2 * Common EFI (Extensible Firmware Interface) support functions
3 * Based on Extensible Firmware Interface Specification version 1.0
5 * Copyright (C) 1999 VA Linux Systems
6 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7 * Copyright (C) 1999-2002 Hewlett-Packard Co.
8 * David Mosberger-Tang <davidm@hpl.hp.com>
9 * Stephane Eranian <eranian@hpl.hp.com>
10 * Copyright (C) 2005-2008 Intel Co.
11 * Fenghua Yu <fenghua.yu@intel.com>
12 * Bibo Mao <bibo.mao@intel.com>
13 * Chandramouli Narayanan <mouli@linux.intel.com>
14 * Huang Ying <ying.huang@intel.com>
16 * Copied from efi_32.c to eliminate the duplicated code between EFI
17 * 32/64 support code. --ying 2007-10-26
19 * All EFI Runtime Services are not implemented yet as EFI only
20 * supports physical mode addressing on SoftSDV. This is to be fixed
21 * in a future version. --drummond 1999-07-20
23 * Implemented EFI runtime services and virtual mode calls. --davidm
25 * Goutham Rao: <goutham.rao@intel.com>
26 * Skip non-WB memory and ignore empty memory ranges.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/efi.h>
34 #include <linux/efi-bgrt.h>
35 #include <linux/export.h>
36 #include <linux/bootmem.h>
37 #include <linux/slab.h>
38 #include <linux/memblock.h>
39 #include <linux/spinlock.h>
40 #include <linux/uaccess.h>
41 #include <linux/time.h>
43 #include <linux/reboot.h>
44 #include <linux/bcd.h>
46 #include <asm/setup.h>
49 #include <asm/cacheflush.h>
50 #include <asm/tlbflush.h>
51 #include <asm/x86_init.h>
56 #define EFI_MIN_RESERVE 5120
58 #define EFI_DUMMY_GUID \
59 EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
61 static efi_char16_t efi_dummy_name
[6] = { 'D', 'U', 'M', 'M', 'Y', 0 };
63 struct efi __read_mostly efi
= {
64 .mps
= EFI_INVALID_TABLE_ADDR
,
65 .acpi
= EFI_INVALID_TABLE_ADDR
,
66 .acpi20
= EFI_INVALID_TABLE_ADDR
,
67 .smbios
= EFI_INVALID_TABLE_ADDR
,
68 .sal_systab
= EFI_INVALID_TABLE_ADDR
,
69 .boot_info
= EFI_INVALID_TABLE_ADDR
,
70 .hcdp
= EFI_INVALID_TABLE_ADDR
,
71 .uga
= EFI_INVALID_TABLE_ADDR
,
72 .uv_systab
= EFI_INVALID_TABLE_ADDR
,
76 struct efi_memory_map memmap
;
78 static struct efi efi_phys __initdata
;
79 static efi_system_table_t efi_systab __initdata
;
81 unsigned long x86_efi_facility
;
84 * Returns 1 if 'facility' is enabled, 0 otherwise.
86 int efi_enabled(int facility
)
88 return test_bit(facility
, &x86_efi_facility
) != 0;
90 EXPORT_SYMBOL(efi_enabled
);
92 static bool __initdata disable_runtime
= false;
93 static int __init
setup_noefi(char *arg
)
95 disable_runtime
= true;
98 early_param("noefi", setup_noefi
);
101 EXPORT_SYMBOL(add_efi_memmap
);
103 static int __init
setup_add_efi_memmap(char *arg
)
108 early_param("add_efi_memmap", setup_add_efi_memmap
);
110 static bool efi_no_storage_paranoia
;
112 static int __init
setup_storage_paranoia(char *arg
)
114 efi_no_storage_paranoia
= true;
117 early_param("efi_no_storage_paranoia", setup_storage_paranoia
);
120 static efi_status_t
virt_efi_get_time(efi_time_t
*tm
, efi_time_cap_t
*tc
)
125 spin_lock_irqsave(&rtc_lock
, flags
);
126 status
= efi_call_virt2(get_time
, tm
, tc
);
127 spin_unlock_irqrestore(&rtc_lock
, flags
);
131 static efi_status_t
virt_efi_set_time(efi_time_t
*tm
)
136 spin_lock_irqsave(&rtc_lock
, flags
);
137 status
= efi_call_virt1(set_time
, tm
);
138 spin_unlock_irqrestore(&rtc_lock
, flags
);
142 static efi_status_t
virt_efi_get_wakeup_time(efi_bool_t
*enabled
,
149 spin_lock_irqsave(&rtc_lock
, flags
);
150 status
= efi_call_virt3(get_wakeup_time
,
151 enabled
, pending
, tm
);
152 spin_unlock_irqrestore(&rtc_lock
, flags
