2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
22 #include <trace/events/kvm.h>
23 #include <asm/pgalloc.h>
24 #include <asm/cacheflush.h>
25 #include <asm/kvm_arm.h>
26 #include <asm/kvm_mmu.h>
27 #include <asm/kvm_mmio.h>
28 #include <asm/kvm_asm.h>
29 #include <asm/kvm_emulate.h>
33 extern char __hyp_idmap_text_start
[], __hyp_idmap_text_end
[];
35 static pgd_t
*boot_hyp_pgd
;
36 static pgd_t
*hyp_pgd
;
37 static DEFINE_MUTEX(kvm_hyp_pgd_mutex
);
39 static void *init_bounce_page
;
40 static unsigned long hyp_idmap_start
;
41 static unsigned long hyp_idmap_end
;
42 static phys_addr_t hyp_idmap_vector
;
44 static void kvm_tlb_flush_vmid_ipa(struct kvm
*kvm
, phys_addr_t ipa
)
47 * This function also gets called when dealing with HYP page
48 * tables. As HYP doesn't have an associated struct kvm (and
49 * the HYP page tables are fairly static), we don't do
53 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa
, kvm
, ipa
);
56 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache
*cache
,
61 BUG_ON(max
> KVM_NR_MEM_OBJS
);
62 if (cache
->nobjs
>= min
)
64 while (cache
->nobjs
< max
) {
65 page
= (void *)__get_free_page(PGALLOC_GFP
);
68 cache
->objects
[cache
->nobjs
++] = page
;
73 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache
*mc
)
76 free_page((unsigned long)mc
->objects
[--mc
->nobjs
]);
79 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache
*mc
)
83 BUG_ON(!mc
|| !mc
->nobjs
);
84 p
= mc
->objects
[--mc
->nobjs
];
88 static void clear_pud_entry(struct kvm
*kvm
, pud_t
*pud
, phys_addr_t addr
)
90 pmd_t
*pmd_table
= pmd_offset(pud
, 0);
92 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
93 pmd_free(NULL
, pmd_table
);
94 put_page(virt_to_page(pud
));
97 static void clear_pmd_entry(struct kvm
*kvm
, pmd_t
*pmd
, phys_addr_t addr
)
99 pte_t
*pte_table
= pte_offset_kernel(pmd
, 0);
101 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
102 pte_free_kernel(NULL
, pte_table
);
103 put_page(virt_to_page(pmd
));
106 static bool pmd_empty(pmd_t
*pmd
)
108 struct page
*pmd_page
= virt_to_page(pmd
);
109 return page_count(pmd_page
) == 1;
112 static void clear_pte_entry(struct kvm
*kvm
, pte_t
*pte
, phys_addr_t addr
)
114 if (pte_present(*pte
)) {
115 kvm_set_pte(pte
, __pte(0));
116 put_page(virt_to_page(pte
));
117 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
121 static bool pte_empty(pte_t
*pte
)
123 struct page
*pte_page
= virt_to_page(pte
);
124 return page_count(pte_page
) == 1;
127 static void unmap_range(struct kvm
*kvm
, pgd_t
*pgdp
,
128 unsigned long long start
, u64 size
)
134 unsigned long long addr
= start
, end
= start
+ size
;
138 pgd
= pgdp
+ pgd_index(addr
);
139 pud
= pud_offset(pgd
, addr
);
140 if (pud_none(*pud
)) {
145 pmd
= pmd_offset(pud
, addr
);
146 if (pmd_none(*pmd
)) {
151 pte
= pte_offset_kernel(pmd
, addr
);
152 clear_pte_entry(kvm
, pte
, addr
);
155 /* If we emptied the pte, walk back up the ladder */
156 if (pte_empty(pte
)) {
157 clear_pmd_entry(kvm
, pmd
, addr
);
159 if (pmd_empty(pmd
)) {
160 clear_pud_entry(kvm
, pud
, addr
);
170 * free_boot_hyp_pgd - free HYP boot page tables
172 * Free the HYP boot page tables. The bounce page is also freed.
