Linux 3.11-rc3
[cris-mirror.git] / drivers / infiniband / hw / qib / qib_user_sdma.c
blob82442085cbe64ccbea4f5e46565b492d864ade89
1 /*
2 * Copyright (c) 2007, 2008, 2009 QLogic Corporation. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
32 #include <linux/mm.h>
33 #include <linux/types.h>
34 #include <linux/device.h>
35 #include <linux/dmapool.h>
36 #include <linux/slab.h>
37 #include <linux/list.h>
38 #include <linux/highmem.h>
39 #include <linux/io.h>
40 #include <linux/uio.h>
41 #include <linux/rbtree.h>
42 #include <linux/spinlock.h>
43 #include <linux/delay.h>
45 #include "qib.h"
46 #include "qib_user_sdma.h"
48 /* minimum size of header */
49 #define QIB_USER_SDMA_MIN_HEADER_LENGTH 64
50 /* expected size of headers (for dma_pool) */
51 #define QIB_USER_SDMA_EXP_HEADER_LENGTH 64
52 /* attempt to drain the queue for 5secs */
53 #define QIB_USER_SDMA_DRAIN_TIMEOUT 500
55 struct qib_user_sdma_pkt {
56 u8 naddr; /* dimension of addr (1..3) ... */
57 u32 counter; /* sdma pkts queued counter for this entry */
58 u64 added; /* global descq number of entries */
60 struct {
61 u32 offset; /* offset for kvaddr, addr */
62 u32 length; /* length in page */
63 u8 put_page; /* should we put_page? */
64 u8 dma_mapped; /* is page dma_mapped? */
65 struct page *page; /* may be NULL (coherent mem) */
66 void *kvaddr; /* FIXME: only for pio hack */
67 dma_addr_t addr;
68 } addr[4]; /* max pages, any more and we coalesce */
69 struct list_head list; /* list element */
72 struct qib_user_sdma_queue {
74 * pkts sent to dma engine are queued on this
75 * list head. the type of the elements of this
76 * list are struct qib_user_sdma_pkt...
78 struct list_head sent;
80 /* headers with expected length are allocated from here... */
81 char header_cache_name[64];
82 struct dma_pool *header_cache;
84 /* packets are allocated from the slab cache... */
85 char pkt_slab_name[64];
86 struct kmem_cache *pkt_slab;
88 /* as packets go on the queued queue, they are counted... */
89 u32 counter;
90 u32 sent_counter;
92 /* dma page table */
93 struct rb_root dma_pages_root;
95 /* protect everything above... */
96 struct mutex lock;
99 struct qib_user_sdma_queue *
100 qib_user_sdma_queue_create(struct device *dev, int unit, int ctxt, int sctxt)
102 struct qib_user_sdma_queue *pq =
103 kmalloc(sizeof(struct qib_user_sdma_queue), GFP_KERNEL);
105 if (!pq)
106 goto done;
108 pq->counter = 0;
109 pq->sent_counter = 0;
110 INIT_LIST_HEAD(&pq->sent);
112 mutex_init(&pq->lock);
114 snprintf(pq->pkt_slab_name, sizeof(pq->pkt_slab_name),
115 "qib-user-sdma-pkts-%u-%02u.%02u", unit, ctxt, sctxt);
116 pq->pkt_slab = kmem_cache_create(pq->pkt_slab_name,
117 sizeof(struct qib_user_sdma_pkt),
118 0, 0, NULL);
120 if (!pq->pkt_slab)
121 goto err_kfree;
