2 * ioport.c: Simple io mapping allocator.
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx)
7 * 1996: sparc_free_io, 1999: ioremap()/iounmap() by Pete Zaitcev.
10 * <rth> zait: as long as pci_alloc_consistent produces something addressable,
12 * <zaitcev> rth: no, it is relevant, because get_free_pages returns you a
13 * pointer into the big page mapping
14 * <rth> zait: so what?
15 * <rth> zait: remap_it_my_way(virt_to_phys(get_free_page()))
17 * <zaitcev> Suppose I did this remap_it_my_way(virt_to_phys(get_free_page())).
19 * <zaitcev> Now, driver calls pci_free_consistent(with result of
21 * <zaitcev> How do you find the address to pass to free_pages()?
22 * <rth> zait: walk the page tables? It's only two or three level after all.
23 * <rth> zait: you have to walk them anyway to remove the mapping.
25 * <zaitcev> Sounds reasonable
28 #include <linux/module.h>
29 #include <linux/sched.h>
30 #include <linux/kernel.h>
31 #include <linux/errno.h>
32 #include <linux/types.h>
33 #include <linux/ioport.h>
35 #include <linux/slab.h>
36 #include <linux/pci.h> /* struct pci_dev */
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/scatterlist.h>
40 #include <linux/of_device.h>
43 #include <asm/vaddrs.h>
44 #include <asm/oplib.h>
47 #include <asm/pgalloc.h>
49 #include <asm/iommu.h>
50 #include <asm/io-unit.h>
53 const struct sparc32_dma_ops
*sparc32_dma_ops
;
55 /* This function must make sure that caches and memory are coherent after DMA
56 * On LEON systems without cache snooping it flushes the entire D-CACHE.
58 static inline void dma_make_coherent(unsigned long pa
, unsigned long len
)
60 if (sparc_cpu_model
== sparc_leon
) {
61 if (!sparc_leon3_snooping_enabled())
62 leon_flush_dcache_all();
66 static void __iomem
*_sparc_ioremap(struct resource
*res
, u32 bus
, u32 pa
, int sz
);
67 static void __iomem
*_sparc_alloc_io(unsigned int busno
, unsigned long phys
,
68 unsigned long size
, char *name
);
69 static void _sparc_free_io(struct resource
*res
);
71 static void register_proc_sparc_ioport(void);
73 /* This points to the next to use virtual memory for DVMA mappings */
74 static struct resource _sparc_dvma
= {
75 .name
= "sparc_dvma", .start
= DVMA_VADDR
, .end
= DVMA_END
- 1
77 /* This points to the start of I/O mappings, cluable from outside. */
78 /*ext*/ struct resource sparc_iomap
= {
79 .name
= "sparc_iomap", .start
= IOBASE_VADDR
, .end
= IOBASE_END
- 1
83 * Our mini-allocator...
84 * Boy this is gross! We need it because we must map I/O for
85 * timers and interrupt controller before the kmalloc is available.
89 #define XNRES 10 /* SS-10 uses 8 */
92 struct resource xres
; /* Must be first */
93 int xflag
; /* 1 == used */
97 static struct xresource xresv
[XNRES
];
99 static struct xresource
*xres_alloc(void) {
100 struct xresource
*xrp
;
104 for (n
= 0; n
< XNRES
; n
++) {
105 if (xrp
->xflag
== 0) {
114 static void xres_free(struct xresource
*xrp
) {
119 * These are typically used in PCI drivers
120 * which are trying to be cross-platform.
122 * Bus type is always zero on IIep.
124 void __iomem
*ioremap(unsigned long offset
, unsigned long size
)
128 sprintf(name
, "phys_%08x", (u32
)offset
);
129 return _sparc_alloc_io(0, offset
, size
, name
);
131 EXPORT_SYMBOL(ioremap
);
134 * Comlimentary to ioremap().
136 void iounmap(volatile void __iomem
*virtual)
138 unsigned long vaddr
= (unsigned long) virtual & PAGE_MASK
;
139 struct resource
*res
;
142 * XXX Too slow. Can have 8192 DVMA pages on sun4m in the worst case.
143 * This probably warrants some sort of hashing.
145 if ((res
= lookup_resource(&sparc_iomap
, vaddr
)) == NULL
) {
146 printk("free_io/iounmap: cannot free %lx\n", vaddr
);
151 if ((char *)res
>= (char*)xresv
&& (char *)res
< (char *)&xresv
[XNRES
]) {
152 xres_free((struct xresource
*)res
);
157 EXPORT_SYMBOL(iounmap
);
159 void __iomem
*of_ioremap(struct resource
*res
, unsigned long offset
,
160 unsigned long size
, char *name
)
162 return _sparc_alloc_io(res
->flags
& 0xF,
166 EXPORT_SYMBOL(of_ioremap
);
168 void of_iounmap(struct resource
*res
, void __iomem
*base
, unsigned long size
)
172 EXPORT_SYMBOL(of_iounmap
);
177 static void __iomem
*_sparc_alloc_io(unsigned int busno
, unsigned long phys
,
178 unsigned long size
, char *name
)
180 static int printed_full
;
181 struct xresource
*xres
;
182 struct resource
*res
;
185 void __iomem
*va
; /* P3 diag */
187 if (name
== NULL
) name
= "???";
189 if ((xres
= xres_alloc()) != 0) {
194 printk("ioremap: done with statics, switching to malloc\n");
198 tack
= kmalloc(sizeof (struct resource
) + tlen
+ 1, GFP_KERNEL
);
199 if (tack
== NULL
) return NULL
;
200 memset(tack
, 0, sizeof(struct resource
));
201 res
= (struct resource
*) tack
;
202 tack
+= sizeof (struct resource
);
205 strlcpy(tack
, name
, XNMLN
+1);
208 va
= _sparc_ioremap(res
, busno
, phys
, size
);
209 /* printk("ioremap(0x%x:%08lx[0x%lx])=%p\n", busno, phys, size, va); */ /* P3 diag */
215 static void __iomem
*
216 _sparc_ioremap(struct resource
*res
, u32 bus
, u32 pa
, int sz
)
218 unsigned long offset
= ((unsigned long) pa
) & (~PAGE_MASK
);
220 if (allocate_resource(&sparc_iomap
, res
,
221 (offset
+ sz
+ PAGE_SIZE
-1) & PAGE_MASK
,
222 sparc_iomap
.start
, sparc_iomap
.end
, PAGE_SIZE
, NULL
, NULL
) != 0) {
223 /* Usually we cannot see printks in this case. */
224 prom_printf("alloc_io_res(%s): cannot occupy\n",
225 (res
->name
!= NULL
)? res
->name
: "???");
230 srmmu_mapiorange(bus
, pa
, res
->start
, resource_size(res
));
232 return (void __iomem
*)(unsigned long)(res
->start
+ offset
);
236 * Comlimentary to _sparc_ioremap().
238 static void _sparc_free_io(struct resource
*res
)
242 plen
= resource_size(res
);
243 BUG_ON((plen
& (PAGE_SIZE
-1)) != 0);
244 srmmu_unmapiorange(res
->start
, plen
);
245 release_resource(res
);
250 void sbus_set_sbus64(struct device
*dev
, int x
)
252 printk("sbus_set_sbus64: unsupported\n");
254 EXPORT_SYMBOL(sbus_set_sbus64
);
257 * Allocate a chunk of memory suitable for DMA.
258 * Typically devices use them for control blocks.
259 * CPU may access them without any explicit flushing.
261 static void *sbus_alloc_coherent(struct device
*dev
, size_t len
,
262 dma_addr_t
*dma_addrp
, gfp_t gfp
,
263 struct dma_attrs
*attrs
)
265 struct platform_device
*op
= to_platform_device(dev
);
266 unsigned long len_total
= PAGE_ALIGN(len
);
268 struct resource
*res
;
271 /* XXX why are some lengths signed, others unsigned? */
275 /* XXX So what is maxphys for us and how do drivers know it? */
276 if (len
> 256*1024) { /* __get_free_pages() limit */
280 order
= get_order(len_total
);
281 if ((va
= __get_free_pages(GFP_KERNEL
|__GFP_COMP
, order
)) == 0)
284 if ((res
= kzalloc(sizeof(struct resource
), GFP_KERNEL
)) == NULL
)
287 if (allocate_resource(&_sparc_dvma
, res
, len_total
,
288 _sparc_dvma
.start
, _sparc_dvma
.end
, PAGE_SIZE
, NULL
, NULL
) != 0) {
289 printk("sbus_alloc_consistent: cannot occupy 0x%lx", len_total
);
293 // XXX The sbus_map_dma_area does this for us below, see comments.
294 // srmmu_mapiorange(0, virt_to_phys(va), res->start, len_total);
296 * XXX That's where sdev would be used. Currently we load
297 * all iommu tables with the same translations.
299 if (sbus_map_dma_area(dev
, dma_addrp
, va
, res
->start
, len_total
) != 0)
302 res
->name
= op
->dev
.of_node
->name
;
304 return (void *)(unsigned long)res
->start
;
307 release_resource(res
);
311 free_pages(va
, order
);
316 static void sbus_free_coherent(struct device
*dev
, size_t n
, void *p
,
317 dma_addr_t ba
, struct dma_attrs
*attrs
)
319 struct resource
*res
;
322 if ((res
= lookup_resource(&_sparc_dvma
,
323 (unsigned long)p
)) == NULL
) {
324 printk("sbus_free_consistent: cannot free %p\n", p
);
328 if (((unsigned long)p
& (PAGE_SIZE
-1)) != 0) {
329 printk("sbus_free_consistent: unaligned va %p\n", p
);
334 if (resource_size(res
) != n
) {
335 printk("sbus_free_consistent: region 0x%lx asked 0x%zx\n",
336 (long)resource_size(res
), n
);
340 release_resource(res
);
343 pgv
= virt_to_page(p
);
344 sbus_unmap_dma_area(dev
, ba
, n
);
346 __free_pages(pgv
, get_order(n
));
350 * Map a chunk of memory so that devices can see it.
351 * CPU view of this memory may be inconsistent with
352 * a device view and explicit flushing is necessary.
354 static dma_addr_t
sbus_map_page(struct device
*dev
, struct page
*page
,
355 unsigned long offset
, size_t len
,
356 enum dma_data_direction dir
,
357 struct dma_attrs
*attrs
)
359 void *va
= page_address(page
) + offset
;
361 /* XXX why are some lengths signed, others unsigned? */
365 /* XXX So what is maxphys for us and how do drivers know it? */
366 if (len
> 256*1024) { /* __get_free_pages() limit */
369 return mmu_get_scsi_one(dev
, va
, len
);
372 static void sbus_unmap_page(struct device
*dev
, dma_addr_t ba
, size_t n
,
373 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
375 mmu_release_scsi_one(dev
, ba
, n
);
378 static int sbus_map_sg(struct device
*dev
, struct scatterlist
*sg
, int n
,
379 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
381 mmu_get_scsi_sgl(dev
, sg
, n
);
385 static void sbus_unmap_sg(struct device
*dev
, struct scatterlist
*sg
, int n
,
386 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
388 mmu_release_scsi_sgl(dev
, sg
, n
);
391 static void sbus_sync_sg_for_cpu(struct device
*dev
, struct scatterlist
*sg
,
392 int n
, enum dma_data_direction dir
)
397 static void sbus_sync_sg_for_device(struct device
*dev
, struct scatterlist
*sg
,
398 int n
, enum dma_data_direction dir
)
403 struct dma_map_ops sbus_dma_ops
= {
404 .alloc
= sbus_alloc_coherent
,
405 .free
= sbus_free_coherent
,
406 .map_page
= sbus_map_page
,
407 .unmap_page
= sbus_unmap_page
,
408 .map_sg
= sbus_map_sg
,
409 .unmap_sg
= sbus_unmap_sg
,
410 .sync_sg_for_cpu
= sbus_sync_sg_for_cpu
,
411 .sync_sg_for_device
= sbus_sync_sg_for_device
,
414 static int __init
sparc_register_ioport(void)
416 register_proc_sparc_ioport();
421 arch_initcall(sparc_register_ioport
);
423 #endif /* CONFIG_SBUS */
426 /* Allocate and map kernel buffer using consistent mode DMA for a device.
427 * hwdev should be valid struct pci_dev pointer for PCI devices.
429 static void *pci32_alloc_coherent(struct device
*dev
, size_t len
,
430 dma_addr_t
*pba
, gfp_t gfp
,
431 struct dma_attrs
*attrs
)
433 unsigned long len_total
= PAGE_ALIGN(len
);
435 struct resource
*res
;
441 if (len
> 256*1024) { /* __get_free_pages() limit */
445 order
= get_order(len_total
);
446 va
= (void *) __get_free_pages(GFP_KERNEL
, order
);
448 printk("pci_alloc_consistent: no %ld pages\n", len_total
>>PAGE_SHIFT
);
452 if ((res
= kzalloc(sizeof(struct resource
), GFP_KERNEL
)) == NULL
) {
453 printk("pci_alloc_consistent: no core\n");
457 if (allocate_resource(&_sparc_dvma
, res
, len_total
,
458 _sparc_dvma
.start
, _sparc_dvma
.end
, PAGE_SIZE
, NULL
, NULL
) != 0) {
459 printk("pci_alloc_consistent: cannot occupy 0x%lx", len_total
);
462 srmmu_mapiorange(0, virt_to_phys(va
), res
->start
, len_total
);
464 *pba
= virt_to_phys(va
); /* equals virt_to_bus (R.I.P.) for us. */
465 return (void *) res
->start
;
470 free_pages((unsigned long)va
, order
);
475 /* Free and unmap a consistent DMA buffer.
476 * cpu_addr is what was returned from pci_alloc_consistent,
477 * size must be the same as what as passed into pci_alloc_consistent,
478 * and likewise dma_addr must be the same as what *dma_addrp was set to.
480 * References to the memory and mappings associated with cpu_addr/dma_addr
481 * past this call are illegal.
483 static void pci32_free_coherent(struct device
*dev
, size_t n
, void *p
,
484 dma_addr_t ba
, struct dma_attrs
*attrs
)
486 struct resource
*res
;
488 if ((res
= lookup_resource(&_sparc_dvma
,
489 (unsigned long)p
)) == NULL
) {
490 printk("pci_free_consistent: cannot free %p\n", p
);
494 if (((unsigned long)p
& (PAGE_SIZE
-1)) != 0) {
495 printk("pci_free_consistent: unaligned va %p\n", p
);
500 if (resource_size(res
) != n
) {
501 printk("pci_free_consistent: region 0x%lx asked 0x%lx\n",
502 (long)resource_size(res
), (long)n
);
506 dma_make_coherent(ba
, n
);
507 srmmu_unmapiorange((unsigned long)p
, n
);
509 release_resource(res
);
511 free_pages((unsigned long)phys_to_virt(ba
), get_order(n
));
515 * Same as pci_map_single, but with pages.
517 static dma_addr_t
pci32_map_page(struct device
*dev
, struct page
*page
,
518 unsigned long offset
, size_t size
,
519 enum dma_data_direction dir
,
520 struct dma_attrs
*attrs
)
522 /* IIep is write-through, not flushing. */
523 return page_to_phys(page
) + offset
;
526 static void pci32_unmap_page(struct device
*dev
, dma_addr_t ba
, size_t size
,
527 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
529 if (dir
!= PCI_DMA_TODEVICE
)
530 dma_make_coherent(ba
, PAGE_ALIGN(size
));
533 /* Map a set of buffers described by scatterlist in streaming
534 * mode for DMA. This is the scather-gather version of the
535 * above pci_map_single interface. Here the scatter gather list
536 * elements are each tagged with the appropriate dma address
537 * and length. They are obtained via sg_dma_{address,length}(SG).
539 * NOTE: An implementation may be able to use a smaller number of
540 * DMA address/length pairs than there are SG table elements.
541 * (for example via virtual mapping capabilities)
542 * The routine returns the number of addr/length pairs actually
543 * used, at most nents.
545 * Device ownership issues as mentioned above for pci_map_single are
548 static int pci32_map_sg(struct device
*device
, struct scatterlist
*sgl
,
549 int nents
, enum dma_data_direction dir
,
550 struct dma_attrs
*attrs
)
552 struct scatterlist
*sg
;
555 /* IIep is write-through, not flushing. */
556 for_each_sg(sgl
, sg
, nents
, n
) {
557 sg
->dma_address
= sg_phys(sg
);
558 sg
->dma_length
= sg
->length
;
563 /* Unmap a set of streaming mode DMA translations.
564 * Again, cpu read rules concerning calls here are the same as for
565 * pci_unmap_single() above.
567 static void pci32_unmap_sg(struct device
*dev
, struct scatterlist
*sgl
,
568 int nents
, enum dma_data_direction dir
,
569 struct dma_attrs
*attrs
)
571 struct scatterlist
*sg
;
574 if (dir
!= PCI_DMA_TODEVICE
) {
575 for_each_sg(sgl
, sg
, nents
, n
) {
576 dma_make_coherent(sg_phys(sg
), PAGE_ALIGN(sg
->length
));
581 /* Make physical memory consistent for a single
582 * streaming mode DMA translation before or after a transfer.
584 * If you perform a pci_map_single() but wish to interrogate the
585 * buffer using the cpu, yet do not wish to teardown the PCI dma
586 * mapping, you must call this function before doing so. At the
587 * next point you give the PCI dma address back to the card, you
588 * must first perform a pci_dma_sync_for_device, and then the
589 * device again owns the buffer.
591 static void pci32_sync_single_for_cpu(struct device
*dev
, dma_addr_t ba
,
592 size_t size
, enum dma_data_direction dir
)
594 if (dir
!= PCI_DMA_TODEVICE
) {
595 dma_make_coherent(ba
, PAGE_ALIGN(size
));
599 static void pci32_sync_single_for_device(struct device
*dev
, dma_addr_t ba
,
600 size_t size
, enum dma_data_direction dir
)
602 if (dir
!= PCI_DMA_TODEVICE
) {
603 dma_make_coherent(ba
, PAGE_ALIGN(size
));
607 /* Make physical memory consistent for a set of streaming
608 * mode DMA translations after a transfer.
610 * The same as pci_dma_sync_single_* but for a scatter-gather list,
611 * same rules and usage.
613 static void pci32_sync_sg_for_cpu(struct device
*dev
, struct scatterlist
*sgl
,
614 int nents
, enum dma_data_direction dir
)
616 struct scatterlist
*sg
;
619 if (dir
!= PCI_DMA_TODEVICE
) {
620 for_each_sg(sgl
, sg
, nents
, n
) {
621 dma_make_coherent(sg_phys(sg
), PAGE_ALIGN(sg
->length
));
626 static void pci32_sync_sg_for_device(struct device
*device
, struct scatterlist
*sgl
,
627 int nents
, enum dma_data_direction dir
)
629 struct scatterlist
*sg
;
632 if (dir
!= PCI_DMA_TODEVICE
) {
633 for_each_sg(sgl
, sg
, nents
, n
) {
634 dma_make_coherent(sg_phys(sg
), PAGE_ALIGN(sg
->length
));
639 struct dma_map_ops pci32_dma_ops
= {
640 .alloc
= pci32_alloc_coherent
,
641 .free
= pci32_free_coherent
,
642 .map_page
= pci32_map_page
,
643 .unmap_page
= pci32_unmap_page
,
644 .map_sg
= pci32_map_sg
,
645 .unmap_sg
= pci32_unmap_sg
,
646 .sync_single_for_cpu
= pci32_sync_single_for_cpu
,
647 .sync_single_for_device
= pci32_sync_single_for_device
,
648 .sync_sg_for_cpu
= pci32_sync_sg_for_cpu
,
649 .sync_sg_for_device
= pci32_sync_sg_for_device
,
651 EXPORT_SYMBOL(pci32_dma_ops
);
653 /* leon re-uses pci32_dma_ops */
654 struct dma_map_ops
*leon_dma_ops
= &pci32_dma_ops
;
655 EXPORT_SYMBOL(leon_dma_ops
);
657 struct dma_map_ops
*dma_ops
= &sbus_dma_ops
;
658 EXPORT_SYMBOL(dma_ops
);
662 * Return whether the given PCI device DMA address mask can be
663 * supported properly. For example, if your device can only drive the
664 * low 24-bits during PCI bus mastering, then you would pass
665 * 0x00ffffff as the mask to this function.
667 int dma_supported(struct device
*dev
, u64 mask
)
670 if (dev
->bus
== &pci_bus_type
)
675 EXPORT_SYMBOL(dma_supported
);
677 #ifdef CONFIG_PROC_FS
679 static int sparc_io_proc_show(struct seq_file
*m
, void *v
)
681 struct resource
*root
= m
->private, *r
;
684 for (r
= root
->child
; r
!= NULL
; r
= r
->sibling
) {
685 if ((nm
= r
->name
) == 0) nm
= "???";
686 seq_printf(m
, "%016llx-%016llx: %s\n",
687 (unsigned long long)r
->start
,
688 (unsigned long long)r
->end
, nm
);
694 static int sparc_io_proc_open(struct inode
*inode
, struct file
*file
)
696 return single_open(file
, sparc_io_proc_show
, PDE_DATA(inode
));
699 static const struct file_operations sparc_io_proc_fops
= {
700 .owner
= THIS_MODULE
,
701 .open
= sparc_io_proc_open
,
704 .release
= single_release
,
706 #endif /* CONFIG_PROC_FS */
708 static void register_proc_sparc_ioport(void)
710 #ifdef CONFIG_PROC_FS
711 proc_create_data("io_map", 0, NULL
, &sparc_io_proc_fops
, &sparc_iomap
);
712 proc_create_data("dvma_map", 0, NULL
, &sparc_io_proc_fops
, &_sparc_dvma
);