Linux 3.11-rc3
[cris-mirror.git] / arch / mips / powertv / powertv_setup.c
blob24689bff1039fe522e50e6d70c0eb0ab725e7849
1 /*
2 * Carsten Langgaard, carstenl@mips.com
3 * Copyright (C) 2000 MIPS Technologies, Inc. All rights reserved.
4 * Portions copyright (C) 2009 Cisco Systems, Inc.
6 * This program is free software; you can distribute it and/or modify it
7 * under the terms of the GNU General Public License (Version 2) as
8 * published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * for more details.
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
19 #include <linux/init.h>
20 #include <linux/sched.h>
21 #include <linux/ioport.h>
22 #include <linux/pci.h>
23 #include <linux/screen_info.h>
24 #include <linux/notifier.h>
25 #include <linux/etherdevice.h>
26 #include <linux/if_ether.h>
27 #include <linux/ctype.h>
28 #include <linux/cpu.h>
29 #include <linux/time.h>
31 #include <asm/bootinfo.h>
32 #include <asm/irq.h>
33 #include <asm/mips-boards/generic.h>
34 #include <asm/dma.h>
35 #include <asm/asm.h>
36 #include <asm/traps.h>
37 #include <asm/asm-offsets.h>
38 #include "reset.h"
40 #define VAL(n) STR(n)
43 * Macros for loading addresses and storing registers:
44 * LONG_L_ Stringified version of LONG_L for use in asm() statement
45 * LONG_S_ Stringified version of LONG_S for use in asm() statement
46 * PTR_LA_ Stringified version of PTR_LA for use in asm() statement
47 * REG_SIZE Number of 8-bit bytes in a full width register
49 #define LONG_L_ VAL(LONG_L) " "
50 #define LONG_S_ VAL(LONG_S) " "
51 #define PTR_LA_ VAL(PTR_LA) " "
53 #ifdef CONFIG_64BIT
54 #warning TODO: 64-bit code needs to be verified
55 #define REG_SIZE "8" /* In bytes */
56 #endif
58 #ifdef CONFIG_32BIT
59 #define REG_SIZE "4" /* In bytes */
60 #endif
62 static void register_panic_notifier(void);
63 static int panic_handler(struct notifier_block *notifier_block,
64 unsigned long event, void *cause_string);
66 const char *get_system_type(void)
68 return "PowerTV";
71 void __init plat_mem_setup(void)
73 panic_on_oops = 1;
74 register_panic_notifier();
76 #if 0
77 mips_pcibios_init();
78 #endif
79 mips_reboot_setup();
83 * Install a panic notifier for platform-specific diagnostics
85 static void register_panic_notifier()
87 static struct notifier_block panic_notifier = {
88 .notifier_call = panic_handler,
89 .next = NULL,
90 .priority = INT_MAX
92 atomic_notifier_chain_register(&panic_notifier_list, &panic_notifier);
95 static int panic_handler(struct notifier_block *notifier_block,
96 unsigned long event, void *cause_string)
98 struct pt_regs my_regs;
100 /* Save all of the registers */
102 unsigned long at, v0, v1; /* Must be on the stack */
104 /* Start by saving $at and v0 on the stack. We use $at
105 * ourselves, but it looks like the compiler may use v0 or v1
106 * to load the address of the pt_regs structure. We'll come
107 * back later to store the registers in the pt_regs
108 * structure. */
109 __asm__ __volatile__ (
110 ".set noat\n"
111 LONG_S_ "$at, %[at]\n"
112 LONG_S_ "$2, %[v0]\n"
113 LONG_S_ "$3, %[v1]\n"
115 [at] "=m" (at),
116 [v0] "=m" (v0),
117 [v1] "=m" (v1)
119 : "at"
122 __asm__ __volatile__ (
123 ".set noat\n"
124 "move $at, %[pt_regs]\n"
