4 * ARM performance counter support.
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9 * This code is based on the sparc64 perf event code, which is in turn based
10 * on the x86 code. Callchain code is based on the ARM OProfile backtrace
13 #define pr_fmt(fmt) "hw perfevents: " fmt
15 #include <linux/kernel.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/uaccess.h>
20 #include <asm/irq_regs.h>
22 #include <asm/stacktrace.h>
25 armpmu_map_cache_event(const unsigned (*cache_map
)
26 [PERF_COUNT_HW_CACHE_MAX
]
27 [PERF_COUNT_HW_CACHE_OP_MAX
]
28 [PERF_COUNT_HW_CACHE_RESULT_MAX
],
31 unsigned int cache_type
, cache_op
, cache_result
, ret
;
33 cache_type
= (config
>> 0) & 0xff;
34 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
37 cache_op
= (config
>> 8) & 0xff;
38 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
41 cache_result
= (config
>> 16) & 0xff;
42 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
45 ret
= (int)(*cache_map
)[cache_type
][cache_op
][cache_result
];
47 if (ret
== CACHE_OP_UNSUPPORTED
)
54 armpmu_map_hw_event(const unsigned (*event_map
)[PERF_COUNT_HW_MAX
], u64 config
)
56 int mapping
= (*event_map
)[config
];
57 return mapping
== HW_OP_UNSUPPORTED
? -ENOENT
: mapping
;
61 armpmu_map_raw_event(u32 raw_event_mask
, u64 config
)
63 return (int)(config
& raw_event_mask
);
67 armpmu_map_event(struct perf_event
*event
,
68 const unsigned (*event_map
)[PERF_COUNT_HW_MAX
],
69 const unsigned (*cache_map
)
70 [PERF_COUNT_HW_CACHE_MAX
]
71 [PERF_COUNT_HW_CACHE_OP_MAX
]
72 [PERF_COUNT_HW_CACHE_RESULT_MAX
],
75 u64 config
= event
->attr
.config
;
77 switch (event
->attr
.type
) {
78 case PERF_TYPE_HARDWARE
:
79 return armpmu_map_hw_event(event_map
, config
);
80 case PERF_TYPE_HW_CACHE
:
81 return armpmu_map_cache_event(cache_map
, config
);
83 return armpmu_map_raw_event(raw_event_mask
, config
);
89 int armpmu_event_set_period(struct perf_event
*event
)
91 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
92 struct hw_perf_event
*hwc
= &event
->hw
;
93 s64 left
= local64_read(&hwc
->period_left
);
94 s64 period
= hwc
->sample_period
;
97 /* The period may have been changed by PERF_EVENT_IOC_PERIOD */
98 if (unlikely(period
!= hwc
->last_period
))
99 left
= period
- (hwc
->last_period
- left
);
101 if (unlikely(left
<= -period
)) {
103 local64_set(&hwc
->period_left
, left
);
104 hwc
->last_period
= period
;
108 if (unlikely(left
<= 0)) {
110 local64_set(&hwc
->period_left
, left
);
111 hwc
->last_period
= period
;
115 if (left
> (s64
)armpmu
->max_period
)
116 left
= armpmu
->max_period
;
118 local64_set(&hwc
->prev_count
, (u64
)-left
);
120 armpmu
->write_counter(event
, (u64
)(-left
) & 0xffffffff);
122 perf_event_update_userpage(event
);
127 u64
armpmu_event_update(struct perf_event
*event
)
129 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
130 struct hw_perf_event
*hwc
= &event
->hw
;
131 u64 delta
, prev_raw_count
, new_raw_count
;
134 prev_raw_count
= local64_read(&hwc
->prev_count
);
135 new_raw_count
= armpmu
->read_counter(event
);
137 if (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
138 new_raw_count
) != prev_raw_count
)
141 delta
= (new_raw_count
- prev_raw_count
) & armpmu
->max_period
;
143 local64_add(delta
, &event
->count
);
144 local64_sub(delta
, &hwc
->period_left
);
146 return new_raw_count
;
150 armpmu_read(struct perf_event
*event
)
152 armpmu_event_update(event
);
156 armpmu_stop(struct perf_event
*event
, int flags
)
158 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
159 struct hw_perf_event
*hwc
= &event
->hw
;
162 * ARM pmu always has to update the counter, so ignore
163 * PERF_EF_UPDATE, see comments in armpmu_start().
