Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / kernel / trace / ring_buffer.c
blob95181e36891a2b63f38083ec7b81439d589fdcfe
1 /*
2 * Generic ring buffer
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/uaccess.h>
13 #include <linux/hardirq.h>
14 #include <linux/kthread.h> /* for self test */
15 #include <linux/kmemcheck.h>
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
26 #include <asm/local.h>
28 static void update_pages_handler(struct work_struct *work);
31 * The ring buffer header is special. We must manually up keep it.
33 int ring_buffer_print_entry_header(struct trace_seq *s)
35 trace_seq_puts(s, "# compressed entry header\n");
36 trace_seq_puts(s, "\ttype_len : 5 bits\n");
37 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
38 trace_seq_puts(s, "\tarray : 32 bits\n");
39 trace_seq_putc(s, '\n');
40 trace_seq_printf(s, "\tpadding : type == %d\n",
41 RINGBUF_TYPE_PADDING);
42 trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 RINGBUF_TYPE_TIME_EXTEND);
44 trace_seq_printf(s, "\tdata max type_len == %d\n",
45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
47 return !trace_seq_has_overflowed(s);
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on. A reader may read
54 * from any per cpu buffer.
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
64 * Here's some silly ASCII art.
66 * +------+
67 * |reader| RING BUFFER
68 * |page |
69 * +------+ +---+ +---+ +---+
70 * | |-->| |-->| |
71 * +---+ +---+ +---+
72 * ^ |
73 * | |
74 * +---------------+
77 * +------+
78 * |reader| RING BUFFER
79 * |page |------------------v
80 * +------+ +---+ +---+ +---+
81 * | |-->| |-->| |
82 * +---+ +---+ +---+
83 * ^ |
84 * | |
85 * +---------------+
88 * +------+
89 * |reader| RING BUFFER
90 * |page |------------------v
91 * +------+ +---+ +---+ +---+
92 * ^ | |-->| |-->| |
93 * | +---+ +---+ +---+
94 * | |
95 * | |
96 * +------------------------------+
99 * +------+
100 * |buffer| RING BUFFER
101 * |page |------------------v
102 * +------+ +---+ +---+ +---+
103 * ^ | | | |-->| |
104 * | New +---+ +---+ +---+
105 * | Reader------^ |
106 * | page |
107 * +------------------------------+
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
114 * We will be using cmpxchg soon to make all this lockless.
118 /* Used for individual buffers (after the counter) */
119 #define RB_BUFFER_OFF (1 << 20)
121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
124 #define RB_ALIGNMENT 4U
125 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
126 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
129 # define RB_FORCE_8BYTE_ALIGNMENT 0
130 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
131 #else
132 # define RB_FORCE_8BYTE_ALIGNMENT 1
133 # define RB_ARCH_ALIGNMENT 8U
134 #endif
136 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
141 enum {
142 RB_LEN_TIME_EXTEND = 8,
143 RB_LEN_TIME_STAMP = 16,
146 #define skip_time_extend(event) \
147 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
149 static inline int rb_null_event(struct ring_buffer_event *event)
151 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
154 static void rb_event_set_padding(struct ring_buffer_event *event)
156 /* padding has a NULL time_delta */
157 event->type_len = RINGBUF_TYPE_PADDING;
158 event->time_delta = 0;
161 static unsigned
162 rb_event_data_length(struct ring_buffer_event *event)
164 unsigned length;
166 if (event->type_len)
167 length = event->type_len * RB_ALIGNMENT;
168 else
169 length = event->array[0];
170 return length + RB_EVNT_HDR_SIZE;
174 * Return the length of the given event. Will return
175 * the length of the time extend if the event is a
176 * time extend.
178 static inline unsigned
179 rb_event_length(struct ring_buffer_event *event)
181 switch (event->type_len) {
182 case RINGBUF_TYPE_PADDING:
183 if (rb_null_event(event))
184 /* undefined */
185 return -1;
186 return event->array[0] + RB_EVNT_HDR_SIZE;
188 case RINGBUF_TYPE_TIME_EXTEND:
189 return RB_LEN_TIME_EXTEND;
191 case RINGBUF_TYPE_TIME_STAMP:
192 return RB_LEN_TIME_STAMP;
194 case RINGBUF_TYPE_DATA:
195 return rb_event_data_length(event);
196 default:
197 BUG();
199 /* not hit */
200 return 0;
204 * Return total length of time extend and data,
205 * or just the event length for all other events.
207 static inline unsigned
208 rb_event_ts_length(struct ring_buffer_event *event)
210 unsigned len = 0;
212 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213 /* time extends include the data event after it */
214 len = RB_LEN_TIME_EXTEND;
215 event = skip_time_extend(event);
217 return len + rb_event_length(event);
221 * ring_buffer_event_length - return the length of the event
222 * @event: the event to get the length of
224 * Returns the size of the data load of a data event.
225 * If the event is something other than a data event, it
226 * returns the size of the event itself. With the exception
227 * of a TIME EXTEND, where it still returns the size of the
228 * data load of the data event after it.
230 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
232 unsigned length;
234 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235 event = skip_time_extend(event);
237 length = rb_event_length(event);
238 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
239 return length;
240 length -= RB_EVNT_HDR_SIZE;
241 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242 length -= sizeof(event->array[0]);
243 return length;
245 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
247 /* inline for ring buffer fast paths */
248 static void *
249 rb_event_data(struct ring_buffer_event *event)
251 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252 event = skip_time_extend(event);
253 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
254 /* If length is in len field, then array[0] has the data */
255 if (event->type_len)
256 return (void *)&event->array[0];
257 /* Otherwise length is in array[0] and array[1] has the data */
258 return (void *)&event->array[1];
262 * ring_buffer_event_data - return the data of the event
263 * @event: the event to get the data from
265 void *ring_buffer_event_data(struct ring_buffer_event *event)
267 return rb_event_data(event);
269 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
271 #define for_each_buffer_cpu(buffer, cpu) \
272 for_each_cpu(cpu, buffer->cpumask)
274 #define TS_SHIFT 27
275 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
276 #define TS_DELTA_TEST (~TS_MASK)
278 /* Flag when events were overwritten */
279 #define RB_MISSED_EVENTS (1 << 31)
280 /* Missed count stored at end */
281 #define RB_MISSED_STORED (1 << 30)
283 struct buffer_data_page {
284 u64 time_stamp; /* page time stamp */
285 local_t commit; /* write committed index */
286 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
290 * Note, the buffer_page list must be first. The buffer pages
291 * are allocated in cache lines, which means that each buffer
292 * page will be at the beginning of a cache line, and thus
293 * the least significant bits will be zero. We use this to
294 * add flags in the list struct pointers, to make the ring buffer
295 * lockless.
297 struct buffer_page {
298 struct list_head list; /* list of buffer pages */
299 local_t write; /* index for next write */
300 unsigned read; /* index for next read */
301 local_t entries; /* entries on this page */
302 unsigned long real_end; /* real end of data */
303 struct buffer_data_page *page; /* Actual data page */
307 * The buffer page counters, write and entries, must be reset
308 * atomically when crossing page boundaries. To synchronize this
309 * update, two counters are inserted into the number. One is
310 * the actual counter for the write position or count on the page.
312 * The other is a counter of updaters. Before an update happens
313 * the update partition of the counter is incremented. This will
314 * allow the updater to update the counter atomically.
316 * The counter is 20 bits, and the state data is 12.
318 #define RB_WRITE_MASK 0xfffff
319 #define RB_WRITE_INTCNT (1 << 20)
321 static void rb_init_page(struct buffer_data_page *bpage)
323 local_set(&bpage->commit, 0);
327 * ring_buffer_page_len - the size of data on the page.
328 * @page: The page to read
330 * Returns the amount of data on the page, including buffer page header.
332 size_t ring_buffer_page_len(void *page)
334 return local_read(&((struct buffer_data_page *)page)->commit)
335 + BUF_PAGE_HDR_SIZE;
339 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
340 * this issue out.
342 static void free_buffer_page(struct buffer_page *bpage)
344 free_page((unsigned long)bpage->page);
345 kfree(bpage);
349 * We need to fit the time_stamp delta into 27 bits.
351 static inline int test_time_stamp(u64 delta)
353 if (delta & TS_DELTA_TEST)
354 return 1;
355 return 0;
358 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
360 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
361 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
363 int ring_buffer_print_page_header(struct trace_seq *s)
365 struct buffer_data_page field;
367 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
368 "offset:0;\tsize:%u;\tsigned:%u;\n",
369 (unsigned int)sizeof(field.time_stamp),
370 (unsigned int)is_signed_type(u64));
372 trace_seq_printf(s, "\tfield: local_t commit;\t"
373 "offset:%u;\tsize:%u;\tsigned:%u;\n",
374 (unsigned int)offsetof(typeof(field), commit),
375 (unsigned int)sizeof(field.commit),
376 (unsigned int)is_signed_type(long));
378 trace_seq_printf(s, "\tfield: int overwrite;\t"
379 "offset:%u;\tsize:%u;\tsigned:%u;\n",
380 (unsigned int)offsetof(typeof(field), commit),
382 (unsigned int)is_signed_type(long));
384 trace_seq_printf(s, "\tfield: char data;\t"
385 "offset:%u;\tsize:%u;\tsigned:%u;\n",
386 (unsigned int)offsetof(typeof(field), data),
387 (unsigned int)BUF_PAGE_SIZE,
388 (unsigned int)is_signed_type(char));
390 return !trace_seq_has_overflowed(s);
393 struct rb_irq_work {
394 struct irq_work work;
395 wait_queue_head_t waiters;
396 wait_queue_head_t full_waiters;
397 bool waiters_pending;
398 bool full_waiters_pending;
399 bool wakeup_full;
403 * Structure to hold event state and handle nested events.
405 struct rb_event_info {
406 u64 ts;
407 u64 delta;
408 unsigned long length;
409 struct buffer_page *tail_page;
410 int add_timestamp;
414 * Used for which event context the event is in.
415 * NMI = 0
416 * IRQ = 1
417 * SOFTIRQ = 2
418 * NORMAL = 3
420 * See trace_recursive_lock() comment below for more details.
422 enum {
423 RB_CTX_NMI,
424 RB_CTX_IRQ,
425 RB_CTX_SOFTIRQ,
426 RB_CTX_NORMAL,
427 RB_CTX_MAX
431 * head_page == tail_page && head == tail then buffer is empty.
433 struct ring_buffer_per_cpu {
434 int cpu;
435 atomic_t record_disabled;
436 struct ring_buffer *buffer;
437 raw_spinlock_t reader_lock; /* serialize readers */
438 arch_spinlock_t lock;
439 struct lock_class_key lock_key;
440 unsigned int nr_pages;
441 unsigned int current_context;
442 struct list_head *pages;
443 struct buffer_page *head_page; /* read from head */
444 struct buffer_page *tail_page; /* write to tail */
445 struct buffer_page *commit_page; /* committed pages */
446 struct buffer_page *reader_page;
447 unsigned long lost_events;
448 unsigned long last_overrun;
449 local_t entries_bytes;
450 local_t entries;
451 local_t overrun;
452 local_t commit_overrun;
453 local_t dropped_events;
454 local_t committing;
455 local_t commits;
456 unsigned long read;
457 unsigned long read_bytes;
458 u64 write_stamp;
459 u64 read_stamp;
460 /* ring buffer pages to update, > 0 to add, < 0 to remove */
461 int nr_pages_to_update;
462 struct list_head new_pages; /* new pages to add */
463 struct work_struct update_pages_work;
464 struct completion update_done;
466 struct rb_irq_work irq_work;
469 struct ring_buffer {
470 unsigned flags;
471 int cpus;
472 atomic_t record_disabled;
473 atomic_t resize_disabled;
474 cpumask_var_t cpumask;
476 struct lock_class_key *reader_lock_key;
478 struct mutex mutex;
480 struct ring_buffer_per_cpu **buffers;
482 #ifdef CONFIG_HOTPLUG_CPU
483 struct notifier_block cpu_notify;
484 #endif
485 u64 (*clock)(void);
487 struct rb_irq_work irq_work;
490 struct ring_buffer_iter {
491 struct ring_buffer_per_cpu *cpu_buffer;
492 unsigned long head;
493 struct buffer_page *head_page;
494 struct buffer_page *cache_reader_page;
495 unsigned long cache_read;
496 u64 read_stamp;
500 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
502 * Schedules a delayed work to wake up any task that is blocked on the
503 * ring buffer waiters queue.
505 static void rb_wake_up_waiters(struct irq_work *work)
507 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
509 wake_up_all(&rbwork->waiters);
510 if (rbwork->wakeup_full) {
511 rbwork->wakeup_full = false;
512 wake_up_all(&rbwork->full_waiters);
517 * ring_buffer_wait - wait for input to the ring buffer
518 * @buffer: buffer to wait on
519 * @cpu: the cpu buffer to wait on
520 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
522 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
523 * as data is added to any of the @buffer's cpu buffers. Otherwise
524 * it will wait for data to be added to a specific cpu buffer.
526 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
528 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
529 DEFINE_WAIT(wait);
530 struct rb_irq_work *work;
531 int ret = 0;
534 * Depending on what the caller is waiting for, either any
535 * data in any cpu buffer, or a specific buffer, put the
536 * caller on the appropriate wait queue.
538 if (cpu == RING_BUFFER_ALL_CPUS) {
539 work = &buffer->irq_work;
540 /* Full only makes sense on per cpu reads */
541 full = false;
542 } else {
543 if (!cpumask_test_cpu(cpu, buffer->cpumask))
544 return -ENODEV;
545 cpu_buffer = buffer->buffers[cpu];
546 work = &cpu_buffer->irq_work;
550 while (true) {
551 if (full)
552 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
553 else
554 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
557 * The events can happen in critical sections where
558 * checking a work queue can cause deadlocks.
559 * After adding a task to the queue, this flag is set
560 * only to notify events to try to wake up the queue
561 * using irq_work.
563 * We don't clear it even if the buffer is no longer
564 * empty. The flag only causes the next event to run
565 * irq_work to do the work queue wake up. The worse
566 * that can happen if we race with !trace_empty() is that
567 * an event will cause an irq_work to try to wake up
568 * an empty queue.
570 * There's no reason to protect this flag either, as
571 * the work queue and irq_work logic will do the necessary
572 * synchronization for the wake ups. The only thing
573 * that is necessary is that the wake up happens after
574 * a task has been queued. It's OK for spurious wake ups.
576 if (full)
577 work->full_waiters_pending = true;
578 else
579 work->waiters_pending = true;
581 if (signal_pending(current)) {
582 ret = -EINTR;
583 break;
586 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
587 break;
589 if (cpu != RING_BUFFER_ALL_CPUS &&
590 !ring_buffer_empty_cpu(buffer, cpu)) {
591 unsigned long flags;
592 bool pagebusy;
594 if (!full)
595 break;
597 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
598 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
599 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
601 if (!pagebusy)
602 break;
605 schedule();
608 if (full)
609 finish_wait(&work->full_waiters, &wait);
610 else
611 finish_wait(&work->waiters, &wait);
613 return ret;
617 * ring_buffer_poll_wait - poll on buffer input
618 * @buffer: buffer to wait on
619 * @cpu: the cpu buffer to wait on
620 * @filp: the file descriptor
621 * @poll_table: The poll descriptor
623 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
624 * as data is added to any of the @buffer's cpu buffers. Otherwise
625 * it will wait for data to be added to a specific cpu buffer.
627 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
628 * zero otherwise.
630 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
631 struct file *filp, poll_table *poll_table)
633 struct ring_buffer_per_cpu *cpu_buffer;
634 struct rb_irq_work *work;
636 if (cpu == RING_BUFFER_ALL_CPUS)
637 work = &buffer->irq_work;
638 else {
639 if (!cpumask_test_cpu(cpu, buffer->cpumask))
640 return -EINVAL;
642 cpu_buffer = buffer->buffers[cpu];
643 work = &cpu_buffer->irq_work;
646 poll_wait(filp, &work->waiters, poll_table);
647 work->waiters_pending = true;
649 * There's a tight race between setting the waiters_pending and
650 * checking if the ring buffer is empty. Once the waiters_pending bit
651 * is set, the next event will wake the task up, but we can get stuck
652 * if there's only a single event in.
