1 #include <linux/ceph/ceph_debug.h>
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
9 #include <linux/nsproxy.h>
10 #include <linux/slab.h>
11 #include <linux/socket.h>
12 #include <linux/string.h>
14 #include <linux/bio.h>
15 #endif /* CONFIG_BLOCK */
16 #include <linux/dns_resolver.h>
19 #include <linux/ceph/ceph_features.h>
20 #include <linux/ceph/libceph.h>
21 #include <linux/ceph/messenger.h>
22 #include <linux/ceph/decode.h>
23 #include <linux/ceph/pagelist.h>
24 #include <linux/export.h>
27 * Ceph uses the messenger to exchange ceph_msg messages with other
28 * hosts in the system. The messenger provides ordered and reliable
29 * delivery. We tolerate TCP disconnects by reconnecting (with
30 * exponential backoff) in the case of a fault (disconnection, bad
31 * crc, protocol error). Acks allow sent messages to be discarded by
36 * We track the state of the socket on a given connection using
37 * values defined below. The transition to a new socket state is
38 * handled by a function which verifies we aren't coming from an
42 * | NEW* | transient initial state
44 * | con_sock_state_init()
47 * | CLOSED | initialized, but no socket (and no
48 * ---------- TCP connection)
50 * | \ con_sock_state_connecting()
51 * | ----------------------
53 * + con_sock_state_closed() \
54 * |+--------------------------- \
57 * | | CLOSING | socket event; \ \
58 * | ----------- await close \ \
61 * | + con_sock_state_closing() \ |
63 * | / --------------- | |
66 * | / -----------------| CONNECTING | socket created, TCP
67 * | | / -------------- connect initiated
68 * | | | con_sock_state_connected()
71 * | CONNECTED | TCP connection established
74 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
78 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
79 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
80 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
81 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
86 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
87 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
88 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
89 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
90 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
91 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
94 * ceph_connection flag bits
96 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
97 * messages on errors */
98 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
99 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
100 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
101 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
103 static bool con_flag_valid(unsigned long con_flag
)
106 case CON_FLAG_LOSSYTX
:
107 case CON_FLAG_KEEPALIVE_PENDING
:
108 case CON_FLAG_WRITE_PENDING
:
109 case CON_FLAG_SOCK_CLOSED
:
110 case CON_FLAG_BACKOFF
:
117 static void con_flag_clear(struct ceph_connection
*con
, unsigned long con_flag
)
119 BUG_ON(!con_flag_valid(con_flag
));
121 clear_bit(con_flag
, &con
->flags
);
124 static void con_flag_set(struct ceph_connection
*con
, unsigned long con_flag
)
126 BUG_ON(!con_flag_valid(con_flag
));
128 set_bit(con_flag
, &con
->flags
);
131 static bool con_flag_test(struct ceph_connection
*con
, unsigned long con_flag
)
133 BUG_ON(!con_flag_valid(con_flag
));
135 return test_bit(con_flag
, &con
->flags
);
138 static bool con_flag_test_and_clear(struct ceph_connection
*con
,
139 unsigned long con_flag
)
141 BUG_ON(!con_flag_valid(con_flag
));
143 return test_and_clear_bit(con_flag
, &con
->flags
);
146 static bool con_flag_test_and_set(struct ceph_connection
*con
,
147 unsigned long con_flag
)
149 BUG_ON(!con_flag_valid(con_flag
));
151 return test_and_set_bit(con_flag
, &con
->flags
);
154 /* Slab caches for frequently-allocated structures */
156 static struct kmem_cache
*ceph_msg_cache
;
157 static struct kmem_cache
*ceph_msg_data_cache
;
159 /* static tag bytes (protocol control messages) */
160 static char tag_msg
= CEPH_MSGR_TAG_MSG
;
161 static char tag_ack
= CEPH_MSGR_TAG_ACK
;
162 static char tag_keepalive
= CEPH_MSGR_TAG_KEEPALIVE
;
163 static char tag_keepalive2
= CEPH_MSGR_TAG_KEEPALIVE2
;
165 #ifdef CONFIG_LOCKDEP
166 static struct lock_class_key socket_class
;
170 * When skipping (ignoring) a block of input we read it into a "skip
171 * buffer," which is this many bytes in size.
173 #define SKIP_BUF_SIZE 1024
175 static void queue_con(struct ceph_connection
*con
);
176 static void cancel_con(struct ceph_connection
*con
);
177 static void ceph_con_workfn(struct work_struct
*);
178 static void con_fault(struct ceph_connection
*con
);
181 * Nicely render a sockaddr as a string. An array of formatted
182 * strings is used, to approximate reentrancy.
184 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
185 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
186 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
187 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
189 static char addr_str
[ADDR_STR_COUNT
][MAX_ADDR_STR_LEN
];
190 static atomic_t addr_str_seq
= ATOMIC_INIT(0);
192 static struct page
*zero_page
; /* used in certain error cases */
194 const char *ceph_pr_addr(const struct sockaddr_storage
*ss
)
198 struct sockaddr_in
*in4
= (struct sockaddr_in
*) ss
;
199 struct sockaddr_in6
*in6
= (struct sockaddr_in6
*) ss
;
201 i
= atomic_inc_return(&addr_str_seq
) & ADDR_STR_COUNT_MASK
;
204 switch (ss
->ss_family
) {
206 snprintf(s
, MAX_ADDR_STR_LEN
, "%pI4:%hu", &in4
->sin_addr
,
207 ntohs(in4
->sin_port
));
211 snprintf(s
, MAX_ADDR_STR_LEN
, "[%pI6c]:%hu", &in6
->sin6_addr
,
212 ntohs(in6
->sin6_port
));
216 snprintf(s
, MAX_ADDR_STR_LEN
, "(unknown sockaddr family %hu)",
222 EXPORT_SYMBOL(ceph_pr_addr
);
224 static void encode_my_addr(struct ceph_messenger
*msgr
)
226 memcpy(&msgr
->my_enc_addr
, &msgr
->inst
.addr
, sizeof(msgr
->my_enc_addr
));
227 ceph_encode_addr(&msgr
->my_enc_addr
);
231 * work queue for all reading and writing to/from the socket.
233 static struct workqueue_struct
*ceph_msgr_wq
;
235 static int ceph_msgr_slab_init(void)
237 BUG_ON(ceph_msg_cache
);
238 ceph_msg_cache
= KMEM_CACHE(ceph_msg
, 0);
242 BUG_ON(ceph_msg_data_cache
);
243 ceph_msg_data_cache
= KMEM_CACHE(ceph_msg_data
, 0);
244 if (ceph_msg_data_cache
)
247 kmem_cache_destroy(ceph_msg_cache
);
248 ceph_msg_cache
= NULL
;
253 static void ceph_msgr_slab_exit(void)
255 BUG_ON(!ceph_msg_data_cache
);
256 kmem_cache_destroy(ceph_msg_data_cache
);
257 ceph_msg_data_cache
= NULL
;
259 BUG_ON(!ceph_msg_cache
);
260 kmem_cache_destroy(ceph_msg_cache
);
261 ceph_msg_cache
= NULL
;
264 static void _ceph_msgr_exit(void)
267 destroy_workqueue(ceph_msgr_wq
);
271 BUG_ON(zero_page
== NULL
);
272 page_cache_release(zero_page
);
275 ceph_msgr_slab_exit();
278 int ceph_msgr_init(void)
280 if (ceph_msgr_slab_init())
283 BUG_ON(zero_page
!= NULL
);
284 zero_page
= ZERO_PAGE(0);
285 page_cache_get(zero_page
);
288 * The number of active work items is limited by the number of
289 * connections, so leave @max_active at default.
291 ceph_msgr_wq
= alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM
, 0);
295 pr_err("msgr_init failed to create workqueue\n");
300 EXPORT_SYMBOL(ceph_msgr_init
);
302 void ceph_msgr_exit(void)
304 BUG_ON(ceph_msgr_wq
== NULL
);
308 EXPORT_SYMBOL(ceph_msgr_exit
);
310 void ceph_msgr_flush(void)
312 flush_workqueue(ceph_msgr_wq
);
314 EXPORT_SYMBOL(ceph_msgr_flush
);
316 /* Connection socket state transition functions */
318 static void con_sock_state_init(struct ceph_connection
*con
)
322 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSED
);
323 if (WARN_ON(old_state
!= CON_SOCK_STATE_NEW
))
324 printk("%s: unexpected old state %d\n", __func__
, old_state
);
325 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
326 CON_SOCK_STATE_CLOSED
);
329 static void con_sock_state_connecting(struct ceph_connection
*con
)
333 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CONNECTING
);
334 if (WARN_ON(old_state
!= CON_SOCK_STATE_CLOSED
))
335 printk("%s: unexpected old state %d\n", __func__
, old_state
);
336 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
337 CON_SOCK_STATE_CONNECTING
);
340 static void con_sock_state_connected(struct ceph_connection
*con
)
344 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CONNECTED
);
345 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTING
))
346 printk("%s: unexpected old state %d\n", __func__
, old_state
);
347 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
348 CON_SOCK_STATE_CONNECTED
);
351 static void con_sock_state_closing(struct ceph_connection
*con
)
355 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSING
);
356 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTING
&&
357 old_state
!= CON_SOCK_STATE_CONNECTED
&&
358 old_state
!= CON_SOCK_STATE_CLOSING
))
359 printk("%s: unexpected old state %d\n", __func__
, old_state
);
360 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
361 CON_SOCK_STATE_CLOSING
);
364 static void con_sock_state_closed(struct ceph_connection
*con
)
368 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSED
);
369 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTED
&&
370 old_state
!= CON_SOCK_STATE_CLOSING
&&
371 old_state
!= CON_SOCK_STATE_CONNECTING
&&
372 old_state
!= CON_SOCK_STATE_CLOSED
))
373 printk("%s: unexpected old state %d\n", __func__
, old_state
);
374 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
375 CON_SOCK_STATE_CLOSED
);
379 * socket callback functions
382 /* data available on socket, or listen socket received a connect */
383 static void ceph_sock_data_ready(struct sock
*sk
)
385 struct ceph_connection
*con
= sk
->sk_user_data
;
386 if (atomic_read(&con
->msgr
->stopping
)) {
390 if (sk
->sk_state
!= TCP_CLOSE_WAIT
) {
391 dout("%s on %p state = %lu, queueing work\n", __func__
,
397 /* socket has buffer space for writing */
398 static void ceph_sock_write_space(struct sock
*sk
)
400 struct ceph_connection
*con
= sk
->sk_user_data
;
402 /* only queue to workqueue if there is data we want to write,
403 * and there is sufficient space in the socket buffer to accept
404 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
405 * doesn't get called again until try_write() fills the socket
406 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
407 * and net/core/stream.c:sk_stream_write_space().
409 if (con_flag_test(con
, CON_FLAG_WRITE_PENDING
)) {
410 if (sk_stream_is_writeable(sk
)) {
411 dout("%s %p queueing write work\n", __func__
, con
);
412 clear_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
416 dout("%s %p nothing to write\n", __func__
, con
);
420 /* socket's state has changed */
421 static void ceph_sock_state_change(struct sock
*sk
)
423 struct ceph_connection
*con
= sk
->sk_user_data
;
425 dout("%s %p state = %lu sk_state = %u\n", __func__
,
426 con
, con
->state
, sk
->sk_state
);
428 switch (sk
->sk_state
) {
430 dout("%s TCP_CLOSE\n", __func__
);
432 dout("%s TCP_CLOSE_WAIT\n", __func__
);
433 con_sock_state_closing(con
);
434 con_flag_set(con
, CON_FLAG_SOCK_CLOSED
);
437 case TCP_ESTABLISHED
:
438 dout("%s TCP_ESTABLISHED\n", __func__
);
439 con_sock_state_connected(con
);
442 default: /* Everything else is uninteresting */
448 * set up socket callbacks
450 static void set_sock_callbacks(struct socket
*sock
,
451 struct ceph_connection
*con
)
453 struct sock
*sk
= sock
->sk
;
454 sk
->sk_user_data
= con
;
455 sk
->sk_data_ready
= ceph_sock_data_ready
;
456 sk
->sk_write_space
= ceph_sock_write_space
;
457 sk
->sk_state_change
= ceph_sock_state_change
;
466 * initiate connection to a remote socket.