165 if (!(hwc
->state
& PERF_HES_STOPPED
)) {
166 armpmu
->disable(event
);
167 armpmu_event_update(event
);
168 hwc
->state
|= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
172 static void armpmu_start(struct perf_event
*event
, int flags
)
174 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
175 struct hw_perf_event
*hwc
= &event
->hw
;
178 * ARM pmu always has to reprogram the period, so ignore
179 * PERF_EF_RELOAD, see the comment below.
181 if (flags
& PERF_EF_RELOAD
)
182 WARN_ON_ONCE(!(hwc
->state
& PERF_HES_UPTODATE
));
186 * Set the period again. Some counters can't be stopped, so when we
187 * were stopped we simply disabled the IRQ source and the counter
188 * may have been left counting. If we don't do this step then we may
189 * get an interrupt too soon or *way* too late if the overflow has
190 * happened since disabling.
192 armpmu_event_set_period(event
);
193 armpmu
->enable(event
);
197 armpmu_del(struct perf_event
*event
, int flags
)
199 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
200 struct pmu_hw_events
*hw_events
= armpmu
->get_hw_events();
201 struct hw_perf_event
*hwc
= &event
->hw
;
204 armpmu_stop(event
, PERF_EF_UPDATE
);
205 hw_events
->events
[idx
] = NULL
;
206 clear_bit(idx
, hw_events
->used_mask
);
208 perf_event_update_userpage(event
);
212 armpmu_add(struct perf_event
*event
, int flags
)
214 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
215 struct pmu_hw_events
*hw_events
= armpmu
->get_hw_events();
216 struct hw_perf_event
*hwc
= &event
->hw
;
220 perf_pmu_disable(event
->pmu
);
222 /* If we don't have a space for the counter then finish early. */
223 idx
= armpmu
->get_event_idx(hw_events
, event
);
230 * If there is an event in the counter we are going to use then make
231 * sure it is disabled.
234 armpmu
->disable(event
);
235 hw_events
->events
[idx
] = event
;
237 hwc
->state
= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
238 if (flags
& PERF_EF_START
)
239 armpmu_start(event
, PERF_EF_RELOAD
);
241 /* Propagate our changes to the userspace mapping. */
242 perf_event_update_userpage(event
);
245 perf_pmu_enable(event
->pmu
);
250 validate_event(struct pmu_hw_events
*hw_events
,
251 struct perf_event
*event
)
253 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
254 struct pmu
*leader_pmu
= event
->group_leader
->pmu
;
256 if (event
->pmu
!= leader_pmu
|| event
->state
< PERF_EVENT_STATE_OFF
)
259 if (event
->state
== PERF_EVENT_STATE_OFF
&& !event
->attr
.enable_on_exec
)
262 return armpmu
->get_event_idx(hw_events
, event
) >= 0;
266 validate_group(struct perf_event
*event
)
268 struct perf_event
*sibling
, *leader
= event
->group_leader
;
269 struct pmu_hw_events fake_pmu
;
270 DECLARE_BITMAP(fake_used_mask
, ARMPMU_MAX_HWEVENTS
);
273 * Initialise the fake PMU. We only need to populate the
274 * used_mask for the purposes of validation.
