Linux 3.11-rc3
[cris-mirror.git] / arch / x86 / kernel / i387.c
blob202d24f0f7e70546a2020212b97fb450e41cc9c5
1 /*
2 * Copyright (C) 1994 Linus Torvalds
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8 #include <linux/module.h>
9 #include <linux/regset.h>
10 #include <linux/sched.h>
11 #include <linux/slab.h>
13 #include <asm/sigcontext.h>
14 #include <asm/processor.h>
15 #include <asm/math_emu.h>
16 #include <asm/uaccess.h>
17 #include <asm/ptrace.h>
18 #include <asm/i387.h>
19 #include <asm/fpu-internal.h>
20 #include <asm/user.h>
23 * Were we in an interrupt that interrupted kernel mode?
25 * On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that
26 * pair does nothing at all: the thread must not have fpu (so
27 * that we don't try to save the FPU state), and TS must
28 * be set (so that the clts/stts pair does nothing that is
29 * visible in the interrupted kernel thread).
31 * Except for the eagerfpu case when we return 1 unless we've already
32 * been eager and saved the state in kernel_fpu_begin().
34 static inline bool interrupted_kernel_fpu_idle(void)
36 if (use_eager_fpu())
37 return __thread_has_fpu(current);
39 return !__thread_has_fpu(current) &&
40 (read_cr0() & X86_CR0_TS);
44 * Were we in user mode (or vm86 mode) when we were
45 * interrupted?
47 * Doing kernel_fpu_begin/end() is ok if we are running
48 * in an interrupt context from user mode - we'll just
49 * save the FPU state as required.
51 static inline bool interrupted_user_mode(void)
53 struct pt_regs *regs = get_irq_regs();
54 return regs && user_mode_vm(regs);
58 * Can we use the FPU in kernel mode with the
59 * whole "kernel_fpu_begin/end()" sequence?
61 * It's always ok in process context (ie "not interrupt")
62 * but it is sometimes ok even from an irq.
64 bool irq_fpu_usable(void)
66 return !in_interrupt() ||
67 interrupted_user_mode() ||
68 interrupted_kernel_fpu_idle();
70 EXPORT_SYMBOL(irq_fpu_usable);
72 void __kernel_fpu_begin(void)
74 struct task_struct *me = current;
76 if (__thread_has_fpu(me)) {
77 __thread_clear_has_fpu(me);
78 __save_init_fpu(me);
79 /* We do 'stts()' in __kernel_fpu_end() */
80 } else if (!use_eager_fpu()) {
81 this_cpu_write(fpu_owner_task, NULL);
82 clts();
85 EXPORT_SYMBOL(__kernel_fpu_begin);
87 void __kernel_fpu_end(void)
89 if (use_eager_fpu())
90 math_state_restore();
91 else
92 stts();
94 EXPORT_SYMBOL(__kernel_fpu_end);
96 void unlazy_fpu(struct task_struct *tsk)
98 preempt_disable();
99 if (__thread_has_fpu(tsk)) {
100 __save_init_fpu(tsk);
101 __thread_fpu_end(tsk);
102 } else
103 tsk->fpu_counter = 0;
104 preempt_enable();
106 EXPORT_SYMBOL(unlazy_fpu);
108 unsigned int mxcsr_feature_mask __read_mostly = 0xffffffffu;
109 unsigned int xstate_size;
110 EXPORT_SYMBOL_GPL(xstate_size);
111 static struct i387_fxsave_struct fx_scratch;
113 static void mxcsr_feature_mask_init(void)
115 unsigned long mask = 0;
117 if (cpu_has_fxsr) {
118 memset(&fx_scratch, 0, sizeof(struct i387_fxsave_struct));
119 asm volatile("fxsave %0" : : "m" (fx_scratch));
120 mask = fx_scratch.mxcsr_mask;
121 if (mask == 0)
122 mask = 0x0000ffbf;
124 mxcsr_feature_mask &= mask;
127 static void init_thread_xstate(void)
130 * Note that xstate_size might be overwriten later during
131 * xsave_init().
134 if (!cpu_has_fpu) {
136 * Disable xsave as we do not support it if i387
137 * emulation is enabled.
139 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
140 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
141 xstate_size = sizeof(struct i387_soft_struct);
142 return;
145 if (cpu_has_fxsr)
146 xstate_size = sizeof(struct i387_fxsave_struct);
147 else
148 xstate_size = sizeof(struct i387_fsave_struct);
152 * Called at bootup to set up the initial FPU state that is later cloned
153 * into all processes.