126 /* Argument registers */
127 LONG_S_ "$4, " VAL(PT_R4) "($at)\n"
128 LONG_S_ "$5, " VAL(PT_R5) "($at)\n"
129 LONG_S_ "$6, " VAL(PT_R6) "($at)\n"
130 LONG_S_ "$7, " VAL(PT_R7) "($at)\n"
132 /* Temporary regs */
133 LONG_S_ "$8, " VAL(PT_R8) "($at)\n"
134 LONG_S_ "$9, " VAL(PT_R9) "($at)\n"
135 LONG_S_ "$10, " VAL(PT_R10) "($at)\n"
136 LONG_S_ "$11, " VAL(PT_R11) "($at)\n"
137 LONG_S_ "$12, " VAL(PT_R12) "($at)\n"
138 LONG_S_ "$13, " VAL(PT_R13) "($at)\n"
139 LONG_S_ "$14, " VAL(PT_R14) "($at)\n"
140 LONG_S_ "$15, " VAL(PT_R15) "($at)\n"
142 /* "Saved" registers */
143 LONG_S_ "$16, " VAL(PT_R16) "($at)\n"
144 LONG_S_ "$17, " VAL(PT_R17) "($at)\n"
145 LONG_S_ "$18, " VAL(PT_R18) "($at)\n"
146 LONG_S_ "$19, " VAL(PT_R19) "($at)\n"
147 LONG_S_ "$20, " VAL(PT_R20) "($at)\n"
148 LONG_S_ "$21, " VAL(PT_R21) "($at)\n"
149 LONG_S_ "$22, " VAL(PT_R22) "($at)\n"
150 LONG_S_ "$23, " VAL(PT_R23) "($at)\n"
152 /* Add'l temp regs */
153 LONG_S_ "$24, " VAL(PT_R24) "($at)\n"
154 LONG_S_ "$25, " VAL(PT_R25) "($at)\n"
156 /* Kernel temp regs */
157 LONG_S_ "$26, " VAL(PT_R26) "($at)\n"
158 LONG_S_ "$27, " VAL(PT_R27) "($at)\n"
160 /* Global pointer, stack pointer, frame pointer and
161 * return address */
162 LONG_S_ "$gp, " VAL(PT_R28) "($at)\n"
163 LONG_S_ "$sp, " VAL(PT_R29) "($at)\n"
164 LONG_S_ "$fp, " VAL(PT_R30) "($at)\n"
165 LONG_S_ "$ra, " VAL(PT_R31) "($at)\n"
167 /* Now we can get the $at and v0 registers back and
168 * store them */
169 LONG_L_ "$8, %[at]\n"
170 LONG_S_ "$8, " VAL(PT_R1) "($at)\n"
171 LONG_L_ "$8, %[v0]\n"
172 LONG_S_ "$8, " VAL(PT_R2) "($at)\n"
173 LONG_L_ "$8, %[v1]\n"
174 LONG_S_ "$8, " VAL(PT_R3) "($at)\n"
177 [at] "m" (at),
178 [v0] "m" (v0),
179 [v1] "m" (v1),
180 [pt_regs] "r" (&my_regs)
181 : "at", "t0"
184 /* Set the current EPC value to be the current location in this
185 * function */
186 __asm__ __volatile__ (
187 ".set noat\n"
188 "1:\n"
189 PTR_LA_ "$at, 1b\n"
190 LONG_S_ "$at, %[cp0_epc]\n"
192 [cp0_epc] "=m" (my_regs.cp0_epc)
194 : "at"
197 my_regs.cp0_cause = read_c0_cause();
198 my_regs.cp0_status = read_c0_status();
201 pr_crit("I'm feeling a bit sleepy. hmmmmm... perhaps a nap would... "
202 "zzzz... \n");
204 return NOTIFY_DONE;
207 /* Information about the RF MAC address, if one was supplied on the
208 * command line. */
209 static bool have_rfmac;
210 static u8 rfmac[ETH_ALEN];
212 static int rfmac_param(char *p)
214 u8 *q;
215 bool is_high_nibble;
216 int c;
218 /* Skip a leading "0x", if present */
219 if (*p == '0' && *(p+1) == 'x')
220 p += 2;
222 q = rfmac;
223 is_high_nibble = true;
225 for (c = (unsigned char) *p++;
226 isxdigit(c) && q - rfmac < ETH_ALEN;
227 c = (unsigned char) *p++) {
228 int nibble;
230 nibble = (isdigit(c) ? (c - '0') :
231 (isupper(c) ? c - 'A' + 10 : c - 'a' + 10));
233 if (is_high_nibble)
234 *q = nibble << 4;
235 else
236 *q++ |= nibble;
238 is_high_nibble = !is_high_nibble;
241 /* If we parsed all the way to the end of the parameter value and
242 * parsed all ETH_ALEN bytes, we have a usable RF MAC address */
243 have_rfmac = (c == '\0' && q - rfmac == ETH_ALEN);
245 return 0;
248 early_param("rfmac", rfmac_param);
251 * Generate an Ethernet MAC address that has a good chance of being unique.