468 static int ceph_tcp_connect(struct ceph_connection
*con
)
470 struct sockaddr_storage
*paddr
= &con
->peer_addr
.in_addr
;
475 ret
= sock_create_kern(read_pnet(&con
->msgr
->net
), paddr
->ss_family
,
476 SOCK_STREAM
, IPPROTO_TCP
, &sock
);
479 sock
->sk
->sk_allocation
= GFP_NOFS
;
481 #ifdef CONFIG_LOCKDEP
482 lockdep_set_class(&sock
->sk
->sk_lock
, &socket_class
);
485 set_sock_callbacks(sock
, con
);
487 dout("connect %s\n", ceph_pr_addr(&con
->peer_addr
.in_addr
));
489 con_sock_state_connecting(con
);
490 ret
= sock
->ops
->connect(sock
, (struct sockaddr
*)paddr
, sizeof(*paddr
),
492 if (ret
== -EINPROGRESS
) {
493 dout("connect %s EINPROGRESS sk_state = %u\n",
494 ceph_pr_addr(&con
->peer_addr
.in_addr
),
496 } else if (ret
< 0) {
497 pr_err("connect %s error %d\n",
498 ceph_pr_addr(&con
->peer_addr
.in_addr
), ret
);
503 if (ceph_test_opt(from_msgr(con
->msgr
), TCP_NODELAY
)) {
506 ret
= kernel_setsockopt(sock
, SOL_TCP
, TCP_NODELAY
,
507 (char *)&optval
, sizeof(optval
));
509 pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
517 static int ceph_tcp_recvmsg(struct socket
*sock
, void *buf
, size_t len
)
519 struct kvec iov
= {buf
, len
};
520 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
523 r
= kernel_recvmsg(sock
, &msg
, &iov
, 1, len
, msg
.msg_flags
);
529 static int ceph_tcp_recvpage(struct socket
*sock
, struct page
*page
,
530 int page_offset
, size_t length
)
535 BUG_ON(page_offset
+ length
> PAGE_SIZE
);
539 ret
= ceph_tcp_recvmsg(sock
, kaddr
+ page_offset
, length
);
546 * write something. @more is true if caller will be sending more data
549 static int ceph_tcp_sendmsg(struct socket
*sock
, struct kvec
*iov
,
550 size_t kvlen
, size_t len
, int more
)
552 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
556 msg
.msg_flags
|= MSG_MORE
;
558 msg
.msg_flags
|= MSG_EOR
; /* superfluous, but what the hell */
560 r
= kernel_sendmsg(sock
, &msg
, iov
, kvlen
, len
);
566 static int __ceph_tcp_sendpage(struct socket
*sock
, struct page
*page
,
567 int offset
, size_t size
, bool more
)
569 int flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
| (more
? MSG_MORE
: MSG_EOR
);
572 ret
= kernel_sendpage(sock
, page
, offset
, size
, flags
);
579 static int ceph_tcp_sendpage(struct socket
*sock
, struct page
*page
,
580 int offset
, size_t size
, bool more
)
585 /* sendpage cannot properly handle pages with page_count == 0,
586 * we need to fallback to sendmsg if that's the case */
587 if (page_count(page
) >= 1)
588 return __ceph_tcp_sendpage(sock
, page
, offset
, size
, more
);
590 iov
.iov_base
= kmap(page
) + offset
;
592 ret
= ceph_tcp_sendmsg(sock
, &iov
, 1, size
, more
);
599 * Shutdown/close the socket for the given connection.
601 static int con_close_socket(struct ceph_connection
*con
)
605 dout("con_close_socket on %p sock %p\n", con
, con
->sock
);
607 rc
= con
->sock
->ops
->shutdown(con
->sock
, SHUT_RDWR
);
608 sock_release(con
->sock
);
613 * Forcibly clear the SOCK_CLOSED flag. It gets set
614 * independent of the connection mutex, and we could have
615 * received a socket close event before we had the chance to
616 * shut the socket down.
618 con_flag_clear(con
, CON_FLAG_SOCK_CLOSED
);
620 con_sock_state_closed(con
);
625 * Reset a connection. Discard all incoming and outgoing messages
626 * and clear *_seq state.
628 static void ceph_msg_remove(struct ceph_msg
*msg
)
630 list_del_init(&msg
->list_head
);
634 static void ceph_msg_remove_list(struct list_head
*head
)
636 while (!list_empty(head
)) {
637 struct ceph_msg
*msg
= list_first_entry(head
, struct ceph_msg
,
639 ceph_msg_remove(msg
);
643 static void reset_connection(struct ceph_connection
*con
)
645 /* reset connection, out_queue, msg_ and connect_seq */
646 /* discard existing out_queue and msg_seq */
647 dout("reset_connection %p\n", con
);
648 ceph_msg_remove_list(&con
->out_queue
);
649 ceph_msg_remove_list(&con
->out_sent
);
652 BUG_ON(con
->in_msg
->con
!= con
);
653 ceph_msg_put(con
->in_msg
);
657 con
->connect_seq
= 0;
660 BUG_ON(con
->out_msg
->con
!= con
);
661 ceph_msg_put(con
->out_msg
);
665 con
->in_seq_acked
= 0;
671 * mark a peer down. drop any open connections.
673 void ceph_con_close(struct ceph_connection
*con
)
675 mutex_lock(&con
->mutex
);
676 dout("con_close %p peer %s\n", con
,
677 ceph_pr_addr(&con
->peer_addr
.in_addr
));
678 con
->state
= CON_STATE_CLOSED
;
680 con_flag_clear(con
, CON_FLAG_LOSSYTX
); /* so we retry next connect */
681 con_flag_clear(con
, CON_FLAG_KEEPALIVE_PENDING
);
682 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
683 con_flag_clear(con
, CON_FLAG_BACKOFF
);
685 reset_connection(con
);
686 con
->peer_global_seq
= 0;
688 con_close_socket(con
);
689 mutex_unlock(&con
->mutex
);
691 EXPORT_SYMBOL(ceph_con_close
);
694 * Reopen a closed connection, with a new peer address.
696 void ceph_con_open(struct ceph_connection
*con
,
697 __u8 entity_type
, __u64 entity_num
,
698 struct ceph_entity_addr
*addr
)
700 mutex_lock(&con
->mutex
);
701 dout("con_open %p %s\n", con
, ceph_pr_addr(&addr
->in_addr
));
703 WARN_ON(con
->state
!= CON_STATE_CLOSED
);
704 con
->state
= CON_STATE_PREOPEN
;
706 con
->peer_name
.type
= (__u8
) entity_type
;
707 con
->peer_name
.num
= cpu_to_le64(entity_num
);
709 memcpy(&con
->peer_addr
, addr
, sizeof(*addr
));
710 con
->delay
= 0; /* reset backoff memory */
711 mutex_unlock(&con
->mutex
);
714 EXPORT_SYMBOL(ceph_con_open
);
717 * return true if this connection ever successfully opened
719 bool ceph_con_opened(struct ceph_connection
*con
)
721 return con
->connect_seq
> 0;
725 * initialize a new connection.
727 void ceph_con_init(struct ceph_connection
*con
, void *private,
728 const struct ceph_connection_operations
*ops
,
729 struct ceph_messenger
*msgr
)
731 dout("con_init %p\n", con
);
732 memset(con
, 0, sizeof(*con
));
733 con
->private = private;
737 con_sock_state_init(con
);
739 mutex_init(&con
->mutex
);
740 INIT_LIST_HEAD(&con
->out_queue
);
741 INIT_LIST_HEAD(&con
->out_sent
);
742 INIT_DELAYED_WORK(&con
->work
, ceph_con_workfn
);
744 con
->state
= CON_STATE_CLOSED
;
746 EXPORT_SYMBOL(ceph_con_init
);
750 * We maintain a global counter to order connection attempts. Get
751 * a unique seq greater than @gt.
753 static u32
get_global_seq(struct ceph_messenger
*msgr
, u32 gt
)
757 spin_lock(&msgr
->global_seq_lock
);
758 if (msgr
->global_seq
< gt
)
759 msgr
->global_seq
= gt
;
760 ret
= ++msgr
->global_seq
;
761 spin_unlock(&msgr
->global_seq_lock
);
765 static void con_out_kvec_reset(struct ceph_connection
*con
)
767 BUG_ON(con
->out_skip
);
769 con
->out_kvec_left
= 0;
770 con
->out_kvec_bytes
= 0;
771 con
->out_kvec_cur
= &con
->out_kvec
[0];
774 static void con_out_kvec_add(struct ceph_connection
*con
,
775 size_t size
, void *data
)
777 int index
= con
->out_kvec_left
;
779 BUG_ON(con
->out_skip
);
780 BUG_ON(index
>= ARRAY_SIZE(con
->out_kvec
));
782 con
->out_kvec
[index
].iov_len
= size
;
783 con
->out_kvec
[index
].iov_base
= data
;
784 con
->out_kvec_left
++;
785 con
->out_kvec_bytes
+= size
;
789 * Chop off a kvec from the end. Return residual number of bytes for
790 * that kvec, i.e. how many bytes would have been written if the kvec
793 static int con_out_kvec_skip(struct ceph_connection
*con
)
795 int off
= con
->out_kvec_cur
- con
->out_kvec
;
798 if (con
->out_kvec_bytes
> 0) {
799 skip
= con
->out_kvec
[off
+ con
->out_kvec_left
- 1].iov_len
;
800 BUG_ON(con
->out_kvec_bytes
< skip
);
801 BUG_ON(!con
->out_kvec_left
);
802 con
->out_kvec_bytes
-= skip
;
803 con
->out_kvec_left
--;
812 * For a bio data item, a piece is whatever remains of the next
813 * entry in the current bio iovec, or the first entry in the next
816 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor
*cursor
,
819 struct ceph_msg_data
*data
= cursor
->data
;
822 BUG_ON(data
->type
!= CEPH_MSG_DATA_BIO
);
827 cursor
->resid
= min(length
, data
->bio_length
);
829 cursor
->bvec_iter
= bio
->bi_iter
;
831 cursor
->resid
<= bio_iter_len(bio
, cursor
->bvec_iter
);
834 static struct page
*ceph_msg_data_bio_next(struct ceph_msg_data_cursor
*cursor
,
838 struct ceph_msg_data
*data
= cursor
->data
;
840 struct bio_vec bio_vec
;
842 BUG_ON(data
->type
!= CEPH_MSG_DATA_BIO
);
847 bio_vec
= bio_iter_iovec(bio
, cursor
->bvec_iter
);
849 *page_offset
= (size_t) bio_vec
.bv_offset
;
850 BUG_ON(*page_offset
>= PAGE_SIZE
);
851 if (cursor
->last_piece
) /* pagelist offset is always 0 */
852 *length
= cursor
->resid
;
854 *length
= (size_t) bio_vec
.bv_len
;
855 BUG_ON(*length
> cursor
->resid
);
856 BUG_ON(*page_offset
+ *length
> PAGE_SIZE
);
858 return bio_vec
.bv_page
;
861 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor
*cursor
,
865 struct bio_vec bio_vec
;
867 BUG_ON(cursor
->data
->type
!= CEPH_MSG_DATA_BIO
);
872 bio_vec
= bio_iter_iovec(bio
, cursor
->bvec_iter
);
874 /* Advance the cursor offset */
876 BUG_ON(cursor
->resid
< bytes
);
877 cursor
->resid
-= bytes
;
879 bio_advance_iter(bio
, &cursor
->bvec_iter
, bytes
);
881 if (bytes
< bio_vec
.bv_len
)
882 return false; /* more bytes to process in this segment */
884 /* Move on to the next segment, and possibly the next bio */
886 if (!cursor
->bvec_iter
.bi_size
) {
890 cursor
->bvec_iter
= bio
->bi_iter
;
892 memset(&cursor
->bvec_iter
, 0,
893 sizeof(cursor
->bvec_iter
));
896 if (!cursor
->last_piece
) {
897 BUG_ON(!cursor
->resid
);
899 /* A short read is OK, so use <= rather than == */
900 if (cursor
->resid
<= bio_iter_len(bio
, cursor
->bvec_iter
))
901 cursor
->last_piece
= true;
906 #endif /* CONFIG_BLOCK */
909 * For a page array, a piece comes from the first page in the array
910 * that has not already been fully consumed.
