2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Authors: Rusty Russell <rusty@rustcorp.com.au>
4 * Christoffer Dall <c.dall@virtualopensystems.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2, as
8 * published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
20 #include <linux/kvm_host.h>
21 #include <linux/uaccess.h>
22 #include <asm/kvm_arm.h>
23 #include <asm/kvm_host.h>
24 #include <asm/kvm_emulate.h>
25 #include <asm/kvm_coproc.h>
26 #include <asm/cacheflush.h>
27 #include <asm/cputype.h>
28 #include <trace/events/kvm.h>
30 #include "../vfp/vfpinstr.h"
36 /******************************************************************************
37 * Co-processor emulation
38 *****************************************************************************/
40 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
41 static u32 cache_levels
;
43 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
46 int kvm_handle_cp10_id(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
48 kvm_inject_undefined(vcpu
);
52 int kvm_handle_cp_0_13_access(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
55 * We can get here, if the host has been built without VFPv3 support,
56 * but the guest attempted a floating point operation.
58 kvm_inject_undefined(vcpu
);
62 int kvm_handle_cp14_load_store(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
64 kvm_inject_undefined(vcpu
);
68 int kvm_handle_cp14_access(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
70 kvm_inject_undefined(vcpu
);
74 /* See note at ARM ARM B1.14.4 */
75 static bool access_dcsw(struct kvm_vcpu
*vcpu
,
76 const struct coproc_params
*p
,
77 const struct coproc_reg
*r
)
83 return read_from_write_only(vcpu
, p
);
87 cpumask_setall(&vcpu
->arch
.require_dcache_flush
);
88 cpumask_clear_cpu(cpu
, &vcpu
->arch
.require_dcache_flush
);
90 /* If we were already preempted, take the long way around */
91 if (cpu
!= vcpu
->arch
.last_pcpu
) {
96 val
= *vcpu_reg(vcpu
, p
->Rt1
);
99 case 6: /* Upgrade DCISW to DCCISW, as per HCR.SWIO */
100 case 14: /* DCCISW */
101 asm volatile("mcr p15, 0, %0, c7, c14, 2" : : "r" (val
));
105 asm volatile("mcr p15, 0, %0, c7, c10, 2" : : "r" (val
));
116 * We could trap ID_DFR0 and tell the guest we don't support performance
117 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
118 * NAKed, so it will read the PMCR anyway.
120 * Therefore we tell the guest we have 0 counters. Unfortunately, we
121 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
122 * all PM registers, which doesn't crash the guest kernel at least.
124 static bool pm_fake(struct kvm_vcpu
*vcpu
,
125 const struct coproc_params
*p
,
126 const struct coproc_reg
*r
)
129 return ignore_write(vcpu
, p
);
131 return read_zero(vcpu
, p
);
134 #define access_pmcr pm_fake
135 #define access_pmcntenset pm_fake
136 #define access_pmcntenclr pm_fake
137 #define access_pmovsr pm_fake
138 #define access_pmselr pm_fake
139 #define access_pmceid0 pm_fake
140 #define access_pmceid1 pm_fake
141 #define access_pmccntr pm_fake
142 #define access_pmxevtyper pm_fake
143 #define access_pmxevcntr pm_fake
144 #define access_pmuserenr pm_fake
145 #define access_pmintenset pm_fake
146 #define access_pmintenclr pm_fake
148 /* Architected CP15 registers.
149 * Important: Must be sorted ascending by CRn, CRM, Op1, Op2
151 static const struct coproc_reg cp15_regs
[] = {
152 /* CSSELR: swapped by interrupt.S. */
153 { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32
,
154 NULL
, reset_unknown
, c0_CSSELR
},
156 /* TTBR0/TTBR1: swapped by interrupt.S. */
157 { CRm( 2), Op1( 0), is64
, NULL
, reset_unknown64
, c2_TTBR0
},
158 { CRm( 2), Op1( 1), is64
, NULL
, reset_unknown64
, c2_TTBR1
},
160 /* TTBCR: swapped by interrupt.S. */
161 { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32
,
162 NULL
, reset_val
, c2_TTBCR
, 0x00000000 },
164 /* DACR: swapped by interrupt.S. */
165 { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32
,
166 NULL
, reset_unknown
, c3_DACR
},
168 /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
169 { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32
,
170 NULL
, reset_unknown
, c5_DFSR
},
171 { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32
,
172 NULL
, reset_unknown
, c5_IFSR
},
173 { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32
,
174 NULL
, reset_unknown
, c5_ADFSR
},
175 { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32
,
176 NULL
, reset_unknown
, c5_AIFSR
},
178 /* DFAR/IFAR: swapped by interrupt.S. */
179 { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32
,
180 NULL
, reset_unknown
, c6_DFAR
},
181 { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32
,
182 NULL
, reset_unknown
, c6_IFAR
},
184 /* PAR swapped by interrupt.S */
185 { CRn( 7), Op1( 0), is64
, NULL
, reset_unknown64
, c7_PAR
},
188 * DC{C,I,CI}SW operations:
190 { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32
, access_dcsw
},
191 { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32
, access_dcsw
},
192 { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32
, access_dcsw
},
194 * Dummy performance monitor implementation.