252 * @addr: Pointer to six-byte array containing the Ethernet address
253 * Generates an Ethernet MAC address that is highly likely to be unique for
254 * this particular system on a network with other systems of the same type.
256 * The problem we are solving is that, when eth_random_addr() is used to
257 * generate MAC addresses at startup, there isn't much entropy for the random
258 * number generator to use and the addresses it produces are fairly likely to
259 * be the same as those of other identical systems on the same local network.
260 * This is true even for relatively small numbers of systems (for the reason
261 * why, see the Wikipedia entry for "Birthday problem" at:
262 * http://en.wikipedia.org/wiki/Birthday_problem
264 * The good news is that we already have a MAC address known to be unique, the
265 * RF MAC address. The bad news is that this address is already in use on the
266 * RF interface. Worse, the obvious trick, taking the RF MAC address and
267 * turning on the locally managed bit, has already been used for other devices.
268 * Still, this does give us something to work with.
270 * The approach we take is:
271 * 1. If we can't get the RF MAC Address, just call eth_random_addr.
272 * 2. Use the 24-bit NIC-specific bits of the RF MAC address as the last 24
273 * bits of the new address. This is very likely to be unique, except for
274 * the current box.
275 * 3. To avoid using addresses already on the current box, we set the top
276 * six bits of the address with a value different from any currently
277 * registered Scientific Atlanta organizationally unique identifyer
278 * (OUI). This avoids duplication with any addresses on the system that
279 * were generated from valid Scientific Atlanta-registered address by
280 * simply flipping the locally managed bit.
281 * 4. We aren't generating a multicast address, so we leave the multicast
282 * bit off. Since we aren't using a registered address, we have to set
283 * the locally managed bit.
284 * 5. We then randomly generate the remaining 16-bits. This does two
285 * things:
286 * a. It allows us to call this function for more than one device
287 * in this system
288 * b. It ensures that things will probably still work even if
289 * some device on the device network has a locally managed
290 * address that matches the top six bits from step 2.
292 void platform_random_ether_addr(u8 addr[ETH_ALEN])
294 const int num_random_bytes = 2;
295 const unsigned char non_sciatl_oui_bits = 0xc0u;
296 const unsigned char mac_addr_locally_managed = (1 << 1);
298 if (!have_rfmac) {
299 pr_warning("rfmac not available on command line; "
300 "generating random MAC address\n");
301 eth_random_addr(addr);
304 else {
305 int i;
307 /* Set the first byte to something that won't match a Scientific
308 * Atlanta OUI, is locally managed, and isn't a multicast
309 * address */
310 addr[0] = non_sciatl_oui_bits | mac_addr_locally_managed;
312 /* Get some bytes of random address information */
313 get_random_bytes(&addr[1], num_random_bytes);
315 /* Copy over the NIC-specific bits of the RF MAC address */
316 for (i = 1 + num_random_bytes; i < ETH_ALEN; i++)
317 addr[i] = rfmac[i];