Linux 3.11-rc3
[cris-mirror.git] / arch / arm / kernel / perf_event.c
blobd9f5cd4e533fef948f68510e3a6fb3b4996b750b
1 #undef DEBUG
3 /*
4 * ARM performance counter support.
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9 * This code is based on the sparc64 perf event code, which is in turn based
10 * on the x86 code. Callchain code is based on the ARM OProfile backtrace
11 * code.
13 #define pr_fmt(fmt) "hw perfevents: " fmt
15 #include <linux/kernel.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/uaccess.h>
20 #include <asm/irq_regs.h>
21 #include <asm/pmu.h>
22 #include <asm/stacktrace.h>
24 static int
25 armpmu_map_cache_event(const unsigned (*cache_map)
26 [PERF_COUNT_HW_CACHE_MAX]
27 [PERF_COUNT_HW_CACHE_OP_MAX]
28 [PERF_COUNT_HW_CACHE_RESULT_MAX],
29 u64 config)
31 unsigned int cache_type, cache_op, cache_result, ret;
33 cache_type = (config >> 0) & 0xff;
34 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
35 return -EINVAL;
37 cache_op = (config >> 8) & 0xff;
38 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
39 return -EINVAL;
41 cache_result = (config >> 16) & 0xff;
42 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
43 return -EINVAL;
45 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
47 if (ret == CACHE_OP_UNSUPPORTED)
48 return -ENOENT;
50 return ret;
53 static int
54 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
56 int mapping = (*event_map)[config];
57 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
60 static int
61 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
63 return (int)(config & raw_event_mask);
66 int
67 armpmu_map_event(struct perf_event *event,
68 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
69 const unsigned (*cache_map)
70 [PERF_COUNT_HW_CACHE_MAX]
71 [PERF_COUNT_HW_CACHE_OP_MAX]
72 [PERF_COUNT_HW_CACHE_RESULT_MAX],
73 u32 raw_event_mask)
75 u64 config = event->attr.config;
77 switch (event->attr.type) {
78 case PERF_TYPE_HARDWARE:
79 return armpmu_map_hw_event(event_map, config);
80 case PERF_TYPE_HW_CACHE:
81 return armpmu_map_cache_event(cache_map, config);
82 case PERF_TYPE_RAW:
83 return armpmu_map_raw_event(raw_event_mask, config);
86 return -ENOENT;
89 int armpmu_event_set_period(struct perf_event *event)
91 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
92 struct hw_perf_event *hwc = &event->hw;
93 s64 left = local64_read(&hwc->period_left);
94 s64 period = hwc->sample_period;
95 int ret = 0;
97 /* The period may have been changed by PERF_EVENT_IOC_PERIOD */
98 if (unlikely(period != hwc->last_period))
99 left = period - (hwc->last_period - left);
101 if (unlikely(left <= -period)) {
102 left = period;
103 local64_set(&hwc->period_left, left);
104 hwc->last_period = period;
105 ret = 1;
108 if (unlikely(left <= 0)) {
109 left += period;
110 local64_set(&hwc->period_left, left);
111 hwc->last_period = period;
112 ret = 1;
115 if (left > (s64)armpmu->max_period)
116 left = armpmu->max_period;
118 local64_set(&hwc->prev_count, (u64)-left);
120 armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
122 perf_event_update_userpage(event);
124 return ret;
127 u64 armpmu_event_update(struct perf_event *event)
129 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
130 struct hw_perf_event *hwc = &event->hw;
131 u64 delta, prev_raw_count, new_raw_count;
133 again:
134 prev_raw_count = local64_read(&hwc->prev_count);
135 new_raw_count = armpmu->read_counter(event);
137 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
138 new_raw_count) != prev_raw_count)
139 goto again;
141 delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
143 local64_add(delta, &event->count);
144 local64_sub(delta, &hwc->period_left);
146 return new_raw_count;
149 static void
150 armpmu_read(struct perf_event *event)
152 armpmu_event_update(event);
155 static void
156 armpmu_stop(struct perf_event *event, int flags)
158 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
159 struct hw_perf_event *hwc = &event->hw;
162 * ARM pmu always has to update the counter, so ignore
163 * PERF_EF_UPDATE, see comments in armpmu_start().