196 { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32
, access_pmcr
},
197 { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32
, access_pmcntenset
},
198 { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32
, access_pmcntenclr
},
199 { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32
, access_pmovsr
},
200 { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32
, access_pmselr
},
201 { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32
, access_pmceid0
},
202 { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32
, access_pmceid1
},
203 { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32
, access_pmccntr
},
204 { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32
, access_pmxevtyper
},
205 { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32
, access_pmxevcntr
},
206 { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32
, access_pmuserenr
},
207 { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32
, access_pmintenset
},
208 { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32
, access_pmintenclr
},
210 /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
211 { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32
,
212 NULL
, reset_unknown
, c10_PRRR
},
213 { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32
,
214 NULL
, reset_unknown
, c10_NMRR
},
216 /* VBAR: swapped by interrupt.S. */
217 { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32
,
218 NULL
, reset_val
, c12_VBAR
, 0x00000000 },
220 /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
221 { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32
,
222 NULL
, reset_val
, c13_CID
, 0x00000000 },
223 { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32
,
224 NULL
, reset_unknown
, c13_TID_URW
},
225 { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32
,
226 NULL
, reset_unknown
, c13_TID_URO
},
227 { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32
,
228 NULL
, reset_unknown
, c13_TID_PRIV
},
230 /* CNTKCTL: swapped by interrupt.S. */
231 { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32
,
232 NULL
, reset_val
, c14_CNTKCTL
, 0x00000000 },
235 /* Target specific emulation tables */
236 static struct kvm_coproc_target_table
*target_tables
[KVM_ARM_NUM_TARGETS
];
238 void kvm_register_target_coproc_table(struct kvm_coproc_target_table
*table
)
240 target_tables
[table
->target
] = table
;
243 /* Get specific register table for this target. */
244 static const struct coproc_reg
*get_target_table(unsigned target
, size_t *num
)
246 struct kvm_coproc_target_table
*table
;
248 table
= target_tables
[target
];
253 static const struct coproc_reg
*find_reg(const struct coproc_params
*params
,
254 const struct coproc_reg table
[],
259 for (i
= 0; i
< num
; i
++) {
260 const struct coproc_reg
*r
= &table
[i
];
262 if (params
->is_64bit
!= r
->is_64
)
264 if (params
->CRn
!= r
->CRn
)
266 if (params
->CRm
!= r
->CRm
)
268 if (params
->Op1
!= r
->Op1
)
270 if (params
->Op2
!= r
->Op2
)
278 static int emulate_cp15(struct kvm_vcpu
*vcpu
,
279 const struct coproc_params
*params
)
282 const struct coproc_reg
*table
, *r
;
284 trace_kvm_emulate_cp15_imp(params
->Op1
, params
->Rt1
, params
->CRn
,
285 params
->CRm
, params
->Op2
, params
->is_write
);
287 table
= get_target_table(vcpu
->arch
.target
, &num
);
289 /* Search target-specific then generic table. */
290 r
= find_reg(params
, table
, num
);
292 r
= find_reg(params
, cp15_regs
, ARRAY_SIZE(cp15_regs
));
295 /* If we don't have an accessor, we should never get here! */
298 if (likely(r
->access(vcpu
, params
, r
))) {
299 /* Skip instruction, since it was emulated */
300 kvm_skip_instr(vcpu
, kvm_vcpu_trap_il_is32bit(vcpu