174 void free_boot_hyp_pgd(void)
176 mutex_lock(&kvm_hyp_pgd_mutex
);
179 unmap_range(NULL
, boot_hyp_pgd
, hyp_idmap_start
, PAGE_SIZE
);
180 unmap_range(NULL
, boot_hyp_pgd
, TRAMPOLINE_VA
, PAGE_SIZE
);
186 unmap_range(NULL
, hyp_pgd
, TRAMPOLINE_VA
, PAGE_SIZE
);
188 kfree(init_bounce_page
);
189 init_bounce_page
= NULL
;
191 mutex_unlock(&kvm_hyp_pgd_mutex
);
195 * free_hyp_pgds - free Hyp-mode page tables
197 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
198 * therefore contains either mappings in the kernel memory area (above
199 * PAGE_OFFSET), or device mappings in the vmalloc range (from
200 * VMALLOC_START to VMALLOC_END).
202 * boot_hyp_pgd should only map two pages for the init code.
204 void free_hyp_pgds(void)
210 mutex_lock(&kvm_hyp_pgd_mutex
);
213 for (addr
= PAGE_OFFSET
; virt_addr_valid(addr
); addr
+= PGDIR_SIZE
)
214 unmap_range(NULL
, hyp_pgd
, KERN_TO_HYP(addr
), PGDIR_SIZE
);
215 for (addr
= VMALLOC_START
; is_vmalloc_addr((void*)addr
); addr
+= PGDIR_SIZE
)
216 unmap_range(NULL
, hyp_pgd
, KERN_TO_HYP(addr
), PGDIR_SIZE
);
222 mutex_unlock(&kvm_hyp_pgd_mutex
);
225 static void create_hyp_pte_mappings(pmd_t
*pmd
, unsigned long start
,
226 unsigned long end
, unsigned long pfn
,
234 pte
= pte_offset_kernel(pmd
, addr
);
235 kvm_set_pte(pte
, pfn_pte(pfn
, prot
));
236 get_page(virt_to_page(pte
));
237 kvm_flush_dcache_to_poc(pte
, sizeof(*pte
));
239 } while (addr
+= PAGE_SIZE
, addr
!= end
);
242 static int create_hyp_pmd_mappings(pud_t
*pud
, unsigned long start
,
243 unsigned long end
, unsigned long pfn
,
248 unsigned long addr
, next
;
252 pmd
= pmd_offset(pud
, addr
);
254 BUG_ON(pmd_sect(*pmd
));
256 if (pmd_none(*pmd
)) {
257 pte
= pte_alloc_one_kernel(NULL
, addr
);
259 kvm_err("Cannot allocate Hyp pte\n");
262 pmd_populate_kernel(NULL
, pmd
, pte
);
263 get_page(virt_to_page(pmd
));
264 kvm_flush_dcache_to_poc(pmd
, sizeof(*pmd
));
267 next
= pmd_addr_end(addr
, end
);
269 create_hyp_pte_mappings(pmd
, addr
, next
, pfn
, prot
);
270 pfn
+= (next
- addr
) >> PAGE_SHIFT
;
271 } while (addr
= next
, addr
!= end
);
276 static int __create_hyp_mappings(pgd_t
*pgdp
,
277 unsigned long start
, unsigned long end
,
278 unsigned long pfn
, pgprot_t prot
)
283 unsigned long addr
, next
;
286 mutex_lock(&kvm_hyp_pgd_mutex
);
287 addr
= start
& PAGE_MASK
;
288 end
= PAGE_ALIGN(end
);
290 pgd
= pgdp
+ pgd_index(addr
);
291 pud
= pud_offset(pgd
, addr
);
293 if (pud_none_or_clear_bad(pud
)) {
294 pmd
= pmd_alloc_one(NULL
, addr
);
296 kvm_err("Cannot allocate Hyp pmd\n");
300 pud_populate(NULL
, pud
, pmd
);
301 get_page(virt_to_page(pud
));
302 kvm_flush_dcache_to_poc(pud
, sizeof(*pud
));
305 next
= pgd_addr_end(addr
, end
);
306 err
= create_hyp_pmd_mappings(pud
, addr
, next
, pfn
, prot
);
309 pfn
+= (next
- addr
) >> PAGE_SHIFT
;
310 } while (addr
= next
, addr
!= end
);
312 mutex_unlock(&kvm_hyp_pgd_mutex
);
317 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
318 * @from: The virtual kernel start address of the range