654 * FIXME: Ideally, we need a memory barrier on the writer side as well,
655 * but adding a memory barrier to all events will cause too much of a
656 * performance hit in the fast path. We only need a memory barrier when
657 * the buffer goes from empty to having content. But as this race is
658 * extremely small, and it's not a problem if another event comes in, we
659 * will fix it later.
661 smp_mb();
663 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
664 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
665 return POLLIN | POLLRDNORM;
666 return 0;
669 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
670 #define RB_WARN_ON(b, cond) \
671 ({ \
672 int _____ret = unlikely(cond); \
673 if (_____ret) { \
674 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
675 struct ring_buffer_per_cpu *__b = \
676 (void *)b; \
677 atomic_inc(&__b->buffer->record_disabled); \
678 } else \
679 atomic_inc(&b->record_disabled); \
680 WARN_ON(1); \
682 _____ret; \
685 /* Up this if you want to test the TIME_EXTENTS and normalization */
686 #define DEBUG_SHIFT 0
688 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
690 /* shift to debug/test normalization and TIME_EXTENTS */
691 return buffer->clock() << DEBUG_SHIFT;
694 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
696 u64 time;
698 preempt_disable_notrace();
699 time = rb_time_stamp(buffer);
700 preempt_enable_no_resched_notrace();
702 return time;
704 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
706 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
707 int cpu, u64 *ts)
709 /* Just stupid testing the normalize function and deltas */
710 *ts >>= DEBUG_SHIFT;
712 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
715 * Making the ring buffer lockless makes things tricky.
716 * Although writes only happen on the CPU that they are on,
717 * and they only need to worry about interrupts. Reads can
718 * happen on any CPU.
720 * The reader page is always off the ring buffer, but when the
721 * reader finishes with a page, it needs to swap its page with
722 * a new one from the buffer. The reader needs to take from
723 * the head (writes go to the tail). But if a writer is in overwrite
724 * mode and wraps, it must push the head page forward.
726 * Here lies the problem.
728 * The reader must be careful to replace only the head page, and
729 * not another one. As described at the top of the file in the
730 * ASCII art, the reader sets its old page to point to the next
731 * page after head. It then sets the page after head to point to
732 * the old reader page. But if the writer moves the head page
733 * during this operation, the reader could end up with the tail.
735 * We use cmpxchg to help prevent this race. We also do something
736 * special with the page before head. We set the LSB to 1.
738 * When the writer must push the page forward, it will clear the
739 * bit that points to the head page, move the head, and then set
740 * the bit that points to the new head page.
742 * We also don't want an interrupt coming in and moving the head
743 * page on another writer. Thus we use the second LSB to catch
744 * that too. Thus:
746 * head->list->prev->next bit 1 bit 0
747 * ------- -------
748 * Normal page 0 0
749 * Points to head page 0 1
750 * New head page 1 0
752 * Note we can not trust the prev pointer of the head page, because:
754 * +----+ +-----+ +-----+
755 * | |------>| T |---X--->| N |
756 * | |<------| | | |
757 * +----+ +-----+ +-----+
758 * ^ ^ |
759 * | +-----+ | |
760 * +----------| R |----------+ |
761 * | |<-----------+
762 * +-----+
764 * Key: ---X--> HEAD flag set in pointer
765 * T Tail page
766 * R Reader page
767 * N Next page
769 * (see __rb_reserve_next() to see where this happens)
771 * What the above shows is that the reader just swapped out
772 * the reader page with a page in the buffer, but before it
773 * could make the new header point back to the new page added
774 * it was preempted by a writer. The writer moved forward onto
775 * the new page added by the reader and is about to move forward
776 * again.
778 * You can see, it is legitimate for the previous pointer of
779 * the head (or any page) not to point back to itself. But only
780 * temporarially.
783 #define RB_PAGE_NORMAL 0UL
784 #define RB_PAGE_HEAD 1UL
785 #define RB_PAGE_UPDATE 2UL
788 #define RB_FLAG_MASK 3UL
790 /* PAGE_MOVED is not part of the mask */
791 #define RB_PAGE_MOVED 4UL
794 * rb_list_head - remove any bit
796 static struct list_head *rb_list_head(struct list_head *list)
798 unsigned long val = (unsigned long)list;
800 return (struct list_head *)(val & ~RB_FLAG_MASK);
804 * rb_is_head_page - test if the given page is the head page
806 * Because the reader may move the head_page pointer, we can
807 * not trust what the head page is (it may be pointing to
808 * the reader page). But if the next page is a header page,
809 * its flags will be non zero.
811 static inline int
812 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
813 struct buffer_page *page, struct list_head *list)
815 unsigned long val;
817 val = (unsigned long)list->next;
819 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
820 return RB_PAGE_MOVED;
822 return val & RB_FLAG_MASK;
826 * rb_is_reader_page
828 * The unique thing about the reader page, is that, if the
829 * writer is ever on it, the previous pointer never points
830 * back to the reader page.
832 static bool rb_is_reader_page(struct buffer_page *page)
834 struct list_head *list = page->list.prev;
836 return rb_list_head(list->next) != &page->list;
840 * rb_set_list_to_head - set a list_head to be pointing to head.
842 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
843 struct list_head *list)
845 unsigned long *ptr;
847 ptr = (unsigned long *)&list->next;
848 *ptr |= RB_PAGE_HEAD;
849 *ptr &= ~RB_PAGE_UPDATE;
853 * rb_head_page_activate - sets up head page
855 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
857 struct buffer_page *head;
859 head = cpu_buffer->head_page;
860 if (!head)
861 return;
864 * Set the previous list pointer to have the HEAD flag.
866 rb_set_list_to_head(cpu_buffer, head->list.prev);
869 static void rb_list_head_clear(struct list_head *list)
871 unsigned long *ptr = (unsigned long *)&list->next;
873 *ptr &= ~RB_FLAG_MASK;
877 * rb_head_page_dactivate - clears head page ptr (for free list)
879 static void
880 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
882 struct list_head *hd;
884 /* Go through the whole list and clear any pointers found. */
885 rb_list_head_clear(cpu_buffer->pages);
887 list_for_each(hd, cpu_buffer->pages)
888 rb_list_head_clear(hd);
891 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
892 struct buffer_page *head,
893 struct buffer_page *prev,
894 int old_flag, int new_flag)
896 struct list_head *list;
897 unsigned long val = (unsigned long)&head->list;
898 unsigned long ret;
900 list = &prev->list;
902 val &= ~RB_FLAG_MASK;
904 ret = cmpxchg((unsigned long *)&list->next,
905 val | old_flag, val | new_flag);
907 /* check if the reader took the page */
908 if ((ret & ~RB_FLAG_MASK) != val)
909 return RB_PAGE_MOVED;
911 return ret & RB_FLAG_MASK;
914 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
915 struct buffer_page *head,
916 struct buffer_page *prev,
917 int old_flag)
919 return rb_head_page_set(cpu_buffer, head, prev,
920 old_flag, RB_PAGE_UPDATE);
923 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
924 struct buffer_page *head,
925 struct buffer_page *prev,
926 int old_flag)
928 return rb_head_page_set(cpu_buffer, head, prev,
929 old_flag, RB_PAGE_HEAD);
932 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
933 struct buffer_page *head,
934 struct buffer_page *prev,
935 int old_flag)
937 return rb_head_page_set(cpu_buffer, head, prev,
938 old_flag, RB_PAGE_NORMAL);
941 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
942 struct buffer_page **bpage)
944 struct list_head *p = rb_list_head((*bpage)->list.next);
946 *bpage = list_entry(p, struct buffer_page, list);
949 static struct buffer_page *
950 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
952 struct buffer_page *head;
953 struct buffer_page *page;
954 struct list_head *list;
955 int i;
957 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
958 return NULL;
960 /* sanity check */
961 list = cpu_buffer->pages;
962 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
963 return NULL;
965 page = head = cpu_buffer->head_page;
967 * It is possible that the writer moves the header behind
968 * where we started, and we miss in one loop.
969 * A second loop should grab the header, but we'll do
970 * three loops just because I'm paranoid.
972 for (i = 0; i < 3; i++) {
973 do {
974 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
975 cpu_buffer->head_page = page;
976 return page;
978 rb_inc_page(cpu_buffer, &page);
979 } while (page != head);
982 RB_WARN_ON(cpu_buffer, 1);
984 return NULL;
987 static int rb_head_page_replace(struct buffer_page *old,
988 struct buffer_page *new)
990 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
991 unsigned long val;
992 unsigned long ret;
994 val = *ptr & ~RB_FLAG_MASK;
995 val |= RB_PAGE_HEAD;
997 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
999 return ret == val;
1003 * rb_tail_page_update - move the tail page forward
1005 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1006 struct buffer_page *tail_page,
1007 struct buffer_page *next_page)
1009 unsigned long old_entries;
1010 unsigned long old_write;
1013 * The tail page now needs to be moved forward.
1015 * We need to reset the tail page, but without messing
1016 * with possible erasing of data brought in by interrupts
1017 * that have moved the tail page and are currently on it.
1019 * We add a counter to the write field to denote this.
1021 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1022 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1025 * Just make sure we have seen our old_write and synchronize
1026 * with any interrupts that come in.
1028 barrier();
1031 * If the tail page is still the same as what we think
1032 * it is, then it is up to us to update the tail
1033 * pointer.
1035 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1036 /* Zero the write counter */
1037 unsigned long val = old_write & ~RB_WRITE_MASK;
1038 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1041 * This will only succeed if an interrupt did
1042 * not come in and change it. In which case, we
1043 * do not want to modify it.
1045 * We add (void) to let the compiler know that we do not care
1046 * about the return value of these functions. We use the
1047 * cmpxchg to only update if an interrupt did not already
1048 * do it for us. If the cmpxchg fails, we don't care.
1050 (void)local_cmpxchg(&next_page->write, old_write, val);
1051 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1054 * No need to worry about races with clearing out the commit.
1055 * it only can increment when a commit takes place. But that
1056 * only happens in the outer most nested commit.
1058 local_set(&next_page->page->commit, 0);
1060 /* Again, either we update tail_page or an interrupt does */
1061 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1065 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1066 struct buffer_page *bpage)
1068 unsigned long val = (unsigned long)bpage;
1070 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1071 return 1;
1073 return 0;
1077 * rb_check_list - make sure a pointer to a list has the last bits zero
1079 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1080 struct list_head *list)
1082 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1083 return 1;
1084 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1085 return 1;
1086 return 0;
1090 * rb_check_pages - integrity check of buffer pages
1091 * @cpu_buffer: CPU buffer with pages to test
1093 * As a safety measure we check to make sure the data pages have not
1094 * been corrupted.
1096 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1098 struct list_head *head = cpu_buffer->pages;
1099 struct buffer_page *bpage, *tmp;
1101 /* Reset the head page if it exists */
1102 if (cpu_buffer->head_page)
1103 rb_set_head_page(cpu_buffer);
1105 rb_head_page_deactivate(cpu_buffer);
1107 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1108 return -1;
1109 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1110 return -1;
1112 if (rb_check_list(cpu_buffer, head))
1113 return -1;
1115 list_for_each_entry_safe(bpage, tmp, head, list) {
1116 if (RB_WARN_ON(cpu_buffer,
1117 bpage->list.next->prev != &bpage->list))
1118 return -1;
1119 if (RB_WARN_ON(cpu_buffer,
1120 bpage->list.prev->next != &bpage->list))
1121 return -1;
1122 if (rb_check_list(cpu_buffer, &bpage->list))
1123 return -1;
1126 rb_head_page_activate(cpu_buffer);
1128 return 0;
1131 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1133 int i;
1134 struct buffer_page *bpage, *tmp;
1136 for (i = 0; i < nr_pages; i++) {
1137 struct page *page;
1139 * __GFP_NORETRY flag makes sure that the allocation fails
1140 * gracefully without invoking oom-killer and the system is
1141 * not destabilized.
1143 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1144 GFP_KERNEL | __GFP_NORETRY,
1145 cpu_to_node(cpu));
1146 if (!bpage)
1147 goto free_pages;
1149 list_add(&bpage->list, pages);
1151 page = alloc_pages_node(cpu_to_node(cpu),
1152 GFP_KERNEL | __GFP_NORETRY, 0);
1153 if (!page)
1154 goto free_pages;
1155 bpage->page = page_address(page);
1156 rb_init_page(bpage->page);
1159 return 0;
1161 free_pages:
1162 list_for_each_entry_safe(bpage, tmp, pages, list) {
1163 list_del_init(&bpage->list);
1164 free_buffer_page(bpage);
1167 return -ENOMEM;
1170 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1171 unsigned nr_pages)
1173 LIST_HEAD(pages);
1175 WARN_ON(!nr_pages);
1177 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1178 return -ENOMEM;
1181 * The ring buffer page list is a circular list that does not
1182 * start and end with a list head. All page list items point to
1183 * other pages.
1185 cpu_buffer->pages = pages.next;
1186 list_del(&pages);
1188 cpu_buffer->nr_pages = nr_pages;
1190 rb_check_pages(cpu_buffer);
1192 return 0;
1195 static struct ring_buffer_per_cpu *
1196 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1198 struct ring_buffer_per_cpu *cpu_buffer;
1199 struct buffer_page *bpage;
1200 struct page *page;
1201 int ret;
1203 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1204 GFP_KERNEL, cpu_to_node(cpu));
1205 if (!cpu_buffer)
1206 return NULL;
1208 cpu_buffer->cpu = cpu;
1209 cpu_buffer->buffer = buffer;
1210 raw_spin_lock_init(&cpu_buffer->reader_lock);
1211 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1212 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1213 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1214 init_completion(&cpu_buffer->update_done);
1215 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1216 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1217 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1219 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1220 GFP_KERNEL, cpu_to_node(cpu));
1221 if (!bpage)
1222 goto fail_free_buffer;
1224 rb_check_bpage(cpu_buffer, bpage);
1226 cpu_buffer->reader_page = bpage;
1227 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1228 if (!page)
1229 goto fail_free_reader;
1230 bpage->page = page_address(page);
1231 rb_init_page(bpage->page);
1233 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1234 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1236 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1237 if (ret < 0)
1238 goto fail_free_reader;
1240 cpu_buffer->head_page
1241 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1242 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1244 rb_head_page_activate(cpu_buffer);
1246 return cpu_buffer;
1248 fail_free_reader:
1249 free_buffer_page(cpu_buffer->reader_page);
1251 fail_free_buffer:
1252 kfree(cpu_buffer);
1253 return NULL;
1256 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1258 struct list_head *head = cpu_buffer->pages;
1259 struct buffer_page *bpage, *tmp;
1261 free_buffer_page(cpu_buffer->reader_page);
1263 rb_head_page_deactivate(cpu_buffer);
1265 if (head) {
1266 list_for_each_entry_safe(bpage, tmp, head, list) {
1267 list_del_init(&bpage->list);
1268 free_buffer_page(bpage);
1270 bpage = list_entry(head, struct buffer_page, list);
1271 free_buffer_page(bpage);
1274 kfree(cpu_buffer);
1277 #ifdef CONFIG_HOTPLUG_CPU
1278 static int rb_cpu_notify(struct notifier_block *self,
1279 unsigned long action, void *hcpu);
1280 #endif
1283 * __ring_buffer_alloc - allocate a new ring_buffer
1284 * @size: the size in bytes per cpu that is needed.
1285 * @flags: attributes to set for the ring buffer.
1287 * Currently the only flag that is available is the RB_FL_OVERWRITE
1288 * flag. This flag means that the buffer will overwrite old data
1289 * when the buffer wraps. If this flag is not set, the buffer will
1290 * drop data when the tail hits the head.
1292 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1293 struct lock_class_key *key)
1295 struct ring_buffer *buffer;
1296 int bsize;
1297 int cpu, nr_pages;
1299 /* keep it in its own cache line */
1300 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1301 GFP_KERNEL);
1302 if (!buffer)
1303 return NULL;
1305 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1306 goto fail_free_buffer;
1308 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1309 buffer->flags = flags;
1310 buffer->clock = trace_clock_local;
1311 buffer->reader_lock_key = key;
1313 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1314 init_waitqueue_head(&buffer->irq_work.waiters);
1316 /* need at least two pages */
1317 if (nr_pages < 2)
1318 nr_pages = 2;
1321 * In case of non-hotplug cpu, if the ring-buffer is allocated
1322 * in early initcall, it will not be notified of secondary cpus.
