2 * VMware vSockets Driver
4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation version 2 and no later version.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 /* Implementation notes:
18 * - There are two kinds of sockets: those created by user action (such as
19 * calling socket(2)) and those created by incoming connection request packets.
21 * - There are two "global" tables, one for bound sockets (sockets that have
22 * specified an address that they are responsible for) and one for connected
23 * sockets (sockets that have established a connection with another socket).
24 * These tables are "global" in that all sockets on the system are placed
25 * within them. - Note, though, that the bound table contains an extra entry
26 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
27 * that list. The bound table is used solely for lookup of sockets when packets
28 * are received and that's not necessary for SOCK_DGRAM sockets since we create
29 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
30 * sockets out of the bound hash buckets will reduce the chance of collisions
31 * when looking for SOCK_STREAM sockets and prevents us from having to check the
32 * socket type in the hash table lookups.
34 * - Sockets created by user action will either be "client" sockets that
35 * initiate a connection or "server" sockets that listen for connections; we do
36 * not support simultaneous connects (two "client" sockets connecting).
38 * - "Server" sockets are referred to as listener sockets throughout this
39 * implementation because they are in the VSOCK_SS_LISTEN state. When a
40 * connection request is received (the second kind of socket mentioned above),
41 * we create a new socket and refer to it as a pending socket. These pending
42 * sockets are placed on the pending connection list of the listener socket.
43 * When future packets are received for the address the listener socket is
44 * bound to, we check if the source of the packet is from one that has an
45 * existing pending connection. If it does, we process the packet for the
46 * pending socket. When that socket reaches the connected state, it is removed
47 * from the listener socket's pending list and enqueued in the listener
48 * socket's accept queue. Callers of accept(2) will accept connected sockets
49 * from the listener socket's accept queue. If the socket cannot be accepted
50 * for some reason then it is marked rejected. Once the connection is
51 * accepted, it is owned by the user process and the responsibility for cleanup
52 * falls with that user process.
54 * - It is possible that these pending sockets will never reach the connected
55 * state; in fact, we may never receive another packet after the connection
56 * request. Because of this, we must schedule a cleanup function to run in the
57 * future, after some amount of time passes where a connection should have been
58 * established. This function ensures that the socket is off all lists so it
59 * cannot be retrieved, then drops all references to the socket so it is cleaned
60 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
61 * function will also cleanup rejected sockets, those that reach the connected
62 * state but leave it before they have been accepted.
64 * - Sockets created by user action will be cleaned up when the user process
65 * calls close(2), causing our release implementation to be called. Our release
66 * implementation will perform some cleanup then drop the last reference so our
67 * sk_destruct implementation is invoked. Our sk_destruct implementation will
68 * perform additional cleanup that's common for both types of sockets.
70 * - A socket's reference count is what ensures that the structure won't be
71 * freed. Each entry in a list (such as the "global" bound and connected tables
72 * and the listener socket's pending list and connected queue) ensures a
73 * reference. When we defer work until process context and pass a socket as our
74 * argument, we must ensure the reference count is increased to ensure the
75 * socket isn't freed before the function is run; the deferred function will
76 * then drop the reference.
79 #include <linux/types.h>
80 #include <linux/bitops.h>
81 #include <linux/cred.h>
82 #include <linux/init.h>
84 #include <linux/kernel.h>
85 #include <linux/kmod.h>
86 #include <linux/list.h>
87 #include <linux/miscdevice.h>
88 #include <linux/module.h>
89 #include <linux/mutex.h>
90 #include <linux/net.h>
91 #include <linux/poll.h>
92 #include <linux/skbuff.h>
93 #include <linux/smp.h>
94 #include <linux/socket.h>
95 #include <linux/stddef.h>
96 #include <linux/unistd.h>
97 #include <linux/wait.h>
98 #include <linux/workqueue.h>
100 #include <net/af_vsock.h>
102 static int __vsock_bind(struct sock
*sk
, struct sockaddr_vm
*addr
);
103 static void vsock_sk_destruct(struct sock
*sk
);
104 static int vsock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
);
106 /* Protocol family. */
107 static struct proto vsock_proto
= {
109 .owner
= THIS_MODULE
,
110 .obj_size
= sizeof(struct vsock_sock
),
113 /* The default peer timeout indicates how long we will wait for a peer response
114 * to a control message.
116 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
118 static const struct vsock_transport
*transport
;
119 static DEFINE_MUTEX(vsock_register_mutex
);
123 /* Get the ID of the local context. This is transport dependent. */
125 int vm_sockets_get_local_cid(void)
127 return transport
->get_local_cid();
129 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid
);
133 /* Each bound VSocket is stored in the bind hash table and each connected
134 * VSocket is stored in the connected hash table.
136 * Unbound sockets are all put on the same list attached to the end of the hash
137 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
138 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
139 * represents the list that addr hashes to).
141 * Specifically, we initialize the vsock_bind_table array to a size of
142 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
143 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
144 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
145 * mods with VSOCK_HASH_SIZE to ensure this.