);
156 static efi_status_t
virt_efi_set_wakeup_time(efi_bool_t enabled
, efi_time_t
*tm
)
161 spin_lock_irqsave(&rtc_lock
, flags
);
162 status
= efi_call_virt2(set_wakeup_time
,
164 spin_unlock_irqrestore(&rtc_lock
, flags
);
168 static efi_status_t
virt_efi_get_variable(efi_char16_t
*name
,
171 unsigned long *data_size
,
174 return efi_call_virt5(get_variable
,
179 static efi_status_t
virt_efi_get_next_variable(unsigned long *name_size
,
183 return efi_call_virt3(get_next_variable
,
184 name_size
, name
, vendor
);
187 static efi_status_t
virt_efi_set_variable(efi_char16_t
*name
,
190 unsigned long data_size
,
193 return efi_call_virt5(set_variable
,
198 static efi_status_t
virt_efi_query_variable_info(u32 attr
,
200 u64
*remaining_space
,
201 u64
*max_variable_size
)
203 if (efi
.runtime_version
< EFI_2_00_SYSTEM_TABLE_REVISION
)
204 return EFI_UNSUPPORTED
;
206 return efi_call_virt4(query_variable_info
, attr
, storage_space
,
207 remaining_space
, max_variable_size
);
210 static efi_status_t
virt_efi_get_next_high_mono_count(u32
*count
)
212 return efi_call_virt1(get_next_high_mono_count
, count
);
215 static void virt_efi_reset_system(int reset_type
,
217 unsigned long data_size
,
220 efi_call_virt4(reset_system
, reset_type
, status
,
224 static efi_status_t
virt_efi_update_capsule(efi_capsule_header_t
**capsules
,
226 unsigned long sg_list
)
228 if (efi
.runtime_version
< EFI_2_00_SYSTEM_TABLE_REVISION
)
229 return EFI_UNSUPPORTED
;
231 return efi_call_virt3(update_capsule
, capsules
, count
, sg_list
);
234 static efi_status_t
virt_efi_query_capsule_caps(efi_capsule_header_t
**capsules
,
239 if (efi
.runtime_version
< EFI_2_00_SYSTEM_TABLE_REVISION
)
240 return EFI_UNSUPPORTED
;
242 return efi_call_virt4(query_capsule_caps
, capsules
, count
, max_size
,
246 static efi_status_t __init
phys_efi_set_virtual_address_map(
247 unsigned long memory_map_size
,
248 unsigned long descriptor_size
,
249 u32 descriptor_version
,
250 efi_memory_desc_t
*virtual_map
)
254 efi_call_phys_prelog();
255 status
= efi_call_phys4(efi_phys
.set_virtual_address_map
,
256 memory_map_size
, descriptor_size
,
257 descriptor_version
, virtual_map
);
258 efi_call_phys_epilog();
262 static efi_status_t __init
phys_efi_get_time(efi_time_t
*tm
,
268 spin_lock_irqsave(&rtc_lock
, flags
);
269 efi_call_phys_prelog();
270 status
= efi_call_phys2(efi_phys
.get_time
, virt_to_phys(tm
),
272 efi_call_phys_epilog();
273 spin_unlock_irqrestore(&rtc_lock
, flags
);
277 int efi_set_rtc_mmss(const struct timespec
*now
)
279 unsigned long nowtime
= now
->tv_sec
;
285 status
= efi
.get_time(&eft
, &cap
);
286 if (status
!= EFI_SUCCESS
) {
287 pr_err("Oops: efitime: can't read time!\n");
291 rtc_time_to_tm(nowtime
, &tm
);
292 if (!rtc_valid_tm(&tm
)) {
293 eft
.year
= tm
.tm_year
+ 1900;
294 eft
.month
= tm
.tm_mon
+ 1;
295 eft
.day
= tm
.tm_mday
;
296 eft
.minute
= tm
.tm_min
;
297 eft
.second
= tm
.tm_sec
;
301 "%s: Invalid EFI RTC value: write of %lx to EFI RTC failed\n",
302 __FUNCTION__
, nowtime
);
306 status
= efi
.set_time(&eft
);
307 if (status
!= EFI_SUCCESS
) {
308 pr_err("Oops: efitime: can't write time!\n");
314 void efi_get_time(struct timespec
*now
)
320 status
= efi
.get_time(&eft
, &cap
);
321 if (status
!= EFI_SUCCESS
)
322 pr_err("Oops: efitime: can't read time!\n");
324 now
->tv_sec
= mktime(eft
.year
, eft
.month
, eft
.day
, eft
.hour
,
325 eft
.minute
, eft
.second
);
330 * Tell the kernel about the EFI memory map. This might include
331 * more than the max 128 entries that can fit in the e820 legacy
332 * (zeropage) memory map.