1323 * In that off case, we need to allocate for all possible cpus.
1325 #ifdef CONFIG_HOTPLUG_CPU
1326 cpu_notifier_register_begin();
1327 cpumask_copy(buffer->cpumask, cpu_online_mask);
1328 #else
1329 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1330 #endif
1331 buffer->cpus = nr_cpu_ids;
1333 bsize = sizeof(void *) * nr_cpu_ids;
1334 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1335 GFP_KERNEL);
1336 if (!buffer->buffers)
1337 goto fail_free_cpumask;
1339 for_each_buffer_cpu(buffer, cpu) {
1340 buffer->buffers[cpu] =
1341 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1342 if (!buffer->buffers[cpu])
1343 goto fail_free_buffers;
1346 #ifdef CONFIG_HOTPLUG_CPU
1347 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1348 buffer->cpu_notify.priority = 0;
1349 __register_cpu_notifier(&buffer->cpu_notify);
1350 cpu_notifier_register_done();
1351 #endif
1353 mutex_init(&buffer->mutex);
1355 return buffer;
1357 fail_free_buffers:
1358 for_each_buffer_cpu(buffer, cpu) {
1359 if (buffer->buffers[cpu])
1360 rb_free_cpu_buffer(buffer->buffers[cpu]);
1362 kfree(buffer->buffers);
1364 fail_free_cpumask:
1365 free_cpumask_var(buffer->cpumask);
1366 #ifdef CONFIG_HOTPLUG_CPU
1367 cpu_notifier_register_done();
1368 #endif
1370 fail_free_buffer:
1371 kfree(buffer);
1372 return NULL;
1374 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1377 * ring_buffer_free - free a ring buffer.
1378 * @buffer: the buffer to free.
1380 void
1381 ring_buffer_free(struct ring_buffer *buffer)
1383 int cpu;
1385 #ifdef CONFIG_HOTPLUG_CPU
1386 cpu_notifier_register_begin();
1387 __unregister_cpu_notifier(&buffer->cpu_notify);
1388 #endif
1390 for_each_buffer_cpu(buffer, cpu)
1391 rb_free_cpu_buffer(buffer->buffers[cpu]);
1393 #ifdef CONFIG_HOTPLUG_CPU
1394 cpu_notifier_register_done();
1395 #endif
1397 kfree(buffer->buffers);
1398 free_cpumask_var(buffer->cpumask);
1400 kfree(buffer);
1402 EXPORT_SYMBOL_GPL(ring_buffer_free);
1404 void ring_buffer_set_clock(struct ring_buffer *buffer,
1405 u64 (*clock)(void))
1407 buffer->clock = clock;
1410 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1412 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1414 return local_read(&bpage->entries) & RB_WRITE_MASK;
1417 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1419 return local_read(&bpage->write) & RB_WRITE_MASK;
1422 static int
1423 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1425 struct list_head *tail_page, *to_remove, *next_page;
1426 struct buffer_page *to_remove_page, *tmp_iter_page;
1427 struct buffer_page *last_page, *first_page;
1428 unsigned int nr_removed;
1429 unsigned long head_bit;
1430 int page_entries;
1432 head_bit = 0;
1434 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1435 atomic_inc(&cpu_buffer->record_disabled);
1437 * We don't race with the readers since we have acquired the reader
1438 * lock. We also don't race with writers after disabling recording.
1439 * This makes it easy to figure out the first and the last page to be
1440 * removed from the list. We unlink all the pages in between including
1441 * the first and last pages. This is done in a busy loop so that we
1442 * lose the least number of traces.
1443 * The pages are freed after we restart recording and unlock readers.
1445 tail_page = &cpu_buffer->tail_page->list;
1448 * tail page might be on reader page, we remove the next page
1449 * from the ring buffer
1451 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1452 tail_page = rb_list_head(tail_page->next);
1453 to_remove = tail_page;
1455 /* start of pages to remove */
1456 first_page = list_entry(rb_list_head(to_remove->next),
1457 struct buffer_page, list);
1459 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1460 to_remove = rb_list_head(to_remove)->next;
1461 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1464 next_page = rb_list_head(to_remove)->next;
1467 * Now we remove all pages between tail_page and next_page.
1468 * Make sure that we have head_bit value preserved for the
1469 * next page
1471 tail_page->next = (struct list_head *)((unsigned long)next_page |
1472 head_bit);
1473 next_page = rb_list_head(next_page);
1474 next_page->prev = tail_page;
1476 /* make sure pages points to a valid page in the ring buffer */
1477 cpu_buffer->pages = next_page;
1479 /* update head page */
1480 if (head_bit)
1481 cpu_buffer->head_page = list_entry(next_page,
1482 struct buffer_page, list);
1485 * change read pointer to make sure any read iterators reset
1486 * themselves
1488 cpu_buffer->read = 0;
1490 /* pages are removed, resume tracing and then free the pages */
1491 atomic_dec(&cpu_buffer->record_disabled);
1492 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1494 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1496 /* last buffer page to remove */
1497 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1498 list);
1499 tmp_iter_page = first_page;
1501 do {
1502 to_remove_page = tmp_iter_page;
1503 rb_inc_page(cpu_buffer, &tmp_iter_page);
1505 /* update the counters */
1506 page_entries = rb_page_entries(to_remove_page);
1507 if (page_entries) {
1509 * If something was added to this page, it was full
1510 * since it is not the tail page. So we deduct the
1511 * bytes consumed in ring buffer from here.
1512 * Increment overrun to account for the lost events.
1514 local_add(page_entries, &cpu_buffer->overrun);
1515 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1519 * We have already removed references to this list item, just
1520 * free up the buffer_page and its page
1522 free_buffer_page(to_remove_page);
1523 nr_removed--;
1525 } while (to_remove_page != last_page);
1527 RB_WARN_ON(cpu_buffer, nr_removed);
1529 return nr_removed == 0;
1532 static int
1533 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1535 struct list_head *pages = &cpu_buffer->new_pages;
1536 int retries, success;
1538 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1540 * We are holding the reader lock, so the reader page won't be swapped
1541 * in the ring buffer. Now we are racing with the writer trying to
1542 * move head page and the tail page.
1543 * We are going to adapt the reader page update process where:
1544 * 1. We first splice the start and end of list of new pages between
1545 * the head page and its previous page.
1546 * 2. We cmpxchg the prev_page->next to point from head page to the
1547 * start of new pages list.
1548 * 3. Finally, we update the head->prev to the end of new list.
1550 * We will try this process 10 times, to make sure that we don't keep
1551 * spinning.
1553 retries = 10;
1554 success = 0;
1555 while (retries--) {
1556 struct list_head *head_page, *prev_page, *r;
1557 struct list_head *last_page, *first_page;
1558 struct list_head *head_page_with_bit;
1560 head_page = &rb_set_head_page(cpu_buffer)->list;
1561 if (!head_page)
1562 break;
1563 prev_page = head_page->prev;
1565 first_page = pages->next;
1566 last_page = pages->prev;
1568 head_page_with_bit = (struct list_head *)
1569 ((unsigned long)head_page | RB_PAGE_HEAD);
1571 last_page->next = head_page_with_bit;
1572 first_page->prev = prev_page;
1574 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1576 if (r == head_page_with_bit) {
1578 * yay, we replaced the page pointer to our new list,
1579 * now, we just have to update to head page's prev
1580 * pointer to point to end of list
1582 head_page->prev = last_page;
1583 success = 1;
1584 break;
1588 if (success)
1589 INIT_LIST_HEAD(pages);
1591 * If we weren't successful in adding in new pages, warn and stop
1592 * tracing
1594 RB_WARN_ON(cpu_buffer, !success);
1595 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1597 /* free pages if they weren't inserted */
1598 if (!success) {
1599 struct buffer_page *bpage, *tmp;
1600 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1601 list) {
1602 list_del_init(&bpage->list);
1603 free_buffer_page(bpage);
1606 return success;
1609 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1611 int success;
1613 if (cpu_buffer->nr_pages_to_update > 0)
1614 success = rb_insert_pages(cpu_buffer);
1615 else
1616 success = rb_remove_pages(cpu_buffer,
1617 -cpu_buffer->nr_pages_to_update);
1619 if (success)
1620 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1623 static void update_pages_handler(struct work_struct *work)
1625 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1626 struct ring_buffer_per_cpu, update_pages_work);
1627 rb_update_pages(cpu_buffer);
1628 complete(&cpu_buffer->update_done);
1632 * ring_buffer_resize - resize the ring buffer
1633 * @buffer: the buffer to resize.
1634 * @size: the new size.
1635 * @cpu_id: the cpu buffer to resize
1637 * Minimum size is 2 * BUF_PAGE_SIZE.
1639 * Returns 0 on success and < 0 on failure.
1641 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1642 int cpu_id)
1644 struct ring_buffer_per_cpu *cpu_buffer;
1645 unsigned nr_pages;
1646 int cpu, err = 0;
1649 * Always succeed at resizing a non-existent buffer:
1651 if (!buffer)
1652 return size;
1654 /* Make sure the requested buffer exists */
1655 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1656 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1657 return size;
1659 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1660 size *= BUF_PAGE_SIZE;
1662 /* we need a minimum of two pages */
1663 if (size < BUF_PAGE_SIZE * 2)
1664 size = BUF_PAGE_SIZE * 2;
1666 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1669 * Don't succeed if resizing is disabled, as a reader might be
1670 * manipulating the ring buffer and is expecting a sane state while
1671 * this is true.
1673 if (atomic_read(&buffer->resize_disabled))
1674 return -EBUSY;
1676 /* prevent another thread from changing buffer sizes */
1677 mutex_lock(&buffer->mutex);
1679 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1680 /* calculate the pages to update */
1681 for_each_buffer_cpu(buffer, cpu) {
1682 cpu_buffer = buffer->buffers[cpu];
1684 cpu_buffer->nr_pages_to_update = nr_pages -
1685 cpu_buffer->nr_pages;
1687 * nothing more to do for removing pages or no update
1689 if (cpu_buffer->nr_pages_to_update <= 0)
1690 continue;
1692 * to add pages, make sure all new pages can be
1693 * allocated without receiving ENOMEM
1695 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1696 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1697 &cpu_buffer->new_pages, cpu)) {
1698 /* not enough memory for new pages */
1699 err = -ENOMEM;
1700 goto out_err;
1704 get_online_cpus();
1706 * Fire off all the required work handlers
1707 * We can't schedule on offline CPUs, but it's not necessary
1708 * since we can change their buffer sizes without any race.
1710 for_each_buffer_cpu(buffer, cpu) {
1711 cpu_buffer = buffer->buffers[cpu];
1712 if (!cpu_buffer->nr_pages_to_update)
1713 continue;
1715 /* Can't run something on an offline CPU. */
1716 if (!cpu_online(cpu)) {
1717 rb_update_pages(cpu_buffer);
1718 cpu_buffer->nr_pages_to_update = 0;
1719 } else {
1720 schedule_work_on(cpu,
1721 &cpu_buffer->update_pages_work);
1725 /* wait for all the updates to complete */
1726 for_each_buffer_cpu(buffer, cpu) {
1727 cpu_buffer = buffer->buffers[cpu];
1728 if (!cpu_buffer->nr_pages_to_update)
1729 continue;
1731 if (cpu_online(cpu))
1732 wait_for_completion(&cpu_buffer->update_done);
1733 cpu_buffer->nr_pages_to_update = 0;
1736 put_online_cpus();
1737 } else {
1738 /* Make sure this CPU has been intitialized */
1739 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1740 goto out;
1742 cpu_buffer = buffer->buffers[cpu_id];
1744 if (nr_pages == cpu_buffer->nr_pages)
1745 goto out;
1747 cpu_buffer->nr_pages_to_update = nr_pages -
1748 cpu_buffer->nr_pages;
1750 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1751 if (cpu_buffer->nr_pages_to_update > 0 &&
1752 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1753 &cpu_buffer->new_pages, cpu_id)) {
1754 err = -ENOMEM;
1755 goto out_err;
1758 get_online_cpus();
1760 /* Can't run something on an offline CPU. */
1761 if (!cpu_online(cpu_id))
1762 rb_update_pages(cpu_buffer);
1763 else {
1764 schedule_work_on(cpu_id,
1765 &cpu_buffer->update_pages_work);
1766 wait_for_completion(&cpu_buffer->update_done);
1769 cpu_buffer->nr_pages_to_update = 0;
1770 put_online_cpus();
1773 out:
1775 * The ring buffer resize can happen with the ring buffer
1776 * enabled, so that the update disturbs the tracing as little
1777 * as possible. But if the buffer is disabled, we do not need
1778 * to worry about that, and we can take the time to verify
1779 * that the buffer is not corrupt.
1781 if (atomic_read(&buffer->record_disabled)) {
1782 atomic_inc(&buffer->record_disabled);
1784 * Even though the buffer was disabled, we must make sure
1785 * that it is truly disabled before calling rb_check_pages.
1786 * There could have been a race between checking
1787 * record_disable and incrementing it.
1789 synchronize_sched();
1790 for_each_buffer_cpu(buffer, cpu) {
1791 cpu_buffer = buffer->buffers[cpu];
1792 rb_check_pages(cpu_buffer);
1794 atomic_dec(&buffer->record_disabled);
1797 mutex_unlock(&buffer->mutex);
1798 return size;
1800 out_err:
1801 for_each_buffer_cpu(buffer, cpu) {
1802 struct buffer_page *bpage, *tmp;
1804 cpu_buffer = buffer->buffers[cpu];
1805 cpu_buffer->nr_pages_to_update = 0;
1807 if (list_empty(&cpu_buffer->new_pages))
1808 continue;
1810 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1811 list) {
1812 list_del_init(&bpage->list);
1813 free_buffer_page(bpage);
1816 mutex_unlock(&buffer->mutex);
1817 return err;
1819 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1821 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1823 mutex_lock(&buffer->mutex);
1824 if (val)
1825 buffer->flags |= RB_FL_OVERWRITE;
1826 else
1827 buffer->flags &= ~RB_FL_OVERWRITE;
1828 mutex_unlock(&buffer->mutex);
1830 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1832 static inline void *
1833 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1835 return bpage->data + index;
1838 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1840 return bpage->page->data + index;
1843 static inline struct ring_buffer_event *
1844 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1846 return __rb_page_index(cpu_buffer->reader_page,
1847 cpu_buffer->reader_page->read);
1850 static inline struct ring_buffer_event *
1851 rb_iter_head_event(struct ring_buffer_iter *iter)
1853 return __rb_page_index(iter->head_page, iter->head);
1856 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1858 return local_read(&bpage->page->commit);
1861 /* Size is determined by what has been committed */
1862 static inline unsigned rb_page_size(struct buffer_page *bpage)
1864 return rb_page_commit(bpage);
1867 static inline unsigned
1868 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1870 return rb_page_commit(cpu_buffer->commit_page);
1873 static inline unsigned
1874 rb_event_index(struct ring_buffer_event *event)
1876 unsigned long addr = (unsigned long)event;
1878 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1881 static void rb_inc_iter(struct ring_buffer_iter *iter)
1883 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1886 * The iterator could be on the reader page (it starts there).
1887 * But the head could have moved, since the reader was
1888 * found. Check for this case and assign the iterator
1889 * to the head page instead of next.
1891 if (iter->head_page == cpu_buffer->reader_page)
1892 iter->head_page = rb_set_head_page(cpu_buffer);
1893 else
1894 rb_inc_page(cpu_buffer, &iter->head_page);
1896 iter->read_stamp = iter->head_page->page->time_stamp;
1897 iter->head = 0;
1901 * rb_handle_head_page - writer hit the head page
1903 * Returns: +1 to retry page
1904 * 0 to continue
1905 * -1 on error
1907 static int
1908 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1909 struct buffer_page *tail_page,
1910 struct buffer_page *next_page)
1912 struct buffer_page *new_head;
1913 int entries;
1914 int type;
1915 int ret;
1917 entries = rb_page_entries(next_page);
1920 * The hard part is here. We need to move the head
1921 * forward, and protect against both readers on
1922 * other CPUs and writers coming in via interrupts.
1924 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1925 RB_PAGE_HEAD);
1928 * type can be one of four:
1929 * NORMAL - an interrupt already moved it for us
1930 * HEAD - we are the first to get here.
1931 * UPDATE - we are the interrupt interrupting
1932 * a current move.