912 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor
*cursor
,
915 struct ceph_msg_data
*data
= cursor
->data
;
918 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGES
);
920 BUG_ON(!data
->pages
);
921 BUG_ON(!data
->length
);
923 cursor
->resid
= min(length
, data
->length
);
924 page_count
= calc_pages_for(data
->alignment
, (u64
)data
->length
);
925 cursor
->page_offset
= data
->alignment
& ~PAGE_MASK
;
926 cursor
->page_index
= 0;
927 BUG_ON(page_count
> (int)USHRT_MAX
);
928 cursor
->page_count
= (unsigned short)page_count
;
929 BUG_ON(length
> SIZE_MAX
- cursor
->page_offset
);
930 cursor
->last_piece
= cursor
->page_offset
+ cursor
->resid
<= PAGE_SIZE
;
934 ceph_msg_data_pages_next(struct ceph_msg_data_cursor
*cursor
,
935 size_t *page_offset
, size_t *length
)
937 struct ceph_msg_data
*data
= cursor
->data
;
939 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGES
);
941 BUG_ON(cursor
->page_index
>= cursor
->page_count
);
942 BUG_ON(cursor
->page_offset
>= PAGE_SIZE
);
944 *page_offset
= cursor
->page_offset
;
945 if (cursor
->last_piece
)
946 *length
= cursor
->resid
;
948 *length
= PAGE_SIZE
- *page_offset
;
950 return data
->pages
[cursor
->page_index
];
953 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor
*cursor
,
956 BUG_ON(cursor
->data
->type
!= CEPH_MSG_DATA_PAGES
);
958 BUG_ON(cursor
->page_offset
+ bytes
> PAGE_SIZE
);
960 /* Advance the cursor page offset */
962 cursor
->resid
-= bytes
;
963 cursor
->page_offset
= (cursor
->page_offset
+ bytes
) & ~PAGE_MASK
;
964 if (!bytes
|| cursor
->page_offset
)
965 return false; /* more bytes to process in the current page */
968 return false; /* no more data */
970 /* Move on to the next page; offset is already at 0 */
972 BUG_ON(cursor
->page_index
>= cursor
->page_count
);
973 cursor
->page_index
++;
974 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
980 * For a pagelist, a piece is whatever remains to be consumed in the
981 * first page in the list, or the front of the next page.
984 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor
*cursor
,
987 struct ceph_msg_data
*data
= cursor
->data
;
988 struct ceph_pagelist
*pagelist
;
991 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
993 pagelist
= data
->pagelist
;
997 return; /* pagelist can be assigned but empty */
999 BUG_ON(list_empty(&pagelist
->head
));
1000 page
= list_first_entry(&pagelist
->head
, struct page
, lru
);
1002 cursor
->resid
= min(length
, pagelist
->length
);
1003 cursor
->page
= page
;
1005 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
1008 static struct page
*
1009 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor
*cursor
,
1010 size_t *page_offset
, size_t *length
)
1012 struct ceph_msg_data
*data
= cursor
->data
;
1013 struct ceph_pagelist
*pagelist
;
1015 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
1017 pagelist
= data
->pagelist
;
1020 BUG_ON(!cursor
->page
);
1021 BUG_ON(cursor
->offset
+ cursor
->resid
!= pagelist
->length
);
1023 /* offset of first page in pagelist is always 0 */
1024 *page_offset
= cursor
->offset
& ~PAGE_MASK
;
1025 if (cursor
->last_piece
)
1026 *length
= cursor
->resid
;
1028 *length
= PAGE_SIZE
- *page_offset
;
1030 return cursor
->page
;
1033 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor
*cursor
,
1036 struct ceph_msg_data
*data
= cursor
->data
;
1037 struct ceph_pagelist
*pagelist
;
1039 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
1041 pagelist
= data
->pagelist
;
1044 BUG_ON(cursor
->offset
+ cursor
->resid
!= pagelist
->length
);
1045 BUG_ON((cursor
->offset
& ~PAGE_MASK
) + bytes
> PAGE_SIZE
);
1047 /* Advance the cursor offset */
1049 cursor
->resid
-= bytes
;
1050 cursor
->offset
+= bytes
;
1051 /* offset of first page in pagelist is always 0 */
1052 if (!bytes
|| cursor
->offset
& ~PAGE_MASK
)
1053 return false; /* more bytes to process in the current page */
1056 return false; /* no more data */
1058 /* Move on to the next page */
1060 BUG_ON(list_is_last(&cursor
->page
->lru
, &pagelist
->head
));
1061 cursor
->page
= list_next_entry(cursor
->page
, lru
);
1062 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
1068 * Message data is handled (sent or received) in pieces, where each
1069 * piece resides on a single page. The network layer might not
1070 * consume an entire piece at once. A data item's cursor keeps
1071 * track of which piece is next to process and how much remains to
1072 * be processed in that piece. It also tracks whether the current
1073 * piece is the last one in the data item.
1075 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor
*cursor
)
1077 size_t length
= cursor
->total_resid
;
1079 switch (cursor
->data
->type
) {
1080 case CEPH_MSG_DATA_PAGELIST
:
1081 ceph_msg_data_pagelist_cursor_init(cursor
, length
);
1083 case CEPH_MSG_DATA_PAGES
:
1084 ceph_msg_data_pages_cursor_init(cursor
, length
);
1087 case CEPH_MSG_DATA_BIO
:
1088 ceph_msg_data_bio_cursor_init(cursor
, length
);
1090 #endif /* CONFIG_BLOCK */
1091 case CEPH_MSG_DATA_NONE
:
1096 cursor
->need_crc
= true;
1099 static void ceph_msg_data_cursor_init(struct ceph_msg
*msg
, size_t length
)
1101 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
1102 struct ceph_msg_data
*data
;
1105 BUG_ON(length
> msg
->data_length
);
1106 BUG_ON(list_empty(&msg
->data
));
1108 cursor
->data_head
= &msg
->data
;
1109 cursor
->total_resid
= length
;
1110 data
= list_first_entry(&msg
->data
, struct ceph_msg_data
, links
);
1111 cursor
->data
= data
;
1113 __ceph_msg_data_cursor_init(cursor
);
1117 * Return the page containing the next piece to process for a given
1118 * data item, and supply the page offset and length of that piece.
1119 * Indicate whether this is the last piece in this data item.
1121 static struct page
*ceph_msg_data_next(struct ceph_msg_data_cursor
*cursor
,
1122 size_t *page_offset
, size_t *length
,
1127 switch (cursor
->data
->type
) {
1128 case CEPH_MSG_DATA_PAGELIST
:
1129 page
= ceph_msg_data_pagelist_next(cursor
, page_offset
, length
);
1131 case CEPH_MSG_DATA_PAGES
:
1132 page
= ceph_msg_data_pages_next(cursor
, page_offset
, length
);
1135 case CEPH_MSG_DATA_BIO
:
1136 page
= ceph_msg_data_bio_next(cursor
, page_offset
, length
);
1138 #endif /* CONFIG_BLOCK */
1139 case CEPH_MSG_DATA_NONE
:
1145 BUG_ON(*page_offset
+ *length
> PAGE_SIZE
);
1148 *last_piece
= cursor
->last_piece
;
1154 * Returns true if the result moves the cursor on to the next piece
1157 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor
*cursor
,
1162 BUG_ON(bytes
> cursor
->resid
);
1163 switch (cursor
->data
->type
) {
1164 case CEPH_MSG_DATA_PAGELIST
:
1165 new_piece
= ceph_msg_data_pagelist_advance(cursor
, bytes
);
1167 case CEPH_MSG_DATA_PAGES
:
1168 new_piece
= ceph_msg_data_pages_advance(cursor
, bytes
);
1171 case CEPH_MSG_DATA_BIO
:
1172 new_piece
= ceph_msg_data_bio_advance(cursor
, bytes
);
1174 #endif /* CONFIG_BLOCK */
1175 case CEPH_MSG_DATA_NONE
:
1180 cursor
->total_resid
-= bytes
;
1182 if (!cursor
->resid
&& cursor
->total_resid
) {
1183 WARN_ON(!cursor
->last_piece
);
1184 BUG_ON(list_is_last(&cursor
->data
->links
, cursor
->data_head
));
1185 cursor
->data
= list_next_entry(cursor
->data
, links
);
1186 __ceph_msg_data_cursor_init(cursor
);
1189 cursor
->need_crc
= new_piece
;
1194 static size_t sizeof_footer(struct ceph_connection
*con
)
1196 return (con
->peer_features
& CEPH_FEATURE_MSG_AUTH
) ?
1197 sizeof(struct ceph_msg_footer
) :
1198 sizeof(struct ceph_msg_footer_old
);
1201 static void prepare_message_data(struct ceph_msg
*msg
, u32 data_len
)
1206 /* Initialize data cursor */
1208 ceph_msg_data_cursor_init(msg
, (size_t)data_len
);
1212 * Prepare footer for currently outgoing message, and finish things
1213 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1215 static void prepare_write_message_footer(struct ceph_connection
*con
)
1217 struct ceph_msg
*m
= con
->out_msg
;
1219 m
->footer
.flags
|= CEPH_MSG_FOOTER_COMPLETE
;
1221 dout("prepare_write_message_footer %p\n", con
);
1222 con_out_kvec_add(con
, sizeof_footer(con
), &m
->footer
);
1223 if (con
->peer_features
& CEPH_FEATURE_MSG_AUTH
) {
1224 if (con
->ops
->sign_message
)
1225 con
->ops
->sign_message(m
);
1229 m
->old_footer
.flags
= m
->footer
.flags
;
1231 con
->out_more
= m
->more_to_follow
;
1232 con
->out_msg_done
= true;
1236 * Prepare headers for the next outgoing message.
1238 static void prepare_write_message(struct ceph_connection
*con
)
1243 con_out_kvec_reset(con
);
1244 con
->out_msg_done
= false;
1246 /* Sneak an ack in there first? If we can get it into the same
1247 * TCP packet that's a good thing. */
1248 if (con
->in_seq
> con
->in_seq_acked
) {
1249 con
->in_seq_acked
= con
->in_seq
;
1250 con_out_kvec_add(con
, sizeof (tag_ack
), &tag_ack
);
1251 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1252 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1253 &con
->out_temp_ack
);
1256 BUG_ON(list_empty(&con
->out_queue
));
1257 m
= list_first_entry(&con
->out_queue
, struct ceph_msg
, list_head
);
1259 BUG_ON(m
->con
!= con
);
1261 /* put message on sent list */
1263 list_move_tail(&m
->list_head
, &con
->out_sent
);
1266 * only assign outgoing seq # if we haven't sent this message
1267 * yet. if it is requeued, resend with it's original seq.
1269 if (m
->needs_out_seq
) {
1270 m
->hdr
.seq
= cpu_to_le64(++con
->out_seq
);
1271 m
->needs_out_seq
= false;
1273 WARN_ON(m
->data_length
!= le32_to_cpu(m
->hdr
.data_len
));
1275 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1276 m
, con
->out_seq
, le16_to_cpu(m
->hdr
.type
),
1277 le32_to_cpu(m
->hdr
.front_len
), le32_to_cpu(m
->hdr
.middle_len
),
1279 BUG_ON(le32_to_cpu(m
->hdr
.front_len
) != m
->front
.iov_len
);
1281 /* tag + hdr + front + middle */
1282 con_out_kvec_add(con
, sizeof (tag_msg
), &tag_msg
);
1283 con_out_kvec_add(con
, sizeof(con
->out_hdr
), &con
->out_hdr
);
1284 con_out_kvec_add(con
, m
->front
.iov_len
, m
->front
.iov_base
);
1287 con_out_kvec_add(con
, m
->middle
->vec
.iov_len
,
1288 m
->middle
->vec
.iov_base
);
1290 /* fill in hdr crc and finalize hdr */
1291 crc
= crc32c(0, &m
->hdr
, offsetof(struct ceph_msg_header
, crc
));
1292 con
->out_msg
->hdr
.crc
= cpu_to_le32(crc
);
1293 memcpy(&con
->out_hdr
, &con
->out_msg
->hdr
, sizeof(con
->out_hdr
));
1295 /* fill in front and middle crc, footer */
1296 crc
= crc32c(0, m
->front
.iov_base
, m
->front
.iov_len
);
1297 con
->out_msg
->footer
.front_crc
= cpu_to_le32(crc
);
1299 crc
= crc32c(0, m
->middle
->vec
.iov_base
,
1300 m
->middle
->vec
.iov_len
);
1301 con
->out_msg
->footer
.middle_crc
= cpu_to_le32(crc
);
1303 con
->out_msg
->footer
.middle_crc
= 0;
1304 dout("%s front_crc %u middle_crc %u\n", __func__
,
1305 le32_to_cpu(con
->out_msg
->footer
.front_crc
),
1306 le32_to_cpu(con
->out_msg
->footer
.middle_crc
));
1307 con
->out_msg
->footer
.flags
= 0;
1309 /* is there a data payload? */
1310 con
->out_msg
->footer
.data_crc
= 0;
1311 if (m
->data_length
) {
1312 prepare_message_data(con
->out_msg
, m
->data_length
);
1313 con
->out_more
= 1; /* data + footer will follow */
1315 /* no, queue up footer too and be done */
1316 prepare_write_message_footer(con
);
1319 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1325 static void prepare_write_ack(struct ceph_connection
*con
)
1327 dout("prepare_write_ack %p %llu -> %llu\n", con
,
1328 con
->in_seq_acked
, con
->in_seq
);
1329 con
->in_seq_acked
= con
->in_seq
;
1331 con_out_kvec_reset(con
);
1333 con_out_kvec_add(con
, sizeof (tag_ack
), &tag_ack
);
1335 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1336 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1337 &con
->out_temp_ack
);
1339 con
->out_more
= 1; /* more will follow.. eventually.. */
1340 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1344 * Prepare to share the seq during handshake
1346 static void prepare_write_seq(struct ceph_connection
*con
)
1348 dout("prepare_write_seq %p %llu -> %llu\n", con
,
1349 con
->in_seq_acked
, con
->in_seq
);
1350 con
->in_seq_acked
= con
->in_seq
;
1352 con_out_kvec_reset(con
);
1354 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1355 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1356 &con
->out_temp_ack
);
1358 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1362 * Prepare to write keepalive byte.