335 static void __init
do_add_efi_memmap(void)
339 for (p
= memmap
.map
; p
< memmap
.map_end
; p
+= memmap
.desc_size
) {
340 efi_memory_desc_t
*md
= p
;
341 unsigned long long start
= md
->phys_addr
;
342 unsigned long long size
= md
->num_pages
<< EFI_PAGE_SHIFT
;
346 case EFI_LOADER_CODE
:
347 case EFI_LOADER_DATA
:
348 case EFI_BOOT_SERVICES_CODE
:
349 case EFI_BOOT_SERVICES_DATA
:
350 case EFI_CONVENTIONAL_MEMORY
:
351 if (md
->attribute
& EFI_MEMORY_WB
)
352 e820_type
= E820_RAM
;
354 e820_type
= E820_RESERVED
;
356 case EFI_ACPI_RECLAIM_MEMORY
:
357 e820_type
= E820_ACPI
;
359 case EFI_ACPI_MEMORY_NVS
:
360 e820_type
= E820_NVS
;
362 case EFI_UNUSABLE_MEMORY
:
363 e820_type
= E820_UNUSABLE
;
367 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
368 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
369 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
371 e820_type
= E820_RESERVED
;
374 e820_add_region(start
, size
, e820_type
);
376 sanitize_e820_map(e820
.map
, ARRAY_SIZE(e820
.map
), &e820
.nr_map
);
379 int __init
efi_memblock_x86_reserve_range(void)
381 struct efi_info
*e
= &boot_params
.efi_info
;
385 /* Can't handle data above 4GB at this time */
386 if (e
->efi_memmap_hi
) {
387 pr_err("Memory map is above 4GB, disabling EFI.\n");
390 pmap
= e
->efi_memmap
;
392 pmap
= (e
->efi_memmap
| ((__u64
)e
->efi_memmap_hi
<< 32));
394 memmap
.phys_map
= (void *)pmap
;
395 memmap
.nr_map
= e
->efi_memmap_size
/
397 memmap
.desc_size
= e
->efi_memdesc_size
;
398 memmap
.desc_version
= e
->efi_memdesc_version
;
400 memblock_reserve(pmap
, memmap
.nr_map
* memmap
.desc_size
);
406 static void __init
print_efi_memmap(void)
408 efi_memory_desc_t
*md
;
412 for (p
= memmap
.map
, i
= 0;
414 p
+= memmap
.desc_size
, i
++) {
416 pr_info("mem%02u: type=%u, attr=0x%llx, "
417 "range=[0x%016llx-0x%016llx) (%lluMB)\n",
418 i
, md
->type
, md
->attribute
, md
->phys_addr
,
419 md
->phys_addr
+ (md
->num_pages
<< EFI_PAGE_SHIFT
),
420 (md
->num_pages
>> (20 - EFI_PAGE_SHIFT
)));
423 #endif /* EFI_DEBUG */
425 void __init
efi_reserve_boot_services(void)
429 for (p
= memmap
.map
; p
< memmap
.map_end
; p
+= memmap
.desc_size
) {
430 efi_memory_desc_t
*md
= p
;
431 u64 start
= md
->phys_addr
;
432 u64 size
= md
->num_pages
<< EFI_PAGE_SHIFT
;
434 if (md
->type
!= EFI_BOOT_SERVICES_CODE
&&
435 md
->type
!= EFI_BOOT_SERVICES_DATA
)
437 /* Only reserve where possible:
438 * - Not within any already allocated areas
439 * - Not over any memory area (really needed, if above?)