156 void fpu_init(void)
158 unsigned long cr0;
159 unsigned long cr4_mask = 0;
161 #ifndef CONFIG_MATH_EMULATION
162 if (!cpu_has_fpu) {
163 pr_emerg("No FPU found and no math emulation present\n");
164 pr_emerg("Giving up\n");
165 for (;;)
166 asm volatile("hlt");
168 #endif
169 if (cpu_has_fxsr)
170 cr4_mask |= X86_CR4_OSFXSR;
171 if (cpu_has_xmm)
172 cr4_mask |= X86_CR4_OSXMMEXCPT;
173 if (cr4_mask)
174 set_in_cr4(cr4_mask);
176 cr0 = read_cr0();
177 cr0 &= ~(X86_CR0_TS|X86_CR0_EM); /* clear TS and EM */
178 if (!cpu_has_fpu)
179 cr0 |= X86_CR0_EM;
180 write_cr0(cr0);
183 * init_thread_xstate is only called once to avoid overriding
184 * xstate_size during boot time or during CPU hotplug.
186 if (xstate_size == 0)
187 init_thread_xstate();
189 mxcsr_feature_mask_init();
190 xsave_init();
191 eager_fpu_init();
194 void fpu_finit(struct fpu *fpu)
196 if (!cpu_has_fpu) {
197 finit_soft_fpu(&fpu->state->soft);
198 return;
201 if (cpu_has_fxsr) {
202 fx_finit(&fpu->state->fxsave);
203 } else {
204 struct i387_fsave_struct *fp = &fpu->state->fsave;
205 memset(fp, 0, xstate_size);
206 fp->cwd = 0xffff037fu;
207 fp->swd = 0xffff0000u;
208 fp->twd = 0xffffffffu;
209 fp->fos = 0xffff0000u;
212 EXPORT_SYMBOL_GPL(fpu_finit);
215 * The _current_ task is using the FPU for the first time
216 * so initialize it and set the mxcsr to its default
217 * value at reset if we support XMM instructions and then
218 * remember the current task has used the FPU.
220 int init_fpu(struct task_struct *tsk)
222 int ret;
224 if (tsk_used_math(tsk)) {
225 if (cpu_has_fpu && tsk == current)
226 unlazy_fpu(tsk);
227 tsk->thread.fpu.last_cpu = ~0;
228 return 0;
232 * Memory allocation at the first usage of the FPU and other state.
234 ret = fpu_alloc(&tsk->thread.fpu);
235 if (ret)
236 return ret;
238 fpu_finit(&tsk->thread.fpu);
240 set_stopped_child_used_math(tsk);
241 return 0;
243 EXPORT_SYMBOL_GPL(init_fpu);
246 * The xstateregs_active() routine is the same as the fpregs_active() routine,
247 * as the "regset->n" for the xstate regset will be updated based on the feature
248 * capabilites supported by the xsave.
250 int fpregs_active(struct task_struct *target, const struct user_regset *regset)
252 return tsk_used_math(target) ? regset->n : 0;
255 int xfpregs_active(struct task_struct *target, const struct user_regset *regset)
257 return (cpu_has_fxsr && tsk_used_math(target)) ? regset->n : 0;
260 int xfpregs_get(struct task_struct *target, const struct user_regset *regset,
261 unsigned int pos, unsigned int count,
262 void *kbuf, void __user *ubuf)
264 int ret;
266 if (!cpu_has_fxsr)
267 return -ENODEV;
269 ret = init_fpu(target);
270 if (ret)
271 return ret;
273 sanitize_i387_state(target);
275 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
276 &target->thread.fpu.state->fxsave, 0, -1);
279 int xfpregs_set(struct task_struct *target, const struct user_regset *regset,
280 unsigned int pos, unsigned int count,
281 const void *kbuf, const void __user *ubuf)
283 int ret;
285 if (!cpu_has_fxsr)
286 return -ENODEV;
288 ret = init_fpu(target);
289 if (ret)
290 return ret;
292 sanitize_i387_state(target);
294 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
295 &target->thread.fpu.state->fxsave, 0, -1);
298 * mxcsr reserved bits must be masked to zero for security reasons.
300 target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask;
303 * update the header bits in the xsave header, indicating the
304 * presence of FP and SSE state.
306 if (cpu_has_xsave)
307 target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FPSSE;
309 return ret;
312 int xstateregs_get(struct task_struct *target, const struct user_regset *regset,
313 unsigned int pos, unsigned int count,
314 void *kbuf, void __user *ubuf)
316 int ret;
318 if (!cpu_has_xsave)
319 return -ENODEV;
321 ret = init_fpu(target);
322 if (ret)
323 return ret;
326 * Copy the 48bytes defined by the software first into the xstate
327 * memory layout in the thread struct, so that we can copy the entire
328 * xstateregs to the user using one user_regset_copyout().
