unregister
);
1982 device_unregister(&master
->dev
);
1984 EXPORT_SYMBOL_GPL(spi_unregister_master
);
1986 int spi_master_suspend(struct spi_master
*master
)
1990 /* Basically no-ops for non-queued masters */
1991 if (!master
->queued
)
1994 ret
= spi_stop_queue(master
);
1996 dev_err(&master
->dev
, "queue stop failed\n");
2000 EXPORT_SYMBOL_GPL(spi_master_suspend
);
2002 int spi_master_resume(struct spi_master
*master
)
2006 if (!master
->queued
)
2009 ret
= spi_start_queue(master
);
2011 dev_err(&master
->dev
, "queue restart failed\n");
2015 EXPORT_SYMBOL_GPL(spi_master_resume
);
2017 static int __spi_master_match(struct device
*dev
, const void *data
)
2019 struct spi_master
*m
;
2020 const u16
*bus_num
= data
;
2022 m
= container_of(dev
, struct spi_master
, dev
);
2023 return m
->bus_num
== *bus_num
;
2027 * spi_busnum_to_master - look up master associated with bus_num
2028 * @bus_num: the master's bus number
2029 * Context: can sleep
2031 * This call may be used with devices that are registered after
2032 * arch init time. It returns a refcounted pointer to the relevant
2033 * spi_master (which the caller must release), or NULL if there is
2034 * no such master registered.
2036 * Return: the SPI master structure on success, else NULL.
2038 struct spi_master
*spi_busnum_to_master(u16 bus_num
)
2041 struct spi_master
*master
= NULL
;
2043 dev
= class_find_device(&spi_master_class
, NULL
, &bus_num
,
2044 __spi_master_match
);
2046 master
= container_of(dev
, struct spi_master
, dev
);
2047 /* reference got in class_find_device */
2050 EXPORT_SYMBOL_GPL(spi_busnum_to_master
);
2052 /*-------------------------------------------------------------------------*/
2054 /* Core methods for SPI resource management */
2057 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2058 * during the processing of a spi_message while using
2060 * @spi: the spi device for which we allocate memory
2061 * @release: the release code to execute for this resource
2062 * @size: size to alloc and return
2063 * @gfp: GFP allocation flags
2065 * Return: the pointer to the allocated data
2067 * This may get enhanced in the future to allocate from a memory pool
2068 * of the @spi_device or @spi_master to avoid repeated allocations.
2070 void *spi_res_alloc(struct spi_device
*spi
,
2071 spi_res_release_t release
,
2072 size_t size
, gfp_t gfp
)
2074 struct spi_res
*sres
;
2076 sres
= kzalloc(sizeof(*sres
) + size
, gfp
);
2080 INIT_LIST_HEAD(&sres
->entry
);
2081 sres
->release
= release
;
2085 EXPORT_SYMBOL_GPL(spi_res_alloc
);
2088 * spi_res_free - free an spi resource
2089 * @res: pointer to the custom data of a resource
2092 void spi_res_free(void *res
)
2094 struct spi_res
*sres
= container_of(res
, struct spi_res
, data
);
2099 WARN_ON(!list_empty(&sres
->entry
));
2102 EXPORT_SYMBOL_GPL(spi_res_free
);
2105 * spi_res_add - add a spi_res to the spi_message
2106 * @message: the spi message
2107 * @res: the spi_resource
2109 void spi_res_add(struct spi_message
*message
, void *res
)
2111 struct spi_res
*sres
= container_of(res
, struct spi_res
, data
);
2113 WARN_ON(!list_empty(&sres
->entry
));
2114 list_add_tail(&sres
->entry
, &message
->resources
);
2116 EXPORT_SYMBOL_GPL(spi_res_add
);
2119 * spi_res_release - release all spi resources for this message
2120 * @master: the @spi_master
2121 * @message: the @spi_message
2123 void spi_res_release(struct spi_master
*master
,
2124 struct spi_message
*message
)
2126 struct spi_res
*res
;
2128 while (!list_empty(&message
->resources
)) {
2129 res
= list_last_entry(&message
->resources
,
2130 struct spi_res
, entry
);
2133 res
->release(master
, message
, res
->data
);
2135 list_del(&res
->entry
);
2140 EXPORT_SYMBOL_GPL(spi_res_release
);
2142 /*-------------------------------------------------------------------------*/
2144 /* Core methods for spi_message alterations */
2146 static void __spi_replace_transfers_release(struct spi_master
*master
,
2147 struct spi_message
*msg
,
2150 struct spi_replaced_transfers
*rxfer
= res
;
2153 /* call extra callback if requested */
2155 rxfer
->release(master
, msg
, res
);
2157 /* insert replaced transfers back into the message */
2158 list_splice(&rxfer
->replaced_transfers
, rxfer
->replaced_after
);
2160 /* remove the formerly inserted entries */
2161 for (i
= 0; i
< rxfer
->inserted
; i
++)
2162 list_del(&rxfer
->inserted_transfers
[i
].transfer_list
);
2166 * spi_replace_transfers - replace transfers with several transfers
2167 * and register change with spi_message.resources
2168 * @msg: the spi_message we work upon
2169 * @xfer_first: the first spi_transfer we want to replace
2170 * @remove: number of transfers to remove
2171 * @insert: the number of transfers we want to insert instead
2172 * @release: extra release code necessary in some circumstances
2173 * @extradatasize: extra data to allocate (with alignment guarantees
2174 * of struct @spi_transfer)
2177 * Returns: pointer to @spi_replaced_transfers,
2178 * PTR_ERR(...) in case of errors.