));
303 /* If access function fails, it should complain. */
305 kvm_err("Unsupported guest CP15 access at: %08lx\n",
307 print_cp_instr(params
);
309 kvm_inject_undefined(vcpu
);
314 * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
315 * @vcpu: The VCPU pointer
316 * @run: The kvm_run struct
318 int kvm_handle_cp15_64(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
320 struct coproc_params params
;
322 params
.CRm
= (kvm_vcpu_get_hsr(vcpu
) >> 1) & 0xf;
323 params
.Rt1
= (kvm_vcpu_get_hsr(vcpu
) >> 5) & 0xf;
324 params
.is_write
= ((kvm_vcpu_get_hsr(vcpu
) & 1) == 0);
325 params
.is_64bit
= true;
327 params
.Op1
= (kvm_vcpu_get_hsr(vcpu
) >> 16) & 0xf;
329 params
.Rt2
= (kvm_vcpu_get_hsr(vcpu
) >> 10) & 0xf;
332 return emulate_cp15(vcpu
, ¶ms
);
335 static void reset_coproc_regs(struct kvm_vcpu
*vcpu
,
336 const struct coproc_reg
*table
, size_t num
)
340 for (i
= 0; i
< num
; i
++)
342 table
[i
].reset(vcpu
, &table
[i
]);
346 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
347 * @vcpu: The VCPU pointer
348 * @run: The kvm_run struct
350 int kvm_handle_cp15_32(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
352 struct coproc_params params
;
354 params
.CRm
= (kvm_vcpu_get_hsr(vcpu
) >> 1) & 0xf;
355 params
.Rt1
= (kvm_vcpu_get_hsr(vcpu
) >> 5) & 0xf;
356 params
.is_write
= ((kvm_vcpu_get_hsr(vcpu
) & 1) == 0);
357 params
.is_64bit
= false;
359 params
.CRn
= (kvm_vcpu_get_hsr(vcpu
) >> 10) & 0xf;
360 params
.Op1
= (kvm_vcpu_get_hsr(vcpu
) >> 14) & 0x7;
361 params
.Op2
= (kvm_vcpu_get_hsr(vcpu
) >> 17) & 0x7;
364 return emulate_cp15(vcpu
, ¶ms
);
367 /******************************************************************************
369 *****************************************************************************/
371 static bool index_to_params(u64 id
, struct coproc_params
*params
)
373 switch (id
& KVM_REG_SIZE_MASK
) {
374 case KVM_REG_SIZE_U32
:
375 /* Any unused index bits means it's not valid. */
376 if (id
& ~(KVM_REG_ARCH_MASK
| KVM_REG_SIZE_MASK
377 | KVM_REG_ARM_COPROC_MASK
378 | KVM_REG_ARM_32_CRN_MASK
379 | KVM_REG_ARM_CRM_MASK
380 | KVM_REG_ARM_OPC1_MASK
381 | KVM_REG_ARM_32_OPC2_MASK
))
384 params
->is_64bit
= false;
385 params
->CRn
= ((id
& KVM_REG_ARM_32_CRN_MASK
)
386 >> KVM_REG_ARM_32_CRN_SHIFT
);
387 params
->CRm
= ((id
& KVM_REG_ARM_CRM_MASK
)
388 >> KVM_REG_ARM_CRM_SHIFT
);
389 params
->Op1
= ((id
& KVM_REG_ARM_OPC1_MASK
)
390 >> KVM_REG_ARM_OPC1_SHIFT
);
391 params
->Op2
= ((id
& KVM_REG_ARM_32_OPC2_MASK
)
392 >> KVM_REG_ARM_32_OPC2_SHIFT
);
394 case KVM_REG_SIZE_U64
:
395 /* Any unused index bits means it's not valid. */
396 if (id
& ~(KVM_REG_ARCH_MASK
| KVM_REG_SIZE_MASK
397 | KVM_REG_ARM_COPROC_MASK
398 | KVM_REG_ARM_CRM_MASK
399 | KVM_REG_ARM_OPC1_MASK
))
401 params
->is_64bit
= true;
402 params
->CRm
= ((id
& KVM_REG_ARM_CRM_MASK
)
403 >> KVM_REG_ARM_CRM_SHIFT
);
404 params
->Op1
= ((id
& KVM_REG_ARM_OPC1_MASK
)
405 >> KVM_REG_ARM_OPC1_SHIFT
);
414 /* Decode an index value, and find the cp15 coproc_reg entry. */
415 static const struct coproc_reg
*index_to_coproc_reg(struct kvm_vcpu
*vcpu
,
419 const struct coproc_reg
*table
, *r
;
420 struct coproc_params params
;
422 /* We only do cp15 for now. */
423 if ((id
& KVM_REG_ARM_COPROC_MASK
) >> KVM_REG_ARM_COPROC_SHIFT
!= 15)
426 if (!index_to_params(id
, ¶ms
))
429 table
= get_target_table(vcpu
->arch
.target
, &num
);
430 r
= find_reg(¶ms
, table
, num
);
432 r
= find_reg(¶ms
, cp15_regs
, ARRAY_SIZE(cp15_regs
));
434 /* Not saved in the cp15 array? */
442 * These are the invariant cp15 registers: we let the guest see the host
443 * versions of these, so they're part of the guest state.