330 memcpy(&target->thread.fpu.state->fxsave.sw_reserved,
331 xstate_fx_sw_bytes, sizeof(xstate_fx_sw_bytes));
334 * Copy the xstate memory layout.
336 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
337 &target->thread.fpu.state->xsave, 0, -1);
338 return ret;
341 int xstateregs_set(struct task_struct *target, const struct user_regset *regset,
342 unsigned int pos, unsigned int count,
343 const void *kbuf, const void __user *ubuf)
345 int ret;
346 struct xsave_hdr_struct *xsave_hdr;
348 if (!cpu_has_xsave)
349 return -ENODEV;
351 ret = init_fpu(target);
352 if (ret)
353 return ret;
355 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
356 &target->thread.fpu.state->xsave, 0, -1);
359 * mxcsr reserved bits must be masked to zero for security reasons.
361 target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask;
363 xsave_hdr = &target->thread.fpu.state->xsave.xsave_hdr;
365 xsave_hdr->xstate_bv &= pcntxt_mask;
367 * These bits must be zero.
369 xsave_hdr->reserved1[0] = xsave_hdr->reserved1[1] = 0;
371 return ret;
374 #if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
377 * FPU tag word conversions.
380 static inline unsigned short twd_i387_to_fxsr(unsigned short twd)
382 unsigned int tmp; /* to avoid 16 bit prefixes in the code */
384 /* Transform each pair of bits into 01 (valid) or 00 (empty) */
385 tmp = ~twd;
386 tmp = (tmp | (tmp>>1)) & 0x5555; /* 0V0V0V0V0V0V0V0V */
387 /* and move the valid bits to the lower byte. */
388 tmp = (tmp | (tmp >> 1)) & 0x3333; /* 00VV00VV00VV00VV */
389 tmp = (tmp | (tmp >> 2)) & 0x0f0f; /* 0000VVVV0000VVVV */
390 tmp = (tmp | (tmp >> 4)) & 0x00ff; /* 00000000VVVVVVVV */
392 return tmp;
395 #define FPREG_ADDR(f, n) ((void *)&(f)->st_space + (n) * 16)
396 #define FP_EXP_TAG_VALID 0
397 #define FP_EXP_TAG_ZERO 1
398 #define FP_EXP_TAG_SPECIAL 2
399 #define FP_EXP_TAG_EMPTY 3
401 static inline u32 twd_fxsr_to_i387(struct i387_fxsave_struct *fxsave)
403 struct _fpxreg *st;
404 u32 tos = (fxsave->swd >> 11) & 7;
405 u32 twd = (unsigned long) fxsave->twd;
406 u32 tag;
407 u32 ret = 0xffff0000u;
408 int i;
410 for (i = 0; i < 8; i++, twd >>= 1) {
411 if (twd & 0x1) {
412 st = FPREG_ADDR(fxsave, (i - tos) & 7);
414 switch (st->exponent & 0x7fff) {
415 case 0x7fff:
416 tag = FP_EXP_TAG_SPECIAL;
417 break;
418 case 0x0000:
419 if (!st->significand[0] &&
420 !st->significand[1] &&
421 !st->significand[2] &&
422 !st->significand[3])
423 tag = FP_EXP_TAG_ZERO;
424 else
425 tag = FP_EXP_TAG_SPECIAL;
426 break;
427 default:
428 if (st->significand[3] & 0x8000)
429 tag = FP_EXP_TAG_VALID;
430 else
431 tag = FP_EXP_TAG_SPECIAL;
432 break;
434 } else {
435 tag = FP_EXP_TAG_EMPTY;
437 ret |= tag << (2 * i);
439 return ret;
443 * FXSR floating point environment conversions.
446 void
447 convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk)
449 struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
450 struct _fpreg *to = (struct _fpreg *) &env->st_space[0];
451 struct _fpxreg *from = (struct _fpxreg *) &fxsave->st_space[0];
452 int i;
454 env->cwd = fxsave->cwd | 0xffff0000u;
455 env->swd = fxsave->swd | 0xffff0000u;
456 env->twd = twd_fxsr_to_i387(fxsave);
458 #ifdef CONFIG_X86_64
459 env->fip = fxsave->rip;
460 env->foo = fxsave->rdp;
462 * should be actually ds/cs at fpu exception time, but
463 * that information is not available in 64bit mode.