1933 * MOVED - a reader on another CPU moved the next
1934 * pointer to its reader page. Give up
1935 * and try again.
1938 switch (type) {
1939 case RB_PAGE_HEAD:
1941 * We changed the head to UPDATE, thus
1942 * it is our responsibility to update
1943 * the counters.
1945 local_add(entries, &cpu_buffer->overrun);
1946 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1949 * The entries will be zeroed out when we move the
1950 * tail page.
1953 /* still more to do */
1954 break;
1956 case RB_PAGE_UPDATE:
1958 * This is an interrupt that interrupt the
1959 * previous update. Still more to do.
1961 break;
1962 case RB_PAGE_NORMAL:
1964 * An interrupt came in before the update
1965 * and processed this for us.
1966 * Nothing left to do.
1968 return 1;
1969 case RB_PAGE_MOVED:
1971 * The reader is on another CPU and just did
1972 * a swap with our next_page.
1973 * Try again.
1975 return 1;
1976 default:
1977 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1978 return -1;
1982 * Now that we are here, the old head pointer is
1983 * set to UPDATE. This will keep the reader from
1984 * swapping the head page with the reader page.
1985 * The reader (on another CPU) will spin till
1986 * we are finished.
1988 * We just need to protect against interrupts
1989 * doing the job. We will set the next pointer
1990 * to HEAD. After that, we set the old pointer
1991 * to NORMAL, but only if it was HEAD before.
1992 * otherwise we are an interrupt, and only
1993 * want the outer most commit to reset it.
1995 new_head = next_page;
1996 rb_inc_page(cpu_buffer, &new_head);
1998 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1999 RB_PAGE_NORMAL);
2002 * Valid returns are:
2003 * HEAD - an interrupt came in and already set it.
2004 * NORMAL - One of two things:
2005 * 1) We really set it.
2006 * 2) A bunch of interrupts came in and moved
2007 * the page forward again.
2009 switch (ret) {
2010 case RB_PAGE_HEAD:
2011 case RB_PAGE_NORMAL:
2012 /* OK */
2013 break;
2014 default:
2015 RB_WARN_ON(cpu_buffer, 1);
2016 return -1;
2020 * It is possible that an interrupt came in,
2021 * set the head up, then more interrupts came in
2022 * and moved it again. When we get back here,
2023 * the page would have been set to NORMAL but we
2024 * just set it back to HEAD.
2026 * How do you detect this? Well, if that happened
2027 * the tail page would have moved.
2029 if (ret == RB_PAGE_NORMAL) {
2030 struct buffer_page *buffer_tail_page;
2032 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2034 * If the tail had moved passed next, then we need
2035 * to reset the pointer.
2037 if (buffer_tail_page != tail_page &&
2038 buffer_tail_page != next_page)
2039 rb_head_page_set_normal(cpu_buffer, new_head,
2040 next_page,
2041 RB_PAGE_HEAD);
2045 * If this was the outer most commit (the one that
2046 * changed the original pointer from HEAD to UPDATE),
2047 * then it is up to us to reset it to NORMAL.
2049 if (type == RB_PAGE_HEAD) {
2050 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2051 tail_page,
2052 RB_PAGE_UPDATE);
2053 if (RB_WARN_ON(cpu_buffer,
2054 ret != RB_PAGE_UPDATE))
2055 return -1;
2058 return 0;
2061 static inline void
2062 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2063 unsigned long tail, struct rb_event_info *info)
2065 struct buffer_page *tail_page = info->tail_page;
2066 struct ring_buffer_event *event;
2067 unsigned long length = info->length;
2070 * Only the event that crossed the page boundary
2071 * must fill the old tail_page with padding.
2073 if (tail >= BUF_PAGE_SIZE) {
2075 * If the page was filled, then we still need
2076 * to update the real_end. Reset it to zero
2077 * and the reader will ignore it.
2079 if (tail == BUF_PAGE_SIZE)
2080 tail_page->real_end = 0;
2082 local_sub(length, &tail_page->write);
2083 return;
2086 event = __rb_page_index(tail_page, tail);
2087 kmemcheck_annotate_bitfield(event, bitfield);
2089 /* account for padding bytes */
2090 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2093 * Save the original length to the meta data.
2094 * This will be used by the reader to add lost event
2095 * counter.
2097 tail_page->real_end = tail;
2100 * If this event is bigger than the minimum size, then
2101 * we need to be careful that we don't subtract the
2102 * write counter enough to allow another writer to slip
2103 * in on this page.
2104 * We put in a discarded commit instead, to make sure
2105 * that this space is not used again.
2107 * If we are less than the minimum size, we don't need to
2108 * worry about it.
2110 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2111 /* No room for any events */
2113 /* Mark the rest of the page with padding */
2114 rb_event_set_padding(event);
2116 /* Set the write back to the previous setting */
2117 local_sub(length, &tail_page->write);
2118 return;
2121 /* Put in a discarded event */
2122 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2123 event->type_len = RINGBUF_TYPE_PADDING;
2124 /* time delta must be non zero */
2125 event->time_delta = 1;
2127 /* Set write to end of buffer */
2128 length = (tail + length) - BUF_PAGE_SIZE;
2129 local_sub(length, &tail_page->write);
2132 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2135 * This is the slow path, force gcc not to inline it.
2137 static noinline struct ring_buffer_event *
2138 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2139 unsigned long tail, struct rb_event_info *info)
2141 struct buffer_page *tail_page = info->tail_page;
2142 struct buffer_page *commit_page = cpu_buffer->commit_page;
2143 struct ring_buffer *buffer = cpu_buffer->buffer;
2144 struct buffer_page *next_page;
2145 int ret;
2147 next_page = tail_page;
2149 rb_inc_page(cpu_buffer, &next_page);
2152 * If for some reason, we had an interrupt storm that made
2153 * it all the way around the buffer, bail, and warn
2154 * about it.
2156 if (unlikely(next_page == commit_page)) {
2157 local_inc(&cpu_buffer->commit_overrun);
2158 goto out_reset;
2162 * This is where the fun begins!
2164 * We are fighting against races between a reader that
2165 * could be on another CPU trying to swap its reader
2166 * page with the buffer head.
2168 * We are also fighting against interrupts coming in and
2169 * moving the head or tail on us as well.
2171 * If the next page is the head page then we have filled
2172 * the buffer, unless the commit page is still on the
2173 * reader page.
2175 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2178 * If the commit is not on the reader page, then
2179 * move the header page.
2181 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2183 * If we are not in overwrite mode,
2184 * this is easy, just stop here.
2186 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2187 local_inc(&cpu_buffer->dropped_events);
2188 goto out_reset;
2191 ret = rb_handle_head_page(cpu_buffer,
2192 tail_page,
2193 next_page);
2194 if (ret < 0)
2195 goto out_reset;
2196 if (ret)
2197 goto out_again;
2198 } else {
2200 * We need to be careful here too. The
2201 * commit page could still be on the reader
2202 * page. We could have a small buffer, and
2203 * have filled up the buffer with events
2204 * from interrupts and such, and wrapped.
2206 * Note, if the tail page is also the on the
2207 * reader_page, we let it move out.
2209 if (unlikely((cpu_buffer->commit_page !=
2210 cpu_buffer->tail_page) &&
2211 (cpu_buffer->commit_page ==
2212 cpu_buffer->reader_page))) {
2213 local_inc(&cpu_buffer->commit_overrun);
2214 goto out_reset;
2219 rb_tail_page_update(cpu_buffer, tail_page, next_page);
2221 out_again:
2223 rb_reset_tail(cpu_buffer, tail, info);
2225 /* Commit what we have for now. */
2226 rb_end_commit(cpu_buffer);
2227 /* rb_end_commit() decs committing */
2228 local_inc(&cpu_buffer->committing);
2230 /* fail and let the caller try again */
2231 return ERR_PTR(-EAGAIN);
2233 out_reset:
2234 /* reset write */
2235 rb_reset_tail(cpu_buffer, tail, info);
2237 return NULL;
2240 /* Slow path, do not inline */
2241 static noinline struct ring_buffer_event *
2242 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2244 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2246 /* Not the first event on the page? */
2247 if (rb_event_index(event)) {
2248 event->time_delta = delta & TS_MASK;
2249 event->array[0] = delta >> TS_SHIFT;
2250 } else {
2251 /* nope, just zero it */
2252 event->time_delta = 0;
2253 event->array[0] = 0;
2256 return skip_time_extend(event);
2259 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2260 struct ring_buffer_event *event);
2263 * rb_update_event - update event type and data
2264 * @event: the event to update
2265 * @type: the type of event
2266 * @length: the size of the event field in the ring buffer
2268 * Update the type and data fields of the event. The length
2269 * is the actual size that is written to the ring buffer,
2270 * and with this, we can determine what to place into the
2271 * data field.
2273 static void
2274 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2275 struct ring_buffer_event *event,
2276 struct rb_event_info *info)
2278 unsigned length = info->length;
2279 u64 delta = info->delta;
2281 /* Only a commit updates the timestamp */
2282 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2283 delta = 0;
2286 * If we need to add a timestamp, then we
2287 * add it to the start of the resevered space.
2289 if (unlikely(info->add_timestamp)) {
2290 event = rb_add_time_stamp(event, delta);
2291 length -= RB_LEN_TIME_EXTEND;
2292 delta = 0;
2295 event->time_delta = delta;
2296 length -= RB_EVNT_HDR_SIZE;
2297 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2298 event->type_len = 0;
2299 event->array[0] = length;
2300 } else
2301 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2304 static unsigned rb_calculate_event_length(unsigned length)
2306 struct ring_buffer_event event; /* Used only for sizeof array */
2308 /* zero length can cause confusions */
2309 if (!length)
2310 length++;
2312 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2313 length += sizeof(event.array[0]);
2315 length += RB_EVNT_HDR_SIZE;
2316 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2319 * In case the time delta is larger than the 27 bits for it
2320 * in the header, we need to add a timestamp. If another
2321 * event comes in when trying to discard this one to increase
2322 * the length, then the timestamp will be added in the allocated
2323 * space of this event. If length is bigger than the size needed
2324 * for the TIME_EXTEND, then padding has to be used. The events
2325 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2326 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2327 * As length is a multiple of 4, we only need to worry if it
2328 * is 12 (RB_LEN_TIME_EXTEND + 4).
2330 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2331 length += RB_ALIGNMENT;
2333 return length;
2336 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2337 static inline bool sched_clock_stable(void)
2339 return true;
2341 #endif
2343 static inline int
2344 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2345 struct ring_buffer_event *event)
2347 unsigned long new_index, old_index;
2348 struct buffer_page *bpage;
2349 unsigned long index;
2350 unsigned long addr;
2352 new_index = rb_event_index(event);
2353 old_index = new_index + rb_event_ts_length(event);
2354 addr = (unsigned long)event;
2355 addr &= PAGE_MASK;
2357 bpage = READ_ONCE(cpu_buffer->tail_page);
2359 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2360 unsigned long write_mask =
2361 local_read(&bpage->write) & ~RB_WRITE_MASK;
2362 unsigned long event_length = rb_event_length(event);
2364 * This is on the tail page. It is possible that
2365 * a write could come in and move the tail page
2366 * and write to the next page. That is fine
2367 * because we just shorten what is on this page.
2369 old_index += write_mask;
2370 new_index += write_mask;
2371 index = local_cmpxchg(&bpage->write, old_index, new_index);
2372 if (index == old_index) {
2373 /* update counters */
2374 local_sub(event_length, &cpu_buffer->entries_bytes);
2375 return 1;
2379 /* could not discard */
2380 return 0;
2383 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2385 local_inc(&cpu_buffer->committing);
2386 local_inc(&cpu_buffer->commits);
2389 static void
2390 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2392 unsigned long max_count;
2395 * We only race with interrupts and NMIs on this CPU.
2396 * If we own the commit event, then we can commit
2397 * all others that interrupted us, since the interruptions
2398 * are in stack format (they finish before they come
2399 * back to us). This allows us to do a simple loop to
2400 * assign the commit to the tail.
2402 again:
2403 max_count = cpu_buffer->nr_pages * 100;
2405 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2406 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2407 return;
2408 if (RB_WARN_ON(cpu_buffer,
2409 rb_is_reader_page(cpu_buffer->tail_page)))
2410 return;
2411 local_set(&cpu_buffer->commit_page->page->commit,
2412 rb_page_write(cpu_buffer->commit_page));
2413 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2414 /* Only update the write stamp if the page has an event */
2415 if (rb_page_write(cpu_buffer->commit_page))
2416 cpu_buffer->write_stamp =
2417 cpu_buffer->commit_page->page->time_stamp;
2418 /* add barrier to keep gcc from optimizing too much */
2419 barrier();
2421 while (rb_commit_index(cpu_buffer) !=
2422 rb_page_write(cpu_buffer->commit_page)) {
2424 local_set(&cpu_buffer->commit_page->page->commit,
2425 rb_page_write(cpu_buffer->commit_page));
2426 RB_WARN_ON(cpu_buffer,
2427 local_read(&cpu_buffer->commit_page->page->commit) &
2428 ~RB_WRITE_MASK);
2429 barrier();
2432 /* again, keep gcc from optimizing */
2433 barrier();
2436 * If an interrupt came in just after the first while loop
2437 * and pushed the tail page forward, we will be left with
2438 * a dangling commit that will never go forward.
2440 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2441 goto again;
2444 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2446 unsigned long commits;
2448 if (RB_WARN_ON(cpu_buffer,
2449 !local_read(&cpu_buffer->committing)))
2450 return;
2452 again:
2453 commits = local_read(&cpu_buffer->commits);
2454 /* synchronize with interrupts */
2455 barrier();
2456 if (local_read(&cpu_buffer->committing) == 1)
2457 rb_set_commit_to_write(cpu_buffer);
2459 local_dec(&cpu_buffer->committing);
2461 /* synchronize with interrupts */
2462 barrier();
2465 * Need to account for interrupts coming in between the
2466 * updating of the commit page and the clearing of the
2467 * committing counter.
2469 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2470 !local_read(&cpu_buffer->committing)) {
2471 local_inc(&cpu_buffer->committing);
2472 goto again;
2476 static inline void rb_event_discard(struct ring_buffer_event *event)
2478 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2479 event = skip_time_extend(event);
2481 /* array[0] holds the actual length for the discarded event */
2482 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2483 event->type_len = RINGBUF_TYPE_PADDING;
2484 /* time delta must be non zero */
2485 if (!event->time_delta)
2486 event->time_delta = 1;
2489 static inline bool
2490 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2491 struct ring_buffer_event *event)
2493 unsigned long addr = (unsigned long)event;
2494 unsigned long index;
2496 index = rb_event_index(event);
2497 addr &= PAGE_MASK;
2499 return cpu_buffer->commit_page->page == (void *)addr &&
2500 rb_commit_index(cpu_buffer) == index;
2503 static void
2504 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2505 struct ring_buffer_event *event)
2507 u64 delta;
2510 * The event first in the commit queue updates the
2511 * time stamp.
2513 if (rb_event_is_commit(cpu_buffer, event)) {
2515 * A commit event that is first on a page
2516 * updates the write timestamp with the page stamp
2518 if (!rb_event_index(event))
2519 cpu_buffer->write_stamp =
2520 cpu_buffer->commit_page->page->time_stamp;
2521 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2522 delta = event->array[0];
2523 delta <<= TS_SHIFT;
2524 delta += event->time_delta;
2525 cpu_buffer->write_stamp += delta;
2526 } else
2527 cpu_buffer->write_stamp += event->time_delta;
2531 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2532 struct ring_buffer_event *event)
2534 local_inc(&cpu_buffer->entries);
2535 rb_update_write_stamp(cpu_buffer, event);
2536 rb_end_commit(cpu_buffer);
2539 static __always_inline void
2540 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2542 bool pagebusy;
2544 if (buffer->irq_work.waiters_pending) {
2545 buffer->irq_work.waiters_pending = false;
2546 /* irq_work_queue() supplies it's own memory barriers */
2547 irq_work_queue(&buffer->irq_work.work);
2550 if (cpu_buffer->irq_work.waiters_pending) {
2551 cpu_buffer->irq_work.waiters_pending = false;
2552 /* irq_work_queue() supplies it's own memory barriers */
2553 irq_work_queue(&cpu_buffer->irq_work.work);
2556 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2558 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2559 cpu_buffer->irq_work.wakeup_full = true;
2560 cpu_buffer->irq_work.full_waiters_pending = false;
2561 /* irq_work_queue() supplies it's own memory barriers */
2562 irq_work_queue(&cpu_buffer->irq_work.work);
2567 * The lock and unlock are done within a preempt disable section.