445 * A future CPU may provide a mechanism to present different values to
446 * the guest, or a future kvm may trap them.
448 /* Unfortunately, there's no register-argument for mrc, so generate. */
449 #define FUNCTION_FOR32(crn, crm, op1, op2, name) \
450 static void get_##name(struct kvm_vcpu *v, \
451 const struct coproc_reg *r) \
455 asm volatile("mrc p15, " __stringify(op1) \
456 ", %0, c" __stringify(crn) \
457 ", c" __stringify(crm) \
458 ", " __stringify(op2) "\n" : "=r" (val)); \
459 ((struct coproc_reg *)r)->val = val; \
462 FUNCTION_FOR32(0, 0, 0, 0, MIDR
)
463 FUNCTION_FOR32(0, 0, 0, 1, CTR
)
464 FUNCTION_FOR32(0, 0, 0, 2, TCMTR
)
465 FUNCTION_FOR32(0, 0, 0, 3, TLBTR
)
466 FUNCTION_FOR32(0, 0, 0, 6, REVIDR
)
467 FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0
)
468 FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1
)
469 FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0
)
470 FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0
)
471 FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0
)
472 FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1
)
473 FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2
)
474 FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3
)
475 FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0
)
476 FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1
)
477 FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2
)
478 FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3
)
479 FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4
)
480 FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5
)
481 FUNCTION_FOR32(0, 0, 1, 1, CLIDR
)
482 FUNCTION_FOR32(0, 0, 1, 7, AIDR
)
484 /* ->val is filled in by kvm_invariant_coproc_table_init() */
485 static struct coproc_reg invariant_cp15
[] = {
486 { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32
, NULL
, get_MIDR
},
487 { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32
, NULL
, get_CTR
},
488 { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32
, NULL
, get_TCMTR
},
489 { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32
, NULL
, get_TLBTR
},
490 { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32
, NULL
, get_REVIDR
},
492 { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32
, NULL
, get_ID_PFR0
},
493 { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32
, NULL
, get_ID_PFR1
},
494 { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32
, NULL
, get_ID_DFR0
},
495 { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32
, NULL
, get_ID_AFR0
},
496 { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32
, NULL
, get_ID_MMFR0
},
497 { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32
, NULL
, get_ID_MMFR1
},
498 { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32
, NULL
, get_ID_MMFR2
},
499 { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32
, NULL
, get_ID_MMFR3
},
501 { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32
, NULL
, get_ID_ISAR0
},
502 { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32
, NULL
, get_ID_ISAR1
},
503 { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32
, NULL
, get_ID_ISAR2
},