147 #define VSOCK_HASH_SIZE 251
148 #define MAX_PORT_RETRIES 24
150 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
151 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
152 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
154 /* XXX This can probably be implemented in a better way. */
155 #define VSOCK_CONN_HASH(src, dst) \
156 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
157 #define vsock_connected_sockets(src, dst) \
158 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
159 #define vsock_connected_sockets_vsk(vsk) \
160 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
162 static struct list_head vsock_bind_table
[VSOCK_HASH_SIZE
+ 1];
163 static struct list_head vsock_connected_table
[VSOCK_HASH_SIZE
];
164 static DEFINE_SPINLOCK(vsock_table_lock
);
166 /* Autobind this socket to the local address if necessary. */
167 static int vsock_auto_bind(struct vsock_sock
*vsk
)
169 struct sock
*sk
= sk_vsock(vsk
);
170 struct sockaddr_vm local_addr
;
172 if (vsock_addr_bound(&vsk
->local_addr
))
174 vsock_addr_init(&local_addr
, VMADDR_CID_ANY
, VMADDR_PORT_ANY
);
175 return __vsock_bind(sk
, &local_addr
);
178 static void vsock_init_tables(void)
182 for (i
= 0; i
< ARRAY_SIZE(vsock_bind_table
); i
++)
183 INIT_LIST_HEAD(&vsock_bind_table
[i
]);
185 for (i
= 0; i
< ARRAY_SIZE(vsock_connected_table
); i
++)
186 INIT_LIST_HEAD(&vsock_connected_table
[i
]);
189 static void __vsock_insert_bound(struct list_head
*list
,
190 struct vsock_sock
*vsk
)
193 list_add(&vsk
->bound_table
, list
);
196 static void __vsock_insert_connected(struct list_head
*list
,
197 struct vsock_sock
*vsk
)
200 list_add(&vsk
->connected_table
, list
);
203 static void __vsock_remove_bound(struct vsock_sock
*vsk
)
205 list_del_init(&vsk
->bound_table
);
209 static void __vsock_remove_connected(struct vsock_sock
*vsk
)
211 list_del_init(&vsk
->connected_table
);
215 static struct sock
*__vsock_find_bound_socket(struct sockaddr_vm
*addr
)
217 struct vsock_sock
*vsk
;
219 list_for_each_entry(vsk
, vsock_bound_sockets(addr
), bound_table
)
220 if (addr
->svm_port
== vsk
->local_addr
.svm_port
)
221 return sk_vsock(vsk
);
226 static struct sock
*__vsock_find_connected_socket(struct sockaddr_vm
*src
,
227 struct sockaddr_vm
*dst
)
229 struct vsock_sock
*vsk
;
231 list_for_each_entry(vsk
, vsock_connected_sockets(src
, dst
),
233 if (vsock_addr_equals_addr(src
, &vsk
->remote_addr
) &&
234 dst
->svm_port
== vsk
->local_addr
.svm_port
) {
235 return sk_vsock(vsk
);
242 static bool __vsock_in_bound_table(struct vsock_sock
*vsk
)
244 return !list_empty(&vsk
->bound_table
);
247 static bool __vsock_in_connected_table(struct vsock_sock
*vsk
)
249 return !list_empty(&vsk
->connected_table
);
252 static void vsock_insert_unbound(struct vsock_sock
*vsk
)
254 spin_lock_bh(&vsock_table_lock
);
255 __vsock_insert_bound(vsock_unbound_sockets
, vsk
);
256 spin_unlock_bh(&vsock_table_lock
);
259 void vsock_insert_connected(struct vsock_sock
*vsk
)
261 struct list_head
*list
= vsock_connected_sockets(
262 &vsk
->remote_addr
, &vsk
->local_addr
);
264 spin_lock_bh(&vsock_table_lock
);
265 __vsock_insert_connected(list
, vsk
);
266 spin_unlock_bh(&vsock_table_lock
);
268 EXPORT_SYMBOL_GPL(vsock_insert_connected
);
270 void vsock_remove_bound(struct vsock_sock
*vsk
)
272 spin_lock_bh(&vsock_table_lock
);
273 __vsock_remove_bound(vsk
);
274 spin_unlock_bh(&vsock_table_lock
);
276 EXPORT_SYMBOL_GPL(vsock_remove_bound
);
278 void vsock_remove_connected(struct vsock_sock
*vsk
)
280 spin_lock_bh(&vsock_table_lock
);
281 __vsock_remove_connected(vsk
);
282 spin_unlock_bh(&vsock_table_lock
);
284 EXPORT_SYMBOL_GPL(vsock_remove_connected
);
286 struct sock
*vsock_find_bound_socket(struct sockaddr_vm
*addr
)
290 spin_lock_bh(&vsock_table_lock
);
291 sk
= __vsock_find_bound_socket(addr
);
295 spin_unlock_bh(&vsock_table_lock
);
299 EXPORT_SYMBOL_GPL(vsock_find_bound_socket
);
301 struct sock
*vsock_find_connected_socket(struct sockaddr_vm
*src
,
302 struct sockaddr_vm
*dst
)
306 spin_lock_bh(&vsock_table_lock
);
307 sk
= __vsock_find_connected_socket(src
, dst
);
311 spin_unlock_bh(&vsock_table_lock
);
315 EXPORT_SYMBOL_GPL(vsock_find_connected_socket
);
317 static bool vsock_in_bound_table(struct vsock_sock
*vsk
)
321 spin_lock_bh(&vsock_table_lock
);
322 ret
= __vsock_in_bound_table(vsk
);
323 spin_unlock_bh(&vsock_table_lock
);
328 static bool vsock_in_connected_table(struct vsock_sock
*vsk
)
332 spin_lock_bh(&vsock_table_lock
);
333 ret
= __vsock_in_connected_table(vsk
);
334 spin_unlock_bh(&vsock_table_lock
);
339 void vsock_for_each_connected_socket(void (*fn
)(struct sock
*sk
))
343 spin_lock_bh(&vsock_table_lock
);
345 for (i
= 0; i
< ARRAY_SIZE(vsock_connected_table
); i
++) {
346 struct vsock_sock
*vsk
;
347 list_for_each_entry(vsk
, &vsock_connected_table
[i
],
352 spin_unlock_bh(&vsock_table_lock
);
354 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket
);
356 void vsock_add_pending(struct sock
*listener
, struct sock
*pending
)
358 struct vsock_sock
*vlistener
;
359 struct vsock_sock
*vpending
;
361 vlistener
= vsock_sk(listener
);
362 vpending
= vsock_sk(pending
);
366 list_add_tail(&vpending
->pending_links
, &vlistener
->pending_links
);
368 EXPORT_SYMBOL_GPL(vsock_add_pending
);
370 void vsock_remove_pending(struct sock
*listener
, struct sock
*pending
)
372 struct vsock_sock
*vpending
= vsock_sk(pending
);
374 list_del_init(&vpending
->pending_links
);
378 EXPORT_SYMBOL_GPL(vsock_remove_pending
);
380 void vsock_enqueue_accept(struct sock
*listener
, struct sock
*connected
)
382 struct vsock_sock
*vlistener
;
383 struct vsock_sock
*vconnected
;
385 vlistener
= vsock_sk(listener
);
386 vconnected
= vsock_sk(connected
);
388 sock_hold(connected
);
390 list_add_tail(&vconnected
->accept_queue
, &vlistener
->accept_queue
);
392 EXPORT_SYMBOL_GPL(vsock_enqueue_accept
);
394 static struct sock
*vsock_dequeue_accept(struct sock
*listener
)
396 struct vsock_sock
*vlistener
;
397 struct vsock_sock
*vconnected
;
399 vlistener
= vsock_sk(listener
);
401 if (list_empty(&vlistener
->accept_queue
))
404 vconnected
= list_entry(vlistener
->accept_queue
.next
,
405 struct vsock_sock
, accept_queue
);
407 list_del_init(&vconnected
->accept_queue
);
409 /* The caller will need a reference on the connected socket so we let
410 * it call sock_put().