319 * @to: The virtual kernel end address of the range (exclusive)
321 * The same virtual address as the kernel virtual address is also used
322 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
325 int create_hyp_mappings(void *from
, void *to
)
327 unsigned long phys_addr
= virt_to_phys(from
);
328 unsigned long start
= KERN_TO_HYP((unsigned long)from
);
329 unsigned long end
= KERN_TO_HYP((unsigned long)to
);
331 /* Check for a valid kernel memory mapping */
332 if (!virt_addr_valid(from
) || !virt_addr_valid(to
- 1))
335 return __create_hyp_mappings(hyp_pgd
, start
, end
,
336 __phys_to_pfn(phys_addr
), PAGE_HYP
);
340 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
341 * @from: The kernel start VA of the range
342 * @to: The kernel end VA of the range (exclusive)
343 * @phys_addr: The physical start address which gets mapped
345 * The resulting HYP VA is the same as the kernel VA, modulo
348 int create_hyp_io_mappings(void *from
, void *to
, phys_addr_t phys_addr
)
350 unsigned long start
= KERN_TO_HYP((unsigned long)from
);
351 unsigned long end
= KERN_TO_HYP((unsigned long)to
);
353 /* Check for a valid kernel IO mapping */
354 if (!is_vmalloc_addr(from
) || !is_vmalloc_addr(to
- 1))
357 return __create_hyp_mappings(hyp_pgd
, start
, end
,
358 __phys_to_pfn(phys_addr
), PAGE_HYP_DEVICE
);
362 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
363 * @kvm: The KVM struct pointer for the VM.
365 * Allocates the 1st level table only of size defined by S2_PGD_ORDER (can
366 * support either full 40-bit input addresses or limited to 32-bit input
367 * addresses). Clears the allocated pages.
369 * Note we don't need locking here as this is only called when the VM is
370 * created, which can only be done once.
372 int kvm_alloc_stage2_pgd(struct kvm
*kvm
)
376 if (kvm
->arch
.pgd
!= NULL
) {
377 kvm_err("kvm_arch already initialized?\n");
381 pgd
= (pgd_t
*)__get_free_pages(GFP_KERNEL
, S2_PGD_ORDER
);
385 memset(pgd
, 0, PTRS_PER_S2_PGD
* sizeof(pgd_t
));
393 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
394 * @kvm: The VM pointer
395 * @start: The intermediate physical base address of the range to unmap
396 * @size: The size of the area to unmap
398 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
399 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
400 * destroying the VM), otherwise another faulting VCPU may come in and mess
401 * with things behind our backs.
403 static void unmap_stage2_range(struct kvm
*kvm
, phys_addr_t start
, u64 size
)
405 unmap_range(kvm
, kvm
->arch
.pgd
, start
, size
);
409 * kvm_free_stage2_pgd - free all stage-2 tables
410 * @kvm: The KVM struct pointer for the VM.
412 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
413 * underlying level-2 and level-3 tables before freeing the actual level-1 table
414 * and setting the struct pointer to NULL.
416 * Note we don't need locking here as this is only called when the VM is
417 * destroyed, which can only be done once.