2180 struct spi_replaced_transfers
*spi_replace_transfers(
2181 struct spi_message
*msg
,
2182 struct spi_transfer
*xfer_first
,
2185 spi_replaced_release_t release
,
2186 size_t extradatasize
,
2189 struct spi_replaced_transfers
*rxfer
;
2190 struct spi_transfer
*xfer
;
2193 /* allocate the structure using spi_res */
2194 rxfer
= spi_res_alloc(msg
->spi
, __spi_replace_transfers_release
,
2195 insert
* sizeof(struct spi_transfer
)
2196 + sizeof(struct spi_replaced_transfers
)
2200 return ERR_PTR(-ENOMEM
);
2202 /* the release code to invoke before running the generic release */
2203 rxfer
->release
= release
;
2205 /* assign extradata */
2208 &rxfer
->inserted_transfers
[insert
];
2210 /* init the replaced_transfers list */
2211 INIT_LIST_HEAD(&rxfer
->replaced_transfers
);
2213 /* assign the list_entry after which we should reinsert
2214 * the @replaced_transfers - it may be spi_message.messages!
2216 rxfer
->replaced_after
= xfer_first
->transfer_list
.prev
;
2218 /* remove the requested number of transfers */
2219 for (i
= 0; i
< remove
; i
++) {
2220 /* if the entry after replaced_after it is msg->transfers
2221 * then we have been requested to remove more transfers
2222 * than are in the list
2224 if (rxfer
->replaced_after
->next
== &msg
->transfers
) {
2225 dev_err(&msg
->spi
->dev
,
2226 "requested to remove more spi_transfers than are available\n");
2227 /* insert replaced transfers back into the message */
2228 list_splice(&rxfer
->replaced_transfers
,
2229 rxfer
->replaced_after
);
2231 /* free the spi_replace_transfer structure */
2232 spi_res_free(rxfer
);
2234 /* and return with an error */
2235 return ERR_PTR(-EINVAL
);
2238 /* remove the entry after replaced_after from list of
2239 * transfers and add it to list of replaced_transfers
2241 list_move_tail(rxfer
->replaced_after
->next
,
2242 &rxfer
->replaced_transfers
);
2245 /* create copy of the given xfer with identical settings
2246 * based on the first transfer to get removed
2248 for (i
= 0; i
< insert
; i
++) {
2249 /* we need to run in reverse order */
2250 xfer
= &rxfer
->inserted_transfers
[insert
- 1 - i
];
2252 /* copy all spi_transfer data */
2253 memcpy(xfer
, xfer_first
, sizeof(*xfer
));
2256 list_add(&xfer
->transfer_list
, rxfer
->replaced_after
);
2258 /* clear cs_change and delay_usecs for all but the last */
2260 xfer
->cs_change
= false;
2261 xfer
->delay_usecs
= 0;
2265 /* set up inserted */
2266 rxfer
->inserted
= insert
;
2268 /* and register it with spi_res/spi_message */
2269 spi_res_add(msg
, rxfer
);
2273 EXPORT_SYMBOL_GPL(spi_replace_transfers
);
2275 static int __spi_split_transfer_maxsize(struct spi_master
*master
,
2276 struct spi_message
*msg
,
2277 struct spi_transfer
**xferp
,
2281 struct spi_transfer
*xfer
= *xferp
, *xfers
;
2282 struct spi_replaced_transfers
*srt
;
2286 /* warn once about this fact that we are splitting a transfer */
2287 dev_warn_once(&msg
->spi
->dev
,
2288 "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2289 xfer
->len
, maxsize
);
2291 /* calculate how many we have to replace */
2292 count
= DIV_ROUND_UP(xfer
->len
, maxsize
);
2294 /* create replacement */
2295 srt
= spi_replace_transfers(msg
, xfer
, 1, count
, NULL
, 0, gfp
);
2297 return PTR_ERR(srt
);
2298 xfers
= srt
->inserted_transfers
;
2300 /* now handle each of those newly inserted spi_transfers
2301 * note that the replacements spi_transfers all are preset
2302 * to the same values as *xferp, so tx_buf, rx_buf and len
2303 * are all identical (as well as most others)
2304 * so we just have to fix up len and the pointers.