413 return sk_vsock(vconnected
);
416 static bool vsock_is_accept_queue_empty(struct sock
*sk
)
418 struct vsock_sock
*vsk
= vsock_sk(sk
);
419 return list_empty(&vsk
->accept_queue
);
422 static bool vsock_is_pending(struct sock
*sk
)
424 struct vsock_sock
*vsk
= vsock_sk(sk
);
425 return !list_empty(&vsk
->pending_links
);
428 static int vsock_send_shutdown(struct sock
*sk
, int mode
)
430 return transport
->shutdown(vsock_sk(sk
), mode
);
433 void vsock_pending_work(struct work_struct
*work
)
436 struct sock
*listener
;
437 struct vsock_sock
*vsk
;
440 vsk
= container_of(work
, struct vsock_sock
, dwork
.work
);
442 listener
= vsk
->listener
;
448 if (vsock_is_pending(sk
)) {
449 vsock_remove_pending(listener
, sk
);
450 } else if (!vsk
->rejected
) {
451 /* We are not on the pending list and accept() did not reject
452 * us, so we must have been accepted by our user process. We
453 * just need to drop our references to the sockets and be on
460 listener
->sk_ack_backlog
--;
462 /* We need to remove ourself from the global connected sockets list so
463 * incoming packets can't find this socket, and to reduce the reference
466 if (vsock_in_connected_table(vsk
))
467 vsock_remove_connected(vsk
);
469 sk
->sk_state
= SS_FREE
;
473 release_sock(listener
);
480 EXPORT_SYMBOL_GPL(vsock_pending_work
);
482 /**** SOCKET OPERATIONS ****/
484 static int __vsock_bind_stream(struct vsock_sock
*vsk
,
485 struct sockaddr_vm
*addr
)
487 static u32 port
= LAST_RESERVED_PORT
+ 1;
488 struct sockaddr_vm new_addr
;
490 vsock_addr_init(&new_addr
, addr
->svm_cid
, addr
->svm_port
);
492 if (addr
->svm_port
== VMADDR_PORT_ANY
) {
496 for (i
= 0; i
< MAX_PORT_RETRIES
; i
++) {
497 if (port
<= LAST_RESERVED_PORT
)
498 port
= LAST_RESERVED_PORT
+ 1;
500 new_addr
.svm_port
= port
++;
502 if (!__vsock_find_bound_socket(&new_addr
)) {
509 return -EADDRNOTAVAIL
;
511 /* If port is in reserved range, ensure caller
512 * has necessary privileges.
514 if (addr
->svm_port
<= LAST_RESERVED_PORT
&&
515 !capable(CAP_NET_BIND_SERVICE
)) {
519 if (__vsock_find_bound_socket(&new_addr
))
523 vsock_addr_init(&vsk
->local_addr
, new_addr
.svm_cid
, new_addr
.svm_port
);
525 /* Remove stream sockets from the unbound list and add them to the hash
526 * table for easy lookup by its address. The unbound list is simply an
527 * extra entry at the end of the hash table, a trick used by AF_UNIX.
529 __vsock_remove_bound(vsk
);
530 __vsock_insert_bound(vsock_bound_sockets(&vsk
->local_addr
), vsk
);
535 static int __vsock_bind_dgram(struct vsock_sock
*vsk
,
536 struct sockaddr_vm
*addr
)
538 return transport
->dgram_bind(vsk
, addr
);
541 static int __vsock_bind(struct sock
*sk
, struct sockaddr_vm
*addr
)
543 struct vsock_sock
*vsk
= vsock_sk(sk
);
547 /* First ensure this socket isn't already bound. */
548 if (vsock_addr_bound(&vsk
->local_addr
))
551 /* Now bind to the provided address or select appropriate values if
552 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
553 * like AF_INET prevents binding to a non-local IP address (in most
554 * cases), we only allow binding to the local CID.
556 cid
= transport
->get_local_cid();
557 if (addr
->svm_cid
!= cid
&& addr
->svm_cid
!= VMADDR_CID_ANY
)
558 return -EADDRNOTAVAIL
;
560 switch (sk
->sk_socket
->type
) {
562 spin_lock_bh(&vsock_table_lock
);
563 retval
= __vsock_bind_stream(vsk
, addr
);
564 spin_unlock_bh(&vsock_table_lock
);
568 retval
= __vsock_bind_dgram(vsk
, addr
);
579 struct sock
*__vsock_create(struct net
*net
,
587 struct vsock_sock
*psk
;
588 struct vsock_sock
*vsk
;
590 sk
= sk_alloc(net
, AF_VSOCK
, priority
, &vsock_proto
, kern
);
594 sock_init_data(sock
, sk
);
596 /* sk->sk_type is normally set in sock_init_data, but only if sock is
597 * non-NULL. We make sure that our sockets always have a type by
598 * setting it here if needed.
604 vsock_addr_init(&vsk
->local_addr
, VMADDR_CID_ANY
, VMADDR_PORT_ANY
);
605 vsock_addr_init(&vsk
->remote_addr
, VMADDR_CID_ANY
, VMADDR_PORT_ANY
);
607 sk
->sk_destruct
= vsock_sk_destruct
;
608 sk
->sk_backlog_rcv
= vsock_queue_rcv_skb
;
610 sock_reset_flag(sk
, SOCK_DONE
);
612 INIT_LIST_HEAD(&vsk
->bound_table
);
613 INIT_LIST_HEAD(&vsk
->connected_table
);
614 vsk
->listener
= NULL
;
615 INIT_LIST_HEAD(&vsk
->pending_links
);
616 INIT_LIST_HEAD(&vsk
->accept_queue
);
617 vsk
->rejected
= false;
618 vsk
->sent_request
= false;
619 vsk
->ignore_connecting_rst
= false;
620 vsk
->peer_shutdown
= 0;
622 psk
= parent
? vsock_sk(parent
) : NULL
;
624 vsk
->trusted
= psk
->trusted
;
625 vsk
->owner
= get_cred(psk
->owner
);
626 vsk
->connect_timeout
= psk
->connect_timeout
;
628 vsk
->trusted
= capable(CAP_NET_ADMIN
);
629 vsk
->owner
= get_current_cred();
630 vsk
->connect_timeout
= VSOCK_DEFAULT_CONNECT_TIMEOUT
;
633 if (transport
->init(vsk
, psk
) < 0) {
639 vsock_insert_unbound(vsk
);
643 EXPORT_SYMBOL_GPL(__vsock_create
);
645 static void __vsock_release(struct sock
*sk
)
649 struct sock
*pending
;
650 struct vsock_sock
*vsk
;
653 pending
= NULL
; /* Compiler warning. */
655 if (vsock_in_bound_table(vsk
))
656 vsock_remove_bound(vsk
);
658 if (vsock_in_connected_table(vsk
))
659 vsock_remove_connected(vsk
);
661 transport
->release(vsk
);
665 sk
->sk_shutdown
= SHUTDOWN_MASK
;
667 while ((skb
= skb_dequeue(&sk
->sk_receive_queue
)))
670 /* Clean up any sockets that never were accepted. */
671 while ((pending
= vsock_dequeue_accept(sk
)) != NULL
) {
672 __vsock_release(pending
);
681 static void vsock_sk_destruct(struct sock
*sk
)
683 struct vsock_sock
*vsk
= vsock_sk(sk
);
685 transport
->destruct(vsk
);
687 /* When clearing these addresses, there's no need to set the family and
688 * possibly register the address family with the kernel.