165 if (!(hwc->state & PERF_HES_STOPPED)) {
166 armpmu->disable(event);
167 armpmu_event_update(event);
168 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
172 static void armpmu_start(struct perf_event *event, int flags)
174 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
175 struct hw_perf_event *hwc = &event->hw;
178 * ARM pmu always has to reprogram the period, so ignore
179 * PERF_EF_RELOAD, see the comment below.
181 if (flags & PERF_EF_RELOAD)
182 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
184 hwc->state = 0;
186 * Set the period again. Some counters can't be stopped, so when we
187 * were stopped we simply disabled the IRQ source and the counter
188 * may have been left counting. If we don't do this step then we may
189 * get an interrupt too soon or *way* too late if the overflow has
190 * happened since disabling.
192 armpmu_event_set_period(event);
193 armpmu->enable(event);
196 static void
197 armpmu_del(struct perf_event *event, int flags)
199 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
200 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
201 struct hw_perf_event *hwc = &event->hw;
202 int idx = hwc->idx;
204 armpmu_stop(event, PERF_EF_UPDATE);
205 hw_events->events[idx] = NULL;
206 clear_bit(idx, hw_events->used_mask);
208 perf_event_update_userpage(event);
211 static int
212 armpmu_add(struct perf_event *event, int flags)
214 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
215 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
216 struct hw_perf_event *hwc = &event->hw;
217 int idx;
218 int err = 0;
220 perf_pmu_disable(event->pmu);
222 /* If we don't have a space for the counter then finish early. */
223 idx = armpmu->get_event_idx(hw_events, event);
224 if (idx < 0) {
225 err = idx;
226 goto out;
230 * If there is an event in the counter we are going to use then make
231 * sure it is disabled.
233 event->hw.idx = idx;
234 armpmu->disable(event);
235 hw_events->events[idx] = event;
237 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
238 if (flags & PERF_EF_START)
239 armpmu_start(event, PERF_EF_RELOAD);
241 /* Propagate our changes to the userspace mapping. */
242 perf_event_update_userpage(event);
244 out:
245 perf_pmu_enable(event->pmu);
246 return err;
249 static int
250 validate_event(struct pmu_hw_events *hw_events,
251 struct perf_event *event)
253 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
254 struct pmu *leader_pmu = event->group_leader->pmu;
256 if (event->pmu != leader_pmu || event->state < PERF_EVENT_STATE_OFF)
257 return 1;
259 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
260 return 1;
262 return armpmu->get_event_idx(hw_events, event) >= 0;
265 static int
266 validate_group(struct perf_event *event)
268 struct perf_event *sibling, *leader = event->group_leader;
269 struct pmu_hw_events fake_pmu;
270 DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
273 * Initialise the fake PMU. We only need to populate the
274 * used_mask for the purposes of validation.
276 memset(fake_used_mask, 0, sizeof(fake_used_mask));
277 fake_pmu.used_mask = fake_used_mask;
279 if (!validate_event(&fake_pmu, leader))
280 return -EINVAL;
282 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
283 if (!validate_event(&fake_pmu, sibling))
284 return -EINVAL;
287 if (!validate_event(&fake_pmu, event))
288 return -EINVAL;
290 return 0;
293 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
295 struct arm_pmu *armpmu = (struct arm_pmu *) dev;
296 struct platform_device *plat_device = armpmu->plat_device;
297 struct arm_pmu_platdata *plat = dev_get_platdata(&plat_device->dev);
299 if (plat && plat->handle_irq)
300 return plat->handle_irq(irq, dev, armpmu->handle_irq);
301 else
302 return armpmu->handle_irq(irq, dev);
305 static void
306 armpmu_release_hardware(struct arm_pmu *armpmu)
308 armpmu->free_irq(armpmu);
309 pm_runtime_put_sync(&armpmu->plat_device->dev);
312 static int
313 armpmu_reserve_hardware(struct arm_pmu *armpmu)