419 void kvm_free_stage2_pgd(struct kvm
*kvm
)
421 if (kvm
->arch
.pgd
== NULL
)
424 unmap_stage2_range(kvm
, 0, KVM_PHYS_SIZE
);
425 free_pages((unsigned long)kvm
->arch
.pgd
, S2_PGD_ORDER
);
426 kvm
->arch
.pgd
= NULL
;
430 static int stage2_set_pte(struct kvm
*kvm
, struct kvm_mmu_memory_cache
*cache
,
431 phys_addr_t addr
, const pte_t
*new_pte
, bool iomap
)
438 /* Create 2nd stage page table mapping - Level 1 */
439 pgd
= kvm
->arch
.pgd
+ pgd_index(addr
);
440 pud
= pud_offset(pgd
, addr
);
441 if (pud_none(*pud
)) {
443 return 0; /* ignore calls from kvm_set_spte_hva */
444 pmd
= mmu_memory_cache_alloc(cache
);
445 pud_populate(NULL
, pud
, pmd
);
446 get_page(virt_to_page(pud
));
449 pmd
= pmd_offset(pud
, addr
);
451 /* Create 2nd stage page table mapping - Level 2 */
452 if (pmd_none(*pmd
)) {
454 return 0; /* ignore calls from kvm_set_spte_hva */
455 pte
= mmu_memory_cache_alloc(cache
);
457 pmd_populate_kernel(NULL
, pmd
, pte
);
458 get_page(virt_to_page(pmd
));
461 pte
= pte_offset_kernel(pmd
, addr
);
463 if (iomap
&& pte_present(*pte
))
466 /* Create 2nd stage page table mapping - Level 3 */
468 kvm_set_pte(pte
, *new_pte
);
469 if (pte_present(old_pte
))
470 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
472 get_page(virt_to_page(pte
));
478 * kvm_phys_addr_ioremap - map a device range to guest IPA
480 * @kvm: The KVM pointer
481 * @guest_ipa: The IPA at which to insert the mapping
482 * @pa: The physical address of the device
483 * @size: The size of the mapping
485 int kvm_phys_addr_ioremap(struct kvm
*kvm
, phys_addr_t guest_ipa
,
486 phys_addr_t pa
, unsigned long size
)
488 phys_addr_t addr
, end
;
491 struct kvm_mmu_memory_cache cache
= { 0, };
493 end
= (guest_ipa
+ size
+ PAGE_SIZE
- 1) & PAGE_MASK
;
494 pfn
= __phys_to_pfn(pa
);
496 for (addr
= guest_ipa
; addr
< end
; addr
+= PAGE_SIZE
) {
497 pte_t pte
= pfn_pte(pfn
, PAGE_S2_DEVICE
);
498 kvm_set_s2pte_writable(&pte
);
500 ret
= mmu_topup_memory_cache(&cache
, 2, 2);
503 spin_lock(&kvm
->mmu_lock
);
504 ret
= stage2_set_pte(kvm
, &cache
, addr
, &pte
, true);
505 spin_unlock(&kvm
->mmu_lock
);
513 mmu_free_memory_cache(&cache
);
517 static int user_mem_abort(struct kvm_vcpu
*vcpu
, phys_addr_t fault_ipa
,
518 gfn_t gfn
, struct kvm_memory_slot
*memslot
,
519 unsigned long fault_status
)
524 bool write_fault
, writable
;
525 unsigned long mmu_seq
;
526 struct kvm_mmu_memory_cache
*memcache
= &vcpu
->arch
.mmu_page_cache
;
528 write_fault
= kvm_is_write_fault(kvm_vcpu_get_hsr(vcpu
));
529 if (fault_status
== FSC_PERM
&& !write_fault
) {
530 kvm_err("Unexpected L2 read permission error\n");
534 /* We need minimum second+third level pages */
535 ret
= mmu_topup_memory_cache(memcache
, 2, KVM_NR_MEM_OBJS
);
539 mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
541 * Ensure the read of mmu_notifier_seq happens before we call
542 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
543 * the page we just got a reference to gets unmapped before we have a
544 * chance to grab the mmu_lock, which ensure that if the page gets
545 * unmapped afterwards, the call to kvm_unmap_hva will take it away
546 * from us again properly. This smp_rmb() interacts with the smp_wmb()
547 * in kvm_mmu_notifier_invalidate_<page|range_end>.
551 pfn
= gfn_to_pfn_prot(vcpu
->kvm
, gfn
, write_fault
, &writable
);
552 if (is_error_pfn(pfn
))
555 new_pte
= pfn_pte(pfn
, PAGE_S2
);
556 coherent_icache_guest_page(vcpu
->kvm
, gfn
);
558 spin_lock(&vcpu
->kvm
->mmu_lock
);
559 if (mmu_notifier_retry(vcpu
->kvm
, mmu_seq
))
562 kvm_set_s2pte_writable(&new_pte
);
563 kvm_set_pfn_dirty(pfn
);
565 stage2_set_pte(vcpu
->kvm
, memcache
, fault_ipa
, &new_pte
, false);
568 spin_unlock(&vcpu
->kvm
->mmu_lock
);
569 kvm_release_pfn_clean(pfn
);
574 * kvm_handle_guest_abort - handles all 2nd stage aborts
575 * @vcpu: the VCPU pointer
576 * @run: the kvm_run structure
578 * Any abort that gets to the host is almost guaranteed to be caused by a
579 * missing second stage translation table entry, which can mean that either the
580 * guest simply needs more memory and we must allocate an appropriate page or it
581 * can mean that the guest tried to access I/O memory, which is emulated by user
582 * space. The distinction is based on the IPA causing the fault and whether this
583 * memory region has been registered as standard RAM by user space.