690 vsock_addr_init(&vsk
->local_addr
, VMADDR_CID_ANY
, VMADDR_PORT_ANY
);
691 vsock_addr_init(&vsk
->remote_addr
, VMADDR_CID_ANY
, VMADDR_PORT_ANY
);
693 put_cred(vsk
->owner
);
696 static int vsock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
700 err
= sock_queue_rcv_skb(sk
, skb
);
707 s64
vsock_stream_has_data(struct vsock_sock
*vsk
)
709 return transport
->stream_has_data(vsk
);
711 EXPORT_SYMBOL_GPL(vsock_stream_has_data
);
713 s64
vsock_stream_has_space(struct vsock_sock
*vsk
)
715 return transport
->stream_has_space(vsk
);
717 EXPORT_SYMBOL_GPL(vsock_stream_has_space
);
719 static int vsock_release(struct socket
*sock
)
721 __vsock_release(sock
->sk
);
723 sock
->state
= SS_FREE
;
729 vsock_bind(struct socket
*sock
, struct sockaddr
*addr
, int addr_len
)
733 struct sockaddr_vm
*vm_addr
;
737 if (vsock_addr_cast(addr
, addr_len
, &vm_addr
) != 0)
741 err
= __vsock_bind(sk
, vm_addr
);
747 static int vsock_getname(struct socket
*sock
,
748 struct sockaddr
*addr
, int *addr_len
, int peer
)
752 struct vsock_sock
*vsk
;
753 struct sockaddr_vm
*vm_addr
;
762 if (sock
->state
!= SS_CONNECTED
) {
766 vm_addr
= &vsk
->remote_addr
;
768 vm_addr
= &vsk
->local_addr
;
776 /* sys_getsockname() and sys_getpeername() pass us a
777 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
778 * that macro is defined in socket.c instead of .h, so we hardcode its
781 BUILD_BUG_ON(sizeof(*vm_addr
) > 128);
782 memcpy(addr
, vm_addr
, sizeof(*vm_addr
));
783 *addr_len
= sizeof(*vm_addr
);
790 static int vsock_shutdown(struct socket
*sock
, int mode
)
795 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
796 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
797 * here like the other address families do. Note also that the
798 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
799 * which is what we want.
803 if ((mode
& ~SHUTDOWN_MASK
) || !mode
)
806 /* If this is a STREAM socket and it is not connected then bail out
807 * immediately. If it is a DGRAM socket then we must first kick the
808 * socket so that it wakes up from any sleeping calls, for example
809 * recv(), and then afterwards return the error.
813 if (sock
->state
== SS_UNCONNECTED
) {
815 if (sk
->sk_type
== SOCK_STREAM
)
818 sock
->state
= SS_DISCONNECTING
;
822 /* Receive and send shutdowns are treated alike. */
823 mode
= mode
& (RCV_SHUTDOWN
| SEND_SHUTDOWN
);
826 sk
->sk_shutdown
|= mode
;
827 sk
->sk_state_change(sk
);
830 if (sk
->sk_type
== SOCK_STREAM
) {
831 sock_reset_flag(sk
, SOCK_DONE
);
832 vsock_send_shutdown(sk
, mode
);
839 static unsigned int vsock_poll(struct file
*file
, struct socket
*sock
,
844 struct vsock_sock
*vsk
;
849 poll_wait(file
, sk_sleep(sk
), wait
);
853 /* Signify that there has been an error on this socket. */
856 /* INET sockets treat local write shutdown and peer write shutdown as a
857 * case of POLLHUP set.
859 if ((sk
->sk_shutdown
== SHUTDOWN_MASK
) ||
860 ((sk
->sk_shutdown
& SEND_SHUTDOWN
) &&
861 (vsk
->peer_shutdown
& SEND_SHUTDOWN
))) {
865 if (sk
->sk_shutdown
& RCV_SHUTDOWN
||
866 vsk
->peer_shutdown
& SEND_SHUTDOWN
) {
870 if (sock
->type
== SOCK_DGRAM
) {
871 /* For datagram sockets we can read if there is something in
872 * the queue and write as long as the socket isn't shutdown for
875 if (!skb_queue_empty(&sk
->sk_receive_queue
) ||
876 (sk
->sk_shutdown
& RCV_SHUTDOWN
)) {
877 mask
|= POLLIN
| POLLRDNORM
;
880 if (!(sk
->sk_shutdown
& SEND_SHUTDOWN
))
881 mask
|= POLLOUT
| POLLWRNORM
| POLLWRBAND
;
883 } else if (sock
->type
== SOCK_STREAM
) {
886 /* Listening sockets that have connections in their accept
889 if (sk
->sk_state
== VSOCK_SS_LISTEN
890 && !vsock_is_accept_queue_empty(sk
))
891 mask
|= POLLIN
| POLLRDNORM
;
893 /* If there is something in the queue then we can read. */
894 if (transport
->stream_is_active(vsk
) &&
895 !(sk
->sk_shutdown
& RCV_SHUTDOWN
)) {
896 bool data_ready_now
= false;
897 int ret
= transport
->notify_poll_in(
898 vsk
, 1, &data_ready_now
);
903 mask
|= POLLIN
| POLLRDNORM
;
908 /* Sockets whose connections have been closed, reset, or
909 * terminated should also be considered read, and we check the
910 * shutdown flag for that.