440 * - Not within any part of the kernel
441 * - Not the bios reserved area
443 if ((start
+size
>= __pa_symbol(_text
)
444 && start
<= __pa_symbol(_end
)) ||
445 !e820_all_mapped(start
, start
+size
, E820_RAM
) ||
446 memblock_is_region_reserved(start
, size
)) {
447 /* Could not reserve, skip it */
449 memblock_dbg("Could not reserve boot range "
450 "[0x%010llx-0x%010llx]\n",
451 start
, start
+size
-1);
453 memblock_reserve(start
, size
);
457 void __init
efi_unmap_memmap(void)
459 clear_bit(EFI_MEMMAP
, &x86_efi_facility
);
461 early_iounmap(memmap
.map
, memmap
.nr_map
* memmap
.desc_size
);
466 void __init
efi_free_boot_services(void)
470 if (!efi_is_native())
473 for (p
= memmap
.map
; p
< memmap
.map_end
; p
+= memmap
.desc_size
) {
474 efi_memory_desc_t
*md
= p
;
475 unsigned long long start
= md
->phys_addr
;
476 unsigned long long size
= md
->num_pages
<< EFI_PAGE_SHIFT
;
478 if (md
->type
!= EFI_BOOT_SERVICES_CODE
&&
479 md
->type
!= EFI_BOOT_SERVICES_DATA
)
482 /* Could not reserve boot area */
486 free_bootmem_late(start
, size
);
492 static int __init
efi_systab_init(void *phys
)
494 if (efi_enabled(EFI_64BIT
)) {
495 efi_system_table_64_t
*systab64
;
498 systab64
= early_ioremap((unsigned long)phys
,
500 if (systab64
== NULL
) {
501 pr_err("Couldn't map the system table!\n");
505 efi_systab
.hdr
= systab64
->hdr
;
506 efi_systab
.fw_vendor
= systab64
->fw_vendor
;
507 tmp
|= systab64
->fw_vendor
;
508 efi_systab
.fw_revision
= systab64
->fw_revision
;
509 efi_systab
.con_in_handle
= systab64
->con_in_handle
;
510 tmp
|= systab64
->con_in_handle
;
511 efi_systab
.con_in
= systab64
->con_in
;
512 tmp
|= systab64
->con_in
;
513 efi_systab
.con_out_handle
= systab64
->con_out_handle
;
514 tmp
|= systab64
->con_out_handle
;
515 efi_systab
.con_out
= systab64
->con_out
;
516 tmp
|= systab64
->con_out
;
517 efi_systab
.stderr_handle
= systab64
->stderr_handle
;
518 tmp
|= systab64
->stderr_handle
;
519 efi_systab
.stderr
= systab64
->stderr
;
520 tmp
|= systab64
->stderr
;
521 efi_systab
.runtime
= (void *)(unsigned long)systab64
->runtime
;
522 tmp
|= systab64
->runtime
;
523 efi_systab
.boottime
= (void *)(unsigned long)systab64
->boottime
;
524 tmp
|= systab64
->boottime
;
525 efi_systab
.nr_tables
= systab64
->nr_tables
;
526 efi_systab
.tables
= systab64
->tables
;
527 tmp
|= systab64
->tables
;
529 early_iounmap(systab64
, sizeof(*systab64
));
532 pr_err("EFI data located above 4GB, disabling EFI.\n");
537 efi_system_table_32_t
*systab32
;
539 systab32
= early_ioremap((unsigned long)phys
,
541 if (systab32
== NULL
) {
542 pr_err("Couldn't map the system table!\n");
546 efi_systab
.hdr
= systab32
->hdr
;
547 efi_systab
.fw_vendor
= systab32
->fw_vendor
;
548 efi_systab
.fw_revision
= systab32
->fw_revision
;
549 efi_systab
.con_in_handle
= systab32
->con_in_handle
;
550 efi_systab
.con_in
= systab32
->con_in
;
551 efi_systab
.con_out_handle
= systab32
->con_out_handle
;
552 efi_systab
.con_out
= systab32
->con_out
;
553 efi_systab
.stderr_handle
= systab32
->stderr_handle
;
554 efi_systab
.stderr
= systab32
->stderr
;
555 efi_systab
.runtime
= (void *)(unsigned long)systab32
->runtime
;
556 efi_systab
.boottime
= (void *)(unsigned long)systab32
->boottime
;
557 efi_systab
.nr_tables
= systab32
->nr_tables
;
558 efi_systab
.tables
= systab32
->tables
;
560 early_iounmap(systab32
, sizeof(*systab32
));
563 efi
.systab
= &efi_systab
;
566 * Verify the EFI Table
568 if (efi
.systab
->hdr
.signature
!= EFI_SYSTEM_TABLE_SIGNATURE
) {
569 pr_err("System table signature incorrect!\n");
572 if ((efi
.systab
->hdr
.revision
>> 16) == 0)
573 pr_err("Warning: System table version "
574 "%d.%02d, expected 1.00 or greater!\n",
575 efi
.systab
->hdr
.revision
>> 16,
576 efi
.systab
->hdr
.revision
& 0xffff);
581 static int __init
efi_config_init(u64 tables
, int nr_tables
)
583 void *config_tables
, *tablep
;
586 if (efi_enabled(EFI_64BIT
))
587 sz
= sizeof(efi_config_table_64_t
);
589 sz
= sizeof(efi_config_table_32_t
);
592 * Let's see what config tables the firmware passed to us.