315 int err;
316 struct platform_device *pmu_device = armpmu->plat_device;
318 if (!pmu_device)
319 return -ENODEV;
321 pm_runtime_get_sync(&pmu_device->dev);
322 err = armpmu->request_irq(armpmu, armpmu_dispatch_irq);
323 if (err) {
324 armpmu_release_hardware(armpmu);
325 return err;
328 return 0;
331 static void
332 hw_perf_event_destroy(struct perf_event *event)
334 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
335 atomic_t *active_events = &armpmu->active_events;
336 struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
338 if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
339 armpmu_release_hardware(armpmu);
340 mutex_unlock(pmu_reserve_mutex);
344 static int
345 event_requires_mode_exclusion(struct perf_event_attr *attr)
347 return attr->exclude_idle || attr->exclude_user ||
348 attr->exclude_kernel || attr->exclude_hv;
351 static int
352 __hw_perf_event_init(struct perf_event *event)
354 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
355 struct hw_perf_event *hwc = &event->hw;
356 int mapping;
358 mapping = armpmu->map_event(event);
360 if (mapping < 0) {
361 pr_debug("event %x:%llx not supported\n", event->attr.type,
362 event->attr.config);
363 return mapping;
367 * We don't assign an index until we actually place the event onto
368 * hardware. Use -1 to signify that we haven't decided where to put it
369 * yet. For SMP systems, each core has it's own PMU so we can't do any
370 * clever allocation or constraints checking at this point.
372 hwc->idx = -1;
373 hwc->config_base = 0;
374 hwc->config = 0;
375 hwc->event_base = 0;
378 * Check whether we need to exclude the counter from certain modes.
380 if ((!armpmu->set_event_filter ||
381 armpmu->set_event_filter(hwc, &event->attr)) &&
382 event_requires_mode_exclusion(&event->attr)) {
383 pr_debug("ARM performance counters do not support "
384 "mode exclusion\n");
385 return -EOPNOTSUPP;
389 * Store the event encoding into the config_base field.
391 hwc->config_base |= (unsigned long)mapping;
393 if (!hwc->sample_period) {
395 * For non-sampling runs, limit the sample_period to half
396 * of the counter width. That way, the new counter value
397 * is far less likely to overtake the previous one unless
398 * you have some serious IRQ latency issues.
400 hwc->sample_period = armpmu->max_period >> 1;
401 hwc->last_period = hwc->sample_period;
402 local64_set(&hwc->period_left, hwc->sample_period);
405 if (event->group_leader != event) {
406 if (validate_group(event) != 0)
407 return -EINVAL;
410 return 0;
413 static int armpmu_event_init(struct perf_event *event)
415 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
416 int err = 0;
417 atomic_t *active_events = &armpmu->active_events;
419 /* does not support taken branch sampling */
420 if (has_branch_stack(event))
421 return -EOPNOTSUPP;
423 if (armpmu->map_event(event) == -ENOENT)
424 return -ENOENT;
426 event->destroy = hw_perf_event_destroy;
428 if (!atomic_inc_not_zero(active_events)) {
429 mutex_lock(&armpmu->reserve_mutex);
430 if (atomic_read(active_events) == 0)
431 err = armpmu_reserve_hardware(armpmu);
433 if (!err)
434 atomic_inc(active_events);
435 mutex_unlock(&armpmu->reserve_mutex);
438 if (err)
439 return err;
441 err = __hw_perf_event_init(event);
442 if (err)
443 hw_perf_event_destroy(event);
445 return err;
448 static void armpmu_enable(struct pmu *pmu)
450 struct arm_pmu *armpmu = to_arm_pmu(pmu);
451 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
452 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
454 if (enabled)
455 armpmu->start(armpmu);
458 static void armpmu_disable(struct pmu *pmu)
460 struct arm_pmu *armpmu = to_arm_pmu(pmu);
461 armpmu->stop(armpmu);
464 #ifdef CONFIG_PM_RUNTIME
465 static int armpmu_runtime_resume(struct device *dev)
467 struct arm_pmu_platdata *plat = dev_get_platdata(dev);
469 if (plat && plat->runtime_resume)
470 return plat->runtime_resume(dev);
472 return 0;
475 static int armpmu_runtime_suspend(struct device *dev)