912 if (sk
->sk_shutdown
& RCV_SHUTDOWN
||
913 vsk
->peer_shutdown
& SEND_SHUTDOWN
) {
914 mask
|= POLLIN
| POLLRDNORM
;
917 /* Connected sockets that can produce data can be written. */
918 if (sk
->sk_state
== SS_CONNECTED
) {
919 if (!(sk
->sk_shutdown
& SEND_SHUTDOWN
)) {
920 bool space_avail_now
= false;
921 int ret
= transport
->notify_poll_out(
922 vsk
, 1, &space_avail_now
);
927 /* Remove POLLWRBAND since INET
928 * sockets are not setting it.
930 mask
|= POLLOUT
| POLLWRNORM
;
936 /* Simulate INET socket poll behaviors, which sets
937 * POLLOUT|POLLWRNORM when peer is closed and nothing to read,
938 * but local send is not shutdown.
940 if (sk
->sk_state
== SS_UNCONNECTED
) {
941 if (!(sk
->sk_shutdown
& SEND_SHUTDOWN
))
942 mask
|= POLLOUT
| POLLWRNORM
;
952 static int vsock_dgram_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
957 struct vsock_sock
*vsk
;
958 struct sockaddr_vm
*remote_addr
;
960 if (msg
->msg_flags
& MSG_OOB
)
963 /* For now, MSG_DONTWAIT is always assumed... */
970 err
= vsock_auto_bind(vsk
);
975 /* If the provided message contains an address, use that. Otherwise
976 * fall back on the socket's remote handle (if it has been connected).
979 vsock_addr_cast(msg
->msg_name
, msg
->msg_namelen
,
980 &remote_addr
) == 0) {
981 /* Ensure this address is of the right type and is a valid
985 if (remote_addr
->svm_cid
== VMADDR_CID_ANY
)
986 remote_addr
->svm_cid
= transport
->get_local_cid();
988 if (!vsock_addr_bound(remote_addr
)) {
992 } else if (sock
->state
== SS_CONNECTED
) {
993 remote_addr
= &vsk
->remote_addr
;
995 if (remote_addr
->svm_cid
== VMADDR_CID_ANY
)
996 remote_addr
->svm_cid
= transport
->get_local_cid();
998 /* XXX Should connect() or this function ensure remote_addr is
1001 if (!vsock_addr_bound(&vsk
->remote_addr
)) {
1010 if (!transport
->dgram_allow(remote_addr
->svm_cid
,
1011 remote_addr
->svm_port
)) {
1016 err
= transport
->dgram_enqueue(vsk
, remote_addr
, msg
, len
);
1023 static int vsock_dgram_connect(struct socket
*sock
,
1024 struct sockaddr
*addr
, int addr_len
, int flags
)
1028 struct vsock_sock
*vsk
;
1029 struct sockaddr_vm
*remote_addr
;
1034 err
= vsock_addr_cast(addr
, addr_len
, &remote_addr
);
1035 if (err
== -EAFNOSUPPORT
&& remote_addr
->svm_family
== AF_UNSPEC
) {
1037 vsock_addr_init(&vsk
->remote_addr
, VMADDR_CID_ANY
,
1039 sock
->state
= SS_UNCONNECTED
;
1042 } else if (err
!= 0)
1047 err
= vsock_auto_bind(vsk
);
1051 if (!transport
->dgram_allow(remote_addr
->svm_cid
,
1052 remote_addr
->svm_port
)) {
1057 memcpy(&vsk
->remote_addr
, remote_addr
, sizeof(vsk
->remote_addr
));
1058 sock
->state
= SS_CONNECTED
;
1065 static int vsock_dgram_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
1066 size_t len
, int flags
)
1068 return transport
->dgram_dequeue(vsock_sk(sock
->sk
), msg
, len
, flags
);
1071 static const struct proto_ops vsock_dgram_ops
= {
1073 .owner
= THIS_MODULE
,
1074 .release
= vsock_release
,
1076 .connect
= vsock_dgram_connect
,
1077 .socketpair
= sock_no_socketpair
,
1078 .accept
= sock_no_accept
,
1079 .getname
= vsock_getname
,
1081 .ioctl
= sock_no_ioctl
,
1082 .listen
= sock_no_listen
,
1083 .shutdown
= vsock_shutdown
,
1084 .setsockopt
= sock_no_setsockopt
,
1085 .getsockopt
= sock_no_getsockopt
,
1086 .sendmsg
= vsock_dgram_sendmsg
,
1087 .recvmsg
= vsock_dgram_recvmsg
,
1088 .mmap
= sock_no_mmap
,
1089 .sendpage
= sock_no_sendpage
,
1092 static void vsock_connect_timeout(struct work_struct
*work
)
1095 struct vsock_sock
*vsk
;
1097 vsk
= container_of(work
, struct vsock_sock
, dwork
.work
);
1101 if (sk
->sk_state
== SS_CONNECTING
&&
1102 (sk
->sk_shutdown
!= SHUTDOWN_MASK
)) {
1103 sk
->sk_state
= SS_UNCONNECTED
;
1104 sk
->sk_err
= ETIMEDOUT
;
1105 sk
->sk_error_report(sk
);
1112 static int vsock_stream_connect(struct socket
*sock
, struct sockaddr
*addr
,
1113 int addr_len
, int flags
)
1117 struct vsock_sock
*vsk
;
1118 struct sockaddr_vm
*remote_addr
;
1128 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1129 switch (sock
->state
) {
1133 case SS_DISCONNECTING
:
1137 /* This continues on so we can move sock into the SS_CONNECTED
1138 * state once the connection has completed (at which point err
1139 * will be set to zero also). Otherwise, we will either wait
1140 * for the connection or return -EALREADY should this be a
1141 * non-blocking call.
1146 if ((sk
->sk_state
== VSOCK_SS_LISTEN
) ||
1147 vsock_addr_cast(addr
, addr_len
, &remote_addr
) != 0) {
1152 /* The hypervisor and well-known contexts do not have socket
1155 if (!transport
->stream_allow(remote_addr
->svm_cid
,
1156 remote_addr
->svm_port
)) {
1161 /* Set the remote address that we are connecting to. */
1162 memcpy(&vsk
->remote_addr
, remote_addr
,
1163 sizeof(vsk
->remote_addr
));
1165 err
= vsock_auto_bind(vsk
);
1169 sk
->sk_state
= SS_CONNECTING
;
1171 err
= transport
->connect(vsk
);
1175 /* Mark sock as connecting and set the error code to in
1176 * progress in case this is a non-blocking connect.