2568 * The current_context per_cpu variable can only be modified
2569 * by the current task between lock and unlock. But it can
2570 * be modified more than once via an interrupt. To pass this
2571 * information from the lock to the unlock without having to
2572 * access the 'in_interrupt()' functions again (which do show
2573 * a bit of overhead in something as critical as function tracing,
2574 * we use a bitmask trick.
2576 * bit 0 = NMI context
2577 * bit 1 = IRQ context
2578 * bit 2 = SoftIRQ context
2579 * bit 3 = normal context.
2581 * This works because this is the order of contexts that can
2582 * preempt other contexts. A SoftIRQ never preempts an IRQ
2583 * context.
2585 * When the context is determined, the corresponding bit is
2586 * checked and set (if it was set, then a recursion of that context
2587 * happened).
2589 * On unlock, we need to clear this bit. To do so, just subtract
2590 * 1 from the current_context and AND it to itself.
2592 * (binary)
2593 * 101 - 1 = 100
2594 * 101 & 100 = 100 (clearing bit zero)
2596 * 1010 - 1 = 1001
2597 * 1010 & 1001 = 1000 (clearing bit 1)
2599 * The least significant bit can be cleared this way, and it
2600 * just so happens that it is the same bit corresponding to
2601 * the current context.
2604 static __always_inline int
2605 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2607 unsigned int val = cpu_buffer->current_context;
2608 int bit;
2610 if (in_interrupt()) {
2611 if (in_nmi())
2612 bit = RB_CTX_NMI;
2613 else if (in_irq())
2614 bit = RB_CTX_IRQ;
2615 else
2616 bit = RB_CTX_SOFTIRQ;
2617 } else
2618 bit = RB_CTX_NORMAL;
2620 if (unlikely(val & (1 << bit)))
2621 return 1;
2623 val |= (1 << bit);
2624 cpu_buffer->current_context = val;
2626 return 0;
2629 static __always_inline void
2630 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2632 cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2636 * ring_buffer_unlock_commit - commit a reserved
2637 * @buffer: The buffer to commit to
2638 * @event: The event pointer to commit.
2640 * This commits the data to the ring buffer, and releases any locks held.
2642 * Must be paired with ring_buffer_lock_reserve.
2644 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2645 struct ring_buffer_event *event)
2647 struct ring_buffer_per_cpu *cpu_buffer;
2648 int cpu = raw_smp_processor_id();
2650 cpu_buffer = buffer->buffers[cpu];
2652 rb_commit(cpu_buffer, event);
2654 rb_wakeups(buffer, cpu_buffer);
2656 trace_recursive_unlock(cpu_buffer);
2658 preempt_enable_notrace();
2660 return 0;
2662 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2664 static noinline void
2665 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2666 struct rb_event_info *info)
2668 WARN_ONCE(info->delta > (1ULL << 59),
2669 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2670 (unsigned long long)info->delta,
2671 (unsigned long long)info->ts,
2672 (unsigned long long)cpu_buffer->write_stamp,
2673 sched_clock_stable() ? "" :
2674 "If you just came from a suspend/resume,\n"
2675 "please switch to the trace global clock:\n"
2676 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2677 info->add_timestamp = 1;
2680 static struct ring_buffer_event *
2681 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2682 struct rb_event_info *info)
2684 struct ring_buffer_event *event;
2685 struct buffer_page *tail_page;
2686 unsigned long tail, write;
2689 * If the time delta since the last event is too big to
2690 * hold in the time field of the event, then we append a
2691 * TIME EXTEND event ahead of the data event.
2693 if (unlikely(info->add_timestamp))
2694 info->length += RB_LEN_TIME_EXTEND;
2696 /* Don't let the compiler play games with cpu_buffer->tail_page */
2697 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2698 write = local_add_return(info->length, &tail_page->write);
2700 /* set write to only the index of the write */
2701 write &= RB_WRITE_MASK;
2702 tail = write - info->length;
2705 * If this is the first commit on the page, then it has the same
2706 * timestamp as the page itself.
2708 if (!tail)
2709 info->delta = 0;
2711 /* See if we shot pass the end of this buffer page */
2712 if (unlikely(write > BUF_PAGE_SIZE))
2713 return rb_move_tail(cpu_buffer, tail, info);
2715 /* We reserved something on the buffer */
2717 event = __rb_page_index(tail_page, tail);
2718 kmemcheck_annotate_bitfield(event, bitfield);
2719 rb_update_event(cpu_buffer, event, info);
2721 local_inc(&tail_page->entries);
2724 * If this is the first commit on the page, then update
2725 * its timestamp.
2727 if (!tail)
2728 tail_page->page->time_stamp = info->ts;
2730 /* account for these added bytes */
2731 local_add(info->length, &cpu_buffer->entries_bytes);
2733 return event;
2736 static struct ring_buffer_event *
2737 rb_reserve_next_event(struct ring_buffer *buffer,
2738 struct ring_buffer_per_cpu *cpu_buffer,
2739 unsigned long length)
2741 struct ring_buffer_event *event;
2742 struct rb_event_info info;
2743 int nr_loops = 0;
2744 u64 diff;
2746 rb_start_commit(cpu_buffer);
2748 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2750 * Due to the ability to swap a cpu buffer from a buffer
2751 * it is possible it was swapped before we committed.
2752 * (committing stops a swap). We check for it here and
2753 * if it happened, we have to fail the write.
2755 barrier();
2756 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2757 local_dec(&cpu_buffer->committing);
2758 local_dec(&cpu_buffer->commits);
2759 return NULL;
2761 #endif
2763 info.length = rb_calculate_event_length(length);
2764 again:
2765 info.add_timestamp = 0;
2766 info.delta = 0;
2769 * We allow for interrupts to reenter here and do a trace.
2770 * If one does, it will cause this original code to loop
2771 * back here. Even with heavy interrupts happening, this
2772 * should only happen a few times in a row. If this happens
2773 * 1000 times in a row, there must be either an interrupt
2774 * storm or we have something buggy.
2775 * Bail!
2777 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2778 goto out_fail;
2780 info.ts = rb_time_stamp(cpu_buffer->buffer);
2781 diff = info.ts - cpu_buffer->write_stamp;
2783 /* make sure this diff is calculated here */
2784 barrier();
2786 /* Did the write stamp get updated already? */
2787 if (likely(info.ts >= cpu_buffer->write_stamp)) {
2788 info.delta = diff;
2789 if (unlikely(test_time_stamp(info.delta)))
2790 rb_handle_timestamp(cpu_buffer, &info);
2793 event = __rb_reserve_next(cpu_buffer, &info);
2795 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2796 if (info.add_timestamp)
2797 info.length -= RB_LEN_TIME_EXTEND;
2798 goto again;
2801 if (!event)
2802 goto out_fail;
2804 return event;
2806 out_fail:
2807 rb_end_commit(cpu_buffer);
2808 return NULL;
2812 * ring_buffer_lock_reserve - reserve a part of the buffer
2813 * @buffer: the ring buffer to reserve from
2814 * @length: the length of the data to reserve (excluding event header)
2816 * Returns a reseverd event on the ring buffer to copy directly to.
2817 * The user of this interface will need to get the body to write into
2818 * and can use the ring_buffer_event_data() interface.
2820 * The length is the length of the data needed, not the event length
2821 * which also includes the event header.
2823 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2824 * If NULL is returned, then nothing has been allocated or locked.
2826 struct ring_buffer_event *
2827 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2829 struct ring_buffer_per_cpu *cpu_buffer;
2830 struct ring_buffer_event *event;
2831 int cpu;
2833 /* If we are tracing schedule, we don't want to recurse */
2834 preempt_disable_notrace();
2836 if (unlikely(atomic_read(&buffer->record_disabled)))
2837 goto out;
2839 cpu = raw_smp_processor_id();
2841 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2842 goto out;
2844 cpu_buffer = buffer->buffers[cpu];
2846 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2847 goto out;
2849 if (unlikely(length > BUF_MAX_DATA_SIZE))
2850 goto out;
2852 if (unlikely(trace_recursive_lock(cpu_buffer)))
2853 goto out;
2855 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2856 if (!event)
2857 goto out_unlock;
2859 return event;
2861 out_unlock:
2862 trace_recursive_unlock(cpu_buffer);
2863 out:
2864 preempt_enable_notrace();
2865 return NULL;
2867 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2870 * Decrement the entries to the page that an event is on.
2871 * The event does not even need to exist, only the pointer
2872 * to the page it is on. This may only be called before the commit
2873 * takes place.
2875 static inline void
2876 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2877 struct ring_buffer_event *event)
2879 unsigned long addr = (unsigned long)event;
2880 struct buffer_page *bpage = cpu_buffer->commit_page;
2881 struct buffer_page *start;
2883 addr &= PAGE_MASK;
2885 /* Do the likely case first */
2886 if (likely(bpage->page == (void *)addr)) {
2887 local_dec(&bpage->entries);
2888 return;
2892 * Because the commit page may be on the reader page we
2893 * start with the next page and check the end loop there.
2895 rb_inc_page(cpu_buffer, &bpage);
2896 start = bpage;
2897 do {
2898 if (bpage->page == (void *)addr) {
2899 local_dec(&bpage->entries);
2900 return;
2902 rb_inc_page(cpu_buffer, &bpage);
2903 } while (bpage != start);
2905 /* commit not part of this buffer?? */
2906 RB_WARN_ON(cpu_buffer, 1);
2910 * ring_buffer_commit_discard - discard an event that has not been committed
2911 * @buffer: the ring buffer
2912 * @event: non committed event to discard
2914 * Sometimes an event that is in the ring buffer needs to be ignored.
2915 * This function lets the user discard an event in the ring buffer
2916 * and then that event will not be read later.
2918 * This function only works if it is called before the the item has been
2919 * committed. It will try to free the event from the ring buffer
2920 * if another event has not been added behind it.
2922 * If another event has been added behind it, it will set the event
2923 * up as discarded, and perform the commit.
2925 * If this function is called, do not call ring_buffer_unlock_commit on
2926 * the event.
2928 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2929 struct ring_buffer_event *event)
2931 struct ring_buffer_per_cpu *cpu_buffer;
2932 int cpu;
2934 /* The event is discarded regardless */
2935 rb_event_discard(event);
2937 cpu = smp_processor_id();
2938 cpu_buffer = buffer->buffers[cpu];
2941 * This must only be called if the event has not been
2942 * committed yet. Thus we can assume that preemption
2943 * is still disabled.
2945 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2947 rb_decrement_entry(cpu_buffer, event);
2948 if (rb_try_to_discard(cpu_buffer, event))
2949 goto out;
2952 * The commit is still visible by the reader, so we
2953 * must still update the timestamp.
2955 rb_update_write_stamp(cpu_buffer, event);
2956 out:
2957 rb_end_commit(cpu_buffer);
2959 trace_recursive_unlock(cpu_buffer);
2961 preempt_enable_notrace();
2964 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2967 * ring_buffer_write - write data to the buffer without reserving
2968 * @buffer: The ring buffer to write to.
2969 * @length: The length of the data being written (excluding the event header)
2970 * @data: The data to write to the buffer.
2972 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2973 * one function. If you already have the data to write to the buffer, it
2974 * may be easier to simply call this function.
2976 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2977 * and not the length of the event which would hold the header.
2979 int ring_buffer_write(struct ring_buffer *buffer,
2980 unsigned long length,
2981 void *data)
2983 struct ring_buffer_per_cpu *cpu_buffer;
2984 struct ring_buffer_event *event;
2985 void *body;
2986 int ret = -EBUSY;
2987 int cpu;
2989 preempt_disable_notrace();
2991 if (atomic_read(&buffer->record_disabled))
2992 goto out;
2994 cpu = raw_smp_processor_id();
2996 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2997 goto out;
2999 cpu_buffer = buffer->buffers[cpu];
3001 if (atomic_read(&cpu_buffer->record_disabled))
3002 goto out;
3004 if (length > BUF_MAX_DATA_SIZE)
3005 goto out;
3007 if (unlikely(trace_recursive_lock(cpu_buffer)))
3008 goto out;
3010 event = rb_reserve_next_event(buffer, cpu_buffer, length);
3011 if (!event)
3012 goto out_unlock;
3014 body = rb_event_data(event);
3016 memcpy(body, data, length);
3018 rb_commit(cpu_buffer, event);
3020 rb_wakeups(buffer, cpu_buffer);
3022 ret = 0;
3024 out_unlock:
3025 trace_recursive_unlock(cpu_buffer);
3027 out:
3028 preempt_enable_notrace();
3030 return ret;
3032 EXPORT_SYMBOL_GPL(ring_buffer_write);
3034 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3036 struct buffer_page *reader = cpu_buffer->reader_page;
3037 struct buffer_page *head = rb_set_head_page(cpu_buffer);
3038 struct buffer_page *commit = cpu_buffer->commit_page;
3040 /* In case of error, head will be NULL */
3041 if (unlikely(!head))
3042 return true;
3044 return reader->read == rb_page_commit(reader) &&
3045 (commit == reader ||
3046 (commit == head &&
3047 head->read == rb_page_commit(commit)));
3051 * ring_buffer_record_disable - stop all writes into the buffer
3052 * @buffer: The ring buffer to stop writes to.
3054 * This prevents all writes to the buffer. Any attempt to write
3055 * to the buffer after this will fail and return NULL.
3057 * The caller should call synchronize_sched() after this.
3059 void ring_buffer_record_disable(struct ring_buffer *buffer)
3061 atomic_inc(&buffer->record_disabled);
3063 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3066 * ring_buffer_record_enable - enable writes to the buffer
3067 * @buffer: The ring buffer to enable writes
3069 * Note, multiple disables will need the same number of enables
3070 * to truly enable the writing (much like preempt_disable).
3072 void ring_buffer_record_enable(struct ring_buffer *buffer)
3074 atomic_dec(&buffer->record_disabled);
3076 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3079 * ring_buffer_record_off - stop all writes into the buffer
3080 * @buffer: The ring buffer to stop writes to.
3082 * This prevents all writes to the buffer. Any attempt to write
3083 * to the buffer after this will fail and return NULL.
3085 * This is different than ring_buffer_record_disable() as
3086 * it works like an on/off switch, where as the disable() version
3087 * must be paired with a enable().
3089 void ring_buffer_record_off(struct ring_buffer *buffer)
3091 unsigned int rd;
3092 unsigned int new_rd;
3094 do {
3095 rd = atomic_read(&buffer->record_disabled);
3096 new_rd = rd | RB_BUFFER_OFF;
3097 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3099 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3102 * ring_buffer_record_on - restart writes into the buffer
3103 * @buffer: The ring buffer to start writes to.
3105 * This enables all writes to the buffer that was disabled by
3106 * ring_buffer_record_off().
3108 * This is different than ring_buffer_record_enable() as
3109 * it works like an on/off switch, where as the enable() version
3110 * must be paired with a disable().
3112 void ring_buffer_record_on(struct ring_buffer *buffer)
3114 unsigned int rd;
3115 unsigned int new_rd;
3117 do {
3118 rd = atomic_read(&buffer->record_disabled);
3119 new_rd = rd & ~RB_BUFFER_OFF;
3120 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3122 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3125 * ring_buffer_record_is_on - return true if the ring buffer can write
3126 * @buffer: The ring buffer to see if write is enabled
3128 * Returns true if the ring buffer is in a state that it accepts writes.
3130 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3132 return !atomic_read(&buffer->record_disabled);
3136 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3137 * @buffer: The ring buffer to stop writes to.
3138 * @cpu: The CPU buffer to stop
3140 * This prevents all writes to the buffer. Any attempt to write
3141 * to the buffer after this will fail and return NULL.
3143 * The caller should call synchronize_sched() after this.
3145 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3147 struct ring_buffer_per_cpu *cpu_buffer;
3149 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3150 return;
3152 cpu_buffer = buffer->buffers[cpu];
3153 atomic_inc(&cpu_buffer->record_disabled);
3155 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3158 * ring_buffer_record_enable_cpu - enable writes to the buffer
3159 * @buffer: The ring buffer to enable writes
3160 * @cpu: The CPU to enable.