504 { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32
, NULL
, get_ID_ISAR3
},
505 { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32
, NULL
, get_ID_ISAR4
},
506 { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32
, NULL
, get_ID_ISAR5
},
508 { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32
, NULL
, get_CLIDR
},
509 { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32
, NULL
, get_AIDR
},
512 static int reg_from_user(void *val
, const void __user
*uaddr
, u64 id
)
514 /* This Just Works because we are little endian. */
515 if (copy_from_user(val
, uaddr
, KVM_REG_SIZE(id
)) != 0)
520 static int reg_to_user(void __user
*uaddr
, const void *val
, u64 id
)
522 /* This Just Works because we are little endian. */
523 if (copy_to_user(uaddr
, val
, KVM_REG_SIZE(id
)) != 0)
528 static int get_invariant_cp15(u64 id
, void __user
*uaddr
)
530 struct coproc_params params
;
531 const struct coproc_reg
*r
;
533 if (!index_to_params(id
, ¶ms
))
536 r
= find_reg(¶ms
, invariant_cp15
, ARRAY_SIZE(invariant_cp15
));
540 return reg_to_user(uaddr
, &r
->val
, id
);
543 static int set_invariant_cp15(u64 id
, void __user
*uaddr
)
545 struct coproc_params params
;
546 const struct coproc_reg
*r
;
548 u64 val
= 0; /* Make sure high bits are 0 for 32-bit regs */
550 if (!index_to_params(id
, ¶ms
))
552 r
= find_reg(¶ms
, invariant_cp15
, ARRAY_SIZE(invariant_cp15
));
556 err
= reg_from_user(&val
, uaddr
, id
);
560 /* This is what we mean by invariant: you can't change it. */
567 static bool is_valid_cache(u32 val
)
571 if (val
>= CSSELR_MAX
)
574 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
576 ctype
= (cache_levels
>> (level
* 3)) & 7;
579 case 0: /* No cache */
581 case 1: /* Instruction cache only */
583 case 2: /* Data cache only */
584 case 4: /* Unified cache */
586 case 3: /* Separate instruction and data caches */
588 default: /* Reserved: we can't know instruction or data. */
593 /* Which cache CCSIDR represents depends on CSSELR value. */
594 static u32
get_ccsidr(u32 csselr
)
598 /* Make sure noone else changes CSSELR during this! */
600 /* Put value into CSSELR */
601 asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr
));
603 /* Read result out of CCSIDR */
604 asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr
));
610 static int demux_c15_get(u64 id
, void __user
*uaddr
)
613 u32 __user
*uval
= uaddr
;
615 /* Fail if we have unknown bits set. */
616 if (id
& ~(KVM_REG_ARCH_MASK
|KVM_REG_SIZE_MASK
|KVM_REG_ARM_COPROC_MASK
617 | ((1 << KVM_REG_ARM_COPROC_SHIFT
)-1)))
620 switch (id
& KVM_REG_ARM_DEMUX_ID_MASK
) {
621 case KVM_REG_ARM_DEMUX_ID_CCSIDR
:
622 if (KVM_REG_SIZE(id
) != 4)
624 val
= (id
& KVM_REG_ARM_DEMUX_VAL_MASK
)
625 >> KVM_REG_ARM_DEMUX_VAL_SHIFT
;
626 if (!is_valid_cache(val
))
629 return put_user(get_ccsidr(val
), uval
);
635 static int demux_c15_set(u64 id
, void __user
*uaddr
)
638 u32 __user
*uval
= uaddr
;
640 /* Fail if we have unknown bits set. */
641 if (id
& ~(KVM_REG_ARCH_MASK
|KVM_REG_SIZE_MASK
|KVM_REG_ARM_COPROC_MASK
642 | ((1 << KVM_REG_ARM_COPROC_SHIFT
)-1)))
645 switch (id
& KVM_REG_ARM_DEMUX_ID_MASK
) {
646 case KVM_REG_ARM_DEMUX_ID_CCSIDR
:
647 if (KVM_REG_SIZE(id
) != 4)
649 val
= (id
& KVM_REG_ARM_DEMUX_VAL_MASK
)
650 >> KVM_REG_ARM_DEMUX_VAL_SHIFT
;
651 if (!is_valid_cache(val
))
654 if (get_user(newval
, uval
))
657 /* This is also invariant: you can't change it. */
658 if (newval
!= get_ccsidr(val
))
667 static const int vfp_sysregs
[] = { KVM_REG_ARM_VFP_FPEXC
,
668 KVM_REG_ARM_VFP_FPSCR
,
669 KVM_REG_ARM_VFP_FPINST
,
670 KVM_REG_ARM_VFP_FPINST2
,
671 KVM_REG_ARM_VFP_MVFR0
,
672 KVM_REG_ARM_VFP_MVFR1
,
673 KVM_REG_ARM_VFP_FPSID
};
675 static unsigned int num_fp_regs(void)
677 if (((fmrx(MVFR0
) & MVFR0_A_SIMD_MASK
) >> MVFR0_A_SIMD_BIT
) == 2)
683 static unsigned int num_vfp_regs(void)
685 /* Normal FP regs + control regs. */
686 return num_fp_regs() + ARRAY_SIZE(vfp_sysregs
);
689 static int copy_vfp_regids(u64 __user
*uindices
)
692 const u64 u32reg
= KVM_REG_ARM
| KVM_REG_SIZE_U32
| KVM_REG_ARM_VFP
;
693 const u64 u64reg
= KVM_REG_ARM
| KVM_REG_SIZE_U64
| KVM_REG_ARM_VFP
;
695 for (i
= 0; i
< num_fp_regs(); i
++) {
696 if (put_user((u64reg
| KVM_REG_ARM_VFP_BASE_REG
) + i
,
702 for (i
= 0; i
< ARRAY_SIZE(vfp_sysregs
); i
++) {
703 if (put_user(u32reg
| vfp_sysregs
[i
], uindices
))
708 return num_vfp_regs();
711 static int vfp_get_reg(const struct kvm_vcpu
*vcpu
, u64 id
, void __user
*uaddr
)
713 u32 vfpid
= (id
& KVM_REG_ARM_VFP_MASK
);
716 /* Fail if we have unknown bits set. */
717 if (id
& ~(KVM_REG_ARCH_MASK
|KVM_REG_SIZE_MASK
|KVM_REG_ARM_COPROC_MASK
718 | ((1 << KVM_REG_ARM_COPROC_SHIFT
)-1)))
721 if (vfpid
< num_fp_regs()) {
722 if (KVM_REG_SIZE(id
) != 8)
724 return reg_to_user(uaddr
, &vcpu
->arch
.vfp_guest
.fpregs
[vfpid
],
728 /* FP control registers are all 32 bit. */
729 if (KVM_REG_SIZE(id
) != 4)
733 case KVM_REG_ARM_VFP_FPEXC
:
734 return reg_to_user(uaddr
, &vcpu
->arch
.vfp_guest
.fpexc
, id
);
735 case KVM_REG_ARM_VFP_FPSCR
:
736 return reg_to_user(uaddr
, &vcpu
->arch
.vfp_guest
.fpscr
, id
);
737 case KVM_REG_ARM_VFP_FPINST
:
738 return reg_to_user(uaddr
, &vcpu
->arch
.vfp_guest
.fpinst
, id
);
739 case KVM_REG_ARM_VFP_FPINST2
:
740 return reg_to_user(uaddr
, &vcpu
->arch
.vfp_guest
.fpinst2
, id
);
741 case KVM_REG_ARM_VFP_MVFR0
:
743 return reg_to_user(uaddr
, &val
, id
);
744 case KVM_REG_ARM_VFP_MVFR1
:
746 return reg_to_user(uaddr
, &val
, id
);
747 case KVM_REG_ARM_VFP_FPSID
:
749 return reg_to_user(uaddr
, &val
, id
);
755 static int vfp_set_reg(struct kvm_vcpu
*vcpu
, u64 id
, const void __user
*uaddr
)
757 u32 vfpid
= (id
& KVM_REG_ARM_VFP_MASK
);
760 /* Fail if we have unknown bits set. */
761 if (id
& ~(KVM_REG_ARCH_MASK
|KVM_REG_SIZE_MASK
|KVM_REG_ARM_COPROC_MASK
762 | ((1 << KVM_REG_ARM_COPROC_SHIFT
)-1)))
765 if (vfpid
< num_fp_regs()) {
766 if (KVM_REG_SIZE(id
) != 8)
768 return reg_from_user(&vcpu
->arch
.vfp_guest
.fpregs
[vfpid
],
772 /* FP control registers are all 32 bit. */
773 if (KVM_REG_SIZE(id
) != 4)
777 case KVM_REG_ARM_VFP_FPEXC
:
778 return reg_from_user(&vcpu
->arch
.vfp_guest
.fpexc
, uaddr
, id
);
779 case KVM_REG_ARM_VFP_FPSCR
:
780 return reg_from_user(&vcpu
->arch
.vfp_guest
.fpscr
, uaddr
, id
);
781 case KVM_REG_ARM_VFP_FPINST
:
782 return reg_from_user(&vcpu
->arch
.vfp_guest
.fpinst