123 snprintf(pq->header_cache_name, sizeof(pq->header_cache_name),
124 "qib-user-sdma-headers-%u-%02u.%02u", unit, ctxt, sctxt);
125 pq->header_cache = dma_pool_create(pq->header_cache_name,
126 dev,
127 QIB_USER_SDMA_EXP_HEADER_LENGTH,
128 4, 0);
129 if (!pq->header_cache)
130 goto err_slab;
132 pq->dma_pages_root = RB_ROOT;
134 goto done;
136 err_slab:
137 kmem_cache_destroy(pq->pkt_slab);
138 err_kfree:
139 kfree(pq);
140 pq = NULL;
142 done:
143 return pq;
146 static void qib_user_sdma_init_frag(struct qib_user_sdma_pkt *pkt,
147 int i, size_t offset, size_t len,
148 int put_page, int dma_mapped,
149 struct page *page,
150 void *kvaddr, dma_addr_t dma_addr)
152 pkt->addr[i].offset = offset;
153 pkt->addr[i].length = len;
154 pkt->addr[i].put_page = put_page;
155 pkt->addr[i].dma_mapped = dma_mapped;
156 pkt->addr[i].page = page;
157 pkt->addr[i].kvaddr = kvaddr;
158 pkt->addr[i].addr = dma_addr;
161 static void qib_user_sdma_init_header(struct qib_user_sdma_pkt *pkt,
162 u32 counter, size_t offset,
163 size_t len, int dma_mapped,
164 struct page *page,
165 void *kvaddr, dma_addr_t dma_addr)
167 pkt->naddr = 1;
168 pkt->counter = counter;
169 qib_user_sdma_init_frag(pkt, 0, offset, len, 0, dma_mapped, page,
170 kvaddr, dma_addr);
173 /* we've too many pages in the iovec, coalesce to a single page */
174 static int qib_user_sdma_coalesce(const struct qib_devdata *dd,
175 struct qib_user_sdma_pkt *pkt,
176 const struct iovec *iov,
177 unsigned long niov)
179 int ret = 0;
180 struct page *page = alloc_page(GFP_KERNEL);
181 void *mpage_save;
182 char *mpage;
183 int i;
184 int len = 0;
185 dma_addr_t dma_addr;
187 if (!page) {
188 ret = -ENOMEM;
189 goto done;
192 mpage = kmap(page);
193 mpage_save = mpage;
194 for (i = 0; i < niov; i++) {
195 int cfur;
197 cfur = copy_from_user(mpage,
198 iov[i].iov_base, iov[i].iov_len);
199 if (cfur) {
200 ret = -EFAULT;
201 goto free_unmap;
204 mpage += iov[i].iov_len;
205 len += iov[i].iov_len;
208 dma_addr = dma_map_page(&dd->pcidev->dev, page, 0, len,
209 DMA_TO_DEVICE);
210 if (dma_mapping_error(&dd->pcidev->dev, dma_addr)) {
211 ret = -ENOMEM;
212 goto free_unmap;
215 qib_user_sdma_init_frag(pkt, 1, 0, len, 0, 1, page, mpage_save,
216 dma_addr);
217 pkt->naddr = 2;
219 goto done;
221 free_unmap:
222 kunmap(page);
223 __free_page(page);
224 done:
225 return ret;
229 * How many pages in this iovec element?
231 static int qib_user_sdma_num_pages(const struct iovec *iov)
233 const unsigned long addr = (unsigned long) iov->iov_base;
234 const unsigned long len = iov->iov_len;
235 const unsigned long spage = addr & PAGE_MASK;
236 const unsigned long epage = (addr + len - 1) & PAGE_MASK;
238 return 1 + ((epage - spage) >> PAGE_SHIFT);
242 * Truncate length to page boundary.