3162 * Note, multiple disables will need the same number of enables
3163 * to truly enable the writing (much like preempt_disable).
3165 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3167 struct ring_buffer_per_cpu *cpu_buffer;
3169 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3170 return;
3172 cpu_buffer = buffer->buffers[cpu];
3173 atomic_dec(&cpu_buffer->record_disabled);
3175 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3178 * The total entries in the ring buffer is the running counter
3179 * of entries entered into the ring buffer, minus the sum of
3180 * the entries read from the ring buffer and the number of
3181 * entries that were overwritten.
3183 static inline unsigned long
3184 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3186 return local_read(&cpu_buffer->entries) -
3187 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3191 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3192 * @buffer: The ring buffer
3193 * @cpu: The per CPU buffer to read from.
3195 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3197 unsigned long flags;
3198 struct ring_buffer_per_cpu *cpu_buffer;
3199 struct buffer_page *bpage;
3200 u64 ret = 0;
3202 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3203 return 0;
3205 cpu_buffer = buffer->buffers[cpu];
3206 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3208 * if the tail is on reader_page, oldest time stamp is on the reader
3209 * page
3211 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3212 bpage = cpu_buffer->reader_page;
3213 else
3214 bpage = rb_set_head_page(cpu_buffer);
3215 if (bpage)
3216 ret = bpage->page->time_stamp;
3217 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3219 return ret;
3221 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3224 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3225 * @buffer: The ring buffer
3226 * @cpu: The per CPU buffer to read from.
3228 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3230 struct ring_buffer_per_cpu *cpu_buffer;
3231 unsigned long ret;
3233 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3234 return 0;
3236 cpu_buffer = buffer->buffers[cpu];
3237 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3239 return ret;
3241 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3244 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3245 * @buffer: The ring buffer
3246 * @cpu: The per CPU buffer to get the entries from.
3248 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3250 struct ring_buffer_per_cpu *cpu_buffer;
3252 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3253 return 0;
3255 cpu_buffer = buffer->buffers[cpu];
3257 return rb_num_of_entries(cpu_buffer);
3259 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3262 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3263 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3264 * @buffer: The ring buffer
3265 * @cpu: The per CPU buffer to get the number of overruns from
3267 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3269 struct ring_buffer_per_cpu *cpu_buffer;
3270 unsigned long ret;
3272 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3273 return 0;
3275 cpu_buffer = buffer->buffers[cpu];
3276 ret = local_read(&cpu_buffer->overrun);
3278 return ret;
3280 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3283 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3284 * commits failing due to the buffer wrapping around while there are uncommitted
3285 * events, such as during an interrupt storm.
3286 * @buffer: The ring buffer
3287 * @cpu: The per CPU buffer to get the number of overruns from
3289 unsigned long
3290 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3292 struct ring_buffer_per_cpu *cpu_buffer;
3293 unsigned long ret;
3295 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3296 return 0;
3298 cpu_buffer = buffer->buffers[cpu];
3299 ret = local_read(&cpu_buffer->commit_overrun);
3301 return ret;
3303 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3306 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3307 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3308 * @buffer: The ring buffer
3309 * @cpu: The per CPU buffer to get the number of overruns from
3311 unsigned long
3312 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3314 struct ring_buffer_per_cpu *cpu_buffer;
3315 unsigned long ret;
3317 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3318 return 0;
3320 cpu_buffer = buffer->buffers[cpu];
3321 ret = local_read(&cpu_buffer->dropped_events);
3323 return ret;
3325 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3328 * ring_buffer_read_events_cpu - get the number of events successfully read
3329 * @buffer: The ring buffer
3330 * @cpu: The per CPU buffer to get the number of events read
3332 unsigned long
3333 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3335 struct ring_buffer_per_cpu *cpu_buffer;
3337 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3338 return 0;
3340 cpu_buffer = buffer->buffers[cpu];
3341 return cpu_buffer->read;
3343 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3346 * ring_buffer_entries - get the number of entries in a buffer
3347 * @buffer: The ring buffer
3349 * Returns the total number of entries in the ring buffer
3350 * (all CPU entries)
3352 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3354 struct ring_buffer_per_cpu *cpu_buffer;
3355 unsigned long entries = 0;
3356 int cpu;
3358 /* if you care about this being correct, lock the buffer */
3359 for_each_buffer_cpu(buffer, cpu) {
3360 cpu_buffer = buffer->buffers[cpu];
3361 entries += rb_num_of_entries(cpu_buffer);
3364 return entries;
3366 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3369 * ring_buffer_overruns - get the number of overruns in buffer
3370 * @buffer: The ring buffer
3372 * Returns the total number of overruns in the ring buffer
3373 * (all CPU entries)
3375 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3377 struct ring_buffer_per_cpu *cpu_buffer;
3378 unsigned long overruns = 0;
3379 int cpu;
3381 /* if you care about this being correct, lock the buffer */
3382 for_each_buffer_cpu(buffer, cpu) {
3383 cpu_buffer = buffer->buffers[cpu];
3384 overruns += local_read(&cpu_buffer->overrun);
3387 return overruns;
3389 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3391 static void rb_iter_reset(struct ring_buffer_iter *iter)
3393 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3395 /* Iterator usage is expected to have record disabled */
3396 iter->head_page = cpu_buffer->reader_page;
3397 iter->head = cpu_buffer->reader_page->read;
3399 iter->cache_reader_page = iter->head_page;
3400 iter->cache_read = cpu_buffer->read;
3402 if (iter->head)
3403 iter->read_stamp = cpu_buffer->read_stamp;
3404 else
3405 iter->read_stamp = iter->head_page->page->time_stamp;
3409 * ring_buffer_iter_reset - reset an iterator
3410 * @iter: The iterator to reset
3412 * Resets the iterator, so that it will start from the beginning
3413 * again.
3415 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3417 struct ring_buffer_per_cpu *cpu_buffer;
3418 unsigned long flags;
3420 if (!iter)
3421 return;
3423 cpu_buffer = iter->cpu_buffer;
3425 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3426 rb_iter_reset(iter);
3427 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3429 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3432 * ring_buffer_iter_empty - check if an iterator has no more to read
3433 * @iter: The iterator to check
3435 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3437 struct ring_buffer_per_cpu *cpu_buffer;
3439 cpu_buffer = iter->cpu_buffer;
3441 return iter->head_page == cpu_buffer->commit_page &&
3442 iter->head == rb_commit_index(cpu_buffer);
3444 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3446 static void
3447 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3448 struct ring_buffer_event *event)
3450 u64 delta;
3452 switch (event->type_len) {
3453 case RINGBUF_TYPE_PADDING:
3454 return;
3456 case RINGBUF_TYPE_TIME_EXTEND:
3457 delta = event->array[0];
3458 delta <<= TS_SHIFT;
3459 delta += event->time_delta;
3460 cpu_buffer->read_stamp += delta;
3461 return;
3463 case RINGBUF_TYPE_TIME_STAMP:
3464 /* FIXME: not implemented */
3465 return;
3467 case RINGBUF_TYPE_DATA:
3468 cpu_buffer->read_stamp += event->time_delta;
3469 return;
3471 default:
3472 BUG();
3474 return;
3477 static void
3478 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3479 struct ring_buffer_event *event)
3481 u64 delta;
3483 switch (event->type_len) {
3484 case RINGBUF_TYPE_PADDING:
3485 return;
3487 case RINGBUF_TYPE_TIME_EXTEND:
3488 delta = event->array[0];
3489 delta <<= TS_SHIFT;
3490 delta += event->time_delta;
3491 iter->read_stamp += delta;
3492 return;
3494 case RINGBUF_TYPE_TIME_STAMP:
3495 /* FIXME: not implemented */
3496 return;
3498 case RINGBUF_TYPE_DATA:
3499 iter->read_stamp += event->time_delta;
3500 return;
3502 default:
3503 BUG();
3505 return;
3508 static struct buffer_page *
3509 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3511 struct buffer_page *reader = NULL;
3512 unsigned long overwrite;
3513 unsigned long flags;
3514 int nr_loops = 0;
3515 int ret;
3517 local_irq_save(flags);
3518 arch_spin_lock(&cpu_buffer->lock);
3520 again:
3522 * This should normally only loop twice. But because the
3523 * start of the reader inserts an empty page, it causes
3524 * a case where we will loop three times. There should be no
3525 * reason to loop four times (that I know of).
3527 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3528 reader = NULL;
3529 goto out;
3532 reader = cpu_buffer->reader_page;
3534 /* If there's more to read, return this page */
3535 if (cpu_buffer->reader_page->read < rb_page_size(reader))
3536 goto out;
3538 /* Never should we have an index greater than the size */
3539 if (RB_WARN_ON(cpu_buffer,
3540 cpu_buffer->reader_page->read > rb_page_size(reader)))
3541 goto out;
3543 /* check if we caught up to the tail */
3544 reader = NULL;
3545 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3546 goto out;
3548 /* Don't bother swapping if the ring buffer is empty */
3549 if (rb_num_of_entries(cpu_buffer) == 0)
3550 goto out;
3553 * Reset the reader page to size zero.
3555 local_set(&cpu_buffer->reader_page->write, 0);
3556 local_set(&cpu_buffer->reader_page->entries, 0);
3557 local_set(&cpu_buffer->reader_page->page->commit, 0);
3558 cpu_buffer->reader_page->real_end = 0;
3560 spin:
3562 * Splice the empty reader page into the list around the head.
3564 reader = rb_set_head_page(cpu_buffer);
3565 if (!reader)
3566 goto out;
3567 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3568 cpu_buffer->reader_page->list.prev = reader->list.prev;
3571 * cpu_buffer->pages just needs to point to the buffer, it
3572 * has no specific buffer page to point to. Lets move it out
3573 * of our way so we don't accidentally swap it.
3575 cpu_buffer->pages = reader->list.prev;
3577 /* The reader page will be pointing to the new head */
3578 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3581 * We want to make sure we read the overruns after we set up our
3582 * pointers to the next object. The writer side does a
3583 * cmpxchg to cross pages which acts as the mb on the writer
3584 * side. Note, the reader will constantly fail the swap
3585 * while the writer is updating the pointers, so this
3586 * guarantees that the overwrite recorded here is the one we
3587 * want to compare with the last_overrun.
3589 smp_mb();
3590 overwrite = local_read(&(cpu_buffer->overrun));
3593 * Here's the tricky part.
3595 * We need to move the pointer past the header page.
3596 * But we can only do that if a writer is not currently
3597 * moving it. The page before the header page has the
3598 * flag bit '1' set if it is pointing to the page we want.
3599 * but if the writer is in the process of moving it
3600 * than it will be '2' or already moved '0'.
3603 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3606 * If we did not convert it, then we must try again.
3608 if (!ret)
3609 goto spin;
3612 * Yeah! We succeeded in replacing the page.
3614 * Now make the new head point back to the reader page.
3616 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3617 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3619 /* Finally update the reader page to the new head */
3620 cpu_buffer->reader_page = reader;
3621 cpu_buffer->reader_page->read = 0;
3623 if (overwrite != cpu_buffer->last_overrun) {
3624 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3625 cpu_buffer->last_overrun = overwrite;
3628 goto again;
3630 out:
3631 /* Update the read_stamp on the first event */
3632 if (reader && reader->read == 0)
3633 cpu_buffer->read_stamp = reader->page->time_stamp;
3635 arch_spin_unlock(&cpu_buffer->lock);
3636 local_irq_restore(flags);
3638 return reader;
3641 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3643 struct ring_buffer_event *event;
3644 struct buffer_page *reader;
3645 unsigned length;
3647 reader = rb_get_reader_page(cpu_buffer);
3649 /* This function should not be called when buffer is empty */
3650 if (RB_WARN_ON(cpu_buffer, !reader))
3651 return;
3653 event = rb_reader_event(cpu_buffer);
3655 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3656 cpu_buffer->read++;
3658 rb_update_read_stamp(cpu_buffer, event);
3660 length = rb_event_length(event);
3661 cpu_buffer->reader_page->read += length;
3664 static void rb_advance_iter(struct ring_buffer_iter *iter)
3666 struct ring_buffer_per_cpu *cpu_buffer;
3667 struct ring_buffer_event *event;
3668 unsigned length;
3670 cpu_buffer = iter->cpu_buffer;
3673 * Check if we are at the end of the buffer.
3675 if (iter->head >= rb_page_size(iter->head_page)) {
3676 /* discarded commits can make the page empty */
3677 if (iter->head_page == cpu_buffer->commit_page)
3678 return;
3679 rb_inc_iter(iter);
3680 return;
3683 event = rb_iter_head_event(iter);
3685 length = rb_event_length(event);
3688 * This should not be called to advance the header if we are
3689 * at the tail of the buffer.
3691 if (RB_WARN_ON(cpu_buffer,
3692 (iter->head_page == cpu_buffer->commit_page) &&
3693 (iter->head + length > rb_commit_index(cpu_buffer))))
3694 return;
3696 rb_update_iter_read_stamp(iter, event);
3698 iter->head += length;
3700 /* check for end of page padding */
3701 if ((iter->head >= rb_page_size(iter->head_page)) &&
3702 (iter->head_page != cpu_buffer->commit_page))
3703 rb_inc_iter(iter);
3706 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3708 return cpu_buffer->lost_events;
3711 static struct ring_buffer_event *
3712 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3713 unsigned long *lost_events)
3715 struct ring_buffer_event *event;
3716 struct buffer_page *reader;
3717 int nr_loops = 0;
3719 again:
3721 * We repeat when a time extend is encountered.
3722 * Since the time extend is always attached to a data event,
3723 * we should never loop more than once.
3724 * (We never hit the following condition more than twice).
3726 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3727 return NULL;
3729 reader = rb_get_reader_page(cpu_buffer);
3730 if (!reader)
3731 return NULL;
3733 event = rb_reader_event(cpu_buffer);
3735 switch (event->type_len) {
3736 case RINGBUF_TYPE_PADDING:
3737 if (rb_null_event(event))
3738 RB_WARN_ON(cpu_buffer, 1);
3740 * Because the writer could be discarding every
3741 * event it creates (which would probably be bad)
3742 * if we were to go back to "again" then we may never
3743 * catch up, and will trigger the warn on, or lock
3744 * the box. Return the padding, and we will release
3745 * the current locks, and try again.
3747 return event;
3749 case RINGBUF_TYPE_TIME_EXTEND:
3750 /* Internal data, OK to advance */
3751 rb_advance_reader(cpu_buffer);
3752 goto again;
3754 case RINGBUF_TYPE_TIME_STAMP:
3755 /* FIXME: not implemented */
3756 rb_advance_reader(cpu_buffer);
3757 goto again;
3759 case RINGBUF_TYPE_DATA:
3760 if (ts) {
3761 *ts = cpu_buffer->read_stamp + event->time_delta;
3762 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3763 cpu_buffer->cpu, ts);
3765 if (lost_events)
3766 *lost_events = rb_lost_events(cpu_buffer);
3767 return event;
3769 default:
3770 BUG();
3773 return NULL;
3775 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3777 static struct ring_buffer_event *
3778 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3780 struct ring_buffer *buffer;
3781 struct ring_buffer_per_cpu *cpu_buffer;
3782 struct ring_buffer_event *event;
3783 int nr_loops = 0;
3785 cpu_buffer = iter->cpu_buffer;
3786 buffer = cpu_buffer->buffer;
3789 * Check if someone performed a consuming read to
3790 * the buffer. A consuming read invalidates the iterator
3791 * and we need to reset the iterator in this case.
3793 if (unlikely(iter->cache_read != cpu_buffer->read ||
3794 iter->cache_reader_page != cpu_buffer->reader_page))
3795 rb_iter_reset(iter);
3797 again:
3798 if (ring_buffer_iter_empty(iter))
3799 return NULL;
3802 * We repeat when a time extend is encountered or we hit
3803 * the end of the page. Since the time extend is always attached
3804 * to a data event, we should never loop more than three times.
3805 * Once for going to next page, once on time extend, and
3806 * finally once to get the event.
3807 * (We never hit the following condition more than thrice).