, uaddr
, id
);
783 case KVM_REG_ARM_VFP_FPINST2
:
784 return reg_from_user(&vcpu
->arch
.vfp_guest
.fpinst2
, uaddr
, id
);
785 /* These are invariant. */
786 case KVM_REG_ARM_VFP_MVFR0
:
787 if (reg_from_user(&val
, uaddr
, id
))
789 if (val
!= fmrx(MVFR0
))
792 case KVM_REG_ARM_VFP_MVFR1
:
793 if (reg_from_user(&val
, uaddr
, id
))
795 if (val
!= fmrx(MVFR1
))
798 case KVM_REG_ARM_VFP_FPSID
:
799 if (reg_from_user(&val
, uaddr
, id
))
801 if (val
!= fmrx(FPSID
))
808 #else /* !CONFIG_VFPv3 */
809 static unsigned int num_vfp_regs(void)
814 static int copy_vfp_regids(u64 __user
*uindices
)
819 static int vfp_get_reg(const struct kvm_vcpu
*vcpu
, u64 id
, void __user
*uaddr
)
824 static int vfp_set_reg(struct kvm_vcpu
*vcpu
, u64 id
, const void __user
*uaddr
)
828 #endif /* !CONFIG_VFPv3 */
830 int kvm_arm_coproc_get_reg(struct kvm_vcpu
*vcpu
, const struct kvm_one_reg
*reg
)
832 const struct coproc_reg
*r
;
833 void __user
*uaddr
= (void __user
*)(long)reg
->addr
;
835 if ((reg
->id
& KVM_REG_ARM_COPROC_MASK
) == KVM_REG_ARM_DEMUX
)
836 return demux_c15_get(reg
->id
, uaddr
);
838 if ((reg
->id
& KVM_REG_ARM_COPROC_MASK
) == KVM_REG_ARM_VFP
)
839 return vfp_get_reg(vcpu
, reg
->id
, uaddr
);
841 r
= index_to_coproc_reg(vcpu
, reg
->id
);
843 return get_invariant_cp15(reg
->id
, uaddr
);
845 /* Note: copies two regs if size is 64 bit. */
846 return reg_to_user(uaddr
, &vcpu
->arch
.cp15
[r
->reg
], reg
->id
);
849 int kvm_arm_coproc_set_reg(struct kvm_vcpu
*vcpu
, const struct kvm_one_reg
*reg
)
851 const struct coproc_reg
*r
;
852 void __user
*uaddr
= (void __user
*)(long)reg
->addr
;
854 if ((reg
->id
& KVM_REG_ARM_COPROC_MASK
) == KVM_REG_ARM_DEMUX
)
855 return demux_c15_set(reg
->id
, uaddr
);
857 if ((reg
->id
& KVM_REG_ARM_COPROC_MASK
) == KVM_REG_ARM_VFP
)
858 return vfp_set_reg(vcpu
, reg
->id
, uaddr
);
860 r
= index_to_coproc_reg(vcpu
, reg
->id
);
862 return set_invariant_cp15(reg
->id
, uaddr
);
864 /* Note: copies two regs if size is 64 bit */
865 return reg_from_user(&vcpu
->arch
.cp15
[r
->reg
], uaddr
, reg
->id
);
868 static unsigned int num_demux_regs(void)
870 unsigned int i
, count
= 0;
872 for (i
= 0; i
< CSSELR_MAX
; i
++)
873 if (is_valid_cache(i
))
879 static int write_demux_regids(u64 __user
*uindices
)
881 u64 val
= KVM_REG_ARM
| KVM_REG_SIZE_U32
| KVM_REG_ARM_DEMUX
;
884 val
|= KVM_REG_ARM_DEMUX_ID_CCSIDR
;
885 for (i
= 0; i
< CSSELR_MAX
; i
++) {
886 if (!is_valid_cache(i
))
888 if (put_user(val
| i
, uindices
))
895 static u64
cp15_to_index(const struct coproc_reg
*reg
)
897 u64 val
= KVM_REG_ARM
| (15 << KVM_REG_ARM_COPROC_SHIFT
);
899 val
|= KVM_REG_SIZE_U64
;
900 val
|= (reg
->Op1
<< KVM_REG_ARM_OPC1_SHIFT
);
901 val
|= (reg
->CRm
<< KVM_REG_ARM_CRM_SHIFT
);
903 val
|= KVM_REG_SIZE_U32
;
904 val
|= (reg
->Op1
<< KVM_REG_ARM_OPC1_SHIFT
);
905 val
|= (reg
->Op2
<< KVM_REG_ARM_32_OPC2_SHIFT
);
906 val
|= (reg
->CRm
<< KVM_REG_ARM_CRM_SHIFT
);
907 val
|= (reg
->CRn
<< KVM_REG_ARM_32_CRN_SHIFT
);
912 static bool copy_reg_to_user(const struct coproc_reg
*reg
, u64 __user
**uind
)
917 if (put_user(cp15_to_index(reg
), *uind
))
924 /* Assumed ordered tables, see kvm_coproc_table_init. */