2306 * this also includes support for the depreciated
2307 * spi_message.is_dma_mapped interface
2310 /* the first transfer just needs the length modified, so we
2311 * run it outside the loop
2313 xfers
[0].len
= min_t(size_t, maxsize
, xfer
[0].len
);
2315 /* all the others need rx_buf/tx_buf also set */
2316 for (i
= 1, offset
= maxsize
; i
< count
; offset
+= maxsize
, i
++) {
2317 /* update rx_buf, tx_buf and dma */
2318 if (xfers
[i
].rx_buf
)
2319 xfers
[i
].rx_buf
+= offset
;
2320 if (xfers
[i
].rx_dma
)
2321 xfers
[i
].rx_dma
+= offset
;
2322 if (xfers
[i
].tx_buf
)
2323 xfers
[i
].tx_buf
+= offset
;
2324 if (xfers
[i
].tx_dma
)
2325 xfers
[i
].tx_dma
+= offset
;
2328 xfers
[i
].len
= min(maxsize
, xfers
[i
].len
- offset
);
2331 /* we set up xferp to the last entry we have inserted,
2332 * so that we skip those already split transfers
2334 *xferp
= &xfers
[count
- 1];
2336 /* increment statistics counters */
2337 SPI_STATISTICS_INCREMENT_FIELD(&master
->statistics
,
2338 transfers_split_maxsize
);
2339 SPI_STATISTICS_INCREMENT_FIELD(&msg
->spi
->statistics
,
2340 transfers_split_maxsize
);
2346 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2347 * when an individual transfer exceeds a
2349 * @master: the @spi_master for this transfer
2350 * @msg: the @spi_message to transform
2351 * @maxsize: the maximum when to apply this
2352 * @gfp: GFP allocation flags
2354 * Return: status of transformation
2356 int spi_split_transfers_maxsize(struct spi_master
*master
,
2357 struct spi_message
*msg
,
2361 struct spi_transfer
*xfer
;
2364 /* iterate over the transfer_list,
2365 * but note that xfer is advanced to the last transfer inserted
2366 * to avoid checking sizes again unnecessarily (also xfer does
2367 * potentiall belong to a different list by the time the
2368 * replacement has happened
2370 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
2371 if (xfer
->len
> maxsize
) {
2372 ret
= __spi_split_transfer_maxsize(
2373 master
, msg
, &xfer
, maxsize
, gfp
);
2381 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize
);
2383 /*-------------------------------------------------------------------------*/
2385 /* Core methods for SPI master protocol drivers. Some of the
2386 * other core methods are currently defined as inline functions.
2389 static int __spi_validate_bits_per_word(struct spi_master
*master
, u8 bits_per_word
)
2391 if (master
->bits_per_word_mask
) {
2392 /* Only 32 bits fit in the mask */
2393 if (bits_per_word
> 32)
2395 if (!(master
->bits_per_word_mask
&
2396 SPI_BPW_MASK(bits_per_word
)))
2404 * spi_setup - setup SPI mode and clock rate
2405 * @spi: the device whose settings are being modified
2406 * Context: can sleep, and no requests are queued to the device
2408 * SPI protocol drivers may need to update the transfer mode if the
2409 * device doesn't work with its default. They may likewise need
2410 * to update clock rates or word sizes from initial values. This function
2411 * changes those settings, and must be called from a context that can sleep.
2412 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2413 * effect the next time the device is selected and data is transferred to
2414 * or from it. When this function returns, the spi device is deselected.
2416 * Note that this call will fail if the protocol driver specifies an option
2417 * that the underlying controller or its driver does not support. For
2418 * example, not all hardware supports wire transfers using nine bit words,
2419 * LSB-first wire encoding, or active-high chipselects.
2421 * Return: zero on success, else a negative error code.
2423 int spi_setup(struct spi_device
*spi
)
2425 unsigned bad_bits
, ugly_bits
;
2428 /* check mode to prevent that DUAL and QUAD set at the same time
2430 if (((spi
->mode
& SPI_TX_DUAL
) && (spi
->mode
& SPI_TX_QUAD
)) ||
2431 ((spi
->mode
& SPI_RX_DUAL
) && (spi
->mode
& SPI_RX_QUAD
))) {
2433 "setup: can not select dual and quad at the same time\n");
2436 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2438 if ((spi
->mode
& SPI_3WIRE
) && (spi
->mode
&
2439 (SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_RX_DUAL
| SPI_RX_QUAD
)))
2441 /* help drivers fail *cleanly* when they need options
2442 * that aren't supported with their current master
2444 bad_bits
= spi
->mode
& ~spi
->master
->mode_bits
;
2445 ugly_bits
= bad_bits
&
2446 (SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_RX_DUAL
| SPI_RX_QUAD
);
2449 "setup: ignoring unsupported mode bits %x\n",
2451 spi
->mode
&= ~ugly_bits
;
2452 bad_bits
&= ~ugly_bits
;
2455 dev_err(&spi
->dev
, "setup: unsupported mode bits %x\n",
2460 if (!spi
->bits_per_word
)
2461 spi
->bits_per_word
= 8;
2463 status
= __spi_validate_bits_per_word(spi
->master
, spi
->bits_per_word
);
2467 if (!spi
->max_speed_hz
)
2468 spi
->max_speed_hz
= spi
->master
->max_speed_hz
;
2470 if (spi
->master
->setup
)
2471 status
= spi
->master
->setup(spi
);
2473 spi_set_cs(spi
, false);
2475 dev_dbg(&spi
->dev
, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2476 (int) (spi
->mode
& (SPI_CPOL
| SPI_CPHA
)),
2477 (spi
->mode
& SPI_CS_HIGH
) ? "cs_high, " : "",
2478 (spi
->mode
& SPI_LSB_FIRST
) ? "lsb, " : "",
2479 (spi
->mode
& SPI_3WIRE
) ? "3wire, " : "",
2480 (spi
->mode
& SPI_LOOP
) ? "loopback, " : "",
2481 spi
->bits_per_word
, spi
->max_speed_hz
,
2486 EXPORT_SYMBOL_GPL(spi_setup
);
2488 static int __spi_validate(struct spi_device
*spi
, struct spi_message
*message
)
2490 struct spi_master
*master
= spi
->master
;
2491 struct spi_transfer
*xfer
;
2494 if (list_empty(&message
->transfers
))
2497 /* Half-duplex links include original MicroWire, and ones with
2498 * only one data pin like SPI_3WIRE (switches direction) or where
2499 * either MOSI or MISO is missing. They can also be caused by
2500 * software limitations.
2502 if ((master
->flags
& SPI_MASTER_HALF_DUPLEX
)
2503 || (spi
->mode
& SPI_3WIRE
)) {
2504 unsigned flags
= master
->flags
;
2506 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
2507 if (xfer
->rx_buf
&& xfer
->tx_buf
)
2509 if ((flags
& SPI_MASTER_NO_TX
) && xfer
->tx_buf
)
2511 if ((flags
& SPI_MASTER_NO_RX
) && xfer
->rx_buf
)
2517 * Set transfer bits_per_word and max speed as spi device default if
2518 * it is not set for this transfer.
2519 * Set transfer tx_nbits and rx_nbits as single transfer default
2520 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2522 message
->frame_length
= 0;
2523 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
2524 message
->frame_length
+= xfer
->len
;
2525 if (!xfer
->bits_per_word
)
2526 xfer
->bits_per_word
= spi
->bits_per_word
;
2528 if (!xfer
->speed_hz
)
2529 xfer
->speed_hz
= spi
->max_speed_hz
;
2530 if (!xfer
->speed_hz
)
2531 xfer
->speed_hz
= master
->max_speed_hz
;
2533 if (master
->max_speed_hz
&&
2534 xfer
->speed_hz
> master
->max_speed_hz
)
2535 xfer
->speed_hz
= master
->max_speed_hz
;
2537 if (__spi_validate_bits_per_word(master
, xfer
->bits_per_word
))
2541 * SPI transfer length should be multiple of SPI word size
2542 * where SPI word size should be power-of-two multiple
2544 if (xfer
->bits_per_word
<= 8)
2546 else if (xfer
->bits_per_word
<= 16)
2551 /* No partial transfers accepted */
2552 if (xfer
->len
% w_size
)
2555 if (xfer
->speed_hz
&& master
->min_speed_hz
&&
2556 xfer
->speed_hz
< master
->min_speed_hz
)
2559 if (xfer
->tx_buf
&& !xfer
->tx_nbits
)
2560 xfer
->tx_nbits
= SPI_NBITS_SINGLE
;
2561 if (xfer
->rx_buf
&& !xfer
->rx_nbits
)
2562 xfer
->rx_nbits
= SPI_NBITS_SINGLE
;
2563 /* check transfer tx/rx_nbits:
2564 * 1. check the value matches one of single, dual and quad
2565 * 2. check tx/rx_nbits match the mode in spi_device
2568 if (xfer
->tx_nbits
!= SPI_NBITS_SINGLE
&&
2569 xfer
->tx_nbits
!= SPI_NBITS_DUAL
&&
2570 xfer
->tx_nbits
!= SPI_NBITS_QUAD
)
2572 if ((xfer
->tx_nbits
== SPI_NBITS_DUAL
) &&
2573 !(spi
->mode
& (SPI_TX_DUAL
| SPI_TX_QUAD
)))
2575 if ((xfer
->tx_nbits
== SPI_NBITS_QUAD
) &&
2576 !(spi
->mode
& SPI_TX_QUAD
))
2579 /* check transfer rx_nbits */
2581 if (xfer
->rx_nbits
!= SPI_NBITS_SINGLE
&&
2582 xfer
->rx_nbits
!= SPI_NBITS_DUAL
&&
2583 xfer
->rx_nbits
!= SPI_NBITS_QUAD
)
2585 if ((xfer
->rx_nbits
== SPI_NBITS_DUAL
) &&
2586 !(spi
->mode
& (SPI_RX_DUAL
| SPI_RX_QUAD
)))
2588 if ((xfer
->rx_nbits
== SPI_NBITS_QUAD
) &&
2589 !(spi
->mode
& SPI_RX_QUAD
))
2594 message
->status
= -EINPROGRESS
;
2599 static int __spi_async(struct spi_device
*spi
, struct spi_message
*message
)
2601 struct spi_master
*master
= spi
->master
;
2605 SPI_STATISTICS_INCREMENT_FIELD(&master
->statistics
, spi_async
);
2606 SPI_STATISTICS_INCREMENT_FIELD(&spi
->statistics
, spi_async
);
2608 trace_spi_message_submit(message
);
2610 return master
->transfer(spi
, message
);
2614 * spi_async - asynchronous SPI transfer
2615 * @spi: device with which data will be exchanged
2616 * @message: describes the data transfers, including completion callback
2617 * Context: any (irqs may be blocked, etc)
2619 * This call may be used in_irq and other contexts which can't sleep,
2620 * as well as from task contexts which can sleep.
2622 * The completion callback is invoked in a context which can't sleep.
2623 * Before that invocation, the value of message->status is undefined.
2624 * When the callback is issued, message->status holds either zero (to
2625 * indicate complete success) or a negative error code. After that
2626 * callback returns, the driver which issued the transfer request may
2627 * deallocate the associated memory; it's no longer in use by any SPI
2628 * core or controller driver code.
2630 * Note that although all messages to a spi_device are handled in
2631 * FIFO order, messages may go to different devices in other orders.
2632 * Some device might be higher priority, or have various "hard" access
2633 * time requirements, for example.
2635 * On detection of any fault during the transfer, processing of
2636 * the entire message is aborted, and the device is deselected.
2637 * Until returning from the associated message completion callback,
2638 * no other spi_message queued to that device will be processed.
2639 * (This rule applies equally to all the synchronous transfer calls,
2640 * which are wrappers around this core asynchronous primitive.)
2642 * Return: zero on success, else a negative error code.
2644 int spi_async(struct spi_device
*spi
, struct spi_message
*message
)
2646 struct spi_master
*master
= spi
->master
;
2648 unsigned long flags
;
2650 ret
= __spi_validate(spi
, message
);
2654 spin_lock_irqsave(&master
->bus_lock_spinlock
, flags
);
2656 if (master
->bus_lock_flag
)
2659 ret
= __spi_async(spi
, message
);
2661 spin_unlock_irqrestore(&master
->bus_lock_spinlock
, flags
);
2665 EXPORT_SYMBOL_GPL(spi_async
);
2668 * spi_async_locked - version of spi_async with exclusive bus usage
2669 * @spi: device with which data will be exchanged
2670 * @message: describes the data transfers, including completion callback
2671 * Context: any (irqs may be blocked, etc)
2673 * This call may be used in_irq and other contexts which can't sleep,
2674 * as well as from task contexts which can sleep.
2676 * The completion callback is invoked in a context which can't sleep.
2677 * Before that invocation, the value of message->status is undefined.
2678 * When the callback is issued, message->status holds either zero (to
2679 * indicate complete success) or a negative error code. After that
2680 * callback returns, the driver which issued the transfer request may
2681 * deallocate the associated memory; it's no longer in use by any SPI
2682 * core or controller driver code.
2684 * Note that although all messages to a spi_device are handled in
2685 * FIFO order, messages may go to different devices in other orders.