3809 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3810 return NULL;
3812 if (rb_per_cpu_empty(cpu_buffer))
3813 return NULL;
3815 if (iter->head >= rb_page_size(iter->head_page)) {
3816 rb_inc_iter(iter);
3817 goto again;
3820 event = rb_iter_head_event(iter);
3822 switch (event->type_len) {
3823 case RINGBUF_TYPE_PADDING:
3824 if (rb_null_event(event)) {
3825 rb_inc_iter(iter);
3826 goto again;
3828 rb_advance_iter(iter);
3829 return event;
3831 case RINGBUF_TYPE_TIME_EXTEND:
3832 /* Internal data, OK to advance */
3833 rb_advance_iter(iter);
3834 goto again;
3836 case RINGBUF_TYPE_TIME_STAMP:
3837 /* FIXME: not implemented */
3838 rb_advance_iter(iter);
3839 goto again;
3841 case RINGBUF_TYPE_DATA:
3842 if (ts) {
3843 *ts = iter->read_stamp + event->time_delta;
3844 ring_buffer_normalize_time_stamp(buffer,
3845 cpu_buffer->cpu, ts);
3847 return event;
3849 default:
3850 BUG();
3853 return NULL;
3855 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3857 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3859 if (likely(!in_nmi())) {
3860 raw_spin_lock(&cpu_buffer->reader_lock);
3861 return true;
3865 * If an NMI die dumps out the content of the ring buffer
3866 * trylock must be used to prevent a deadlock if the NMI
3867 * preempted a task that holds the ring buffer locks. If
3868 * we get the lock then all is fine, if not, then continue
3869 * to do the read, but this can corrupt the ring buffer,
3870 * so it must be permanently disabled from future writes.
3871 * Reading from NMI is a oneshot deal.
3873 if (raw_spin_trylock(&cpu_buffer->reader_lock))
3874 return true;
3876 /* Continue without locking, but disable the ring buffer */
3877 atomic_inc(&cpu_buffer->record_disabled);
3878 return false;
3881 static inline void
3882 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3884 if (likely(locked))
3885 raw_spin_unlock(&cpu_buffer->reader_lock);
3886 return;
3890 * ring_buffer_peek - peek at the next event to be read
3891 * @buffer: The ring buffer to read
3892 * @cpu: The cpu to peak at
3893 * @ts: The timestamp counter of this event.
3894 * @lost_events: a variable to store if events were lost (may be NULL)
3896 * This will return the event that will be read next, but does
3897 * not consume the data.
3899 struct ring_buffer_event *
3900 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3901 unsigned long *lost_events)
3903 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3904 struct ring_buffer_event *event;
3905 unsigned long flags;
3906 bool dolock;
3908 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3909 return NULL;
3911 again:
3912 local_irq_save(flags);
3913 dolock = rb_reader_lock(cpu_buffer);
3914 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3915 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3916 rb_advance_reader(cpu_buffer);
3917 rb_reader_unlock(cpu_buffer, dolock);
3918 local_irq_restore(flags);
3920 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3921 goto again;
3923 return event;
3927 * ring_buffer_iter_peek - peek at the next event to be read
3928 * @iter: The ring buffer iterator
3929 * @ts: The timestamp counter of this event.
3931 * This will return the event that will be read next, but does
3932 * not increment the iterator.
3934 struct ring_buffer_event *
3935 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3937 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3938 struct ring_buffer_event *event;
3939 unsigned long flags;
3941 again:
3942 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3943 event = rb_iter_peek(iter, ts);
3944 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3946 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3947 goto again;
3949 return event;
3953 * ring_buffer_consume - return an event and consume it
3954 * @buffer: The ring buffer to get the next event from
3955 * @cpu: the cpu to read the buffer from
3956 * @ts: a variable to store the timestamp (may be NULL)
3957 * @lost_events: a variable to store if events were lost (may be NULL)
3959 * Returns the next event in the ring buffer, and that event is consumed.
3960 * Meaning, that sequential reads will keep returning a different event,
3961 * and eventually empty the ring buffer if the producer is slower.
3963 struct ring_buffer_event *
3964 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3965 unsigned long *lost_events)
3967 struct ring_buffer_per_cpu *cpu_buffer;
3968 struct ring_buffer_event *event = NULL;
3969 unsigned long flags;
3970 bool dolock;
3972 again:
3973 /* might be called in atomic */
3974 preempt_disable();
3976 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3977 goto out;
3979 cpu_buffer = buffer->buffers[cpu];
3980 local_irq_save(flags);
3981 dolock = rb_reader_lock(cpu_buffer);
3983 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3984 if (event) {
3985 cpu_buffer->lost_events = 0;
3986 rb_advance_reader(cpu_buffer);
3989 rb_reader_unlock(cpu_buffer, dolock);
3990 local_irq_restore(flags);
3992 out:
3993 preempt_enable();
3995 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3996 goto again;
3998 return event;
4000 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4003 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4004 * @buffer: The ring buffer to read from
4005 * @cpu: The cpu buffer to iterate over
4007 * This performs the initial preparations necessary to iterate
4008 * through the buffer. Memory is allocated, buffer recording
4009 * is disabled, and the iterator pointer is returned to the caller.
4011 * Disabling buffer recordng prevents the reading from being
4012 * corrupted. This is not a consuming read, so a producer is not
4013 * expected.
4015 * After a sequence of ring_buffer_read_prepare calls, the user is
4016 * expected to make at least one call to ring_buffer_read_prepare_sync.
4017 * Afterwards, ring_buffer_read_start is invoked to get things going
4018 * for real.
4020 * This overall must be paired with ring_buffer_read_finish.
4022 struct ring_buffer_iter *
4023 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4025 struct ring_buffer_per_cpu *cpu_buffer;
4026 struct ring_buffer_iter *iter;
4028 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4029 return NULL;
4031 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4032 if (!iter)
4033 return NULL;
4035 cpu_buffer = buffer->buffers[cpu];
4037 iter->cpu_buffer = cpu_buffer;
4039 atomic_inc(&buffer->resize_disabled);
4040 atomic_inc(&cpu_buffer->record_disabled);
4042 return iter;
4044 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4047 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4049 * All previously invoked ring_buffer_read_prepare calls to prepare
4050 * iterators will be synchronized. Afterwards, read_buffer_read_start
4051 * calls on those iterators are allowed.
4053 void
4054 ring_buffer_read_prepare_sync(void)
4056 synchronize_sched();
4058 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4061 * ring_buffer_read_start - start a non consuming read of the buffer
4062 * @iter: The iterator returned by ring_buffer_read_prepare
4064 * This finalizes the startup of an iteration through the buffer.
4065 * The iterator comes from a call to ring_buffer_read_prepare and
4066 * an intervening ring_buffer_read_prepare_sync must have been
4067 * performed.
4069 * Must be paired with ring_buffer_read_finish.
4071 void
4072 ring_buffer_read_start(struct ring_buffer_iter *iter)
4074 struct ring_buffer_per_cpu *cpu_buffer;
4075 unsigned long flags;
4077 if (!iter)
4078 return;
4080 cpu_buffer = iter->cpu_buffer;
4082 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4083 arch_spin_lock(&cpu_buffer->lock);
4084 rb_iter_reset(iter);
4085 arch_spin_unlock(&cpu_buffer->lock);
4086 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4088 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4091 * ring_buffer_read_finish - finish reading the iterator of the buffer
4092 * @iter: The iterator retrieved by ring_buffer_start
4094 * This re-enables the recording to the buffer, and frees the
4095 * iterator.
4097 void
4098 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4100 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4101 unsigned long flags;
4104 * Ring buffer is disabled from recording, here's a good place
4105 * to check the integrity of the ring buffer.
4106 * Must prevent readers from trying to read, as the check
4107 * clears the HEAD page and readers require it.
4109 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4110 rb_check_pages(cpu_buffer);
4111 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4113 atomic_dec(&cpu_buffer->record_disabled);
4114 atomic_dec(&cpu_buffer->buffer->resize_disabled);
4115 kfree(iter);
4117 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4120 * ring_buffer_read - read the next item in the ring buffer by the iterator
4121 * @iter: The ring buffer iterator
4122 * @ts: The time stamp of the event read.
4124 * This reads the next event in the ring buffer and increments the iterator.
4126 struct ring_buffer_event *
4127 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4129 struct ring_buffer_event *event;
4130 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4131 unsigned long flags;
4133 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4134 again:
4135 event = rb_iter_peek(iter, ts);
4136 if (!event)
4137 goto out;
4139 if (event->type_len == RINGBUF_TYPE_PADDING)
4140 goto again;
4142 rb_advance_iter(iter);
4143 out:
4144 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4146 return event;
4148 EXPORT_SYMBOL_GPL(ring_buffer_read);
4151 * ring_buffer_size - return the size of the ring buffer (in bytes)
4152 * @buffer: The ring buffer.
4154 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4157 * Earlier, this method returned
4158 * BUF_PAGE_SIZE * buffer->nr_pages
4159 * Since the nr_pages field is now removed, we have converted this to
4160 * return the per cpu buffer value.
4162 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4163 return 0;
4165 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4167 EXPORT_SYMBOL_GPL(ring_buffer_size);
4169 static void
4170 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4172 rb_head_page_deactivate(cpu_buffer);
4174 cpu_buffer->head_page
4175 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4176 local_set(&cpu_buffer->head_page->write, 0);
4177 local_set(&cpu_buffer->head_page->entries, 0);
4178 local_set(&cpu_buffer->head_page->page->commit, 0);
4180 cpu_buffer->head_page->read = 0;
4182 cpu_buffer->tail_page = cpu_buffer->head_page;
4183 cpu_buffer->commit_page = cpu_buffer->head_page;
4185 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4186 INIT_LIST_HEAD(&cpu_buffer->new_pages);
4187 local_set(&cpu_buffer->reader_page->write, 0);
4188 local_set(&cpu_buffer->reader_page->entries, 0);
4189 local_set(&cpu_buffer->reader_page->page->commit, 0);
4190 cpu_buffer->reader_page->read = 0;
4192 local_set(&cpu_buffer->entries_bytes, 0);
4193 local_set(&cpu_buffer->overrun, 0);
4194 local_set(&cpu_buffer->commit_overrun, 0);
4195 local_set(&cpu_buffer->dropped_events, 0);
4196 local_set(&cpu_buffer->entries, 0);
4197 local_set(&cpu_buffer->committing, 0);
4198 local_set(&cpu_buffer->commits, 0);
4199 cpu_buffer->read = 0;
4200 cpu_buffer->read_bytes = 0;
4202 cpu_buffer->write_stamp = 0;
4203 cpu_buffer->read_stamp = 0;
4205 cpu_buffer->lost_events = 0;
4206 cpu_buffer->last_overrun = 0;
4208 rb_head_page_activate(cpu_buffer);
4212 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4213 * @buffer: The ring buffer to reset a per cpu buffer of
4214 * @cpu: The CPU buffer to be reset
4216 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4218 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4219 unsigned long flags;
4221 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4222 return;
4224 atomic_inc(&buffer->resize_disabled);
4225 atomic_inc(&cpu_buffer->record_disabled);
4227 /* Make sure all commits have finished */
4228 synchronize_sched();
4230 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4232 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4233 goto out;
4235 arch_spin_lock(&cpu_buffer->lock);
4237 rb_reset_cpu(cpu_buffer);
4239 arch_spin_unlock(&cpu_buffer->lock);
4241 out:
4242 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4244 atomic_dec(&cpu_buffer->record_disabled);
4245 atomic_dec(&buffer->resize_disabled);
4247 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4250 * ring_buffer_reset - reset a ring buffer
4251 * @buffer: The ring buffer to reset all cpu buffers
4253 void ring_buffer_reset(struct ring_buffer *buffer)
4255 int cpu;
4257 for_each_buffer_cpu(buffer, cpu)
4258 ring_buffer_reset_cpu(buffer, cpu);
4260 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4263 * rind_buffer_empty - is the ring buffer empty?
4264 * @buffer: The ring buffer to test
4266 bool ring_buffer_empty(struct ring_buffer *buffer)
4268 struct ring_buffer_per_cpu *cpu_buffer;
4269 unsigned long flags;
4270 bool dolock;
4271 int cpu;
4272 int ret;
4274 /* yes this is racy, but if you don't like the race, lock the buffer */
4275 for_each_buffer_cpu(buffer, cpu) {
4276 cpu_buffer = buffer->buffers[cpu];
4277 local_irq_save(flags);
4278 dolock = rb_reader_lock(cpu_buffer);
4279 ret = rb_per_cpu_empty(cpu_buffer);
4280 rb_reader_unlock(cpu_buffer, dolock);
4281 local_irq_restore(flags);
4283 if (!ret)
4284 return false;
4287 return true;
4289 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4292 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4293 * @buffer: The ring buffer
4294 * @cpu: The CPU buffer to test
4296 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4298 struct ring_buffer_per_cpu *cpu_buffer;
4299 unsigned long flags;
4300 bool dolock;
4301 int ret;
4303 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4304 return true;
4306 cpu_buffer = buffer->buffers[cpu];
4307 local_irq_save(flags);
4308 dolock = rb_reader_lock(cpu_buffer);
4309 ret = rb_per_cpu_empty(cpu_buffer);
4310 rb_reader_unlock(cpu_buffer, dolock);
4311 local_irq_restore(flags);
4313 return ret;
4315 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4317 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4319 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4320 * @buffer_a: One buffer to swap with
4321 * @buffer_b: The other buffer to swap with
4323 * This function is useful for tracers that want to take a "snapshot"
4324 * of a CPU buffer and has another back up buffer lying around.
4325 * it is expected that the tracer handles the cpu buffer not being
4326 * used at the moment.
4328 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4329 struct ring_buffer *buffer_b, int cpu)
4331 struct ring_buffer_per_cpu *cpu_buffer_a;
4332 struct ring_buffer_per_cpu *cpu_buffer_b;
4333 int ret = -EINVAL;
4335 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4336 !cpumask_test_cpu(cpu, buffer_b->cpumask))
4337 goto out;
4339 cpu_buffer_a = buffer_a->buffers[cpu];
4340 cpu_buffer_b = buffer_b->buffers[cpu];
4342 /* At least make sure the two buffers are somewhat the same */
4343 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4344 goto out;
4346 ret = -EAGAIN;
4348 if (atomic_read(&buffer_a->record_disabled))
4349 goto out;
4351 if (atomic_read(&buffer_b->record_disabled))
4352 goto out;
4354 if (atomic_read(&cpu_buffer_a->record_disabled))
4355 goto out;
4357 if (atomic_read(&cpu_buffer_b->record_disabled))
4358 goto out;
4361 * We can't do a synchronize_sched here because this
4362 * function can be called in atomic context.
4363 * Normally this will be called from the same CPU as cpu.
4364 * If not it's up to the caller to protect this.
4366 atomic_inc(&cpu_buffer_a->record_disabled);
4367 atomic_inc(&cpu_buffer_b->record_disabled);
4369 ret = -EBUSY;
4370 if (local_read(&cpu_buffer_a->committing))
4371 goto out_dec;
4372 if (local_read(&cpu_buffer_b->committing))
4373 goto out_dec;
4375 buffer_a->buffers[cpu] = cpu_buffer_b;
4376 buffer_b->buffers[cpu] = cpu_buffer_a;
4378 cpu_buffer_b->buffer = buffer_a;
4379 cpu_buffer_a->buffer = buffer_b;
4381 ret = 0;
4383 out_dec:
4384 atomic_dec(&cpu_buffer_a->record_disabled);
4385 atomic_dec(&cpu_buffer_b->record_disabled);
4386 out:
4387 return ret;
4389 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4390 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4393 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4394 * @buffer: the buffer to allocate for.
4395 * @cpu: the cpu buffer to allocate.
4397 * This function is used in conjunction with ring_buffer_read_page.
4398 * When reading a full page from the ring buffer, these functions
4399 * can be used to speed up the process. The calling function should
4400 * allocate a few pages first with this function. Then when it
4401 * needs to get pages from the ring buffer, it passes the result
4402 * of this function into ring_buffer_read_page, which will swap
4403 * the page that was allocated, with the read page of the buffer.
4405 * Returns:
4406 * The page allocated, or NULL on error.
4408 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4410 struct buffer_data_page *bpage;
4411 struct page *page;
4413 page = alloc_pages_node(cpu_to_node(cpu),
4414 GFP_KERNEL | __GFP_NORETRY, 0);
4415 if (!page)
4416 return NULL;
4418 bpage = page_address(page);
4420 rb_init_page(bpage);
4422 return bpage;
4424 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4427 * ring_buffer_free_read_page - free an allocated read page
4428 * @buffer: the buffer the page was allocate for
4429 * @data: the page to free
4431 * Free a page allocated from ring_buffer_alloc_read_page.