1178 sock
->state
= SS_CONNECTING
;
1182 /* The receive path will handle all communication until we are able to
1183 * enter the connected state. Here we wait for the connection to be
1184 * completed or a notification of an error.
1186 timeout
= vsk
->connect_timeout
;
1187 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1189 while (sk
->sk_state
!= SS_CONNECTED
&& sk
->sk_err
== 0) {
1190 if (flags
& O_NONBLOCK
) {
1191 /* If we're not going to block, we schedule a timeout
1192 * function to generate a timeout on the connection
1193 * attempt, in case the peer doesn't respond in a
1194 * timely manner. We hold on to the socket until the
1198 INIT_DELAYED_WORK(&vsk
->dwork
,
1199 vsock_connect_timeout
);
1200 schedule_delayed_work(&vsk
->dwork
, timeout
);
1202 /* Skip ahead to preserve error code set above. */
1207 timeout
= schedule_timeout(timeout
);
1210 if (signal_pending(current
)) {
1211 err
= sock_intr_errno(timeout
);
1212 sk
->sk_state
= SS_UNCONNECTED
;
1213 sock
->state
= SS_UNCONNECTED
;
1215 } else if (timeout
== 0) {
1217 sk
->sk_state
= SS_UNCONNECTED
;
1218 sock
->state
= SS_UNCONNECTED
;
1222 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1227 sk
->sk_state
= SS_UNCONNECTED
;
1228 sock
->state
= SS_UNCONNECTED
;
1234 finish_wait(sk_sleep(sk
), &wait
);
1240 static int vsock_accept(struct socket
*sock
, struct socket
*newsock
, int flags
)
1242 struct sock
*listener
;
1244 struct sock
*connected
;
1245 struct vsock_sock
*vconnected
;
1250 listener
= sock
->sk
;
1252 lock_sock(listener
);
1254 if (sock
->type
!= SOCK_STREAM
) {
1259 if (listener
->sk_state
!= VSOCK_SS_LISTEN
) {
1264 /* Wait for children sockets to appear; these are the new sockets
1265 * created upon connection establishment.
1267 timeout
= sock_sndtimeo(listener
, flags
& O_NONBLOCK
);
1268 prepare_to_wait(sk_sleep(listener
), &wait
, TASK_INTERRUPTIBLE
);
1270 while ((connected
= vsock_dequeue_accept(listener
)) == NULL
&&
1271 listener
->sk_err
== 0) {
1272 release_sock(listener
);
1273 timeout
= schedule_timeout(timeout
);
1274 finish_wait(sk_sleep(listener
), &wait
);
1275 lock_sock(listener
);
1277 if (signal_pending(current
)) {
1278 err
= sock_intr_errno(timeout
);
1280 } else if (timeout
== 0) {
1285 prepare_to_wait(sk_sleep(listener
), &wait
, TASK_INTERRUPTIBLE
);
1287 finish_wait(sk_sleep(listener
), &wait
);
1289 if (listener
->sk_err
)
1290 err
= -listener
->sk_err
;
1293 listener
->sk_ack_backlog
--;
1295 lock_sock(connected
);
1296 vconnected
= vsock_sk(connected
);
1298 /* If the listener socket has received an error, then we should
1299 * reject this socket and return. Note that we simply mark the
1300 * socket rejected, drop our reference, and let the cleanup
1301 * function handle the cleanup; the fact that we found it in
1302 * the listener's accept queue guarantees that the cleanup
1303 * function hasn't run yet.
1306 vconnected
->rejected
= true;
1308 newsock
->state
= SS_CONNECTED
;
1309 sock_graft(connected
, newsock
);
1312 release_sock(connected
);
1313 sock_put(connected
);
1317 release_sock(listener
);
1321 static int vsock_listen(struct socket
*sock
, int backlog
)
1325 struct vsock_sock
*vsk
;
1331 if (sock
->type
!= SOCK_STREAM
) {
1336 if (sock
->state
!= SS_UNCONNECTED
) {
1343 if (!vsock_addr_bound(&vsk
->local_addr
)) {
1348 sk
->sk_max_ack_backlog
= backlog
;
1349 sk
->sk_state
= VSOCK_SS_LISTEN
;
1358 static int vsock_stream_setsockopt(struct socket
*sock
,
1361 char __user
*optval
,
1362 unsigned int optlen
)
1366 struct vsock_sock
*vsk
;
1369 if (level
!= AF_VSOCK
)
1370 return -ENOPROTOOPT
;
1372 #define COPY_IN(_v) \
1374 if (optlen < sizeof(_v)) { \
1378 if (copy_from_user(&_v, optval, sizeof(_v)) != 0) { \
1391 case SO_VM_SOCKETS_BUFFER_SIZE
:
1393 transport
->set_buffer_size(vsk
, val
);
1396 case SO_VM_SOCKETS_BUFFER_MAX_SIZE
:
1398 transport
->set_max_buffer_size(vsk
, val
);
1401 case SO_VM_SOCKETS_BUFFER_MIN_SIZE
:
1403 transport
->set_min_buffer_size(vsk
, val
);
1406 case SO_VM_SOCKETS_CONNECT_TIMEOUT
: {
1409 if (tv
.tv_sec
>= 0 && tv
.tv_usec
< USEC_PER_SEC
&&
1410 tv
.tv_sec
< (MAX_SCHEDULE_TIMEOUT
/ HZ
- 1)) {
1411 vsk
->connect_timeout
= tv
.tv_sec
* HZ
+
1412 DIV_ROUND_UP(tv
.tv_usec
, (1000000 / HZ
));
1413 if (vsk
->connect_timeout
== 0)
1414 vsk
->connect_timeout
=
1415 VSOCK_DEFAULT_CONNECT_TIMEOUT
;
1435 static int vsock_stream_getsockopt(struct socket
*sock
,
1436 int level
, int optname
,
1437 char __user
*optval
,
1443 struct vsock_sock
*vsk
;
1446 if (level
!= AF_VSOCK
)
1447 return -ENOPROTOOPT
;
1449 err
= get_user(len
, optlen
);
1453 #define COPY_OUT(_v) \
1455 if (len < sizeof(_v)) \
1459 if (copy_to_user(optval, &_v, len) != 0) \
1469 case SO_VM_SOCKETS_BUFFER_SIZE
:
1470 val
= transport
->get_buffer_size(vsk
);
1474 case SO_VM_SOCKETS_BUFFER_MAX_SIZE
:
1475 val
= transport
->get_max_buffer_size(vsk
);
1479 case SO_VM_SOCKETS_BUFFER_MIN_SIZE
:
1480 val
= transport
->get_min_buffer_size(vsk
);
1484 case SO_VM_SOCKETS_CONNECT_TIMEOUT
: {
1486 tv
.tv_sec
= vsk
->connect_timeout
/ HZ
;
1488 (vsk
->connect_timeout
-
1489 tv
.tv_sec
* HZ
) * (1000000 / HZ
);
1494 return -ENOPROTOOPT
;
1497 err
= put_user(len
, optlen
);