585 int kvm_handle_guest_abort(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
587 unsigned long fault_status
;
588 phys_addr_t fault_ipa
;
589 struct kvm_memory_slot
*memslot
;
594 is_iabt
= kvm_vcpu_trap_is_iabt(vcpu
);
595 fault_ipa
= kvm_vcpu_get_fault_ipa(vcpu
);
597 trace_kvm_guest_fault(*vcpu_pc(vcpu
), kvm_vcpu_get_hsr(vcpu
),
598 kvm_vcpu_get_hfar(vcpu
), fault_ipa
);
600 /* Check the stage-2 fault is trans. fault or write fault */
601 fault_status
= kvm_vcpu_trap_get_fault(vcpu
);
602 if (fault_status
!= FSC_FAULT
&& fault_status
!= FSC_PERM
) {
603 kvm_err("Unsupported fault status: EC=%#x DFCS=%#lx\n",
604 kvm_vcpu_trap_get_class(vcpu
), fault_status
);
608 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
610 gfn
= fault_ipa
>> PAGE_SHIFT
;
611 if (!kvm_is_visible_gfn(vcpu
->kvm
, gfn
)) {
613 /* Prefetch Abort on I/O address */
614 kvm_inject_pabt(vcpu
, kvm_vcpu_get_hfar(vcpu
));
619 if (fault_status
!= FSC_FAULT
) {
620 kvm_err("Unsupported fault status on io memory: %#lx\n",
627 * The IPA is reported as [MAX:12], so we need to
628 * complement it with the bottom 12 bits from the
629 * faulting VA. This is always 12 bits, irrespective
632 fault_ipa
|= kvm_vcpu_get_hfar(vcpu
) & ((1 << 12) - 1);
633 ret
= io_mem_abort(vcpu
, run
, fault_ipa
);
637 memslot
= gfn_to_memslot(vcpu
->kvm
, gfn
);
639 ret
= user_mem_abort(vcpu
, fault_ipa
, gfn
, memslot
, fault_status
);
643 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
647 static void handle_hva_to_gpa(struct kvm
*kvm
,
650 void (*handler
)(struct kvm
*kvm
,
651 gpa_t gpa
, void *data
),
654 struct kvm_memslots
*slots
;
655 struct kvm_memory_slot
*memslot
;
657 slots
= kvm_memslots(kvm
);
659 /* we only care about the pages that the guest sees */
660 kvm_for_each_memslot(memslot
, slots
) {
661 unsigned long hva_start
, hva_end
;
664 hva_start
= max(start
, memslot
->userspace_addr
);
665 hva_end
= min(end
, memslot
->userspace_addr
+
666 (memslot
->npages
<< PAGE_SHIFT
));
667 if (hva_start
>= hva_end
)
671 * {gfn(page) | page intersects with [hva_start, hva_end)} =
672 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
674 gfn
= hva_to_gfn_memslot(hva_start
, memslot
);
675 gfn_end
= hva_to_gfn_memslot(hva_end
+ PAGE_SIZE
- 1, memslot
);
677 for (; gfn
< gfn_end
; ++gfn
) {
678 gpa_t gpa
= gfn
<< PAGE_SHIFT
;
679 handler(kvm
, gpa
, data
);
684 static void kvm_unmap_hva_handler(struct kvm
*kvm
, gpa_t gpa
, void *data
)
686 unmap_stage2_range(kvm
, gpa
, PAGE_SIZE
);
689 int kvm_unmap_hva(struct kvm
*kvm
, unsigned long hva
)
691 unsigned long end
= hva
+ PAGE_SIZE
;
696 trace_kvm_unmap_hva(hva
);
697 handle_hva_to_gpa(kvm
, hva
, end
, &kvm_unmap_hva_handler
, NULL
);
701 int kvm_unmap_hva_range(struct kvm
*kvm
,
702 unsigned long start
, unsigned long end
)
707 trace_kvm_unmap_hva_range(start
, end
);
708 handle_hva_to_gpa(kvm
, start
, end
, &kvm_unmap_hva_handler
, NULL
);
712 static void kvm_set_spte_handler(struct kvm
*kvm