276 memset(fake_used_mask
, 0, sizeof(fake_used_mask
));
277 fake_pmu
.used_mask
= fake_used_mask
;
279 if (!validate_event(&fake_pmu
, leader
))
282 list_for_each_entry(sibling
, &leader
->sibling_list
, group_entry
) {
283 if (!validate_event(&fake_pmu
, sibling
))
287 if (!validate_event(&fake_pmu
, event
))
293 static irqreturn_t
armpmu_dispatch_irq(int irq
, void *dev
)
295 struct arm_pmu
*armpmu
= (struct arm_pmu
*) dev
;
296 struct platform_device
*plat_device
= armpmu
->plat_device
;
297 struct arm_pmu_platdata
*plat
= dev_get_platdata(&plat_device
->dev
);
299 if (plat
&& plat
->handle_irq
)
300 return plat
->handle_irq(irq
, dev
, armpmu
->handle_irq
);
302 return armpmu
->handle_irq(irq
, dev
);
306 armpmu_release_hardware(struct arm_pmu
*armpmu
)
308 armpmu
->free_irq(armpmu
);
309 pm_runtime_put_sync(&armpmu
->plat_device
->dev
);
313 armpmu_reserve_hardware(struct arm_pmu
*armpmu
)
316 struct platform_device
*pmu_device
= armpmu
->plat_device
;
321 pm_runtime_get_sync(&pmu_device
->dev
);
322 err
= armpmu
->request_irq(armpmu
, armpmu_dispatch_irq
);
324 armpmu_release_hardware(armpmu
);
332 hw_perf_event_destroy(struct perf_event
*event
)
334 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
335 atomic_t
*active_events
= &armpmu
->active_events
;
336 struct mutex
*pmu_reserve_mutex
= &armpmu
->reserve_mutex
;
338 if (atomic_dec_and_mutex_lock(active_events
, pmu_reserve_mutex
)) {
339 armpmu_release_hardware(armpmu
);
340 mutex_unlock(pmu_reserve_mutex
);
345 event_requires_mode_exclusion(struct perf_event_attr
*attr
)
347 return attr
->exclude_idle
|| attr
->exclude_user
||
348 attr
->exclude_kernel
|| attr
->exclude_hv
;
352 __hw_perf_event_init(struct perf_event
*event
)
354 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
355 struct hw_perf_event
*hwc
= &event
->hw
;
358 mapping
= armpmu
->map_event(event
);
361 pr_debug("event %x:%llx not supported\n", event
->attr
.type
,
367 * We don't assign an index until we actually place the event onto
368 * hardware. Use -1 to signify that we haven't decided where to put it
369 * yet. For SMP systems, each core has it's own PMU so we can't do any
370 * clever allocation or constraints checking at this point.
373 hwc
->config_base
= 0;
378 * Check whether we need to exclude the counter from certain modes.
380 if ((!armpmu
->set_event_filter
||
381 armpmu
->set_event_filter(hwc
, &event
->attr
)) &&
382 event_requires_mode_exclusion(&event
->attr
)) {
383 pr_debug("ARM performance counters do not support "
389 * Store the event encoding into the config_base field.
391 hwc
->config_base
|= (unsigned long)mapping
;
393 if (!hwc
->sample_period
) {
395 * For non-sampling runs, limit the sample_period to half
396 * of the counter width. That way, the new counter value
397 * is far less likely to overtake the previous one unless
398 * you have some serious IRQ latency issues.
400 hwc
->sample_period
= armpmu
->max_period
>> 1;
401 hwc
->last_period
= hwc
->sample_period
;
402 local64_set(&hwc
->period_left
, hwc
->sample_period
);
405 if (event
->group_leader
!= event
) {
406 if (validate_group(event
) != 0)
413 static int armpmu_event_init(struct perf_event
*event
)
415 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
417 atomic_t
*active_events
= &armpmu
->active_events
;
419 /* does not support taken branch sampling */
420 if (has_branch_stack(event
))
423 if (armpmu
->map_event(event
) == -ENOENT
)
426 event
->destroy
= hw_perf_event_destroy
;
428 if (!atomic_inc_not_zero(active_events
)) {
429 mutex_lock(&armpmu
->reserve_mutex
);
430 if (atomic_read(active_events
) == 0)
431 err
= armpmu_reserve_hardware(armpmu
);
434 atomic_inc(active_events
);
435 mutex_unlock(&armpmu
->reserve_mutex
);
441 err
= __hw_perf_event_init(event
);
443 hw_perf_event_destroy(event
);
448 static void armpmu_enable(struct pmu
*pmu
)
450 struct arm_pmu
*armpmu
= to_arm_pmu(pmu
);
451 struct pmu_hw_events
*hw_events
= armpmu
->get_hw_events();
452 int enabled
= bitmap_weight(hw_events
->used_mask
, armpmu
->num_events
);
455 armpmu
->start(armpmu
);
458 static void armpmu_disable(struct pmu
*pmu
)
460 struct arm_pmu
*armpmu
= to_arm_pmu(pmu
);
461 armpmu
->stop(armpmu
);
464 #ifdef CONFIG_PM_RUNTIME
465 static int armpmu_runtime_resume(struct device
*dev
)
467 struct arm_pmu_platdata
*plat
= dev_get_platdata(dev
);
469 if (plat
&& plat
->runtime_resume
)
470 return plat
->runtime_resume(dev
);
475 static int armpmu_runtime_suspend(struct device
*dev
)
477 struct arm_pmu_platdata
*plat
= dev_get_platdata(dev
);
479 if (plat
&& plat
->runtime_suspend
)
480 return plat
->runtime_suspend(dev
);
486 const struct dev_pm_ops armpmu_dev_pm_ops
= {
487 SET_RUNTIME_PM_OPS(armpmu_runtime_suspend
, armpmu_runtime_resume
, NULL
)
490 static void armpmu_init(struct arm_pmu
*armpmu
)
492 atomic_set(&armpmu
->active_events
, 0);
493 mutex_init(&armpmu
->reserve_mutex
);
495 armpmu
->pmu
= (struct pmu
) {
496 .pmu_enable
= armpmu_enable
,
497 .pmu_disable
= armpmu_disable
,
498 .event_init
= armpmu_event_init
,
501 .start
= armpmu_start
,
507 int armpmu_register(struct arm_pmu
*armpmu
, int type
)
510 pm_runtime_enable(&armpmu
->plat_device
->dev
);
511 pr_info("enabled with %s PMU driver, %d counters available\n",
512 armpmu
->name
, armpmu
->num_events
);
513 return perf_pmu_register(&armpmu
->pmu
, armpmu
->name
, type
);
517 * Callchain handling code.