465 env->fcs = task_pt_regs(tsk)->cs;
466 if (tsk == current) {
467 savesegment(ds, env->fos);
468 } else {
469 env->fos = tsk->thread.ds;
471 env->fos |= 0xffff0000;
472 #else
473 env->fip = fxsave->fip;
474 env->fcs = (u16) fxsave->fcs | ((u32) fxsave->fop << 16);
475 env->foo = fxsave->foo;
476 env->fos = fxsave->fos;
477 #endif
479 for (i = 0; i < 8; ++i)
480 memcpy(&to[i], &from[i], sizeof(to[0]));
483 void convert_to_fxsr(struct task_struct *tsk,
484 const struct user_i387_ia32_struct *env)
487 struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
488 struct _fpreg *from = (struct _fpreg *) &env->st_space[0];
489 struct _fpxreg *to = (struct _fpxreg *) &fxsave->st_space[0];
490 int i;
492 fxsave->cwd = env->cwd;
493 fxsave->swd = env->swd;
494 fxsave->twd = twd_i387_to_fxsr(env->twd);
495 fxsave->fop = (u16) ((u32) env->fcs >> 16);
496 #ifdef CONFIG_X86_64
497 fxsave->rip = env->fip;
498 fxsave->rdp = env->foo;
499 /* cs and ds ignored */
500 #else
501 fxsave->fip = env->fip;
502 fxsave->fcs = (env->fcs & 0xffff);
503 fxsave->foo = env->foo;
504 fxsave->fos = env->fos;
505 #endif
507 for (i = 0; i < 8; ++i)
508 memcpy(&to[i], &from[i], sizeof(from[0]));
511 int fpregs_get(struct task_struct *target, const struct user_regset *regset,
512 unsigned int pos, unsigned int count,
513 void *kbuf, void __user *ubuf)
515 struct user_i387_ia32_struct env;
516 int ret;
518 ret = init_fpu(target);
519 if (ret)
520 return ret;
522 if (!static_cpu_has(X86_FEATURE_FPU))
523 return fpregs_soft_get(target, regset, pos, count, kbuf, ubuf);
525 if (!cpu_has_fxsr)
526 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
527 &target->thread.fpu.state->fsave, 0,
528 -1);
530 sanitize_i387_state(target);
532 if (kbuf && pos == 0 && count == sizeof(env)) {
533 convert_from_fxsr(kbuf, target);
534 return 0;
537 convert_from_fxsr(&env, target);
539 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
542 int fpregs_set(struct task_struct *target, const struct user_regset *regset,
543 unsigned int pos, unsigned int count,
544 const void *kbuf, const void __user *ubuf)
546 struct user_i387_ia32_struct env;
547 int ret;
549 ret = init_fpu(target);
550 if (ret)
551 return ret;
553 sanitize_i387_state(target);
555 if (!static_cpu_has(X86_FEATURE_FPU))
556 return fpregs_soft_set(target, regset, pos, count, kbuf, ubuf);
558 if (!cpu_has_fxsr)
559 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
560 &target->thread.fpu.state->fsave, 0,
561 -1);
563 if (pos > 0 || count < sizeof(env))
564 convert_from_fxsr(&env, target);
566 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
567 if (!ret)
568 convert_to_fxsr(target, &env);
571 * update the header bit in the xsave header, indicating the
572 * presence of FP.
574 if (cpu_has_xsave)
575 target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FP;
576 return ret;
580 * FPU state for core dumps.
581 * This is only used for a.out dumps now.
582 * It is declared generically using elf_fpregset_t (which is
583 * struct user_i387_struct) but is in fact only used for 32-bit
584 * dumps, so on 64-bit it is really struct user_i387_ia32_struct.
586 int dump_fpu(struct pt_regs *regs, struct user_i387_struct *fpu)
588 struct task_struct *tsk = current;
589 int fpvalid;
591 fpvalid = !!used_math();
592 if (fpvalid)
593 fpvalid = !fpregs_get(tsk, NULL,
594 0, sizeof(struct user_i387_ia32_struct),
595 fpu, NULL);
597 return fpvalid;
599 EXPORT_SYMBOL(dump_fpu);
601 #endif /* CONFIG_X86_32 || CONFIG_IA32_EMULATION */
603 static int __init no_387(char *s)
605 setup_clear_cpu_cap(X86_FEATURE_FPU);
606 return 1;
609 __setup("no387", no_387);
611 void fpu_detect(struct cpuinfo_x86 *c)
613 unsigned long cr0;
614 u16 fsw, fcw;
616 fsw = fcw = 0xffff;
618 cr0 = read_cr0();
619 cr0 &= ~(X86_CR0_TS | X86_CR0_EM);
620 write_cr0(cr0);
622 asm volatile("fninit ; fnstsw %0 ; fnstcw %1"
623 : "+m" (fsw), "+m" (fcw));
625 if (fsw == 0 && (fcw & 0x103f) == 0x003f)
626 set_cpu_cap(c, X86_FEATURE_FPU);
627 else
628 clear_cpu_cap(c, X86_FEATURE_FPU);
630 /* The final cr0 value is set in fpu_init() */