244 static int qib_user_sdma_page_length(unsigned long addr, unsigned long len)
246 const unsigned long offset = addr & ~PAGE_MASK;
248 return ((offset + len) > PAGE_SIZE) ? (PAGE_SIZE - offset) : len;
251 static void qib_user_sdma_free_pkt_frag(struct device *dev,
252 struct qib_user_sdma_queue *pq,
253 struct qib_user_sdma_pkt *pkt,
254 int frag)
256 const int i = frag;
258 if (pkt->addr[i].page) {
259 if (pkt->addr[i].dma_mapped)
260 dma_unmap_page(dev,
261 pkt->addr[i].addr,
262 pkt->addr[i].length,
263 DMA_TO_DEVICE);
265 if (pkt->addr[i].kvaddr)
266 kunmap(pkt->addr[i].page);
268 if (pkt->addr[i].put_page)
269 put_page(pkt->addr[i].page);
270 else
271 __free_page(pkt->addr[i].page);
272 } else if (pkt->addr[i].kvaddr)
273 /* free coherent mem from cache... */
274 dma_pool_free(pq->header_cache,
275 pkt->addr[i].kvaddr, pkt->addr[i].addr);
278 /* return number of pages pinned... */
279 static int qib_user_sdma_pin_pages(const struct qib_devdata *dd,
280 struct qib_user_sdma_pkt *pkt,
281 unsigned long addr, int tlen, int npages)
283 struct page *pages[2];
284 int j;
285 int ret;
287 ret = get_user_pages(current, current->mm, addr,
288 npages, 0, 1, pages, NULL);
290 if (ret != npages) {
291 int i;
293 for (i = 0; i < ret; i++)
294 put_page(pages[i]);
296 ret = -ENOMEM;
297 goto done;
300 for (j = 0; j < npages; j++) {
301 /* map the pages... */
302 const int flen = qib_user_sdma_page_length(addr, tlen);
303 dma_addr_t dma_addr =
304 dma_map_page(&dd->pcidev->dev,
305 pages[j], 0, flen, DMA_TO_DEVICE);
306 unsigned long fofs = addr & ~PAGE_MASK;
308 if (dma_mapping_error(&dd->pcidev->dev, dma_addr)) {
309 ret = -ENOMEM;
310 goto done;
313 qib_user_sdma_init_frag(pkt, pkt->naddr, fofs, flen, 1, 1,
314 pages[j], kmap(pages[j]), dma_addr);
316 pkt->naddr++;
317 addr += flen;
318 tlen -= flen;
321 done:
322 return ret;
325 static int qib_user_sdma_pin_pkt(const struct qib_devdata *dd,
326 struct qib_user_sdma_queue *pq,
327 struct qib_user_sdma_pkt *pkt,
328 const struct iovec *iov,
329 unsigned long niov)
331 int ret = 0;
332 unsigned long idx;
334 for (idx = 0; idx < niov; idx++) {
335 const int npages = qib_user_sdma_num_pages(iov + idx);
336 const unsigned long addr = (unsigned long) iov[idx].iov_base;
338 ret = qib_user_sdma_pin_pages(dd, pkt, addr,
339 iov[idx].iov_len, npages);
340 if (ret < 0)
341 goto free_pkt;
344 goto done;
346 free_pkt:
347 for (idx = 0; idx < pkt->naddr; idx++)
348 qib_user_sdma_free_pkt_frag(&dd->pcidev->dev, pq, pkt, idx);
350 done:
351 return ret;
354 static int qib_user_sdma_init_payload(const struct qib_devdata *dd,
355 struct qib_user_sdma_queue *pq,
356 struct qib_user_sdma_pkt *pkt,
357 const struct iovec *iov,
358 unsigned long niov, int npages)
360 int ret = 0;
362 if (npages >= ARRAY_SIZE(pkt->addr))
363 ret = qib_user_sdma_coalesce(dd, pkt, iov, niov);
364 else
365 ret = qib_user_sdma_pin_pkt(dd, pq, pkt, iov, niov);
367 return ret;
370 /* free a packet list -- return counter value of last packet */
371 static void qib_user_sdma_free_pkt_list(struct device *dev,
372 struct qib_user_sdma_queue *pq,
373 struct list_head *list)
375 struct qib_user_sdma_pkt *pkt, *pkt_next;
377 list_for_each_entry_safe(pkt, pkt_next, list, list) {
378 int i;
380 for (i = 0; i < pkt->naddr; i++)
381 qib_user_sdma_free_pkt_frag(dev, pq, pkt, i);
383 kmem_cache_free(pq->pkt_slab, pkt);
385 INIT_LIST_HEAD(list);
389 * copy headers, coalesce etc -- pq->lock must be held
391 * we queue all the packets to list, returning the
392 * number of bytes total. list must be empty initially,
393 * as, if there is an error we clean it...
395 static int qib_user_sdma_queue_pkts(const struct qib_devdata *dd,
396 struct qib_user_sdma_queue *pq,
397 struct list_head *list,
398 const struct iovec *iov,
399 unsigned long niov,
400 int maxpkts)
402 unsigned long idx = 0;
403 int ret = 0;
404 int npkts = 0;
405 struct page *page = NULL;
406 __le32 *pbc;
407 dma_addr_t dma_addr;
408 struct qib_user_sdma_pkt *pkt = NULL;
409 size_t len;
410 size_t nw;
411 u32 counter = pq->counter;
412 int dma_mapped = 0;
414 while (idx < niov && npkts < maxpkts) {
415 const unsigned long addr = (unsigned long) iov[idx].iov_base;
416 const unsigned long idx_save = idx;
417 unsigned pktnw;
418 unsigned pktnwc;
419 int nfrags = 0;
420 int npages = 0;
421 int cfur;
423 dma_mapped = 0;
424 len = iov[idx].iov_len;
425 nw = len >> 2;
426 page = NULL;
428 pkt = kmem_cache_alloc(pq->pkt_slab, GFP_KERNEL);
429 if (!pkt) {
430 ret = -ENOMEM;
431 goto free_list;
434 if (len < QIB_USER_SDMA_MIN_HEADER_LENGTH ||
435 len > PAGE_SIZE || len & 3 || addr & 3) {
436 ret = -EINVAL;
437 goto free_pkt;
440 if (len == QIB_USER_SDMA_EXP_HEADER_LENGTH)
441 pbc = dma_pool_alloc(pq->header_cache, GFP_KERNEL,
442 &dma_addr);
443 else
444 pbc = NULL;
446 if (!pbc) {
447 page = alloc_page(GFP_KERNEL);
448 if (!page) {
449 ret = -ENOMEM;
450 goto free_pkt;
452 pbc = kmap(page);
455 cfur = copy_from_user(pbc, iov[idx].iov_base, len);
456 if (cfur) {
457 ret = -EFAULT;
458 goto free_pbc;
462 * This assignment is a bit strange. it's because the
463 * the pbc counts the number of 32 bit words in the full
464 * packet _except_ the first word of the pbc itself...
466 pktnwc = nw - 1;
469 * pktnw computation yields the number of 32 bit words
470 * that the caller has indicated in the PBC. note that
471 * this is one less than the total number of words that
472 * goes to the send DMA engine as the first 32 bit word
473 * of the PBC itself is not counted. Armed with this count,
474 * we can verify that the packet is consistent with the
475 * iovec lengths.
477 pktnw = le32_to_cpu(*pbc) & QIB_PBC_LENGTH_MASK;
478 if (pktnw < pktnwc || pktnw > pktnwc + (PAGE_SIZE >> 2)) {
479 ret = -EINVAL;
480 goto free_pbc;
483 idx++;
484 while (pktnwc < pktnw && idx < niov) {
485 const size_t slen = iov[idx].iov_len;
486 const unsigned long faddr =
487 (unsigned long) iov[idx].iov_base;
489 if (slen & 3 || faddr & 3 || !slen ||
490 slen > PAGE_SIZE) {
491 ret = -EINVAL;
492 goto free_pbc;
495 npages++;
496 if ((faddr & PAGE_MASK) !=
497 ((faddr + slen - 1) & PAGE_MASK))
498 npages++;
500 pktnwc += slen >> 2;
501 idx++;
502 nfrags++;
505 if (pktnwc != pktnw) {
506 ret = -EINVAL;
507 goto free_pbc;
510 if (page) {
511 dma_addr = dma_map_page(&dd->pcidev->dev,
512 page, 0, len, DMA_TO_DEVICE);
513 if (dma_mapping_error(&dd->pcidev->dev, dma_addr)) {
514 ret = -ENOMEM;
515 goto free_pbc;
518 dma_mapped = 1;
521 qib_user_sdma_init_header(pkt, counter, 0, len, dma_mapped,
522 page, pbc, dma_addr);
524 if (nfrags) {
525 ret = qib_user_sdma_init_payload(dd, pq, pkt,
526 iov + idx_save + 1,
527 nfrags, npages);
528 if (ret < 0)
529 goto free_pbc_dma;
532 counter++;
533 npkts++;
535 list_add_tail(&pkt->list, list);
538 ret = idx;
539 goto done;
541 free_pbc_dma:
542 if (dma_mapped)
543 dma_unmap_page(&dd->pcidev->dev, dma_addr, len, DMA_TO_DEVICE);
544 free_pbc:
545 if (page) {
546 kunmap(page);
547 __free_page(page);
548 } else
549 dma_pool_free(pq->header_cache, pbc, dma_addr);
550 free_pkt:
551 kmem_cache_free(pq->pkt_slab, pkt);
552 free_list:
553 qib_user_sdma_free_pkt_list(&dd->pcidev->dev, pq, list);
554 done:
555 return ret;
558 static void qib_user_sdma_set_complete_counter(struct qib_user_sdma_queue *pq,
559 u32 c)
561 pq->sent_counter = c;
564 /* try to clean out queue -- needs pq->lock */
565 static int qib_user_sdma_queue_clean(struct qib_pportdata *ppd,
566 struct qib_user_sdma_queue *pq)
568 struct qib_devdata *dd = ppd->dd;
569 struct list_head free_list;
570 struct qib_user_sdma_pkt *pkt;
571 struct qib_user_sdma_pkt *pkt_prev;
572 int ret = 0;
574 INIT_LIST_HEAD(&free_list);
576 list_for_each_entry_safe(pkt, pkt_prev, &pq->sent, list) {
577 s64 descd = ppd->sdma_descq_removed - pkt->added;
579 if (descd < 0)
580 break;
582 list_move_tail(&pkt->list, &free_list);
584 /* one more packet cleaned */
585 ret++;
588 if (!list_empty(&free_list)) {
589 u32 counter;
591 pkt = list_entry(free_list.prev,
592 struct qib_user_sdma_pkt, list);
593 counter = pkt->counter;
595 qib_user_sdma_free_pkt_list(&dd->pcidev->dev, pq, &free_list);
596 qib_user_sdma_set_complete_counter(pq, counter);
599 return ret;
602 void qib_user_sdma_queue_destroy(struct qib_user_sdma_queue *pq)
604 if (!pq)
605 return;
607 kmem_cache_destroy(pq->pkt_slab);
608 dma_pool_destroy(pq->header_cache);
609 kfree(pq);
612 /* clean descriptor queue, returns > 0 if some elements cleaned */
613 static int qib_user_sdma_hwqueue_clean(struct qib_pportdata *ppd)
615 int ret;
616 unsigned long flags;
618 spin_lock_irqsave(&ppd->sdma_lock, flags);
619 ret = qib_sdma_make_progress(ppd);
620 spin_unlock_irqrestore(&ppd->sdma_lock, flags);
622 return ret;
625 /* we're in close, drain packets so that we can cleanup successfully... */
626 void qib_user_sdma_queue_drain(struct qib_pportdata *ppd,
627 struct qib_user_sdma_queue *pq)
629 struct qib_devdata *dd = ppd->dd;
630 int i;
632 if (!pq)
633 return;
635 for (i = 0; i < QIB_USER_SDMA_DRAIN_TIMEOUT; i++) {
636 mutex_lock(&pq->lock);
637 if (list_empty(&pq->sent)) {
638 mutex_unlock(&pq->lock);
639 break;
641 qib_user_sdma_hwqueue_clean(ppd);
642 qib_user_sdma_queue_clean(ppd, pq);
643 mutex_unlock(&pq->lock);
644 msleep(10);
647 if (!list_empty(&pq->sent)) {
648 struct list_head free_list;
650 qib_dev_err(dd, "user sdma lists not empty: forcing!\n");
651 INIT_LIST_HEAD(&free_list);
652 mutex_lock(&pq->lock);
653 list_splice_init(&pq->sent, &free_list);
654 qib_user_sdma_free_pkt_list(&dd->pcidev->dev, pq, &free_list);
655 mutex_unlock(&pq->lock);
659 static inline __le64 qib_sdma_make_desc0(struct qib_pportdata *ppd,
660 u64 addr, u64 dwlen, u64 dwoffset)
662 u8 tmpgen;
664 tmpgen = ppd->sdma_generation;
666 return cpu_to_le64(/* SDmaPhyAddr[31:0] */
667 ((addr & 0xfffffffcULL) << 32) |
668 /* SDmaGeneration[1:0] */
669 ((tmpgen & 3ULL) << 30) |
670 /* SDmaDwordCount[10:0] */
671 ((dwlen & 0x7ffULL) << 16) |
672 /* SDmaBufOffset[12:2] */
673 (dwoffset & 0x7ffULL));
676 static inline __le64 qib_sdma_make_first_desc0(__le64 descq)
678 return descq | cpu_to_le64(1ULL << 12);
681 static inline __le64 qib_sdma_make_last_desc0(__le64 descq)
683 /* last */ /* dma head */
684 return descq | cpu_to_le64(1ULL << 11 | 1ULL << 13);
687 static inline __le64 qib_sdma_make_desc1(u64 addr)
689 /* SDmaPhyAddr[47:32] */
690 return cpu_to_le64(addr >> 32);
693 static void qib_user_sdma_send_frag(struct qib_pportdata *ppd,
694 struct qib_user_sdma_pkt *pkt, int idx,
695 unsigned ofs, u16 tail)
697 const u64 addr = (u64) pkt->addr[idx].addr +
698 (u64) pkt->addr[idx].offset;
699 const u64 dwlen = (u64) pkt->addr[idx].length / 4;
700 __le64 *descqp;
701 __le64 descq0;
703 descqp = &ppd->sdma_descq[tail].qw[0];
705 descq0 = qib_sdma_make_desc0(ppd, addr, dwlen, ofs);
706 if (idx == 0)
707 descq0 = qib_sdma_make_first_desc0(descq0);
708 if (idx == pkt->naddr - 1)
709 descq0 = qib_sdma_make_last_desc0(descq0);
711 descqp[0] = descq0;
712 descqp[1] = qib_sdma_make_desc1(addr);
715 /* pq->lock must be held, get packets on the wire... */
716 static int qib_user_sdma_push_pkts(struct qib_pportdata *ppd,
717 struct qib_user_sdma_queue *pq,
718 struct list_head *pktlist)
720 struct qib_devdata *dd = ppd->dd;
721 int ret = 0;
722 unsigned long flags;
723 u16 tail;
724 u8 generation;
725 u64 descq_added;
727 if (list_empty(pktlist))
728 return 0;
730 if (unlikely(!(ppd->lflags & QIBL_LINKACTIVE)))
731 return -ECOMM;
733 spin_lock_irqsave(&ppd->sdma_lock, flags);
735 /* keep a copy for restoring purposes in case of problems */
736 generation = ppd->sdma_generation;
737 descq_added = ppd->sdma_descq_added;
739 if (unlikely(!__qib_sdma_running(ppd))) {
740 ret = -ECOMM;
741 goto unlock;
744 tail = ppd->sdma_descq_tail;
745 while (!list_empty(pktlist)) {
746 struct qib_user_sdma_pkt *pkt =
747 list_entry(pktlist->next, struct qib_user_sdma_pkt,
748 list);
749 int i;
750 unsigned ofs = 0;
751 u16 dtail = tail;
753 if (pkt->naddr > qib_sdma_descq_freecnt(ppd))
754 goto unlock_check_tail;
756 for (i = 0; i < pkt->naddr; i++) {
757 qib_user_sdma_send_frag(ppd, pkt, i, ofs, tail);
758 ofs += pkt->addr[i].length >> 2;
760 if (++tail == ppd->sdma_descq_cnt) {
761 tail = 0;
762 ++ppd->sdma_generation;
766 if ((ofs << 2) > ppd->ibmaxlen) {
767 ret = -EMSGSIZE;
768 goto unlock;
772 * If the packet is >= 2KB mtu equivalent, we have to use
773 * the large buffers, and have to mark each descriptor as
774 * part of a large buffer packet.