521 * The registers we're interested in are at the end of the variable
522 * length saved register structure. The fp points at the end of this
523 * structure so the address of this struct is:
524 * (struct frame_tail *)(xxx->fp)-1
526 * This code has been adapted from the ARM OProfile support.
529 struct frame_tail __user
*fp
;
532 } __attribute__((packed
));
535 * Get the return address for a single stackframe and return a pointer to the
538 static struct frame_tail __user
*
539 user_backtrace(struct frame_tail __user
*tail
,
540 struct perf_callchain_entry
*entry
)
542 struct frame_tail buftail
;
544 /* Also check accessibility of one struct frame_tail beyond */
545 if (!access_ok(VERIFY_READ
, tail
, sizeof(buftail
)))
547 if (__copy_from_user_inatomic(&buftail
, tail
, sizeof(buftail
)))
550 perf_callchain_store(entry
, buftail
.lr
);
553 * Frame pointers should strictly progress back up the stack
554 * (towards higher addresses).
556 if (tail
+ 1 >= buftail
.fp
)
559 return buftail
.fp
- 1;
563 perf_callchain_user(struct perf_callchain_entry
*entry
, struct pt_regs
*regs
)
565 struct frame_tail __user
*tail
;
567 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest()) {
568 /* We don't support guest os callchain now */
572 perf_callchain_store(entry
, regs
->ARM_pc
);
573 tail
= (struct frame_tail __user
*)regs
->ARM_fp
- 1;
575 while ((entry
->nr
< PERF_MAX_STACK_DEPTH
) &&
576 tail
&& !((unsigned long)tail
& 0x3))
577 tail
= user_backtrace(tail
, entry
);
581 * Gets called by walk_stackframe() for every stackframe. This will be called
582 * whist unwinding the stackframe and is like a subroutine return so we use
586 callchain_trace(struct stackframe
*fr
,
589 struct perf_callchain_entry
*entry
= data
;
590 perf_callchain_store(entry
, fr
->pc
);
595 perf_callchain_kernel(struct perf_callchain_entry
*entry
, struct pt_regs
*regs
)
597 struct stackframe fr
;
599 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest()) {
600 /* We don't support guest os callchain now */
604 fr
.fp
= regs
->ARM_fp
;
605 fr
.sp
= regs
->ARM_sp
;
606 fr
.lr
= regs
->ARM_lr
;
607 fr
.pc
= regs
->ARM_pc
;
608 walk_stackframe(&fr
, callchain_trace
, entry
);
611 unsigned long perf_instruction_pointer(struct pt_regs
*regs
)
613 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest())
614 return perf_guest_cbs
->get_guest_ip();
616 return instruction_pointer(regs
);
619 unsigned long perf_misc_flags(struct pt_regs
*regs
)
623 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest()) {
624 if (perf_guest_cbs
->is_user_mode())
625 misc
|= PERF_RECORD_MISC_GUEST_USER
;
627 misc
|= PERF_RECORD_MISC_GUEST_KERNEL
;
630 misc
|= PERF_RECORD_MISC_USER
;
632 misc
|= PERF_RECORD_MISC_KERNEL
;