2686 * Some device might be higher priority, or have various "hard" access
2687 * time requirements, for example.
2689 * On detection of any fault during the transfer, processing of
2690 * the entire message is aborted, and the device is deselected.
2691 * Until returning from the associated message completion callback,
2692 * no other spi_message queued to that device will be processed.
2693 * (This rule applies equally to all the synchronous transfer calls,
2694 * which are wrappers around this core asynchronous primitive.)
2696 * Return: zero on success, else a negative error code.
2698 int spi_async_locked(struct spi_device
*spi
, struct spi_message
*message
)
2700 struct spi_master
*master
= spi
->master
;
2702 unsigned long flags
;
2704 ret
= __spi_validate(spi
, message
);
2708 spin_lock_irqsave(&master
->bus_lock_spinlock
, flags
);
2710 ret
= __spi_async(spi
, message
);
2712 spin_unlock_irqrestore(&master
->bus_lock_spinlock
, flags
);
2717 EXPORT_SYMBOL_GPL(spi_async_locked
);
2720 int spi_flash_read(struct spi_device
*spi
,
2721 struct spi_flash_read_message
*msg
)
2724 struct spi_master
*master
= spi
->master
;
2727 if ((msg
->opcode_nbits
== SPI_NBITS_DUAL
||
2728 msg
->addr_nbits
== SPI_NBITS_DUAL
) &&
2729 !(spi
->mode
& (SPI_TX_DUAL
| SPI_TX_QUAD
)))
2731 if ((msg
->opcode_nbits
== SPI_NBITS_QUAD
||
2732 msg
->addr_nbits
== SPI_NBITS_QUAD
) &&
2733 !(spi
->mode
& SPI_TX_QUAD
))
2735 if (msg
->data_nbits
== SPI_NBITS_DUAL
&&
2736 !(spi
->mode
& (SPI_RX_DUAL
| SPI_RX_QUAD
)))
2738 if (msg
->data_nbits
== SPI_NBITS_QUAD
&&
2739 !(spi
->mode
& SPI_RX_QUAD
))
2742 if (master
->auto_runtime_pm
) {
2743 ret
= pm_runtime_get_sync(master
->dev
.parent
);
2745 dev_err(&master
->dev
, "Failed to power device: %d\n",
2750 mutex_lock(&master
->bus_lock_mutex
);
2751 ret
= master
->spi_flash_read(spi
, msg
);
2752 mutex_unlock(&master
->bus_lock_mutex
);
2753 if (master
->auto_runtime_pm
)
2754 pm_runtime_put(master
->dev
.parent
);
2758 EXPORT_SYMBOL_GPL(spi_flash_read
);
2760 /*-------------------------------------------------------------------------*/
2762 /* Utility methods for SPI master protocol drivers, layered on
2763 * top of the core. Some other utility methods are defined as
2767 static void spi_complete(void *arg
)
2772 static int __spi_sync(struct spi_device
*spi
, struct spi_message
*message
,
2775 DECLARE_COMPLETION_ONSTACK(done
);
2777 struct spi_master
*master
= spi
->master
;
2778 unsigned long flags
;
2780 status
= __spi_validate(spi
, message
);
2784 message
->complete
= spi_complete
;
2785 message
->context
= &done
;
2788 SPI_STATISTICS_INCREMENT_FIELD(&master
->statistics
, spi_sync
);
2789 SPI_STATISTICS_INCREMENT_FIELD(&spi
->statistics
, spi_sync
);
2792 mutex_lock(&master
->bus_lock_mutex
);
2794 /* If we're not using the legacy transfer method then we will
2795 * try to transfer in the calling context so special case.
2796 * This code would be less tricky if we could remove the
2797 * support for driver implemented message queues.
2799 if (master
->transfer
== spi_queued_transfer
) {
2800 spin_lock_irqsave(&master
->bus_lock_spinlock
, flags
);
2802 trace_spi_message_submit(message
);
2804 status
= __spi_queued_transfer(spi
, message
, false);
2806 spin_unlock_irqrestore(&master
->bus_lock_spinlock
, flags
);
2808 status
= spi_async_locked(spi
, message
);
2812 mutex_unlock(&master
->bus_lock_mutex
);
2815 /* Push out the messages in the calling context if we
2818 if (master
->transfer
== spi_queued_transfer
) {
2819 SPI_STATISTICS_INCREMENT_FIELD(&master
->statistics
,
2820 spi_sync_immediate
);
2821 SPI_STATISTICS_INCREMENT_FIELD(&spi
->statistics
,
2822 spi_sync_immediate
);
2823 __spi_pump_messages(master
, false, bus_locked
);
2826 wait_for_completion(&done
);
2827 status
= message
->status
;
2829 message
->context
= NULL
;
2834 * spi_sync - blocking/synchronous SPI data transfers
2835 * @spi: device with which data will be exchanged
2836 * @message: describes the data transfers
2837 * Context: can sleep
2839 * This call may only be used from a context that may sleep. The sleep
2840 * is non-interruptible, and has no timeout. Low-overhead controller
2841 * drivers may DMA directly into and out of the message buffers.