477 struct arm_pmu_platdata *plat = dev_get_platdata(dev);
479 if (plat && plat->runtime_suspend)
480 return plat->runtime_suspend(dev);
482 return 0;
484 #endif
486 const struct dev_pm_ops armpmu_dev_pm_ops = {
487 SET_RUNTIME_PM_OPS(armpmu_runtime_suspend, armpmu_runtime_resume, NULL)
490 static void armpmu_init(struct arm_pmu *armpmu)
492 atomic_set(&armpmu->active_events, 0);
493 mutex_init(&armpmu->reserve_mutex);
495 armpmu->pmu = (struct pmu) {
496 .pmu_enable = armpmu_enable,
497 .pmu_disable = armpmu_disable,
498 .event_init = armpmu_event_init,
499 .add = armpmu_add,
500 .del = armpmu_del,
501 .start = armpmu_start,
502 .stop = armpmu_stop,
503 .read = armpmu_read,
507 int armpmu_register(struct arm_pmu *armpmu, int type)
509 armpmu_init(armpmu);
510 pm_runtime_enable(&armpmu->plat_device->dev);
511 pr_info("enabled with %s PMU driver, %d counters available\n",
512 armpmu->name, armpmu->num_events);
513 return perf_pmu_register(&armpmu->pmu, armpmu->name, type);
517 * Callchain handling code.
521 * The registers we're interested in are at the end of the variable
522 * length saved register structure. The fp points at the end of this
523 * structure so the address of this struct is:
524 * (struct frame_tail *)(xxx->fp)-1
526 * This code has been adapted from the ARM OProfile support.
528 struct frame_tail {
529 struct frame_tail __user *fp;
530 unsigned long sp;
531 unsigned long lr;
532 } __attribute__((packed));
535 * Get the return address for a single stackframe and return a pointer to the
536 * next frame tail.
538 static struct frame_tail __user *
539 user_backtrace(struct frame_tail __user *tail,
540 struct perf_callchain_entry *entry)
542 struct frame_tail buftail;
544 /* Also check accessibility of one struct frame_tail beyond */
545 if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
546 return NULL;
547 if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
548 return NULL;
550 perf_callchain_store(entry, buftail.lr);
553 * Frame pointers should strictly progress back up the stack
554 * (towards higher addresses).
556 if (tail + 1 >= buftail.fp)
557 return NULL;
559 return buftail.fp - 1;
562 void
563 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
565 struct frame_tail __user *tail;
567 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
568 /* We don't support guest os callchain now */
569 return;
572 perf_callchain_store(entry, regs->ARM_pc);
573 tail = (struct frame_tail __user *)regs->ARM_fp - 1;
575 while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
576 tail && !((unsigned long)tail & 0x3))
577 tail = user_backtrace(tail, entry);
581 * Gets called by walk_stackframe() for every stackframe. This will be called
582 * whist unwinding the stackframe and is like a subroutine return so we use
583 * the PC.
585 static int
586 callchain_trace(struct stackframe *fr,
587 void *data)
589 struct perf_callchain_entry *entry = data;
590 perf_callchain_store(entry, fr->pc);
591 return 0;
594 void
595 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
597 struct stackframe fr;
599 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
600 /* We don't support guest os callchain now */
601 return;
604 fr.fp = regs->ARM_fp;
605 fr.sp = regs->ARM_sp;
606 fr.lr = regs->ARM_lr;
607 fr.pc = regs->ARM_pc;
608 walk_stackframe(&fr, callchain_trace, entry);
611 unsigned long perf_instruction_pointer(struct pt_regs *regs)
613 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
614 return perf_guest_cbs->get_guest_ip();
616 return instruction_pointer(regs);
619 unsigned long perf_misc_flags(struct pt_regs *regs)
621 int misc = 0;
623 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
624 if (perf_guest_cbs->is_user_mode())
625 misc |= PERF_RECORD_MISC_GUEST_USER;
626 else
627 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
628 } else {
629 if (user_mode(regs))
630 misc |= PERF_RECORD_MISC_USER;
631 else
632 misc |= PERF_RECORD_MISC_KERNEL;
635 return misc;