594 config_tables
= early_ioremap(tables
, nr_tables
* sz
);
595 if (config_tables
== NULL
) {
596 pr_err("Could not map Configuration table!\n");
600 tablep
= config_tables
;
602 for (i
= 0; i
< efi
.systab
->nr_tables
; i
++) {
606 if (efi_enabled(EFI_64BIT
)) {
608 guid
= ((efi_config_table_64_t
*)tablep
)->guid
;
609 table64
= ((efi_config_table_64_t
*)tablep
)->table
;
614 pr_err("Table located above 4GB, disabling EFI.\n");
615 early_iounmap(config_tables
,
616 efi
.systab
->nr_tables
* sz
);
621 guid
= ((efi_config_table_32_t
*)tablep
)->guid
;
622 table
= ((efi_config_table_32_t
*)tablep
)->table
;
624 if (!efi_guidcmp(guid
, MPS_TABLE_GUID
)) {
626 pr_cont(" MPS=0x%lx ", table
);
627 } else if (!efi_guidcmp(guid
, ACPI_20_TABLE_GUID
)) {
629 pr_cont(" ACPI 2.0=0x%lx ", table
);
630 } else if (!efi_guidcmp(guid
, ACPI_TABLE_GUID
)) {
632 pr_cont(" ACPI=0x%lx ", table
);
633 } else if (!efi_guidcmp(guid
, SMBIOS_TABLE_GUID
)) {
635 pr_cont(" SMBIOS=0x%lx ", table
);
637 } else if (!efi_guidcmp(guid
, UV_SYSTEM_TABLE_GUID
)) {
638 efi
.uv_systab
= table
;
639 pr_cont(" UVsystab=0x%lx ", table
);
641 } else if (!efi_guidcmp(guid
, HCDP_TABLE_GUID
)) {
643 pr_cont(" HCDP=0x%lx ", table
);
644 } else if (!efi_guidcmp(guid
, UGA_IO_PROTOCOL_GUID
)) {
646 pr_cont(" UGA=0x%lx ", table
);
651 early_iounmap(config_tables
, efi
.systab
->nr_tables
* sz
);
655 static int __init
efi_runtime_init(void)
657 efi_runtime_services_t
*runtime
;
660 * Check out the runtime services table. We need to map
661 * the runtime services table so that we can grab the physical
662 * address of several of the EFI runtime functions, needed to
663 * set the firmware into virtual mode.
665 runtime
= early_ioremap((unsigned long)efi
.systab
->runtime
,
666 sizeof(efi_runtime_services_t
));
668 pr_err("Could not map the runtime service table!\n");
672 * We will only need *early* access to the following
673 * two EFI runtime services before set_virtual_address_map
676 efi_phys
.get_time
= (efi_get_time_t
*)runtime
->get_time
;
677 efi_phys
.set_virtual_address_map
=
678 (efi_set_virtual_address_map_t
*)
679 runtime
->set_virtual_address_map
;
681 * Make efi_get_time can be called before entering
684 efi
.get_time
= phys_efi_get_time
;
685 early_iounmap(runtime
, sizeof(efi_runtime_services_t
));
690 static int __init
efi_memmap_init(void)
692 /* Map the EFI memory map */
693 memmap
.map
= early_ioremap((unsigned long)memmap
.phys_map
,
694 memmap
.nr_map
* memmap
.desc_size
);
695 if (memmap
.map
== NULL
) {
696 pr_err("Could not map the memory map!\n");
699 memmap
.map_end
= memmap
.map
+ (memmap
.nr_map
* memmap
.desc_size
);
707 void __init
efi_init(void)
710 char vendor
[100] = "unknown";
715 if (boot_params
.efi_info
.efi_systab_hi
||
716 boot_params
.efi_info
.efi_memmap_hi
) {
717 pr_info("Table located above 4GB, disabling EFI.\n");
720 efi_phys
.systab
= (efi_system_table_t
*)boot_params
.efi_info
.efi_systab
;
722 efi_phys
.systab
= (efi_system_table_t
*)
723 (boot_params
.efi_info
.efi_systab
|
724 ((__u64
)boot_params
.efi_info
.efi_systab_hi
<<32));
727 if (efi_systab_init(efi_phys
.systab
))
730 set_bit(EFI_SYSTEM_TABLES
, &x86_efi_facility
);
733 * Show what we know for posterity
735 c16
= tmp
= early_ioremap(efi
.systab
->fw_vendor
, 2);
737 for (i
= 0; i
< sizeof(vendor
) - 1 && *c16
; ++i
)
741 pr_err("Could not map the firmware vendor!\n");
742 early_iounmap(tmp
, 2);
744 pr_info("EFI v%u.%.02u by %s\n",
745 efi
.systab
->hdr
.revision
>> 16,
746 efi
.systab
->hdr
.revision
& 0xffff, vendor
);
748 if (efi_config_init(efi
.systab
->tables
, efi
.systab
->nr_tables
))
751 set_bit(EFI_CONFIG_TABLES
, &x86_efi_facility
);
754 * Note: We currently don't support runtime services on an EFI
755 * that doesn't match the kernel 32/64-bit mode.
758 if (!efi_is_native())
759 pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
761 if (disable_runtime
|| efi_runtime_init())
763 set_bit(EFI_RUNTIME_SERVICES
, &x86_efi_facility
);
766 if (efi_memmap_init())
769 set_bit(EFI_MEMMAP
, &x86_efi_facility
);
772 if (efi_is_native()) {
773 x86_platform
.get_wallclock
= efi_get_time
;
774 x86_platform
.set_wallclock
= efi_set_rtc_mmss
;
783 void __init
efi_late_init(void)
788 void __init
efi_set_executable(efi_memory_desc_t
*md
, bool executable
)
792 addr
= md
->virt_addr
;
793 npages
= md
->num_pages
;
795 memrange_efi_to_native(&addr
, &npages
);
798 set_memory_x(addr
, npages
);
800 set_memory_nx(addr
, npages
);
803 static void __init
runtime_code_page_mkexec(void)
805 efi_memory_desc_t
*md
;
808 /* Make EFI runtime service code area executable */
809 for (p
= memmap
.map
; p
< memmap
.map_end
; p
+= memmap
.desc_size
) {
812 if (md
->type
!= EFI_RUNTIME_SERVICES_CODE
)
815 efi_set_executable(md
, true);
820 * We can't ioremap data in EFI boot services RAM, because we've already mapped
821 * it as RAM. So, look it up in the existing EFI memory map instead. Only
822 * callable after efi_enter_virtual_mode and before efi_free_boot_services.
824 void __iomem
*efi_lookup_mapped_addr(u64 phys_addr
)
827 if (WARN_ON(!memmap
.map
))
829 for (p
= memmap
.map
; p
< memmap
.map_end
; p
+= memmap
.desc_size
) {
830 efi_memory_desc_t
*md
= p
;
831 u64 size
= md
->num_pages
<< EFI_PAGE_SHIFT
;
832 u64 end
= md
->phys_addr
+ size
;
833 if (!(md
->attribute
& EFI_MEMORY_RUNTIME
) &&
834 md
->type
!= EFI_BOOT_SERVICES_CODE
&&
835 md
->type
!= EFI_BOOT_SERVICES_DATA
)
839 if (phys_addr
>= md
->phys_addr
&& phys_addr
< end
) {
840 phys_addr
+= md
->virt_addr
- md
->phys_addr
;
841 return (__force
void __iomem
*)(unsigned long)phys_addr
;
847 void efi_memory_uc(u64 addr
, unsigned long size
)
849 unsigned long page_shift
= 1UL << EFI_PAGE_SHIFT
;
852 npages
= round_up(size
, page_shift
) / page_shift
;
853 memrange_efi_to_native(&addr
, &npages
);
854 set_memory_uc(addr
, npages
);
858 * This function will switch the EFI runtime services to virtual mode.