4433 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4435 free_page((unsigned long)data);
4437 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4440 * ring_buffer_read_page - extract a page from the ring buffer
4441 * @buffer: buffer to extract from
4442 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4443 * @len: amount to extract
4444 * @cpu: the cpu of the buffer to extract
4445 * @full: should the extraction only happen when the page is full.
4447 * This function will pull out a page from the ring buffer and consume it.
4448 * @data_page must be the address of the variable that was returned
4449 * from ring_buffer_alloc_read_page. This is because the page might be used
4450 * to swap with a page in the ring buffer.
4452 * for example:
4453 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4454 * if (!rpage)
4455 * return error;
4456 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4457 * if (ret >= 0)
4458 * process_page(rpage, ret);
4460 * When @full is set, the function will not return true unless
4461 * the writer is off the reader page.
4463 * Note: it is up to the calling functions to handle sleeps and wakeups.
4464 * The ring buffer can be used anywhere in the kernel and can not
4465 * blindly call wake_up. The layer that uses the ring buffer must be
4466 * responsible for that.
4468 * Returns:
4469 * >=0 if data has been transferred, returns the offset of consumed data.
4470 * <0 if no data has been transferred.
4472 int ring_buffer_read_page(struct ring_buffer *buffer,
4473 void **data_page, size_t len, int cpu, int full)
4475 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4476 struct ring_buffer_event *event;
4477 struct buffer_data_page *bpage;
4478 struct buffer_page *reader;
4479 unsigned long missed_events;
4480 unsigned long flags;
4481 unsigned int commit;
4482 unsigned int read;
4483 u64 save_timestamp;
4484 int ret = -1;
4486 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4487 goto out;
4490 * If len is not big enough to hold the page header, then
4491 * we can not copy anything.
4493 if (len <= BUF_PAGE_HDR_SIZE)
4494 goto out;
4496 len -= BUF_PAGE_HDR_SIZE;
4498 if (!data_page)
4499 goto out;
4501 bpage = *data_page;
4502 if (!bpage)
4503 goto out;
4505 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4507 reader = rb_get_reader_page(cpu_buffer);
4508 if (!reader)
4509 goto out_unlock;
4511 event = rb_reader_event(cpu_buffer);
4513 read = reader->read;
4514 commit = rb_page_commit(reader);
4516 /* Check if any events were dropped */
4517 missed_events = cpu_buffer->lost_events;
4520 * If this page has been partially read or
4521 * if len is not big enough to read the rest of the page or
4522 * a writer is still on the page, then
4523 * we must copy the data from the page to the buffer.
4524 * Otherwise, we can simply swap the page with the one passed in.
4526 if (read || (len < (commit - read)) ||
4527 cpu_buffer->reader_page == cpu_buffer->commit_page) {
4528 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4529 unsigned int rpos = read;
4530 unsigned int pos = 0;
4531 unsigned int size;
4533 if (full)
4534 goto out_unlock;
4536 if (len > (commit - read))
4537 len = (commit - read);
4539 /* Always keep the time extend and data together */
4540 size = rb_event_ts_length(event);
4542 if (len < size)
4543 goto out_unlock;
4545 /* save the current timestamp, since the user will need it */
4546 save_timestamp = cpu_buffer->read_stamp;
4548 /* Need to copy one event at a time */
4549 do {
4550 /* We need the size of one event, because
4551 * rb_advance_reader only advances by one event,
4552 * whereas rb_event_ts_length may include the size of
4553 * one or two events.
4554 * We have already ensured there's enough space if this
4555 * is a time extend. */
4556 size = rb_event_length(event);
4557 memcpy(bpage->data + pos, rpage->data + rpos, size);
4559 len -= size;
4561 rb_advance_reader(cpu_buffer);
4562 rpos = reader->read;
4563 pos += size;
4565 if (rpos >= commit)
4566 break;
4568 event = rb_reader_event(cpu_buffer);
4569 /* Always keep the time extend and data together */
4570 size = rb_event_ts_length(event);
4571 } while (len >= size);
4573 /* update bpage */
4574 local_set(&bpage->commit, pos);
4575 bpage->time_stamp = save_timestamp;
4577 /* we copied everything to the beginning */
4578 read = 0;
4579 } else {
4580 /* update the entry counter */
4581 cpu_buffer->read += rb_page_entries(reader);
4582 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4584 /* swap the pages */
4585 rb_init_page(bpage);
4586 bpage = reader->page;
4587 reader->page = *data_page;
4588 local_set(&reader->write, 0);
4589 local_set(&reader->entries, 0);
4590 reader->read = 0;
4591 *data_page = bpage;
4594 * Use the real_end for the data size,
4595 * This gives us a chance to store the lost events
4596 * on the page.
4598 if (reader->real_end)
4599 local_set(&bpage->commit, reader->real_end);
4601 ret = read;
4603 cpu_buffer->lost_events = 0;
4605 commit = local_read(&bpage->commit);
4607 * Set a flag in the commit field if we lost events
4609 if (missed_events) {
4610 /* If there is room at the end of the page to save the
4611 * missed events, then record it there.
4613 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4614 memcpy(&bpage->data[commit], &missed_events,
4615 sizeof(missed_events));
4616 local_add(RB_MISSED_STORED, &bpage->commit);
4617 commit += sizeof(missed_events);
4619 local_add(RB_MISSED_EVENTS, &bpage->commit);
4623 * This page may be off to user land. Zero it out here.
4625 if (commit < BUF_PAGE_SIZE)
4626 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4628 out_unlock:
4629 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4631 out:
4632 return ret;
4634 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4636 #ifdef CONFIG_HOTPLUG_CPU
4637 static int rb_cpu_notify(struct notifier_block *self,
4638 unsigned long action, void *hcpu)
4640 struct ring_buffer *buffer =
4641 container_of(self, struct ring_buffer, cpu_notify);
4642 long cpu = (long)hcpu;
4643 int cpu_i, nr_pages_same;
4644 unsigned int nr_pages;
4646 switch (action) {
4647 case CPU_UP_PREPARE:
4648 case CPU_UP_PREPARE_FROZEN:
4649 if (cpumask_test_cpu(cpu, buffer->cpumask))
4650 return NOTIFY_OK;
4652 nr_pages = 0;
4653 nr_pages_same = 1;
4654 /* check if all cpu sizes are same */
4655 for_each_buffer_cpu(buffer, cpu_i) {
4656 /* fill in the size from first enabled cpu */
4657 if (nr_pages == 0)
4658 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4659 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4660 nr_pages_same = 0;
4661 break;
4664 /* allocate minimum pages, user can later expand it */
4665 if (!nr_pages_same)
4666 nr_pages = 2;
4667 buffer->buffers[cpu] =
4668 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4669 if (!buffer->buffers[cpu]) {
4670 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4671 cpu);
4672 return NOTIFY_OK;
4674 smp_wmb();
4675 cpumask_set_cpu(cpu, buffer->cpumask);
4676 break;
4677 case CPU_DOWN_PREPARE:
4678 case CPU_DOWN_PREPARE_FROZEN:
4680 * Do nothing.
4681 * If we were to free the buffer, then the user would
4682 * lose any trace that was in the buffer.
4684 break;
4685 default:
4686 break;
4688 return NOTIFY_OK;
4690 #endif
4692 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4694 * This is a basic integrity check of the ring buffer.
4695 * Late in the boot cycle this test will run when configured in.
4696 * It will kick off a thread per CPU that will go into a loop
4697 * writing to the per cpu ring buffer various sizes of data.
4698 * Some of the data will be large items, some small.
4700 * Another thread is created that goes into a spin, sending out
4701 * IPIs to the other CPUs to also write into the ring buffer.
4702 * this is to test the nesting ability of the buffer.
4704 * Basic stats are recorded and reported. If something in the
4705 * ring buffer should happen that's not expected, a big warning
4706 * is displayed and all ring buffers are disabled.
4708 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4710 struct rb_test_data {
4711 struct ring_buffer *buffer;
4712 unsigned long events;
4713 unsigned long bytes_written;
4714 unsigned long bytes_alloc;
4715 unsigned long bytes_dropped;
4716 unsigned long events_nested;
4717 unsigned long bytes_written_nested;
4718 unsigned long bytes_alloc_nested;
4719 unsigned long bytes_dropped_nested;
4720 int min_size_nested;
4721 int max_size_nested;
4722 int max_size;
4723 int min_size;
4724 int cpu;
4725 int cnt;
4728 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4730 /* 1 meg per cpu */
4731 #define RB_TEST_BUFFER_SIZE 1048576
4733 static char rb_string[] __initdata =
4734 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4735 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4736 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4738 static bool rb_test_started __initdata;
4740 struct rb_item {
4741 int size;
4742 char str[];
4745 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4747 struct ring_buffer_event *event;
4748 struct rb_item *item;
4749 bool started;
4750 int event_len;
4751 int size;
4752 int len;
4753 int cnt;
4755 /* Have nested writes different that what is written */
4756 cnt = data->cnt + (nested ? 27 : 0);
4758 /* Multiply cnt by ~e, to make some unique increment */
4759 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4761 len = size + sizeof(struct rb_item);
4763 started = rb_test_started;
4764 /* read rb_test_started before checking buffer enabled */
4765 smp_rmb();
4767 event = ring_buffer_lock_reserve(data->buffer, len);
4768 if (!event) {
4769 /* Ignore dropped events before test starts. */
4770 if (started) {
4771 if (nested)
4772 data->bytes_dropped += len;
4773 else
4774 data->bytes_dropped_nested += len;
4776 return len;
4779 event_len = ring_buffer_event_length(event);
4781 if (RB_WARN_ON(data->buffer, event_len < len))
4782 goto out;
4784 item = ring_buffer_event_data(event);
4785 item->size = size;
4786 memcpy(item->str, rb_string, size);
4788 if (nested) {
4789 data->bytes_alloc_nested += event_len;
4790 data->bytes_written_nested += len;
4791 data->events_nested++;
4792 if (!data->min_size_nested || len < data->min_size_nested)
4793 data->min_size_nested = len;
4794 if (len > data->max_size_nested)
4795 data->max_size_nested = len;
4796 } else {
4797 data->bytes_alloc += event_len;
4798 data->bytes_written += len;
4799 data->events++;
4800 if (!data->min_size || len < data->min_size)
4801 data->max_size = len;
4802 if (len > data->max_size)
4803 data->max_size = len;
4806 out:
4807 ring_buffer_unlock_commit(data->buffer, event);
4809 return 0;
4812 static __init int rb_test(void *arg)
4814 struct rb_test_data *data = arg;
4816 while (!kthread_should_stop()) {
4817 rb_write_something(data, false);
4818 data->cnt++;
4820 set_current_state(TASK_INTERRUPTIBLE);
4821 /* Now sleep between a min of 100-300us and a max of 1ms */
4822 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4825 return 0;
4828 static __init void rb_ipi(void *ignore)
4830 struct rb_test_data *data;
4831 int cpu = smp_processor_id();
4833 data = &rb_data[cpu];
4834 rb_write_something(data, true);
4837 static __init int rb_hammer_test(void *arg)
4839 while (!kthread_should_stop()) {
4841 /* Send an IPI to all cpus to write data! */
4842 smp_call_function(rb_ipi, NULL, 1);
4843 /* No sleep, but for non preempt, let others run */
4844 schedule();
4847 return 0;
4850 static __init int test_ringbuffer(void)
4852 struct task_struct *rb_hammer;
4853 struct ring_buffer *buffer;
4854 int cpu;
4855 int ret = 0;
4857 pr_info("Running ring buffer tests...\n");
4859 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4860 if (WARN_ON(!buffer))
4861 return 0;
4863 /* Disable buffer so that threads can't write to it yet */
4864 ring_buffer_record_off(buffer);
4866 for_each_online_cpu(cpu) {
4867 rb_data[cpu].buffer = buffer;
4868 rb_data[cpu].cpu = cpu;
4869 rb_data[cpu].cnt = cpu;
4870 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4871 "rbtester/%d", cpu);
4872 if (WARN_ON(!rb_threads[cpu])) {
4873 pr_cont("FAILED\n");
4874 ret = -1;
4875 goto out_free;
4878 kthread_bind(rb_threads[cpu], cpu);
4879 wake_up_process(rb_threads[cpu]);
4882 /* Now create the rb hammer! */
4883 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4884 if (WARN_ON(!rb_hammer)) {
4885 pr_cont("FAILED\n");
4886 ret = -1;
4887 goto out_free;
4890 ring_buffer_record_on(buffer);
4892 * Show buffer is enabled before setting rb_test_started.
4893 * Yes there's a small race window where events could be
4894 * dropped and the thread wont catch it. But when a ring
4895 * buffer gets enabled, there will always be some kind of
4896 * delay before other CPUs see it. Thus, we don't care about
4897 * those dropped events. We care about events dropped after
4898 * the threads see that the buffer is active.
4900 smp_wmb();
4901 rb_test_started = true;
4903 set_current_state(TASK_INTERRUPTIBLE);
4904 /* Just run for 10 seconds */;
4905 schedule_timeout(10 * HZ);
4907 kthread_stop(rb_hammer);
4909 out_free:
4910 for_each_online_cpu(cpu) {
4911 if (!rb_threads[cpu])
4912 break;
4913 kthread_stop(rb_threads[cpu]);
4915 if (ret) {
4916 ring_buffer_free(buffer);
4917 return ret;
4920 /* Report! */
4921 pr_info("finished\n");
4922 for_each_online_cpu(cpu) {
4923 struct ring_buffer_event *event;
4924 struct rb_test_data *data = &rb_data[cpu];
4925 struct rb_item *item;
4926 unsigned long total_events;
4927 unsigned long total_dropped;
4928 unsigned long total_written;
4929 unsigned long total_alloc;
4930 unsigned long total_read = 0;
4931 unsigned long total_size = 0;
4932 unsigned long total_len = 0;
4933 unsigned long total_lost = 0;
4934 unsigned long lost;
4935 int big_event_size;
4936 int small_event_size;
4938 ret = -1;
4940 total_events = data->events + data->events_nested;
4941 total_written = data->bytes_written + data->bytes_written_nested;
4942 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4943 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4945 big_event_size = data->max_size + data->max_size_nested;
4946 small_event_size = data->min_size + data->min_size_nested;
4948 pr_info("CPU %d:\n", cpu);
4949 pr_info(" events: %ld\n", total_events);
4950 pr_info(" dropped bytes: %ld\n", total_dropped);
4951 pr_info(" alloced bytes: %ld\n", total_alloc);
4952 pr_info(" written bytes: %ld\n", total_written);
4953 pr_info(" biggest event: %d\n", big_event_size);
4954 pr_info(" smallest event: %d\n", small_event_size);
4956 if (RB_WARN_ON(buffer, total_dropped))
4957 break;
4959 ret = 0;
4961 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4962 total_lost += lost;
4963 item = ring_buffer_event_data(event);
4964 total_len += ring_buffer_event_length(event);
4965 total_size += item->size + sizeof(struct rb_item);
4966 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4967 pr_info("FAILED!\n");
4968 pr_info("buffer had: %.*s\n", item->size, item->str);
4969 pr_info("expected: %.*s\n", item->size, rb_string);
4970 RB_WARN_ON(buffer, 1);
4971 ret = -1;
4972 break;
4974 total_read++;
4976 if (ret)
4977 break;
4979 ret = -1;
4981 pr_info(" read events: %ld\n", total_read);
4982 pr_info(" lost events: %ld\n", total_lost);
4983 pr_info(" total events: %ld\n", total_lost + total_read);
4984 pr_info(" recorded len bytes: %ld\n", total_len);
4985 pr_info(" recorded size bytes: %ld\n", total_size);
4986 if (total_lost)
4987 pr_info(" With dropped events, record len and size may not match\n"
4988 " alloced and written from above\n");
4989 if (!total_lost) {
4990 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4991 total_size != total_written))
4992 break;
4994 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4995 break;
4997 ret = 0;
4999 if (!ret)
5000 pr_info("Ring buffer PASSED!\n");
5002 ring_buffer_free(buffer);
5003 return 0;
5006 late_initcall(test_ringbuffer);
5007 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */