Linux 3.11-rc3
[cris-mirror.git] / arch / sparc / mm / tsb.c
blob2cc3bce5ee914a158a16960c4ece028cc959b83a
1 /* arch/sparc64/mm/tsb.c
3 * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
4 */
6 #include <linux/kernel.h>
7 #include <linux/preempt.h>
8 #include <linux/slab.h>
9 #include <asm/page.h>
10 #include <asm/pgtable.h>
11 #include <asm/mmu_context.h>
12 #include <asm/tsb.h>
13 #include <asm/tlb.h>
14 #include <asm/oplib.h>
16 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
18 static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
20 vaddr >>= hash_shift;
21 return vaddr & (nentries - 1);
24 static inline int tag_compare(unsigned long tag, unsigned long vaddr)
26 return (tag == (vaddr >> 22));
29 /* TSB flushes need only occur on the processor initiating the address
30 * space modification, not on each cpu the address space has run on.
31 * Only the TLB flush needs that treatment.
34 void flush_tsb_kernel_range(unsigned long start, unsigned long end)
36 unsigned long v;
38 for (v = start; v < end; v += PAGE_SIZE) {
39 unsigned long hash = tsb_hash(v, PAGE_SHIFT,
40 KERNEL_TSB_NENTRIES);
41 struct tsb *ent = &swapper_tsb[hash];
43 if (tag_compare(ent->tag, v))
44 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
48 static void __flush_tsb_one_entry(unsigned long tsb, unsigned long v,
49 unsigned long hash_shift,
50 unsigned long nentries)
52 unsigned long tag, ent, hash;
54 v &= ~0x1UL;
55 hash = tsb_hash(v, hash_shift, nentries);
56 ent = tsb + (hash * sizeof(struct tsb));
57 tag = (v >> 22UL);
59 tsb_flush(ent, tag);
62 static void __flush_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
63 unsigned long tsb, unsigned long nentries)
65 unsigned long i;
67 for (i = 0; i < tb->tlb_nr; i++)
68 __flush_tsb_one_entry(tsb, tb->vaddrs[i], hash_shift, nentries);
71 void flush_tsb_user(struct tlb_batch *tb)
73 struct mm_struct *mm = tb->mm;
74 unsigned long nentries, base, flags;
76 spin_lock_irqsave(&mm->context.lock, flags);
78 base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
79 nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
80 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
81 base = __pa(base);
82 __flush_tsb_one(tb, PAGE_SHIFT, base, nentries);
84 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
85 if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
86 base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
87 nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
88 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
89 base = __pa(base);
90 __flush_tsb_one(tb, HPAGE_SHIFT, base, nentries);
92 #endif
93 spin_unlock_irqrestore(&mm->context.lock, flags);
96 void flush_tsb_user_page(struct mm_struct *mm, unsigned long vaddr)
98 unsigned long nentries, base, flags;
100 spin_lock_irqsave(&mm->context.lock, flags);
102 base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
103 nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
104 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
105 base = __pa(base);
106 __flush_tsb_one_entry(base, vaddr, PAGE_SHIFT, nentries);
108 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
109 if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
110 base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
111 nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
112 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
113 base = __pa(base);
114 __flush_tsb_one_entry(base, vaddr, HPAGE_SHIFT, nentries);
116 #endif
117 spin_unlock_irqrestore(&mm->context.lock, flags);
120 #define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_8K
121 #define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_8K
123 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
124 #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_4MB
125 #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_4MB
126 #endif
128 static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
130 unsigned long tsb_reg, base, tsb_paddr;
131 unsigned long page_sz, tte;
133 mm->context.tsb_block[tsb_idx].tsb_nentries =
134 tsb_bytes / sizeof(struct tsb);
136 base = TSBMAP_BASE;
137 tte = pgprot_val(PAGE_KERNEL_LOCKED);
138 tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
139 BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
141 /* Use the smallest page size that can map the whole TSB
142 * in one TLB entry.
144 switch (tsb_bytes) {
145 case 8192 << 0:
146 tsb_reg = 0x0UL;
147 #ifdef DCACHE_ALIASING_POSSIBLE
148 base += (tsb_paddr & 8192);
149 #endif
150 page_sz = 8192;
151 break;
153 case 8192 << 1:
154 tsb_reg = 0x1UL;
155 page_sz = 64 * 1024;
156 break;
158 case 8192 << 2:
159 tsb_reg = 0x2UL;
160 page_sz = 64 * 1024;
161 break;
163 case 8192 << 3:
164 tsb_reg = 0x3UL;
165 page_sz = 64 * 1024;
166 break;
168 case 8192 << 4:
169 tsb_reg = 0x4UL;
170 page_sz = 512 * 1024;
171 break;
173 case 8192 << 5:
174 tsb_reg = 0x5UL;
175 page_sz = 512 * 1024;
176 break;
178 case 8192 << 6:
179 tsb_reg = 0x6UL;
180 page_sz = 512 * 1024;
181 break;
183 case 8192 << 7:
184 tsb_reg = 0x7UL;
185 page_sz = 4 * 1024 * 1024;
186 break;
188 default:
189 printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
190 current->comm, current->pid, tsb_bytes);
191 do_exit(SIGSEGV);
193 tte |= pte_sz_bits(page_sz);
195 if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
196 /* Physical mapping, no locked TLB entry for TSB. */
197 tsb_reg |= tsb_paddr;
199 mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
200 mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
201 mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
202 } else {
203 tsb_reg |= base;
204 tsb_reg |= (tsb_paddr & (page_sz - 1UL));
205 tte |= (tsb_paddr & ~(page_sz - 1UL));
207 mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
208 mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
209 mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
212 /* Setup the Hypervisor TSB descriptor. */
213 if (tlb_type == hypervisor) {
214 struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
216 switch (tsb_idx) {
217 case MM_TSB_BASE:
218 hp->pgsz_idx = HV_PGSZ_IDX_BASE;
219 break;
220 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
221 case MM_TSB_HUGE:
222 hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
223 break;
224 #endif
225 default:
226 BUG();
228 hp->assoc = 1;
229 hp->num_ttes = tsb_bytes / 16;
230 hp->ctx_idx = 0;
231 switch (tsb_idx) {
232 case MM_TSB_BASE:
233 hp->pgsz_mask = HV_PGSZ_MASK_BASE;
234 break;
235 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
236 case MM_TSB_HUGE:
237 hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
238 break;
239 #endif
240 default:
241 BUG();
243 hp->tsb_base = tsb_paddr;
244 hp->resv = 0;
248 struct kmem_cache *pgtable_cache __read_mostly;
250 static struct kmem_cache *tsb_caches[8] __read_mostly;
252 static const char *tsb_cache_names[8] = {
253 "tsb_8KB",
254 "tsb_16KB",
255 "tsb_32KB",
256 "tsb_64KB",
257 "tsb_128KB",
258 "tsb_256KB",
259 "tsb_512KB",
260 "tsb_1MB",
263 void __init pgtable_cache_init(void)
265 unsigned long i;
267 pgtable_cache = kmem_cache_create("pgtable_cache",
268 PAGE_SIZE, PAGE_SIZE,
270 _clear_page);
271 if (!pgtable_cache) {
272 prom_printf("pgtable_cache_init(): Could not create!\n");
273 prom_halt();
276 for (i = 0; i < 8; i++) {
277 unsigned long size = 8192 << i;
278 const char *name = tsb_cache_names[i];
280 tsb_caches[i] = kmem_cache_create(name,
281 size, size,
282 0, NULL);
283 if (!tsb_caches[i]) {
284 prom_printf("Could not create %s cache\n", name);
285 prom_halt();
290 int sysctl_tsb_ratio = -2;
292 static unsigned long tsb_size_to_rss_limit(unsigned long new_size)
294 unsigned long num_ents = (new_size / sizeof(struct tsb));
296 if (sysctl_tsb_ratio < 0)
297 return num_ents - (num_ents >> -sysctl_tsb_ratio);
298 else
299 return num_ents + (num_ents >> sysctl_tsb_ratio);
302 /* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
303 * do_sparc64_fault() invokes this routine to try and grow it.
305 * When we reach the maximum TSB size supported, we stick ~0UL into
306 * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
307 * will not trigger any longer.
309 * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
310 * of two. The TSB must be aligned to it's size, so f.e. a 512K TSB
311 * must be 512K aligned. It also must be physically contiguous, so we
312 * cannot use vmalloc().
314 * The idea here is to grow the TSB when the RSS of the process approaches
315 * the number of entries that the current TSB can hold at once. Currently,
316 * we trigger when the RSS hits 3/4 of the TSB capacity.
318 void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
320 unsigned long max_tsb_size = 1 * 1024 * 1024;
321 unsigned long new_size, old_size, flags;
322 struct tsb *old_tsb, *new_tsb;
323 unsigned long new_cache_index, old_cache_index;
324 unsigned long new_rss_limit;
325 gfp_t gfp_flags;
327 if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
328 max_tsb_size = (PAGE_SIZE << MAX_ORDER);
330 new_cache_index = 0;
331 for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
332 new_rss_limit = tsb_size_to_rss_limit(new_size);
333 if (new_rss_limit > rss)
334 break;
335 new_cache_index++;
338 if (new_size == max_tsb_size)
339 new_rss_limit = ~0UL;
341 retry_tsb_alloc:
342 gfp_flags = GFP_KERNEL;
343 if (new_size > (PAGE_SIZE * 2))
344 gfp_flags |= __GFP_NOWARN | __GFP_NORETRY;
346 new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
347 gfp_flags, numa_node_id());
348 if (unlikely(!new_tsb)) {
349 /* Not being able to fork due to a high-order TSB
350 * allocation failure is very bad behavior. Just back
351 * down to a 0-order allocation and force no TSB
352 * growing for this address space.
354 if (mm->context.tsb_block[tsb_index].tsb == NULL &&
355 new_cache_index > 0) {
356 new_cache_index = 0;
357 new_size = 8192;
358 new_rss_limit = ~0UL;
359 goto retry_tsb_alloc;
362 /* If we failed on a TSB grow, we are under serious
363 * memory pressure so don't try to grow any more.
365 if (mm->context.tsb_block[tsb_index].tsb != NULL)
366 mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
367 return;
370 /* Mark all tags as invalid. */
371 tsb_init(new_tsb, new_size);
373 /* Ok, we are about to commit the changes. If we are
374 * growing an existing TSB the locking is very tricky,
375 * so WATCH OUT!
377 * We have to hold mm->context.lock while committing to the
378 * new TSB, this synchronizes us with processors in
379 * flush_tsb_user() and switch_mm() for this address space.
381 * But even with that lock held, processors run asynchronously
382 * accessing the old TSB via TLB miss handling. This is OK
383 * because those actions are just propagating state from the
384 * Linux page tables into the TSB, page table mappings are not
385 * being changed. If a real fault occurs, the processor will
386 * synchronize with us when it hits flush_tsb_user(), this is
387 * also true for the case where vmscan is modifying the page
388 * tables. The only thing we need to be careful with is to
389 * skip any locked TSB entries during copy_tsb().
391 * When we finish committing to the new TSB, we have to drop
392 * the lock and ask all other cpus running this address space
393 * to run tsb_context_switch() to see the new TSB table.
395 spin_lock_irqsave(&mm->context.lock, flags);
397 old_tsb = mm->context.tsb_block[tsb_index].tsb;
398 old_cache_index =
399 (mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
400 old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
401 sizeof(struct tsb));
404 /* Handle multiple threads trying to grow the TSB at the same time.
405 * One will get in here first, and bump the size and the RSS limit.
406 * The others will get in here next and hit this check.
408 if (unlikely(old_tsb &&
409 (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
410 spin_unlock_irqrestore(&mm->context.lock, flags);
412 kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
413 return;
416 mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
418 if (old_tsb) {
419 extern void copy_tsb(unsigned long old_tsb_base,
420 unsigned long old_tsb_size,
421 unsigned long new_tsb_base,
422 unsigned long new_tsb_size);
423 unsigned long old_tsb_base = (unsigned long) old_tsb;
424 unsigned long new_tsb_base = (unsigned long) new_tsb;
426 if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
427 old_tsb_base = __pa(old_tsb_base);
428 new_tsb_base = __pa(new_tsb_base);
430 copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size);
433 mm->context.tsb_block[tsb_index].tsb = new_tsb;
434 setup_tsb_params(mm, tsb_index, new_size);
436 spin_unlock_irqrestore(&mm->context.lock, flags);
438 /* If old_tsb is NULL, we're being invoked for the first time
439 * from init_new_context().
441 if (old_tsb) {
442 /* Reload it on the local cpu. */
443 tsb_context_switch(mm);
445 /* Now force other processors to do the same. */
446 preempt_disable();
447 smp_tsb_sync(mm);
448 preempt_enable();
450 /* Now it is safe to free the old tsb. */
451 kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
455 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
457 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
458 unsigned long huge_pte_count;
459 #endif
460 unsigned int i;
462 spin_lock_init(&mm->context.lock);
464 mm->context.sparc64_ctx_val = 0UL;
466 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
467 /* We reset it to zero because the fork() page copying
468 * will re-increment the counters as the parent PTEs are
469 * copied into the child address space.
471 huge_pte_count = mm->context.huge_pte_count;
472 mm->context.huge_pte_count = 0;
473 #endif
475 mm->context.pgtable_page = NULL;
477 /* copy_mm() copies over the parent's mm_struct before calling
478 * us, so we need to zero out the TSB pointer or else tsb_grow()
479 * will be confused and think there is an older TSB to free up.
481 for (i = 0; i < MM_NUM_TSBS; i++)
482 mm->context.tsb_block[i].tsb = NULL;
484 /* If this is fork, inherit the parent's TSB size. We would
485 * grow it to that size on the first page fault anyways.
487 tsb_grow(mm, MM_TSB_BASE, get_mm_rss(mm));
489 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
490 if (unlikely(huge_pte_count))
491 tsb_grow(mm, MM_TSB_HUGE, huge_pte_count);
492 #endif
494 if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
495 return -ENOMEM;
497 return 0;
500 static void tsb_destroy_one(struct tsb_config *tp)
502 unsigned long cache_index;
504 if (!tp->tsb)
505 return;
506 cache_index = tp->tsb_reg_val & 0x7UL;
507 kmem_cache_free(tsb_caches[cache_index], tp->tsb);
508 tp->tsb = NULL;
509 tp->tsb_reg_val = 0UL;
512 void destroy_context(struct mm_struct *mm)
514 unsigned long flags, i;
515 struct page *page;
517 for (i = 0; i < MM_NUM_TSBS; i++)
518 tsb_destroy_one(&mm->context.tsb_block[i]);
520 page = mm->context.pgtable_page;
521 if (page && put_page_testzero(page)) {
522 pgtable_page_dtor(page);
523 free_hot_cold_page(page, 0);
526 spin_lock_irqsave(&ctx_alloc_lock, flags);
528 if (CTX_VALID(mm->context)) {
529 unsigned long nr = CTX_NRBITS(mm->context);
530 mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
533 spin_unlock_irqrestore(&ctx_alloc_lock, flags);