859 * Essentially, look through the EFI memmap and map every region that
860 * has the runtime attribute bit set in its memory descriptor and update
861 * that memory descriptor with the virtual address obtained from ioremap().
862 * This enables the runtime services to be called without having to
863 * thunk back into physical mode for every invocation.
865 void __init
efi_enter_virtual_mode(void)
867 efi_memory_desc_t
*md
, *prev_md
= NULL
;
870 u64 end
, systab
, start_pfn
, end_pfn
;
871 void *p
, *va
, *new_memmap
= NULL
;
877 * We don't do virtual mode, since we don't do runtime services, on
881 if (!efi_is_native()) {
886 /* Merge contiguous regions of the same type and attribute */
887 for (p
= memmap
.map
; p
< memmap
.map_end
; p
+= memmap
.desc_size
) {
896 if (prev_md
->type
!= md
->type
||
897 prev_md
->attribute
!= md
->attribute
) {
902 prev_size
= prev_md
->num_pages
<< EFI_PAGE_SHIFT
;
904 if (md
->phys_addr
== (prev_md
->phys_addr
+ prev_size
)) {
905 prev_md
->num_pages
+= md
->num_pages
;
906 md
->type
= EFI_RESERVED_TYPE
;
913 for (p
= memmap
.map
; p
< memmap
.map_end
; p
+= memmap
.desc_size
) {
915 if (!(md
->attribute
& EFI_MEMORY_RUNTIME
) &&
916 md
->type
!= EFI_BOOT_SERVICES_CODE
&&
917 md
->type
!= EFI_BOOT_SERVICES_DATA
)
920 size
= md
->num_pages
<< EFI_PAGE_SHIFT
;
921 end
= md
->phys_addr
+ size
;
923 start_pfn
= PFN_DOWN(md
->phys_addr
);
924 end_pfn
= PFN_UP(end
);
925 if (pfn_range_is_mapped(start_pfn
, end_pfn
)) {
926 va
= __va(md
->phys_addr
);
928 if (!(md
->attribute
& EFI_MEMORY_WB
))
929 efi_memory_uc((u64
)(unsigned long)va
, size
);
931 va
= efi_ioremap(md
->phys_addr
, size
,
932 md
->type
, md
->attribute
);
934 md
->virt_addr
= (u64
) (unsigned long) va
;
937 pr_err("ioremap of 0x%llX failed!\n",
938 (unsigned long long)md
->phys_addr
);
942 systab
= (u64
) (unsigned long) efi_phys
.systab
;
943 if (md
->phys_addr
<= systab
&& systab
< end
) {
944 systab
+= md
->virt_addr
- md
->phys_addr
;
945 efi
.systab
= (efi_system_table_t
*) (unsigned long) systab
;
947 new_memmap
= krealloc(new_memmap
,
948 (count
+ 1) * memmap
.desc_size
,
950 memcpy(new_memmap
+ (count
* memmap
.desc_size
), md
,
957 status
= phys_efi_set_virtual_address_map(
958 memmap
.desc_size
* count
,
961 (efi_memory_desc_t
*)__pa(new_memmap
));
963 if (status
!= EFI_SUCCESS
) {
964 pr_alert("Unable to switch EFI into virtual mode "
965 "(status=%lx)!\n", status
);
966 panic("EFI call to SetVirtualAddressMap() failed!");
970 * Now that EFI is in virtual mode, update the function
971 * pointers in the runtime service table to the new virtual addresses.
973 * Call EFI services through wrapper functions.