1506 static int vsock_stream_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
1510 struct vsock_sock
*vsk
;
1511 ssize_t total_written
;
1514 struct vsock_transport_send_notify_data send_data
;
1523 if (msg
->msg_flags
& MSG_OOB
)
1528 /* Callers should not provide a destination with stream sockets. */
1529 if (msg
->msg_namelen
) {
1530 err
= sk
->sk_state
== SS_CONNECTED
? -EISCONN
: -EOPNOTSUPP
;
1534 /* Send data only if both sides are not shutdown in the direction. */
1535 if (sk
->sk_shutdown
& SEND_SHUTDOWN
||
1536 vsk
->peer_shutdown
& RCV_SHUTDOWN
) {
1541 if (sk
->sk_state
!= SS_CONNECTED
||
1542 !vsock_addr_bound(&vsk
->local_addr
)) {
1547 if (!vsock_addr_bound(&vsk
->remote_addr
)) {
1548 err
= -EDESTADDRREQ
;
1552 /* Wait for room in the produce queue to enqueue our user's data. */
1553 timeout
= sock_sndtimeo(sk
, msg
->msg_flags
& MSG_DONTWAIT
);
1555 err
= transport
->notify_send_init(vsk
, &send_data
);
1560 while (total_written
< len
) {
1563 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1564 while (vsock_stream_has_space(vsk
) == 0 &&
1566 !(sk
->sk_shutdown
& SEND_SHUTDOWN
) &&
1567 !(vsk
->peer_shutdown
& RCV_SHUTDOWN
)) {
1569 /* Don't wait for non-blocking sockets. */
1572 finish_wait(sk_sleep(sk
), &wait
);
1576 err
= transport
->notify_send_pre_block(vsk
, &send_data
);
1578 finish_wait(sk_sleep(sk
), &wait
);
1583 timeout
= schedule_timeout(timeout
);
1585 if (signal_pending(current
)) {
1586 err
= sock_intr_errno(timeout
);
1587 finish_wait(sk_sleep(sk
), &wait
);
1589 } else if (timeout
== 0) {
1591 finish_wait(sk_sleep(sk
), &wait
);
1595 prepare_to_wait(sk_sleep(sk
), &wait
,
1596 TASK_INTERRUPTIBLE
);
1598 finish_wait(sk_sleep(sk
), &wait
);
1600 /* These checks occur both as part of and after the loop
1601 * conditional since we need to check before and after
1607 } else if ((sk
->sk_shutdown
& SEND_SHUTDOWN
) ||
1608 (vsk
->peer_shutdown
& RCV_SHUTDOWN
)) {
1613 err
= transport
->notify_send_pre_enqueue(vsk
, &send_data
);
1617 /* Note that enqueue will only write as many bytes as are free
1618 * in the produce queue, so we don't need to ensure len is
1619 * smaller than the queue size. It is the caller's
1620 * responsibility to check how many bytes we were able to send.
1623 written
= transport
->stream_enqueue(
1625 len
- total_written
);
1631 total_written
+= written
;
1633 err
= transport
->notify_send_post_enqueue(
1634 vsk
, written
, &send_data
);
1641 if (total_written
> 0)
1642 err
= total_written
;
1650 vsock_stream_recvmsg(struct socket
*sock
, struct msghdr
*msg
, size_t len
,
1654 struct vsock_sock
*vsk
;
1659 struct vsock_transport_recv_notify_data recv_data
;
1669 if (sk
->sk_state
!= SS_CONNECTED
) {
1670 /* Recvmsg is supposed to return 0 if a peer performs an
1671 * orderly shutdown. Differentiate between that case and when a
1672 * peer has not connected or a local shutdown occured with the
1675 if (sock_flag(sk
, SOCK_DONE
))
1683 if (flags
& MSG_OOB
) {
1688 /* We don't check peer_shutdown flag here since peer may actually shut
1689 * down, but there can be data in the queue that a local socket can
1692 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
1697 /* It is valid on Linux to pass in a zero-length receive buffer. This
1698 * is not an error. We may as well bail out now.
1705 /* We must not copy less than target bytes into the user's buffer
1706 * before returning successfully, so we wait for the consume queue to
1707 * have that much data to consume before dequeueing. Note that this
1708 * makes it impossible to handle cases where target is greater than the
1711 target
= sock_rcvlowat(sk
, flags
& MSG_WAITALL
, len
);
1712 if (target
>= transport
->stream_rcvhiwat(vsk
)) {
1716 timeout
= sock_rcvtimeo(sk
, flags
& MSG_DONTWAIT
);
1719 err
= transport
->notify_recv_init(vsk
, target
, &recv_data
);
1727 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1728 ready
= vsock_stream_has_data(vsk
);
1731 if (sk
->sk_err
!= 0 ||
1732 (sk
->sk_shutdown
& RCV_SHUTDOWN
) ||
1733 (vsk
->peer_shutdown
& SEND_SHUTDOWN
)) {
1734 finish_wait(sk_sleep(sk
), &wait
);
1737 /* Don't wait for non-blocking sockets. */
1740 finish_wait(sk_sleep(sk
), &wait
);
1744 err
= transport
->notify_recv_pre_block(
1745 vsk
, target
, &recv_data
);
1747 finish_wait(sk_sleep(sk
), &wait
);
1751 timeout
= schedule_timeout(timeout
);
1754 if (signal_pending(current
)) {
1755 err
= sock_intr_errno(timeout
);
1756 finish_wait(sk_sleep(sk
), &wait
);
1758 } else if (timeout
== 0) {
1760 finish_wait(sk_sleep(sk
), &wait
);
1766 finish_wait(sk_sleep(sk
), &wait
);
1769 /* Invalid queue pair content. XXX This should
1770 * be changed to a connection reset in a later
1778 err
= transport
->notify_recv_pre_dequeue(
1779 vsk
, target
, &recv_data
);
1783 read
= transport
->stream_dequeue(
1785 len
- copied
, flags
);
1793 err
= transport
->notify_recv_post_dequeue(
1795 !(flags
& MSG_PEEK
), &recv_data
);
1799 if (read
>= target
|| flags
& MSG_PEEK
)
1808 else if (sk
->sk_shutdown
& RCV_SHUTDOWN
)
1812 /* We only do these additional bookkeeping/notification steps
1813 * if we actually copied something out of the queue pair
1814 * instead of just peeking ahead.