925 static int walk_cp15(struct kvm_vcpu
*vcpu
, u64 __user
*uind
)
927 const struct coproc_reg
*i1
, *i2
, *end1
, *end2
;
928 unsigned int total
= 0;
931 /* We check for duplicates here, to allow arch-specific overrides. */
932 i1
= get_target_table(vcpu
->arch
.target
, &num
);
935 end2
= cp15_regs
+ ARRAY_SIZE(cp15_regs
);
937 BUG_ON(i1
== end1
|| i2
== end2
);
939 /* Walk carefully, as both tables may refer to the same register. */
941 int cmp
= cmp_reg(i1
, i2
);
942 /* target-specific overrides generic entry. */
944 /* Ignore registers we trap but don't save. */
946 if (!copy_reg_to_user(i1
, &uind
))
951 /* Ignore registers we trap but don't save. */
953 if (!copy_reg_to_user(i2
, &uind
))
959 if (cmp
<= 0 && ++i1
== end1
)
961 if (cmp
>= 0 && ++i2
== end2
)
967 unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu
*vcpu
)
969 return ARRAY_SIZE(invariant_cp15
)
972 + walk_cp15(vcpu
, (u64 __user
*)NULL
);
975 int kvm_arm_copy_coproc_indices(struct kvm_vcpu
*vcpu
, u64 __user
*uindices
)
980 /* Then give them all the invariant registers' indices. */
981 for (i
= 0; i
< ARRAY_SIZE(invariant_cp15
); i
++) {
982 if (put_user(cp15_to_index(&invariant_cp15
[i
]), uindices
))
987 err
= walk_cp15(vcpu
, uindices
);
992 err
= copy_vfp_regids(uindices
);
997 return write_demux_regids(uindices
);
1000 void kvm_coproc_table_init(void)
1004 /* Make sure tables are unique and in order. */
1005 for (i
= 1; i
< ARRAY_SIZE(cp15_regs
); i
++)
1006 BUG_ON(cmp_reg(&cp15_regs
[i
-1], &cp15_regs
[i
]) >= 0);
1008 /* We abuse the reset function to overwrite the table itself. */
1009 for (i
= 0; i
< ARRAY_SIZE(invariant_cp15
); i
++)
1010 invariant_cp15
[i
].reset(NULL
, &invariant_cp15
[i
]);
1013 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1015 * If software reads the Cache Type fields from Ctype1
1016 * upwards, once it has seen a value of 0b000, no caches
1017 * exist at further-out levels of the hierarchy. So, for
1018 * example, if Ctype3 is the first Cache Type field with a
1019 * value of 0b000, the values of Ctype4 to Ctype7 must be
1022 asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels
));
1023 for (i
= 0; i
< 7; i
++)
1024 if (((cache_levels
>> (i
*3)) & 7) == 0)
1026 /* Clear all higher bits. */
1027 cache_levels
&= (1 << (i
*3))-1;
1031 * kvm_reset_coprocs - sets cp15 registers to reset value
1032 * @vcpu: The VCPU pointer
1034 * This function finds the right table above and sets the registers on the
1035 * virtual CPU struct to their architecturally defined reset values.
1037 void kvm_reset_coprocs(struct kvm_vcpu
*vcpu
)
1040 const struct coproc_reg
*table
;
1042 /* Catch someone adding a register without putting in reset entry. */
1043 memset(vcpu
->arch
.cp15
, 0x42, sizeof(vcpu
->arch
.cp15
));
1045 /* Generic chip reset first (so target could override). */
1046 reset_coproc_regs(vcpu
, cp15_regs
, ARRAY_SIZE(cp15_regs
));
1048 table
= get_target_table(vcpu
->arch
.target
, &num
);
1049 reset_coproc_regs(vcpu
, table
, num
);
1051 for (num
= 1; num
< NR_CP15_REGS
; num
++)
1052 if (vcpu
->arch
.cp15
[num
] == 0x42424242)
1053 panic("Didn't reset vcpu->arch.cp15[%zi]", num
);