975 efi
.runtime_version
= efi_systab
.hdr
.revision
;
976 efi
.get_time
= virt_efi_get_time
;
977 efi
.set_time
= virt_efi_set_time
;
978 efi
.get_wakeup_time
= virt_efi_get_wakeup_time
;
979 efi
.set_wakeup_time
= virt_efi_set_wakeup_time
;
980 efi
.get_variable
= virt_efi_get_variable
;
981 efi
.get_next_variable
= virt_efi_get_next_variable
;
982 efi
.set_variable
= virt_efi_set_variable
;
983 efi
.get_next_high_mono_count
= virt_efi_get_next_high_mono_count
;
984 efi
.reset_system
= virt_efi_reset_system
;
985 efi
.set_virtual_address_map
= NULL
;
986 efi
.query_variable_info
= virt_efi_query_variable_info
;
987 efi
.update_capsule
= virt_efi_update_capsule
;
988 efi
.query_capsule_caps
= virt_efi_query_capsule_caps
;
989 if (__supported_pte_mask
& _PAGE_NX
)
990 runtime_code_page_mkexec();
994 /* clean DUMMY object */
995 efi
.set_variable(efi_dummy_name
, &EFI_DUMMY_GUID
,
996 EFI_VARIABLE_NON_VOLATILE
|
997 EFI_VARIABLE_BOOTSERVICE_ACCESS
|
998 EFI_VARIABLE_RUNTIME_ACCESS
,
1003 * Convenience functions to obtain memory types and attributes
1005 u32
efi_mem_type(unsigned long phys_addr
)
1007 efi_memory_desc_t
*md
;
1010 if (!efi_enabled(EFI_MEMMAP
))
1013 for (p
= memmap
.map
; p
< memmap
.map_end
; p
+= memmap
.desc_size
) {
1015 if ((md
->phys_addr
<= phys_addr
) &&
1016 (phys_addr
< (md
->phys_addr
+
1017 (md
->num_pages
<< EFI_PAGE_SHIFT
))))
1023 u64
efi_mem_attributes(unsigned long phys_addr
)
1025 efi_memory_desc_t
*md
;
1028 for (p
= memmap
.map
; p
< memmap
.map_end
; p
+= memmap
.desc_size
) {
1030 if ((md
->phys_addr
<= phys_addr
) &&
1031 (phys_addr
< (md
->phys_addr
+
1032 (md
->num_pages
<< EFI_PAGE_SHIFT
))))
1033 return md
->attribute
;
1039 * Some firmware has serious problems when using more than 50% of the EFI
1040 * variable store, i.e. it triggers bugs that can brick machines. Ensure that
1041 * we never use more than this safe limit.
1043 * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
1046 efi_status_t
efi_query_variable_store(u32 attributes
, unsigned long size
)
1048 efi_status_t status
;
1049 u64 storage_size
, remaining_size
, max_size
;
1051 if (!(attributes
& EFI_VARIABLE_NON_VOLATILE
))
1054 status
= efi
.query_variable_info(attributes
, &storage_size
,
1055 &remaining_size
, &max_size
);
1056 if (status
!= EFI_SUCCESS
)
1060 * Some firmware implementations refuse to boot if there's insufficient
1061 * space in the variable store. We account for that by refusing the
1062 * write if permitting it would reduce the available space to under
1063 * 5KB. This figure was provided by Samsung, so should be safe.
1065 if ((remaining_size
- size
< EFI_MIN_RESERVE
) &&
1066 !efi_no_storage_paranoia
) {
1069 * Triggering garbage collection may require that the firmware
1070 * generate a real EFI_OUT_OF_RESOURCES error. We can force
1071 * that by attempting to use more space than is available.
1073 unsigned long dummy_size
= remaining_size
+ 1024;
1074 void *dummy
= kzalloc(dummy_size
, GFP_ATOMIC
);
1077 return EFI_OUT_OF_RESOURCES
;
1079 status
= efi
.set_variable(efi_dummy_name
, &EFI_DUMMY_GUID
,
1080 EFI_VARIABLE_NON_VOLATILE
|
1081 EFI_VARIABLE_BOOTSERVICE_ACCESS
|
1082 EFI_VARIABLE_RUNTIME_ACCESS
,
1085 if (status
== EFI_SUCCESS
) {
1087 * This should have failed, so if it didn't make sure
1088 * that we delete it...
1090 efi
.set_variable(efi_dummy_name
, &EFI_DUMMY_GUID
,
1091 EFI_VARIABLE_NON_VOLATILE
|
1092 EFI_VARIABLE_BOOTSERVICE_ACCESS
|
1093 EFI_VARIABLE_RUNTIME_ACCESS
,
1100 * The runtime code may now have triggered a garbage collection
1101 * run, so check the variable info again
1103 status
= efi
.query_variable_info(attributes
, &storage_size
,
1104 &remaining_size
, &max_size
);
1106 if (status
!= EFI_SUCCESS
)
1110 * There still isn't enough room, so return an error
1112 if (remaining_size
- size
< EFI_MIN_RESERVE
)
1113 return EFI_OUT_OF_RESOURCES
;
1118 EXPORT_SYMBOL_GPL(efi_query_variable_store
);