1817 if (!(flags
& MSG_PEEK
)) {
1818 /* If the other side has shutdown for sending and there
1819 * is nothing more to read, then modify the socket
1822 if (vsk
->peer_shutdown
& SEND_SHUTDOWN
) {
1823 if (vsock_stream_has_data(vsk
) <= 0) {
1824 sk
->sk_state
= SS_UNCONNECTED
;
1825 sock_set_flag(sk
, SOCK_DONE
);
1826 sk
->sk_state_change(sk
);
1838 static const struct proto_ops vsock_stream_ops
= {
1840 .owner
= THIS_MODULE
,
1841 .release
= vsock_release
,
1843 .connect
= vsock_stream_connect
,
1844 .socketpair
= sock_no_socketpair
,
1845 .accept
= vsock_accept
,
1846 .getname
= vsock_getname
,
1848 .ioctl
= sock_no_ioctl
,
1849 .listen
= vsock_listen
,
1850 .shutdown
= vsock_shutdown
,
1851 .setsockopt
= vsock_stream_setsockopt
,
1852 .getsockopt
= vsock_stream_getsockopt
,
1853 .sendmsg
= vsock_stream_sendmsg
,
1854 .recvmsg
= vsock_stream_recvmsg
,
1855 .mmap
= sock_no_mmap
,
1856 .sendpage
= sock_no_sendpage
,
1859 static int vsock_create(struct net
*net
, struct socket
*sock
,
1860 int protocol
, int kern
)
1865 if (protocol
&& protocol
!= PF_VSOCK
)
1866 return -EPROTONOSUPPORT
;
1868 switch (sock
->type
) {
1870 sock
->ops
= &vsock_dgram_ops
;
1873 sock
->ops
= &vsock_stream_ops
;
1876 return -ESOCKTNOSUPPORT
;
1879 sock
->state
= SS_UNCONNECTED
;
1881 return __vsock_create(net
, sock
, NULL
, GFP_KERNEL
, 0, kern
) ? 0 : -ENOMEM
;
1884 static const struct net_proto_family vsock_family_ops
= {
1886 .create
= vsock_create
,
1887 .owner
= THIS_MODULE
,
1890 static long vsock_dev_do_ioctl(struct file
*filp
,
1891 unsigned int cmd
, void __user
*ptr
)
1893 u32 __user
*p
= ptr
;
1897 case IOCTL_VM_SOCKETS_GET_LOCAL_CID
:
1898 if (put_user(transport
->get_local_cid(), p
) != 0)
1903 pr_err("Unknown ioctl %d\n", cmd
);
1910 static long vsock_dev_ioctl(struct file
*filp
,
1911 unsigned int cmd
, unsigned long arg
)
1913 return vsock_dev_do_ioctl(filp
, cmd
, (void __user
*)arg
);
1916 #ifdef CONFIG_COMPAT
1917 static long vsock_dev_compat_ioctl(struct file
*filp
,
1918 unsigned int cmd
, unsigned long arg
)
1920 return vsock_dev_do_ioctl(filp
, cmd
, compat_ptr(arg
));
1924 static const struct file_operations vsock_device_ops
= {
1925 .owner
= THIS_MODULE
,
1926 .unlocked_ioctl
= vsock_dev_ioctl
,
1927 #ifdef CONFIG_COMPAT
1928 .compat_ioctl
= vsock_dev_compat_ioctl
,
1930 .open
= nonseekable_open
,
1933 static struct miscdevice vsock_device
= {
1935 .fops
= &vsock_device_ops
,
1938 int __vsock_core_init(const struct vsock_transport
*t
, struct module
*owner
)
1940 int err
= mutex_lock_interruptible(&vsock_register_mutex
);
1950 /* Transport must be the owner of the protocol so that it can't
1951 * unload while there are open sockets.
1953 vsock_proto
.owner
= owner
;
1956 vsock_init_tables();
1958 vsock_device
.minor
= MISC_DYNAMIC_MINOR
;
1959 err
= misc_register(&vsock_device
);
1961 pr_err("Failed to register misc device\n");
1962 goto err_reset_transport
;
1965 err
= proto_register(&vsock_proto
, 1); /* we want our slab */
1967 pr_err("Cannot register vsock protocol\n");
1968 goto err_deregister_misc
;
1971 err
= sock_register(&vsock_family_ops
);
1973 pr_err("could not register af_vsock (%d) address family: %d\n",
1975 goto err_unregister_proto
;
1978 mutex_unlock(&vsock_register_mutex
);
1981 err_unregister_proto
:
1982 proto_unregister(&vsock_proto
);
1983 err_deregister_misc
:
1984 misc_deregister(&vsock_device
);
1985 err_reset_transport
:
1988 mutex_unlock(&vsock_register_mutex
);
1991 EXPORT_SYMBOL_GPL(__vsock_core_init
);
1993 void vsock_core_exit(void)
1995 mutex_lock(&vsock_register_mutex
);
1997 misc_deregister(&vsock_device
);
1998 sock_unregister(AF_VSOCK
);
1999 proto_unregister(&vsock_proto
);
2001 /* We do not want the assignment below re-ordered. */
2005 mutex_unlock(&vsock_register_mutex
);
2007 EXPORT_SYMBOL_GPL(vsock_core_exit
);
2009 MODULE_AUTHOR("VMware, Inc.");
2010 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2011 MODULE_VERSION("1.0.1.0-k");
2012 MODULE_LICENSE("GPL v2");