1364 static void prepare_write_keepalive(struct ceph_connection
*con
)
1366 dout("prepare_write_keepalive %p\n", con
);
1367 con_out_kvec_reset(con
);
1368 if (con
->peer_features
& CEPH_FEATURE_MSGR_KEEPALIVE2
) {
1369 struct timespec now
= CURRENT_TIME
;
1371 con_out_kvec_add(con
, sizeof(tag_keepalive2
), &tag_keepalive2
);
1372 ceph_encode_timespec(&con
->out_temp_keepalive2
, &now
);
1373 con_out_kvec_add(con
, sizeof(con
->out_temp_keepalive2
),
1374 &con
->out_temp_keepalive2
);
1376 con_out_kvec_add(con
, sizeof(tag_keepalive
), &tag_keepalive
);
1378 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1382 * Connection negotiation.
1385 static struct ceph_auth_handshake
*get_connect_authorizer(struct ceph_connection
*con
,
1388 struct ceph_auth_handshake
*auth
;
1390 if (!con
->ops
->get_authorizer
) {
1391 con
->out_connect
.authorizer_protocol
= CEPH_AUTH_UNKNOWN
;
1392 con
->out_connect
.authorizer_len
= 0;
1396 /* Can't hold the mutex while getting authorizer */
1397 mutex_unlock(&con
->mutex
);
1398 auth
= con
->ops
->get_authorizer(con
, auth_proto
, con
->auth_retry
);
1399 mutex_lock(&con
->mutex
);
1403 if (con
->state
!= CON_STATE_NEGOTIATING
)
1404 return ERR_PTR(-EAGAIN
);
1406 con
->auth_reply_buf
= auth
->authorizer_reply_buf
;
1407 con
->auth_reply_buf_len
= auth
->authorizer_reply_buf_len
;
1412 * We connected to a peer and are saying hello.
1414 static void prepare_write_banner(struct ceph_connection
*con
)
1416 con_out_kvec_add(con
, strlen(CEPH_BANNER
), CEPH_BANNER
);
1417 con_out_kvec_add(con
, sizeof (con
->msgr
->my_enc_addr
),
1418 &con
->msgr
->my_enc_addr
);
1421 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1424 static int prepare_write_connect(struct ceph_connection
*con
)
1426 unsigned int global_seq
= get_global_seq(con
->msgr
, 0);
1429 struct ceph_auth_handshake
*auth
;
1431 switch (con
->peer_name
.type
) {
1432 case CEPH_ENTITY_TYPE_MON
:
1433 proto
= CEPH_MONC_PROTOCOL
;
1435 case CEPH_ENTITY_TYPE_OSD
:
1436 proto
= CEPH_OSDC_PROTOCOL
;
1438 case CEPH_ENTITY_TYPE_MDS
:
1439 proto
= CEPH_MDSC_PROTOCOL
;
1445 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con
,
1446 con
->connect_seq
, global_seq
, proto
);
1448 con
->out_connect
.features
=
1449 cpu_to_le64(from_msgr(con
->msgr
)->supported_features
);
1450 con
->out_connect
.host_type
= cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT
);
1451 con
->out_connect
.connect_seq
= cpu_to_le32(con
->connect_seq
);
1452 con
->out_connect
.global_seq
= cpu_to_le32(global_seq
);
1453 con
->out_connect
.protocol_version
= cpu_to_le32(proto
);
1454 con
->out_connect
.flags
= 0;
1456 auth_proto
= CEPH_AUTH_UNKNOWN
;
1457 auth
= get_connect_authorizer(con
, &auth_proto
);
1459 return PTR_ERR(auth
);
1461 con
->out_connect
.authorizer_protocol
= cpu_to_le32(auth_proto
);
1462 con
->out_connect
.authorizer_len
= auth
?
1463 cpu_to_le32(auth
->authorizer_buf_len
) : 0;
1465 con_out_kvec_add(con
, sizeof (con
->out_connect
),
1467 if (auth
&& auth
->authorizer_buf_len
)
1468 con_out_kvec_add(con
, auth
->authorizer_buf_len
,
1469 auth
->authorizer_buf
);
1472 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1478 * write as much of pending kvecs to the socket as we can.
1480 * 0 -> socket full, but more to do
1483 static int write_partial_kvec(struct ceph_connection
*con
)
1487 dout("write_partial_kvec %p %d left\n", con
, con
->out_kvec_bytes
);
1488 while (con
->out_kvec_bytes
> 0) {
1489 ret
= ceph_tcp_sendmsg(con
->sock
, con
->out_kvec_cur
,
1490 con
->out_kvec_left
, con
->out_kvec_bytes
,
1494 con
->out_kvec_bytes
-= ret
;
1495 if (con
->out_kvec_bytes
== 0)
1498 /* account for full iov entries consumed */
1499 while (ret
>= con
->out_kvec_cur
->iov_len
) {
1500 BUG_ON(!con
->out_kvec_left
);
1501 ret
-= con
->out_kvec_cur
->iov_len
;
1502 con
->out_kvec_cur
++;
1503 con
->out_kvec_left
--;
1505 /* and for a partially-consumed entry */
1507 con
->out_kvec_cur
->iov_len
-= ret
;
1508 con
->out_kvec_cur
->iov_base
+= ret
;
1511 con
->out_kvec_left
= 0;
1514 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con
,
1515 con
->out_kvec_bytes
, con
->out_kvec_left
, ret
);
1516 return ret
; /* done! */
1519 static u32
ceph_crc32c_page(u32 crc
, struct page
*page
,
1520 unsigned int page_offset
,
1521 unsigned int length
)
1526 BUG_ON(kaddr
== NULL
);
1527 crc
= crc32c(crc
, kaddr
+ page_offset
, length
);
1533 * Write as much message data payload as we can. If we finish, queue
1535 * 1 -> done, footer is now queued in out_kvec[].
1536 * 0 -> socket full, but more to do
1539 static int write_partial_message_data(struct ceph_connection
*con
)
1541 struct ceph_msg
*msg
= con
->out_msg
;
1542 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
1543 bool do_datacrc
= !ceph_test_opt(from_msgr(con
->msgr
), NOCRC
);
1546 dout("%s %p msg %p\n", __func__
, con
, msg
);
1548 if (list_empty(&msg
->data
))
1552 * Iterate through each page that contains data to be
1553 * written, and send as much as possible for each.
1555 * If we are calculating the data crc (the default), we will
1556 * need to map the page. If we have no pages, they have
1557 * been revoked, so use the zero page.
1559 crc
= do_datacrc
? le32_to_cpu(msg
->footer
.data_crc
) : 0;
1560 while (cursor
->resid
) {
1568 page
= ceph_msg_data_next(cursor
, &page_offset
, &length
,
1570 ret
= ceph_tcp_sendpage(con
->sock
, page
, page_offset
,
1571 length
, !last_piece
);
1574 msg
->footer
.data_crc
= cpu_to_le32(crc
);
1578 if (do_datacrc
&& cursor
->need_crc
)
1579 crc
= ceph_crc32c_page(crc
, page
, page_offset
, length
);
1580 need_crc
= ceph_msg_data_advance(cursor
, (size_t)ret
);
1583 dout("%s %p msg %p done\n", __func__
, con
, msg
);
1585 /* prepare and queue up footer, too */
1587 msg
->footer
.data_crc
= cpu_to_le32(crc
);
1589 msg
->footer
.flags
|= CEPH_MSG_FOOTER_NOCRC
;
1590 con_out_kvec_reset(con
);
1591 prepare_write_message_footer(con
);
1593 return 1; /* must return > 0 to indicate success */
1599 static int write_partial_skip(struct ceph_connection
*con
)
1603 dout("%s %p %d left\n", __func__
, con
, con
->out_skip
);
1604 while (con
->out_skip
> 0) {
1605 size_t size
= min(con
->out_skip
, (int) PAGE_CACHE_SIZE
);
1607 ret
= ceph_tcp_sendpage(con
->sock
, zero_page
, 0, size
, true);
1610 con
->out_skip
-= ret
;
1618 * Prepare to read connection handshake, or an ack.
1620 static void prepare_read_banner(struct ceph_connection
*con
)
1622 dout("prepare_read_banner %p\n", con
);
1623 con
->in_base_pos
= 0;
1626 static void prepare_read_connect(struct ceph_connection
*con
)
1628 dout("prepare_read_connect %p\n", con
);
1629 con
->in_base_pos
= 0;
1632 static void prepare_read_ack(struct ceph_connection
*con
)
1634 dout("prepare_read_ack %p\n", con
);
1635 con
->in_base_pos
= 0;
1638 static void prepare_read_seq(struct ceph_connection
*con
)
1640 dout("prepare_read_seq %p\n", con
);
1641 con
->in_base_pos
= 0;
1642 con
->in_tag
= CEPH_MSGR_TAG_SEQ
;
1645 static void prepare_read_tag(struct ceph_connection
*con
)
1647 dout("prepare_read_tag %p\n", con
);
1648 con
->in_base_pos
= 0;
1649 con
->in_tag
= CEPH_MSGR_TAG_READY
;
1652 static void prepare_read_keepalive_ack(struct ceph_connection
*con
)
1654 dout("prepare_read_keepalive_ack %p\n", con
);
1655 con
->in_base_pos
= 0;
1659 * Prepare to read a message.
1661 static int prepare_read_message(struct ceph_connection
*con
)
1663 dout("prepare_read_message %p\n", con
);
1664 BUG_ON(con
->in_msg
!= NULL
);
1665 con
->in_base_pos
= 0;
1666 con
->in_front_crc
= con
->in_middle_crc
= con
->in_data_crc
= 0;
1671 static int read_partial(struct ceph_connection
*con
,
1672 int end
, int size
, void *object
)
1674 while (con
->in_base_pos
< end
) {
1675 int left
= end
- con
->in_base_pos
;
1676 int have
= size
- left
;
1677 int ret
= ceph_tcp_recvmsg(con
->sock
, object
+ have
, left
);
1680 con
->in_base_pos
+= ret
;
1687 * Read all or part of the connect-side handshake on a new connection
1689 static int read_partial_banner(struct ceph_connection
*con
)
1695 dout("read_partial_banner %p at %d\n", con
, con
->in_base_pos
);
1698 size
= strlen(CEPH_BANNER
);
1700 ret
= read_partial(con
, end
, size
, con
->in_banner
);
1704 size
= sizeof (con
->actual_peer_addr
);
1706 ret
= read_partial(con
, end
, size
, &con
->actual_peer_addr
);
1710 size
= sizeof (con
->peer_addr_for_me
);
1712 ret
= read_partial(con
, end
, size
, &con
->peer_addr_for_me
);
1720 static int read_partial_connect(struct ceph_connection
*con
)
1726 dout("read_partial_connect %p at %d\n", con
, con
->in_base_pos
);
1728 size
= sizeof (con
->in_reply
);
1730 ret
= read_partial(con
, end
, size
, &con
->in_reply
);
1734 size
= le32_to_cpu(con
->in_reply
.authorizer_len
);
1736 ret
= read_partial(con
, end
, size
, con
->auth_reply_buf
);
1740 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1741 con
, (int)con
->in_reply
.tag
,
1742 le32_to_cpu(con
->in_reply
.connect_seq
),
1743 le32_to_cpu(con
->in_reply
.global_seq
));
1750 * Verify the hello banner looks okay.
1752 static int verify_hello(struct ceph_connection
*con
)
1754 if (memcmp(con
->in_banner
, CEPH_BANNER
, strlen(CEPH_BANNER
))) {
1755 pr_err("connect to %s got bad banner\n",
1756 ceph_pr_addr(&con
->peer_addr
.in_addr
));
1757 con
->error_msg
= "protocol error, bad banner";
1763 static bool addr_is_blank(struct sockaddr_storage
*ss
)
1765 struct in_addr
*addr
= &((struct sockaddr_in
*)ss
)->sin_addr
;
1766 struct in6_addr
*addr6
= &((struct sockaddr_in6
*)ss
)->sin6_addr
;
1768 switch (ss
->ss_family
) {
1770 return addr
->s_addr
== htonl(INADDR_ANY
);
1772 return ipv6_addr_any(addr6
);
1778 static int addr_port(struct sockaddr_storage
*ss
)
1780 switch (ss
->ss_family
) {
1782 return ntohs(((struct sockaddr_in
*)ss
)->sin_port
);
1784 return ntohs(((struct sockaddr_in6
*)ss
)->sin6_port
);
1789 static void addr_set_port(struct sockaddr_storage
*ss
, int p
)
1791 switch (ss
->ss_family
) {
1793 ((struct sockaddr_in
*)ss
)->sin_port
= htons(p
);
1796 ((struct sockaddr_in6
*)ss
)->sin6_port
= htons(p
);
1802 * Unlike other *_pton function semantics, zero indicates success.
1804 static int ceph_pton(const char *str
, size_t len
, struct sockaddr_storage
*ss
,
1805 char delim
, const char **ipend
)
1807 struct sockaddr_in
*in4
= (struct sockaddr_in
*) ss
;
1808 struct sockaddr_in6
*in6
= (struct sockaddr_in6
*) ss
;
1810 memset(ss
, 0, sizeof(*ss
));
1812 if (in4_pton(str
, len
, (u8
*)&in4
->sin_addr
.s_addr
, delim
, ipend
)) {
1813 ss
->ss_family
= AF_INET
;
1817 if (in6_pton(str
, len
, (u8
*)&in6
->sin6_addr
.s6_addr
, delim
, ipend
)) {
1818 ss
->ss_family
= AF_INET6
;
1826 * Extract hostname string and resolve using kernel DNS facility.
1828 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1829 static int ceph_dns_resolve_name(const char *name
, size_t namelen
,
1830 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1832 const char *end
, *delim_p
;
1833 char *colon_p
, *ip_addr
= NULL
;
1837 * The end of the hostname occurs immediately preceding the delimiter or
1838 * the port marker (':') where the delimiter takes precedence.
1840 delim_p
= memchr(name
, delim
, namelen
);
1841 colon_p
= memchr(name
, ':', namelen
);
1843 if (delim_p
&& colon_p
)
1844 end
= delim_p
< colon_p
? delim_p
: colon_p
;
1845 else if (!delim_p
&& colon_p
)
1849 if (!end
) /* case: hostname:/ */
1850 end
= name
+ namelen
;
1856 /* do dns_resolve upcall */
1857 ip_len
= dns_query(NULL
, name
, end
- name
, NULL
, &ip_addr
, NULL
);
1859 ret
= ceph_pton(ip_addr
, ip_len
, ss
, -1, NULL
);
1867 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end
- name
), name
,
1868 ret
, ret
? "failed" : ceph_pr_addr(ss
));
1873 static inline int ceph_dns_resolve_name(const char *name
, size_t namelen
,
1874 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1881 * Parse a server name (IP or hostname). If a valid IP address is not found
1882 * then try to extract a hostname to resolve using userspace DNS upcall.
1884 static int ceph_parse_server_name(const char *name
, size_t namelen
,
1885 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1889 ret
= ceph_pton(name
, namelen
, ss
, delim
, ipend
);
1891 ret
= ceph_dns_resolve_name(name
, namelen
, ss
, delim
, ipend
);
1897 * Parse an ip[:port] list into an addr array. Use the default
1898 * monitor port if a port isn't specified.
1900 int ceph_parse_ips(const char *c
, const char *end
,
1901 struct ceph_entity_addr
*addr
,
1902 int max_count
, int *count
)
1904 int i
, ret
= -EINVAL
;
1907 dout("parse_ips on '%.*s'\n", (int)(end
-c
), c
);
1908 for (i
= 0; i
< max_count
; i
++) {
1910 struct sockaddr_storage
*ss
= &addr
[i
].in_addr
;
1919 ret
= ceph_parse_server_name(p
, end
- p
, ss
, delim
, &ipend
);
1928 dout("missing matching ']'\n");
1935 if (p
< end
&& *p
== ':') {
1938 while (p
< end
&& *p
>= '0' && *p
<= '9') {
1939 port
= (port
* 10) + (*p
- '0');
1943 port
= CEPH_MON_PORT
;
1944 else if (port
> 65535)
1947 port
= CEPH_MON_PORT
;
1950 addr_set_port(ss
, port
);
1952 dout("parse_ips got %s\n", ceph_pr_addr(ss
));
1969 pr_err("parse_ips bad ip '%.*s'\n", (int)(end
- c
), c
);
1972 EXPORT_SYMBOL(ceph_parse_ips
);
1974 static int process_banner(struct ceph_connection
*con
)
1976 dout("process_banner on %p\n", con
);
1978 if (verify_hello(con
) < 0)
1981 ceph_decode_addr(&con
->actual_peer_addr
);
1982 ceph_decode_addr(&con
->peer_addr_for_me
);
1985 * Make sure the other end is who we wanted. note that the other
1986 * end may not yet know their ip address, so if it's 0.0.0.0, give
1987 * them the benefit of the doubt.
1989 if (memcmp(&con
->peer_addr
, &con
->actual_peer_addr
,
1990 sizeof(con
->peer_addr
)) != 0 &&
1991 !(addr_is_blank(&con
->actual_peer_addr
.in_addr
) &&
1992 con
->actual_peer_addr
.nonce
== con
->peer_addr
.nonce
)) {
1993 pr_warn("wrong peer, want %s/%d, got %s/%d\n",
1994 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1995 (int)le32_to_cpu(con
->peer_addr
.nonce
),
1996 ceph_pr_addr(&con
->actual_peer_addr
.in_addr
),
1997 (int)le32_to_cpu(con
->actual_peer_addr
.nonce
));
1998 con
->error_msg
= "wrong peer at address";
2003 * did we learn our address?
2005 if (addr_is_blank(&con
->msgr
->inst
.addr
.in_addr
)) {
2006 int port
= addr_port(&con
->msgr
->inst
.addr
.in_addr
);
2008 memcpy(&con
->msgr
->inst
.addr
.in_addr
,
2009 &con
->peer_addr_for_me
.in_addr
,
2010 sizeof(con
->peer_addr_for_me
.in_addr
));
2011 addr_set_port(&con
->msgr
->inst
.addr
.in_addr
, port
);
2012 encode_my_addr(con
->msgr
);
2013 dout("process_banner learned my addr is %s\n",
2014 ceph_pr_addr(&con
->msgr
->inst
.addr
.in_addr
));
2020 static int process_connect(struct ceph_connection
*con
)
2022 u64 sup_feat
= from_msgr(con
->msgr
)->supported_features
;
2023 u64 req_feat
= from_msgr(con
->msgr
)->required_features
;
2024 u64 server_feat
= ceph_sanitize_features(
2025 le64_to_cpu(con
->in_reply
.features
));
2028 dout("process_connect on %p tag %d\n", con
, (int)con
->in_tag
);
2030 switch (con
->in_reply
.tag
) {
2031 case CEPH_MSGR_TAG_FEATURES
:
2032 pr_err("%s%lld %s feature set mismatch,"
2033 " my %llx < server's %llx, missing %llx\n",
2034 ENTITY_NAME(con
->peer_name
),
2035 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2036 sup_feat
, server_feat
, server_feat
& ~sup_feat
);
2037 con
->error_msg
= "missing required protocol features";
2038 reset_connection(con
);
2041 case CEPH_MSGR_TAG_BADPROTOVER
:
2042 pr_err("%s%lld %s protocol version mismatch,"
2043 " my %d != server's %d\n",
2044 ENTITY_NAME(con
->peer_name
),
2045 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2046 le32_to_cpu(con
->out_connect
.protocol_version
),
2047 le32_to_cpu(con
->in_reply
.protocol_version
));
2048 con
->error_msg
= "protocol version mismatch";
2049 reset_connection(con
);
2052 case CEPH_MSGR_TAG_BADAUTHORIZER
:
2054 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con
,
2056 if (con
->auth_retry
== 2) {
2057 con
->error_msg
= "connect authorization failure";
2060 con_out_kvec_reset(con
);
2061 ret
= prepare_write_connect(con
);
2064 prepare_read_connect(con
);
2067 case CEPH_MSGR_TAG_RESETSESSION
:
2069 * If we connected with a large connect_seq but the peer
2070 * has no record of a session with us (no connection, or
2071 * connect_seq == 0), they will send RESETSESION to indicate
2072 * that they must have reset their session, and may have
2075 dout("process_connect got RESET peer seq %u\n",
2076 le32_to_cpu(con
->in_reply
.connect_seq
));
2077 pr_err("%s%lld %s connection reset\n",
2078 ENTITY_NAME(con
->peer_name
),
2079 ceph_pr_addr(&con
->peer_addr
.in_addr
));
2080 reset_connection(con
);
2081 con_out_kvec_reset(con
);
2082 ret
= prepare_write_connect(con
);
2085 prepare_read_connect(con
);
2087 /* Tell ceph about it. */
2088 mutex_unlock(&con
->mutex
);
2089 pr_info("reset on %s%lld\n", ENTITY_NAME(con
->peer_name
));
2090 if (con
->ops
->peer_reset
)
2091 con
->ops
->peer_reset(con
);
2092 mutex_lock(&con
->mutex
);
2093 if (con
->state
!= CON_STATE_NEGOTIATING
)
2097 case CEPH_MSGR_TAG_RETRY_SESSION
:
2099 * If we sent a smaller connect_seq than the peer has, try
2100 * again with a larger value.
2102 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2103 le32_to_cpu(con
->out_connect
.connect_seq
),
2104 le32_to_cpu(con
->in_reply
.connect_seq
));
2105 con
->connect_seq
= le32_to_cpu(con
->in_reply
.connect_seq
);
2106 con_out_kvec_reset(con
);
2107 ret
= prepare_write_connect(con
);
2110 prepare_read_connect(con
);
2113 case CEPH_MSGR_TAG_RETRY_GLOBAL
:
2115 * If we sent a smaller global_seq than the peer has, try
2116 * again with a larger value.
2118 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2119 con
->peer_global_seq
,
2120 le32_to_cpu(con
->in_reply
.global_seq
));
2121 get_global_seq(con
->msgr
,
2122 le32_to_cpu(con
->in_reply
.global_seq
));
2123 con_out_kvec_reset(con
);
2124 ret
= prepare_write_connect(con
);
2127 prepare_read_connect(con
);
2130 case CEPH_MSGR_TAG_SEQ
:
2131 case CEPH_MSGR_TAG_READY
:
2132 if (req_feat
& ~server_feat
) {
2133 pr_err("%s%lld %s protocol feature mismatch,"
2134 " my required %llx > server's %llx, need %llx\n",
2135 ENTITY_NAME(con
->peer_name
),
2136 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2137 req_feat
, server_feat
, req_feat
& ~server_feat
);
2138 con
->error_msg
= "missing required protocol features";
2139 reset_connection(con
);
2143 WARN_ON(con
->state
!= CON_STATE_NEGOTIATING
);
2144 con
->state
= CON_STATE_OPEN
;
2145 con
->auth_retry
= 0; /* we authenticated; clear flag */
2146 con
->peer_global_seq
= le32_to_cpu(con
->in_reply
.global_seq
);
2148 con
->peer_features
= server_feat
;
2149 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2150 con
->peer_global_seq
,
2151 le32_to_cpu(con
->in_reply
.connect_seq
),
2153 WARN_ON(con
->connect_seq
!=
2154 le32_to_cpu(con
->in_reply
.connect_seq
));
2156 if (con
->in_reply
.flags
& CEPH_MSG_CONNECT_LOSSY
)
2157 con_flag_set(con
, CON_FLAG_LOSSYTX
);
2159 con
->delay
= 0; /* reset backoff memory */
2161 if (con
->in_reply
.tag
== CEPH_MSGR_TAG_SEQ
) {
2162 prepare_write_seq(con
);
2163 prepare_read_seq(con
);
2165 prepare_read_tag(con
);
2169 case CEPH_MSGR_TAG_WAIT
:
2171 * If there is a connection race (we are opening
2172 * connections to each other), one of us may just have
2173 * to WAIT. This shouldn't happen if we are the
2176 con
->error_msg
= "protocol error, got WAIT as client";
2180 con
->error_msg
= "protocol error, garbage tag during connect";
2188 * read (part of) an ack
2190 static int read_partial_ack(struct ceph_connection
*con
)
2192 int size
= sizeof (con
->in_temp_ack
);
2195 return read_partial(con
, end
, size
, &con
->in_temp_ack
);
2199 * We can finally discard anything that's been acked.
2201 static void process_ack(struct ceph_connection
*con
)
2204 u64 ack
= le64_to_cpu(con
->in_temp_ack
);
2207 while (!list_empty(&con
->out_sent
)) {
2208 m
= list_first_entry(&con
->out_sent
, struct ceph_msg
,
2210 seq
= le64_to_cpu(m
->hdr
.seq
);
2213 dout("got ack for seq %llu type %d at %p\n", seq
,
2214 le16_to_cpu(m
->hdr
.type
), m
);
2215 m
->ack_stamp
= jiffies
;
2218 prepare_read_tag(con
);
2222 static int read_partial_message_section(struct ceph_connection
*con
,
2223 struct kvec
*section
,
2224 unsigned int sec_len
, u32
*crc
)
2230 while (section
->iov_len
< sec_len
) {
2231 BUG_ON(section
->iov_base
== NULL
);
2232 left
= sec_len
- section
->iov_len
;
2233 ret
= ceph_tcp_recvmsg(con
->sock
, (char *)section
->iov_base
+
2234 section
->iov_len
, left
);
2237 section
->iov_len
+= ret
;
2239 if (section
->iov_len
== sec_len
)
2240 *crc
= crc32c(0, section
->iov_base
, section
->iov_len
);
2245 static int read_partial_msg_data(struct ceph_connection
*con
)
2247 struct ceph_msg
*msg
= con
->in_msg
;
2248 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
2249 bool do_datacrc
= !ceph_test_opt(from_msgr(con
->msgr
), NOCRC
);
2257 if (list_empty(&msg
->data
))
2261 crc
= con
->in_data_crc
;
2262 while (cursor
->resid
) {
2263 page
= ceph_msg_data_next(cursor
, &page_offset
, &length
, NULL
);
2264 ret
= ceph_tcp_recvpage(con
->sock
, page
, page_offset
, length
);
2267 con
->in_data_crc
= crc
;
2273 crc
= ceph_crc32c_page(crc
, page
, page_offset
, ret
);
2274 (void) ceph_msg_data_advance(cursor
, (size_t)ret
);
2277 con
->in_data_crc
= crc
;
2279 return 1; /* must return > 0 to indicate success */
2283 * read (part of) a message.
2285 static int ceph_con_in_msg_alloc(struct ceph_connection
*con
, int *skip
);
2287 static int read_partial_message(struct ceph_connection
*con
)
2289 struct ceph_msg
*m
= con
->in_msg
;
2293 unsigned int front_len
, middle_len
, data_len
;
2294 bool do_datacrc
= !ceph_test_opt(from_msgr(con
->msgr
), NOCRC
);
2295 bool need_sign
= (con
->peer_features
& CEPH_FEATURE_MSG_AUTH
);
2299 dout("read_partial_message con %p msg %p\n", con
, m
);
2302 size
= sizeof (con
->in_hdr
);
2304 ret
= read_partial(con
, end
, size
, &con
->in_hdr
);
2308 crc
= crc32c(0, &con
->in_hdr
, offsetof(struct ceph_msg_header
, crc
));
2309 if (cpu_to_le32(crc
) != con
->in_hdr
.crc
) {
2310 pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2311 crc
, con
->in_hdr
.crc
);
2315 front_len
= le32_to_cpu(con
->in_hdr
.front_len
);
2316 if (front_len
> CEPH_MSG_MAX_FRONT_LEN
)
2318 middle_len
= le32_to_cpu(con
->in_hdr
.middle_len
);
2319 if (middle_len
> CEPH_MSG_MAX_MIDDLE_LEN
)
2321 data_len
= le32_to_cpu(con
->in_hdr
.data_len
);
2322 if (data_len
> CEPH_MSG_MAX_DATA_LEN
)
2326 seq
= le64_to_cpu(con
->in_hdr
.seq
);
2327 if ((s64
)seq
- (s64
)con
->in_seq
< 1) {
2328 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2329 ENTITY_NAME(con
->peer_name
),
2330 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2331 seq
, con
->in_seq
+ 1);
2332 con
->in_base_pos
= -front_len
- middle_len
- data_len
-
2334 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2336 } else if ((s64
)seq
- (s64
)con
->in_seq
> 1) {
2337 pr_err("read_partial_message bad seq %lld expected %lld\n",
2338 seq
, con
->in_seq
+ 1);
2339 con
->error_msg
= "bad message sequence # for incoming message";
2343 /* allocate message? */
2347 dout("got hdr type %d front %d data %d\n", con
->in_hdr
.type
,
2348 front_len
, data_len
);
2349 ret
= ceph_con_in_msg_alloc(con
, &skip
);
2353 BUG_ON(!con
->in_msg
^ skip
);
2355 /* skip this message */
2356 dout("alloc_msg said skip message\n");
2357 con
->in_base_pos
= -front_len
- middle_len
- data_len
-
2359 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2364 BUG_ON(!con
->in_msg
);
2365 BUG_ON(con
->in_msg
->con
!= con
);
2367 m
->front
.iov_len
= 0; /* haven't read it yet */
2369 m
->middle
->vec
.iov_len
= 0;
2371 /* prepare for data payload, if any */
2374 prepare_message_data(con
->in_msg
, data_len
);
2378 ret
= read_partial_message_section(con
, &m
->front
, front_len
,
2379 &con
->in_front_crc
);
2385 ret
= read_partial_message_section(con
, &m
->middle
->vec
,
2387 &con
->in_middle_crc
);
2394 ret
= read_partial_msg_data(con
);
2400 size
= sizeof_footer(con
);
2402 ret
= read_partial(con
, end
, size
, &m
->footer
);
2407 m
->footer
.flags
= m
->old_footer
.flags
;
2411 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2412 m
, front_len
, m
->footer
.front_crc
, middle_len
,
2413 m
->footer
.middle_crc
, data_len
, m
->footer
.data_crc
);
2416 if (con
->in_front_crc
!= le32_to_cpu(m
->footer
.front_crc
)) {
2417 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2418 m
, con
->in_front_crc
, m
->footer
.front_crc
);
2421 if (con
->in_middle_crc
!= le32_to_cpu(m
->footer
.middle_crc
)) {
2422 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2423 m
, con
->in_middle_crc
, m
->footer
.middle_crc
);
2427 (m
->footer
.flags
& CEPH_MSG_FOOTER_NOCRC
) == 0 &&
2428 con
->in_data_crc
!= le32_to_cpu(m
->footer
.data_crc
)) {
2429 pr_err("read_partial_message %p data crc %u != exp. %u\n", m
,
2430 con
->in_data_crc
, le32_to_cpu(m
->footer
.data_crc
));
2434 if (need_sign
&& con
->ops
->check_message_signature
&&
2435 con
->ops
->check_message_signature(m
)) {
2436 pr_err("read_partial_message %p signature check failed\n", m
);
2440 return 1; /* done! */
2444 * Process message. This happens in the worker thread. The callback should
2445 * be careful not to do anything that waits on other incoming messages or it
2448 static void process_message(struct ceph_connection
*con
)
2450 struct ceph_msg
*msg
= con
->in_msg
;
2452 BUG_ON(con
->in_msg
->con
!= con
);
2455 /* if first message, set peer_name */
2456 if (con
->peer_name
.type
== 0)
2457 con
->peer_name
= msg
->hdr
.src
;
2460 mutex_unlock(&con
->mutex
);
2462 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2463 msg
, le64_to_cpu(msg
->hdr
.seq
),
2464 ENTITY_NAME(msg
->hdr
.src
),
2465 le16_to_cpu(msg
->hdr
.type
),
2466 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
2467 le32_to_cpu(msg
->hdr
.front_len
),
2468 le32_to_cpu(msg
->hdr
.data_len
),
2469 con
->in_front_crc
, con
->in_middle_crc
, con
->in_data_crc
);
2470 con
->ops
->dispatch(con
, msg
);
2472 mutex_lock(&con
->mutex
);
2475 static int read_keepalive_ack(struct ceph_connection
*con
)
2477 struct ceph_timespec ceph_ts
;
2478 size_t size
= sizeof(ceph_ts
);
2479 int ret
= read_partial(con
, size
, size
, &ceph_ts
);
2482 ceph_decode_timespec(&con
->last_keepalive_ack
, &ceph_ts
);
2483 prepare_read_tag(con
);
2488 * Write something to the socket. Called in a worker thread when the
2489 * socket appears to be writeable and we have something ready to send.
2491 static int try_write(struct ceph_connection
*con
)
2495 dout("try_write start %p state %lu\n", con
, con
->state
);
2498 dout("try_write out_kvec_bytes %d\n", con
->out_kvec_bytes
);
2500 /* open the socket first? */
2501 if (con
->state
== CON_STATE_PREOPEN
) {
2503 con
->state
= CON_STATE_CONNECTING
;
2505 con_out_kvec_reset(con
);
2506 prepare_write_banner(con
);
2507 prepare_read_banner(con
);
2509 BUG_ON(con
->in_msg
);
2510 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2511 dout("try_write initiating connect on %p new state %lu\n",
2513 ret
= ceph_tcp_connect(con
);
2515 con
->error_msg
= "connect error";
2521 /* kvec data queued? */
2522 if (con
->out_kvec_left
) {
2523 ret
= write_partial_kvec(con
);
2527 if (con
->out_skip
) {
2528 ret
= write_partial_skip(con
);
2535 if (con
->out_msg_done
) {
2536 ceph_msg_put(con
->out_msg
);
2537 con
->out_msg
= NULL
; /* we're done with this one */
2541 ret
= write_partial_message_data(con
);
2543 goto more_kvec
; /* we need to send the footer, too! */
2547 dout("try_write write_partial_message_data err %d\n",
2554 if (con
->state
== CON_STATE_OPEN
) {
2555 if (con_flag_test_and_clear(con
, CON_FLAG_KEEPALIVE_PENDING
)) {
2556 prepare_write_keepalive(con
);
2559 /* is anything else pending? */
2560 if (!list_empty(&con
->out_queue
)) {
2561 prepare_write_message(con
);
2564 if (con
->in_seq
> con
->in_seq_acked
) {
2565 prepare_write_ack(con
);
2570 /* Nothing to do! */
2571 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
2572 dout("try_write nothing else to write.\n");
2575 dout("try_write done on %p ret %d\n", con
, ret
);
2582 * Read what we can from the socket.
2584 static int try_read(struct ceph_connection
*con
)
2589 dout("try_read start on %p state %lu\n", con
, con
->state
);
2590 if (con
->state
!= CON_STATE_CONNECTING
&&
2591 con
->state
!= CON_STATE_NEGOTIATING
&&
2592 con
->state
!= CON_STATE_OPEN
)
2597 dout("try_read tag %d in_base_pos %d\n", (int)con
->in_tag
,
2600 if (con
->state
== CON_STATE_CONNECTING
) {
2601 dout("try_read connecting\n");
2602 ret
= read_partial_banner(con
);
2605 ret
= process_banner(con
);
2609 con
->state
= CON_STATE_NEGOTIATING
;
2612 * Received banner is good, exchange connection info.
2613 * Do not reset out_kvec, as sending our banner raced
2614 * with receiving peer banner after connect completed.
2616 ret
= prepare_write_connect(con
);
2619 prepare_read_connect(con
);
2621 /* Send connection info before awaiting response */
2625 if (con
->state
== CON_STATE_NEGOTIATING
) {
2626 dout("try_read negotiating\n");
2627 ret
= read_partial_connect(con
);
2630 ret
= process_connect(con
);
2636 WARN_ON(con
->state
!= CON_STATE_OPEN
);
2638 if (con
->in_base_pos
< 0) {
2640 * skipping + discarding content.
2642 * FIXME: there must be a better way to do this!
2644 static char buf
[SKIP_BUF_SIZE
];
2645 int skip
= min((int) sizeof (buf
), -con
->in_base_pos
);
2647 dout("skipping %d / %d bytes\n", skip
, -con
->in_base_pos
);
2648 ret
= ceph_tcp_recvmsg(con
->sock
, buf
, skip
);
2651 con
->in_base_pos
+= ret
;
2652 if (con
->in_base_pos
)
2655 if (con
->in_tag
== CEPH_MSGR_TAG_READY
) {
2659 ret
= ceph_tcp_recvmsg(con
->sock
, &con
->in_tag
, 1);
2662 dout("try_read got tag %d\n", (int)con
->in_tag
);
2663 switch (con
->in_tag
) {
2664 case CEPH_MSGR_TAG_MSG
:
2665 prepare_read_message(con
);
2667 case CEPH_MSGR_TAG_ACK
:
2668 prepare_read_ack(con
);
2670 case CEPH_MSGR_TAG_KEEPALIVE2_ACK
:
2671 prepare_read_keepalive_ack(con
);
2673 case CEPH_MSGR_TAG_CLOSE
:
2674 con_close_socket(con
);
2675 con
->state
= CON_STATE_CLOSED
;
2681 if (con
->in_tag
== CEPH_MSGR_TAG_MSG
) {
2682 ret
= read_partial_message(con
);
2686 con
->error_msg
= "bad crc/signature";
2692 con
->error_msg
= "io error";
2697 if (con
->in_tag
== CEPH_MSGR_TAG_READY
)
2699 process_message(con
);
2700 if (con
->state
== CON_STATE_OPEN
)
2701 prepare_read_tag(con
);
2704 if (con
->in_tag
== CEPH_MSGR_TAG_ACK
||
2705 con
->in_tag
== CEPH_MSGR_TAG_SEQ
) {
2707 * the final handshake seq exchange is semantically
2708 * equivalent to an ACK
2710 ret
= read_partial_ack(con
);
2716 if (con
->in_tag
== CEPH_MSGR_TAG_KEEPALIVE2_ACK
) {
2717 ret
= read_keepalive_ack(con
);
2724 dout("try_read done on %p ret %d\n", con
, ret
);
2728 pr_err("try_read bad con->in_tag = %d\n", (int)con
->in_tag
);
2729 con
->error_msg
= "protocol error, garbage tag";
2736 * Atomically queue work on a connection after the specified delay.
2737 * Bump @con reference to avoid races with connection teardown.
2738 * Returns 0 if work was queued, or an error code otherwise.
2740 static int queue_con_delay(struct ceph_connection
*con
, unsigned long delay
)
2742 if (!con
->ops
->get(con
)) {
2743 dout("%s %p ref count 0\n", __func__
, con
);
2747 if (!queue_delayed_work(ceph_msgr_wq
, &con
->work
, delay
)) {
2748 dout("%s %p - already queued\n", __func__
, con
);
2753 dout("%s %p %lu\n", __func__
, con
, delay
);
2757 static void queue_con(struct ceph_connection
*con
)
2759 (void) queue_con_delay(con
, 0);
2762 static void cancel_con(struct ceph_connection
*con
)
2764 if (cancel_delayed_work(&con
->work
)) {
2765 dout("%s %p\n", __func__
, con
);
2770 static bool con_sock_closed(struct ceph_connection
*con
)
2772 if (!con_flag_test_and_clear(con
, CON_FLAG_SOCK_CLOSED
))
2776 case CON_STATE_ ## x: \
2777 con->error_msg = "socket closed (con state " #x ")"; \
2780 switch (con
->state
) {
2788 pr_warn("%s con %p unrecognized state %lu\n",
2789 __func__
, con
, con
->state
);
2790 con
->error_msg
= "unrecognized con state";
2799 static bool con_backoff(struct ceph_connection
*con
)
2803 if (!con_flag_test_and_clear(con
, CON_FLAG_BACKOFF
))
2806 ret
= queue_con_delay(con
, round_jiffies_relative(con
->delay
));
2808 dout("%s: con %p FAILED to back off %lu\n", __func__
,
2810 BUG_ON(ret
== -ENOENT
);
2811 con_flag_set(con
, CON_FLAG_BACKOFF
);
2817 /* Finish fault handling; con->mutex must *not* be held here */
2819 static void con_fault_finish(struct ceph_connection
*con
)
2821 dout("%s %p\n", __func__
, con
);
2824 * in case we faulted due to authentication, invalidate our
2825 * current tickets so that we can get new ones.
2827 if (con
->auth_retry
) {
2828 dout("auth_retry %d, invalidating\n", con
->auth_retry
);
2829 if (con
->ops
->invalidate_authorizer
)
2830 con
->ops
->invalidate_authorizer(con
);
2831 con
->auth_retry
= 0;
2834 if (con
->ops
->fault
)
2835 con
->ops
->fault(con
);
2839 * Do some work on a connection. Drop a connection ref when we're done.
2841 static void ceph_con_workfn(struct work_struct
*work
)
2843 struct ceph_connection
*con
= container_of(work
, struct ceph_connection
,
2847 mutex_lock(&con
->mutex
);
2851 if ((fault
= con_sock_closed(con
))) {
2852 dout("%s: con %p SOCK_CLOSED\n", __func__
, con
);
2855 if (con_backoff(con
)) {
2856 dout("%s: con %p BACKOFF\n", __func__
, con
);
2859 if (con
->state
== CON_STATE_STANDBY
) {
2860 dout("%s: con %p STANDBY\n", __func__
, con
);
2863 if (con
->state
== CON_STATE_CLOSED
) {
2864 dout("%s: con %p CLOSED\n", __func__
, con
);
2868 if (con
->state
== CON_STATE_PREOPEN
) {
2869 dout("%s: con %p PREOPEN\n", __func__
, con
);
2873 ret
= try_read(con
);
2877 if (!con
->error_msg
)
2878 con
->error_msg
= "socket error on read";
2883 ret
= try_write(con
);
2887 if (!con
->error_msg
)
2888 con
->error_msg
= "socket error on write";
2892 break; /* If we make it to here, we're done */
2896 mutex_unlock(&con
->mutex
);
2899 con_fault_finish(con
);
2905 * Generic error/fault handler. A retry mechanism is used with
2906 * exponential backoff
2908 static void con_fault(struct ceph_connection
*con
)
2910 dout("fault %p state %lu to peer %s\n",
2911 con
, con
->state
, ceph_pr_addr(&con
->peer_addr
.in_addr
));
2913 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con
->peer_name
),
2914 ceph_pr_addr(&con
->peer_addr
.in_addr
), con
->error_msg
);
2915 con
->error_msg
= NULL
;
2917 WARN_ON(con
->state
!= CON_STATE_CONNECTING
&&
2918 con
->state
!= CON_STATE_NEGOTIATING
&&
2919 con
->state
!= CON_STATE_OPEN
);
2921 con_close_socket(con
);
2923 if (con_flag_test(con
, CON_FLAG_LOSSYTX
)) {
2924 dout("fault on LOSSYTX channel, marking CLOSED\n");
2925 con
->state
= CON_STATE_CLOSED
;
2930 BUG_ON(con
->in_msg
->con
!= con
);
2931 ceph_msg_put(con
->in_msg
);
2935 /* Requeue anything that hasn't been acked */
2936 list_splice_init(&con
->out_sent
, &con
->out_queue
);
2938 /* If there are no messages queued or keepalive pending, place
2939 * the connection in a STANDBY state */
2940 if (list_empty(&con
->out_queue
) &&
2941 !con_flag_test(con
, CON_FLAG_KEEPALIVE_PENDING
)) {
2942 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con
);
2943 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
2944 con
->state
= CON_STATE_STANDBY
;
2946 /* retry after a delay. */
2947 con
->state
= CON_STATE_PREOPEN
;
2948 if (con
->delay
== 0)
2949 con
->delay
= BASE_DELAY_INTERVAL
;
2950 else if (con
->delay
< MAX_DELAY_INTERVAL
)
2952 con_flag_set(con
, CON_FLAG_BACKOFF
);
2960 * initialize a new messenger instance
2962 void ceph_messenger_init(struct ceph_messenger
*msgr
,
2963 struct ceph_entity_addr
*myaddr
)
2965 spin_lock_init(&msgr
->global_seq_lock
);
2968 msgr
->inst
.addr
= *myaddr
;
2970 /* select a random nonce */
2971 msgr
->inst
.addr
.type
= 0;
2972 get_random_bytes(&msgr
->inst
.addr
.nonce
, sizeof(msgr
->inst
.addr
.nonce
));
2973 encode_my_addr(msgr
);
2975 atomic_set(&msgr
->stopping
, 0);
2976 write_pnet(&msgr
->net
, get_net(current
->nsproxy
->net_ns
));
2978 dout("%s %p\n", __func__
, msgr
);
2980 EXPORT_SYMBOL(ceph_messenger_init
);
2982 void ceph_messenger_fini(struct ceph_messenger
*msgr
)
2984 put_net(read_pnet(&msgr
->net
));
2986 EXPORT_SYMBOL(ceph_messenger_fini
);
2988 static void msg_con_set(struct ceph_msg
*msg
, struct ceph_connection
*con
)
2991 msg
->con
->ops
->put(msg
->con
);
2993 msg
->con
= con
? con
->ops
->get(con
) : NULL
;
2994 BUG_ON(msg
->con
!= con
);
2997 static void clear_standby(struct ceph_connection
*con
)
2999 /* come back from STANDBY? */
3000 if (con
->state
== CON_STATE_STANDBY
) {
3001 dout("clear_standby %p and ++connect_seq\n", con
);
3002 con
->state
= CON_STATE_PREOPEN
;
3004 WARN_ON(con_flag_test(con
, CON_FLAG_WRITE_PENDING
));
3005 WARN_ON(con_flag_test(con
, CON_FLAG_KEEPALIVE_PENDING
));
3010 * Queue up an outgoing message on the given connection.
3012 void ceph_con_send(struct ceph_connection
*con
, struct ceph_msg
*msg
)
3015 msg
->hdr
.src
= con
->msgr
->inst
.name
;
3016 BUG_ON(msg
->front
.iov_len
!= le32_to_cpu(msg
->hdr
.front_len
));
3017 msg
->needs_out_seq
= true;
3019 mutex_lock(&con
->mutex
);
3021 if (con
->state
== CON_STATE_CLOSED
) {
3022 dout("con_send %p closed, dropping %p\n", con
, msg
);
3024 mutex_unlock(&con
->mutex
);
3028 msg_con_set(msg
, con
);
3030 BUG_ON(!list_empty(&msg
->list_head
));
3031 list_add_tail(&msg
->list_head
, &con
->out_queue
);
3032 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg
,
3033 ENTITY_NAME(con
->peer_name
), le16_to_cpu(msg
->hdr
.type
),
3034 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
3035 le32_to_cpu(msg
->hdr
.front_len
),
3036 le32_to_cpu(msg
->hdr
.middle_len
),
3037 le32_to_cpu(msg
->hdr
.data_len
));
3040 mutex_unlock(&con
->mutex
);
3042 /* if there wasn't anything waiting to send before, queue
3044 if (con_flag_test_and_set(con
, CON_FLAG_WRITE_PENDING
) == 0)
3047 EXPORT_SYMBOL(ceph_con_send
);
3050 * Revoke a message that was previously queued for send
3052 void ceph_msg_revoke(struct ceph_msg
*msg
)
3054 struct ceph_connection
*con
= msg
->con
;
3057 dout("%s msg %p null con\n", __func__
, msg
);
3058 return; /* Message not in our possession */
3061 mutex_lock(&con
->mutex
);
3062 if (!list_empty(&msg
->list_head
)) {
3063 dout("%s %p msg %p - was on queue\n", __func__
, con
, msg
);
3064 list_del_init(&msg
->list_head
);
3069 if (con
->out_msg
== msg
) {
3070 BUG_ON(con
->out_skip
);
3072 if (con
->out_msg_done
) {
3073 con
->out_skip
+= con_out_kvec_skip(con
);
3075 BUG_ON(!msg
->data_length
);
3076 con
->out_skip
+= sizeof_footer(con
);
3078 /* data, middle, front */
3079 if (msg
->data_length
)
3080 con
->out_skip
+= msg
->cursor
.total_resid
;
3082 con
->out_skip
+= con_out_kvec_skip(con
);
3083 con
->out_skip
+= con_out_kvec_skip(con
);
3085 dout("%s %p msg %p - was sending, will write %d skip %d\n",
3086 __func__
, con
, msg
, con
->out_kvec_bytes
, con
->out_skip
);
3088 con
->out_msg
= NULL
;
3092 mutex_unlock(&con
->mutex
);
3096 * Revoke a message that we may be reading data into
3098 void ceph_msg_revoke_incoming(struct ceph_msg
*msg
)
3100 struct ceph_connection
*con
= msg
->con
;
3103 dout("%s msg %p null con\n", __func__
, msg
);
3104 return; /* Message not in our possession */
3107 mutex_lock(&con
->mutex
);
3108 if (con
->in_msg
== msg
) {
3109 unsigned int front_len
= le32_to_cpu(con
->in_hdr
.front_len
);
3110 unsigned int middle_len
= le32_to_cpu(con
->in_hdr
.middle_len
);
3111 unsigned int data_len
= le32_to_cpu(con
->in_hdr
.data_len
);
3113 /* skip rest of message */
3114 dout("%s %p msg %p revoked\n", __func__
, con
, msg
);
3115 con
->in_base_pos
= con
->in_base_pos
-
3116 sizeof(struct ceph_msg_header
) -
3120 sizeof(struct ceph_msg_footer
);
3121 ceph_msg_put(con
->in_msg
);
3123 con
->in_tag
= CEPH_MSGR_TAG_READY
;
3126 dout("%s %p in_msg %p msg %p no-op\n",
3127 __func__
, con
, con
->in_msg
, msg
);
3129 mutex_unlock(&con
->mutex
);
3133 * Queue a keepalive byte to ensure the tcp connection is alive.
3135 void ceph_con_keepalive(struct ceph_connection
*con
)
3137 dout("con_keepalive %p\n", con
);
3138 mutex_lock(&con
->mutex
);
3140 mutex_unlock(&con
->mutex
);
3141 if (con_flag_test_and_set(con
, CON_FLAG_KEEPALIVE_PENDING
) == 0 &&
3142 con_flag_test_and_set(con
, CON_FLAG_WRITE_PENDING
) == 0)
3145 EXPORT_SYMBOL(ceph_con_keepalive
);
3147 bool ceph_con_keepalive_expired(struct ceph_connection
*con
,
3148 unsigned long interval
)
3151 (con
->peer_features
& CEPH_FEATURE_MSGR_KEEPALIVE2
)) {
3152 struct timespec now
= CURRENT_TIME
;
3154 jiffies_to_timespec(interval
, &ts
);
3155 ts
= timespec_add(con
->last_keepalive_ack
, ts
);
3156 return timespec_compare(&now
, &ts
) >= 0;
3161 static struct ceph_msg_data
*ceph_msg_data_create(enum ceph_msg_data_type type
)
3163 struct ceph_msg_data
*data
;
3165 if (WARN_ON(!ceph_msg_data_type_valid(type
)))
3168 data
= kmem_cache_zalloc(ceph_msg_data_cache
, GFP_NOFS
);
3171 INIT_LIST_HEAD(&data
->links
);
3176 static void ceph_msg_data_destroy(struct ceph_msg_data
*data
)
3181 WARN_ON(!list_empty(&data
->links
));
3182 if (data
->type
== CEPH_MSG_DATA_PAGELIST
)
3183 ceph_pagelist_release(data
->pagelist
);
3184 kmem_cache_free(ceph_msg_data_cache
, data
);
3187 void ceph_msg_data_add_pages(struct ceph_msg
*msg
, struct page
**pages
,
3188 size_t length
, size_t alignment
)
3190 struct ceph_msg_data
*data
;
3195 data
= ceph_msg_data_create(CEPH_MSG_DATA_PAGES
);
3197 data
->pages
= pages
;
3198 data
->length
= length
;
3199 data
->alignment
= alignment
& ~PAGE_MASK
;
3201 list_add_tail(&data
->links
, &msg
->data
);
3202 msg
->data_length
+= length
;
3204 EXPORT_SYMBOL(ceph_msg_data_add_pages
);
3206 void ceph_msg_data_add_pagelist(struct ceph_msg
*msg
,
3207 struct ceph_pagelist
*pagelist
)
3209 struct ceph_msg_data
*data
;
3212 BUG_ON(!pagelist
->length
);
3214 data
= ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST
);
3216 data
->pagelist
= pagelist
;
3218 list_add_tail(&data
->links
, &msg
->data
);
3219 msg
->data_length
+= pagelist
->length
;
3221 EXPORT_SYMBOL(ceph_msg_data_add_pagelist
);
3224 void ceph_msg_data_add_bio(struct ceph_msg
*msg
, struct bio
*bio
,
3227 struct ceph_msg_data
*data
;
3231 data
= ceph_msg_data_create(CEPH_MSG_DATA_BIO
);
3234 data
->bio_length
= length
;
3236 list_add_tail(&data
->links
, &msg
->data
);
3237 msg
->data_length
+= length
;
3239 EXPORT_SYMBOL(ceph_msg_data_add_bio
);
3240 #endif /* CONFIG_BLOCK */
3243 * construct a new message with given type, size
3244 * the new msg has a ref count of 1.
3246 struct ceph_msg
*ceph_msg_new(int type
, int front_len
, gfp_t flags
,
3251 m
= kmem_cache_zalloc(ceph_msg_cache
, flags
);
3255 m
->hdr
.type
= cpu_to_le16(type
);
3256 m
->hdr
.priority
= cpu_to_le16(CEPH_MSG_PRIO_DEFAULT
);
3257 m
->hdr
.front_len
= cpu_to_le32(front_len
);
3259 INIT_LIST_HEAD(&m
->list_head
);
3260 kref_init(&m
->kref
);
3261 INIT_LIST_HEAD(&m
->data
);
3265 m
->front
.iov_base
= ceph_kvmalloc(front_len
, flags
);
3266 if (m
->front
.iov_base
== NULL
) {
3267 dout("ceph_msg_new can't allocate %d bytes\n",
3272 m
->front
.iov_base
= NULL
;
3274 m
->front_alloc_len
= m
->front
.iov_len
= front_len
;
3276 dout("ceph_msg_new %p front %d\n", m
, front_len
);
3283 pr_err("msg_new can't create type %d front %d\n", type
,
3287 dout("msg_new can't create type %d front %d\n", type
,
3292 EXPORT_SYMBOL(ceph_msg_new
);
3295 * Allocate "middle" portion of a message, if it is needed and wasn't
3296 * allocated by alloc_msg. This allows us to read a small fixed-size
3297 * per-type header in the front and then gracefully fail (i.e.,
3298 * propagate the error to the caller based on info in the front) when
3299 * the middle is too large.
3301 static int ceph_alloc_middle(struct ceph_connection
*con
, struct ceph_msg
*msg
)
3303 int type
= le16_to_cpu(msg
->hdr
.type
);
3304 int middle_len
= le32_to_cpu(msg
->hdr
.middle_len
);
3306 dout("alloc_middle %p type %d %s middle_len %d\n", msg
, type
,
3307 ceph_msg_type_name(type
), middle_len
);
3308 BUG_ON(!middle_len
);
3309 BUG_ON(msg
->middle
);
3311 msg
->middle
= ceph_buffer_new(middle_len
, GFP_NOFS
);
3318 * Allocate a message for receiving an incoming message on a
3319 * connection, and save the result in con->in_msg. Uses the
3320 * connection's private alloc_msg op if available.
3322 * Returns 0 on success, or a negative error code.
3324 * On success, if we set *skip = 1:
3325 * - the next message should be skipped and ignored.
3326 * - con->in_msg == NULL
3327 * or if we set *skip = 0:
3328 * - con->in_msg is non-null.
3329 * On error (ENOMEM, EAGAIN, ...),
3330 * - con->in_msg == NULL
3332 static int ceph_con_in_msg_alloc(struct ceph_connection
*con
, int *skip
)
3334 struct ceph_msg_header
*hdr
= &con
->in_hdr
;
3335 int middle_len
= le32_to_cpu(hdr
->middle_len
);
3336 struct ceph_msg
*msg
;
3339 BUG_ON(con
->in_msg
!= NULL
);
3340 BUG_ON(!con
->ops
->alloc_msg
);
3342 mutex_unlock(&con
->mutex
);
3343 msg
= con
->ops
->alloc_msg(con
, hdr
, skip
);
3344 mutex_lock(&con
->mutex
);
3345 if (con
->state
!= CON_STATE_OPEN
) {
3352 msg_con_set(msg
, con
);
3356 * Null message pointer means either we should skip
3357 * this message or we couldn't allocate memory. The
3358 * former is not an error.
3363 con
->error_msg
= "error allocating memory for incoming message";
3366 memcpy(&con
->in_msg
->hdr
, &con
->in_hdr
, sizeof(con
->in_hdr
));
3368 if (middle_len
&& !con
->in_msg
->middle
) {
3369 ret
= ceph_alloc_middle(con
, con
->in_msg
);
3371 ceph_msg_put(con
->in_msg
);
3381 * Free a generically kmalloc'd message.
3383 static void ceph_msg_free(struct ceph_msg
*m
)
3385 dout("%s %p\n", __func__
, m
);
3386 kvfree(m
->front
.iov_base
);
3387 kmem_cache_free(ceph_msg_cache
, m
);
3390 static void ceph_msg_release(struct kref
*kref
)
3392 struct ceph_msg
*m
= container_of(kref
, struct ceph_msg
, kref
);
3393 struct ceph_msg_data
*data
, *next
;
3395 dout("%s %p\n", __func__
, m
);
3396 WARN_ON(!list_empty(&m
->list_head
));
3398 msg_con_set(m
, NULL
);
3400 /* drop middle, data, if any */
3402 ceph_buffer_put(m
->middle
);
3406 list_for_each_entry_safe(data
, next
, &m
->data
, links
) {
3407 list_del_init(&data
->links
);
3408 ceph_msg_data_destroy(data
);
3413 ceph_msgpool_put(m
->pool
, m
);
3418 struct ceph_msg
*ceph_msg_get(struct ceph_msg
*msg
)
3420 dout("%s %p (was %d)\n", __func__
, msg
,
3421 atomic_read(&msg
->kref
.refcount
));
3422 kref_get(&msg
->kref
);
3425 EXPORT_SYMBOL(ceph_msg_get
);
3427 void ceph_msg_put(struct ceph_msg
*msg
)
3429 dout("%s %p (was %d)\n", __func__
, msg
,
3430 atomic_read(&msg
->kref
.refcount
));
3431 kref_put(&msg
->kref
, ceph_msg_release
);
3433 EXPORT_SYMBOL(ceph_msg_put
);
3435 void ceph_msg_dump(struct ceph_msg
*msg
)
3437 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg
,
3438 msg
->front_alloc_len
, msg
->data_length
);
3439 print_hex_dump(KERN_DEBUG
, "header: ",
3440 DUMP_PREFIX_OFFSET
, 16, 1,
3441 &msg
->hdr
, sizeof(msg
->hdr
), true);
3442 print_hex_dump(KERN_DEBUG
, " front: ",
3443 DUMP_PREFIX_OFFSET
, 16, 1,
3444 msg
->front
.iov_base
, msg
->front
.iov_len
, true);
3446 print_hex_dump(KERN_DEBUG
, "middle: ",
3447 DUMP_PREFIX_OFFSET
, 16, 1,
3448 msg
->middle
->vec
.iov_base
,
3449 msg
->middle
->vec
.iov_len
, true);
3450 print_hex_dump(KERN_DEBUG
, "footer: ",
3451 DUMP_PREFIX_OFFSET
, 16, 1,
3452 &msg
->footer
, sizeof(msg
->footer
), true);
3454 EXPORT_SYMBOL(ceph_msg_dump
);