776 if (ofs > dd->piosize2kmax_dwords) {
777 for (i = 0; i < pkt->naddr; i++) {
778 ppd->sdma_descq[dtail].qw[0] |=
779 cpu_to_le64(1ULL << 14);
780 if (++dtail == ppd->sdma_descq_cnt)
781 dtail = 0;
785 ppd->sdma_descq_added += pkt->naddr;
786 pkt->added = ppd->sdma_descq_added;
787 list_move_tail(&pkt->list, &pq->sent);
788 ret++;
791 unlock_check_tail:
792 /* advance the tail on the chip if necessary */
793 if (ppd->sdma_descq_tail != tail)
794 dd->f_sdma_update_tail(ppd, tail);
796 unlock:
797 if (unlikely(ret < 0)) {
798 ppd->sdma_generation = generation;
799 ppd->sdma_descq_added = descq_added;
801 spin_unlock_irqrestore(&ppd->sdma_lock, flags);
803 return ret;
806 int qib_user_sdma_writev(struct qib_ctxtdata *rcd,
807 struct qib_user_sdma_queue *pq,
808 const struct iovec *iov,
809 unsigned long dim)
811 struct qib_devdata *dd = rcd->dd;
812 struct qib_pportdata *ppd = rcd->ppd;
813 int ret = 0;
814 struct list_head list;
815 int npkts = 0;
817 INIT_LIST_HEAD(&list);
819 mutex_lock(&pq->lock);
821 /* why not -ECOMM like qib_user_sdma_push_pkts() below? */
822 if (!qib_sdma_running(ppd))
823 goto done_unlock;
825 if (ppd->sdma_descq_added != ppd->sdma_descq_removed) {
826 qib_user_sdma_hwqueue_clean(ppd);
827 qib_user_sdma_queue_clean(ppd, pq);
830 while (dim) {
831 const int mxp = 8;
833 down_write(&current->mm->mmap_sem);
834 ret = qib_user_sdma_queue_pkts(dd, pq, &list, iov, dim, mxp);
835 up_write(&current->mm->mmap_sem);
837 if (ret <= 0)
838 goto done_unlock;
839 else {
840 dim -= ret;
841 iov += ret;
844 /* force packets onto the sdma hw queue... */
845 if (!list_empty(&list)) {
847 * Lazily clean hw queue. the 4 is a guess of about
848 * how many sdma descriptors a packet will take (it
849 * doesn't have to be perfect).
851 if (qib_sdma_descq_freecnt(ppd) < ret * 4) {
852 qib_user_sdma_hwqueue_clean(ppd);
853 qib_user_sdma_queue_clean(ppd, pq);
856 ret = qib_user_sdma_push_pkts(ppd, pq, &list);
857 if (ret < 0)
858 goto done_unlock;
859 else {
860 npkts += ret;
861 pq->counter += ret;
863 if (!list_empty(&list))
864 goto done_unlock;
869 done_unlock:
870 if (!list_empty(&list))
871 qib_user_sdma_free_pkt_list(&dd->pcidev->dev, pq, &list);
872 mutex_unlock(&pq->lock);
874 return (ret < 0) ? ret : npkts;
877 int qib_user_sdma_make_progress(struct qib_pportdata *ppd,
878 struct qib_user_sdma_queue *pq)
880 int ret = 0;
882 mutex_lock(&pq->lock);
883 qib_user_sdma_hwqueue_clean(ppd);
884 ret = qib_user_sdma_queue_clean(ppd, pq);
885 mutex_unlock(&pq->lock);
887 return ret;
890 u32 qib_user_sdma_complete_counter(const struct qib_user_sdma_queue *pq)
892 return pq ? pq->sent_counter : 0;
895 u32 qib_user_sdma_inflight_counter(struct qib_user_sdma_queue *pq)
897 return pq ? pq->counter : 0;