2843 * Note that the SPI device's chip select is active during the message,
2844 * and then is normally disabled between messages. Drivers for some
2845 * frequently-used devices may want to minimize costs of selecting a chip,
2846 * by leaving it selected in anticipation that the next message will go
2847 * to the same chip. (That may increase power usage.)
2849 * Also, the caller is guaranteeing that the memory associated with the
2850 * message will not be freed before this call returns.
2852 * Return: zero on success, else a negative error code.
2854 int spi_sync(struct spi_device
*spi
, struct spi_message
*message
)
2856 return __spi_sync(spi
, message
, 0);
2858 EXPORT_SYMBOL_GPL(spi_sync
);
2861 * spi_sync_locked - version of spi_sync with exclusive bus usage
2862 * @spi: device with which data will be exchanged
2863 * @message: describes the data transfers
2864 * Context: can sleep
2866 * This call may only be used from a context that may sleep. The sleep
2867 * is non-interruptible, and has no timeout. Low-overhead controller
2868 * drivers may DMA directly into and out of the message buffers.
2870 * This call should be used by drivers that require exclusive access to the
2871 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2872 * be released by a spi_bus_unlock call when the exclusive access is over.
2874 * Return: zero on success, else a negative error code.
2876 int spi_sync_locked(struct spi_device
*spi
, struct spi_message
*message
)
2878 return __spi_sync(spi
, message
, 1);
2880 EXPORT_SYMBOL_GPL(spi_sync_locked
);
2883 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2884 * @master: SPI bus master that should be locked for exclusive bus access
2885 * Context: can sleep
2887 * This call may only be used from a context that may sleep. The sleep
2888 * is non-interruptible, and has no timeout.
2890 * This call should be used by drivers that require exclusive access to the
2891 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2892 * exclusive access is over. Data transfer must be done by spi_sync_locked
2893 * and spi_async_locked calls when the SPI bus lock is held.
2895 * Return: always zero.
2897 int spi_bus_lock(struct spi_master
*master
)
2899 unsigned long flags
;
2901 mutex_lock(&master
->bus_lock_mutex
);
2903 spin_lock_irqsave(&master
->bus_lock_spinlock
, flags
);
2904 master
->bus_lock_flag
= 1;
2905 spin_unlock_irqrestore(&master
->bus_lock_spinlock
, flags
);
2907 /* mutex remains locked until spi_bus_unlock is called */
2911 EXPORT_SYMBOL_GPL(spi_bus_lock
);
2914 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2915 * @master: SPI bus master that was locked for exclusive bus access
2916 * Context: can sleep
2918 * This call may only be used from a context that may sleep. The sleep
2919 * is non-interruptible, and has no timeout.
2921 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2924 * Return: always zero.
2926 int spi_bus_unlock(struct spi_master
*master
)
2928 master
->bus_lock_flag
= 0;
2930 mutex_unlock(&master
->bus_lock_mutex
);
2934 EXPORT_SYMBOL_GPL(spi_bus_unlock
);
2936 /* portable code must never pass more than 32 bytes */
2937 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
2942 * spi_write_then_read - SPI synchronous write followed by read
2943 * @spi: device with which data will be exchanged
2944 * @txbuf: data to be written (need not be dma-safe)
2945 * @n_tx: size of txbuf, in bytes
2946 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2947 * @n_rx: size of rxbuf, in bytes
2948 * Context: can sleep
2950 * This performs a half duplex MicroWire style transaction with the
2951 * device, sending txbuf and then reading rxbuf. The return value
2952 * is zero for success, else a negative errno status code.
2953 * This call may only be used from a context that may sleep.
2955 * Parameters to this routine are always copied using a small buffer;
2956 * portable code should never use this for more than 32 bytes.
2957 * Performance-sensitive or bulk transfer code should instead use
2958 * spi_{async,sync}() calls with dma-safe buffers.
2960 * Return: zero on success, else a negative error code.
2962 int spi_write_then_read(struct spi_device
*spi
,
2963 const void *txbuf
, unsigned n_tx
,
2964 void *rxbuf
, unsigned n_rx
)
2966 static DEFINE_MUTEX(lock
);
2969 struct spi_message message
;
2970 struct spi_transfer x
[2];
2973 /* Use preallocated DMA-safe buffer if we can. We can't avoid
2974 * copying here, (as a pure convenience thing), but we can
2975 * keep heap costs out of the hot path unless someone else is
2976 * using the pre-allocated buffer or the transfer is too large.