, gpa_t gpa
, void *data
)
714 pte_t
*pte
= (pte_t
*)data
;
716 stage2_set_pte(kvm
, NULL
, gpa
, pte
, false);
720 void kvm_set_spte_hva(struct kvm
*kvm
, unsigned long hva
, pte_t pte
)
722 unsigned long end
= hva
+ PAGE_SIZE
;
728 trace_kvm_set_spte_hva(hva
);
729 stage2_pte
= pfn_pte(pte_pfn(pte
), PAGE_S2
);
730 handle_hva_to_gpa(kvm
, hva
, end
, &kvm_set_spte_handler
, &stage2_pte
);
733 void kvm_mmu_free_memory_caches(struct kvm_vcpu
*vcpu
)
735 mmu_free_memory_cache(&vcpu
->arch
.mmu_page_cache
);
738 phys_addr_t
kvm_mmu_get_httbr(void)
740 return virt_to_phys(hyp_pgd
);
743 phys_addr_t
kvm_mmu_get_boot_httbr(void)
745 return virt_to_phys(boot_hyp_pgd
);
748 phys_addr_t
kvm_get_idmap_vector(void)
750 return hyp_idmap_vector
;
753 int kvm_mmu_init(void)
757 hyp_idmap_start
= virt_to_phys(__hyp_idmap_text_start
);
758 hyp_idmap_end
= virt_to_phys(__hyp_idmap_text_end
);
759 hyp_idmap_vector
= virt_to_phys(__kvm_hyp_init
);
761 if ((hyp_idmap_start
^ hyp_idmap_end
) & PAGE_MASK
) {
763 * Our init code is crossing a page boundary. Allocate
764 * a bounce page, copy the code over and use that.
766 size_t len
= __hyp_idmap_text_end
- __hyp_idmap_text_start
;
767 phys_addr_t phys_base
;
769 init_bounce_page
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
770 if (!init_bounce_page
) {
771 kvm_err("Couldn't allocate HYP init bounce page\n");
776 memcpy(init_bounce_page
, __hyp_idmap_text_start
, len
);
778 * Warning: the code we just copied to the bounce page
779 * must be flushed to the point of coherency.
780 * Otherwise, the data may be sitting in L2, and HYP
781 * mode won't be able to observe it as it runs with
782 * caches off at that point.
784 kvm_flush_dcache_to_poc(init_bounce_page
, len
);
786 phys_base
= virt_to_phys(init_bounce_page
);
787 hyp_idmap_vector
+= phys_base
- hyp_idmap_start
;
788 hyp_idmap_start
= phys_base
;
789 hyp_idmap_end
= phys_base
+ len
;
791 kvm_info("Using HYP init bounce page @%lx\n",
792 (unsigned long)phys_base
);
795 hyp_pgd
= kzalloc(PTRS_PER_PGD
* sizeof(pgd_t
), GFP_KERNEL
);
796 boot_hyp_pgd
= kzalloc(PTRS_PER_PGD
* sizeof(pgd_t
), GFP_KERNEL
);
797 if (!hyp_pgd
|| !boot_hyp_pgd
) {
798 kvm_err("Hyp mode PGD not allocated\n");
803 /* Create the idmap in the boot page tables */
804 err
= __create_hyp_mappings(boot_hyp_pgd
,
805 hyp_idmap_start
, hyp_idmap_end
,
806 __phys_to_pfn(hyp_idmap_start
),
810 kvm_err("Failed to idmap %lx-%lx\n",
811 hyp_idmap_start
, hyp_idmap_end
);
815 /* Map the very same page at the trampoline VA */
816 err
= __create_hyp_mappings(boot_hyp_pgd
,
817 TRAMPOLINE_VA
, TRAMPOLINE_VA
+ PAGE_SIZE
,
818 __phys_to_pfn(hyp_idmap_start
),
821 kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
826 /* Map the same page again into the runtime page tables */
827 err
= __create_hyp_mappings(hyp_pgd
,
828 TRAMPOLINE_VA
, TRAMPOLINE_VA
+ PAGE_SIZE
,
829 __phys_to_pfn(hyp_idmap_start
),
832 kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",