2978 if ((n_tx
+ n_rx
) > SPI_BUFSIZ
|| !mutex_trylock(&lock
)) {
2979 local_buf
= kmalloc(max((unsigned)SPI_BUFSIZ
, n_tx
+ n_rx
),
2980 GFP_KERNEL
| GFP_DMA
);
2987 spi_message_init(&message
);
2988 memset(x
, 0, sizeof(x
));
2991 spi_message_add_tail(&x
[0], &message
);
2995 spi_message_add_tail(&x
[1], &message
);
2998 memcpy(local_buf
, txbuf
, n_tx
);
2999 x
[0].tx_buf
= local_buf
;
3000 x
[1].rx_buf
= local_buf
+ n_tx
;
3003 status
= spi_sync(spi
, &message
);
3005 memcpy(rxbuf
, x
[1].rx_buf
, n_rx
);
3007 if (x
[0].tx_buf
== buf
)
3008 mutex_unlock(&lock
);
3014 EXPORT_SYMBOL_GPL(spi_write_then_read
);
3016 /*-------------------------------------------------------------------------*/
3018 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3019 static int __spi_of_device_match(struct device
*dev
, void *data
)
3021 return dev
->of_node
== data
;
3024 /* must call put_device() when done with returned spi_device device */
3025 static struct spi_device
*of_find_spi_device_by_node(struct device_node
*node
)
3027 struct device
*dev
= bus_find_device(&spi_bus_type
, NULL
, node
,
3028 __spi_of_device_match
);
3029 return dev
? to_spi_device(dev
) : NULL
;
3032 static int __spi_of_master_match(struct device
*dev
, const void *data
)
3034 return dev
->of_node
== data
;
3037 /* the spi masters are not using spi_bus, so we find it with another way */
3038 static struct spi_master
*of_find_spi_master_by_node(struct device_node
*node
)
3042 dev
= class_find_device(&spi_master_class
, NULL
, node
,
3043 __spi_of_master_match
);
3047 /* reference got in class_find_device */
3048 return container_of(dev
, struct spi_master
, dev
);
3051 static int of_spi_notify(struct notifier_block
*nb
, unsigned long action
,
3054 struct of_reconfig_data
*rd
= arg
;
3055 struct spi_master
*master
;
3056 struct spi_device
*spi
;
3058 switch (of_reconfig_get_state_change(action
, arg
)) {
3059 case OF_RECONFIG_CHANGE_ADD
:
3060 master
= of_find_spi_master_by_node(rd
->dn
->parent
);
3062 return NOTIFY_OK
; /* not for us */
3064 if (of_node_test_and_set_flag(rd
->dn
, OF_POPULATED
)) {
3065 put_device(&master
->dev
);
3069 spi
= of_register_spi_device(master
, rd
->dn
);
3070 put_device(&master
->dev
);
3073 pr_err("%s: failed to create for '%s'\n",
3074 __func__
, rd
->dn
->full_name
);
3075 return notifier_from_errno(PTR_ERR(spi
));
3079 case OF_RECONFIG_CHANGE_REMOVE
:
3080 /* already depopulated? */
3081 if (!of_node_check_flag(rd
->dn
, OF_POPULATED
))
3084 /* find our device by node */
3085 spi
= of_find_spi_device_by_node(rd
->dn
);
3087 return NOTIFY_OK
; /* no? not meant for us */
3089 /* unregister takes one ref away */
3090 spi_unregister_device(spi
);
3092 /* and put the reference of the find */
3093 put_device(&spi
->dev
);
3100 static struct notifier_block spi_of_notifier
= {
3101 .notifier_call
= of_spi_notify
,
3103 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3104 extern struct notifier_block spi_of_notifier
;
3105 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3107 static int __init
spi_init(void)
3111 buf
= kmalloc(SPI_BUFSIZ
, GFP_KERNEL
);
3117 status
= bus_register(&spi_bus_type
);
3121 status
= class_register(&spi_master_class
);
3125 if (IS_ENABLED(CONFIG_OF_DYNAMIC
))
3126 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier
));
3131 bus_unregister(&spi_bus_type
);
3139 /* board_info is normally registered in arch_initcall(),
3140 * but even essential drivers wait till later
3142 * REVISIT only boardinfo really needs static linking. the rest (device and
3143 * driver registration) _could_ be dynamically linked (modular) ... costs
3144 * include needing to have boardinfo data structures be much more public.
3146 postcore_initcall(spi_init
);